Chapter 2

Occurrence, trends and analysis

Weight profiles

Prevalence of obesity in developing and developed countries
This overview on the prevalence of obesity is based on adult population surveys in which both weight and height have been measured. The WHO classification of obesity as BMI $30 \mathrm{~kg} / \mathrm{m}^{2}$ or over (see Chapter 1) is systematically used to allow comparison of different studies. Although extensive data exist on self-reported weight and height, since this information is often requested in questionnaires, they are known to be unreliable, especially in the obese, and thus would give an underestimate of the prevalence of obesity. Most of the data presented are from the last 10-15 years, since the prevalence of obesity has been changing rapidly all over the world and old data without time-trend information are not very useful. The surveys are arranged according to the six WHO Regions, with the exception of the MONICA Project.

The MONICA Project (Monitoring trends and determinants in cardiovascular disease) covered 54 study populations in 26 countries, mainly in Europe. Risk factor surveys were carried out through two or three independent crosssectional surveys, each five years apart, ranging from the early 1980s to the 1990s. These surveys included random samples of at least 200 persons of each gender and for 10 -year age groups for the age range 35-64 years, and optionally 25-34 years. Common standardized methods were applied for data collection and analyses, making these data an invaluable source for comparison between populations.

In this section, the data for each country had to have been drawn from some sort of representative national sample. Table 3 summarizes the prevalence of obesity (BMI $30 \mathrm{~kg} / \mathrm{m}^{2}$ or more) in all MONICA centres where 10year trend data were available (http://www. ktl.fi/publications/monica). In men, the prevalence of obesity was lowest in China ($3-4 \%$) and highest (at least 20%) in Finland, Glasgow (United Kingdom), rural Germany, Strasbourg (France), Kaunas (Lithuania), Warsaw (Poland), the Czech Republic and Stanford (United States). There was an overall increase in the prevalence of obesity in men in most populations. The biggest increases in ten years (by at least 10 percentage points) took place in Glasgow and in Stanford. The only centres where the prevalence of obesity decreased were Ticino (Switzerland) and Moscow (Russian Federation). The overall prevalence of obesity in men in most European populations was 15-25\%. In women, the prevalence of obesity was lowest (10% or lower) in Gothenburg (Sweden), Toulouse (France), Fribourg (Switzerland) and Beijing (China). A high prevalence of obesity (at least 20%) was found in 14 centres out of 29 , the highest prevalences being in eastern Europe. There was an overall tendency of increasing prevalence of obesity over ten years also in women, the biggest increases being in Glasgow and in Stanford, while the prevalence of obesity in women decreased in the Russian Federation and Lithuania. The prevalence of obesity varies in women more than in men, from 10 to 35% within European populations.

Other survey data from European populations are summarized in Table 4. The Health Surveys for England show an extraordinary increase in the prevalence of obesity (Seidell, 2001) (Figure 12). In the late 1980 s, 7% of men and 12% of women were obese, while the respective numbers in 1997 were 17% and 19%. The age ranges in the other studies vary and, thus, the prevalence data are not necessarily comparable. The low prevalence in the Netherlands (Seidell et al., 1995) and Belgium (Moens et al., 1999) are influenced by the inclusion of young people, the prevalence being about 10%. There is an increasing trend in the Netherlands. The EURALIM Project, covering six European countries (Beer-Borst et al., 2000), shows big differences within countries such as Italy, where the prevalence of obesity is 37% in women in the Latina area and only 19% in Naples. However, the age ranges differ, which explains at least part of the difference.

In the United States, the prevalence of obesity is increasing rapidly (Table 5). The secular trends are based on national representative surveys: NHES I (1960-62), NHANES I (1971-74), NHANES II (1976-78) and NHANES III (1988-94). There are also racial differences in the prevalence of obesity (Flegal et al., 1998). In the early 1990s, 20% of non-Hispanic white men, 21% of non-Hispanic black men and 23% of Mexican-American men were obese. The respective numbers for women were $22 \%, 37 \%$ and 34%. Of particular public health concern is the high prevalence (over 40%) of class II obesity (BMI 40 $\mathrm{kg} / \mathrm{m}^{2}$ or more) among non-Hispanic

T1ens dy 						
Area	Country	Centre	Men		Women	
			1980 s	1990 s	1980s	1990s
Northern Europe	Denmark	Glostrup	11	13	10	12
	Finland	Kuopio Province	18	24	19	26
	Finland	North Karelia	17	23	24	24
	Finland	Turku-Loimaa	19	22	17	19
	Iceland	Iceland	11	16	11	18
	Sweden	Gothenburg	7	13	9	10
	Sweden	Northern Sweden	11	14	14	14
Western Europe	United Kingdom	Glasgow	11	23	16	23
	United Kingdom	Belfast	11	14	14	16
	Germany	Bremen	14	16	18	19
	Germany	Augsburg	18	17	15	21
	Germany	Augsburg, rural	20	24	22	23
	Belgium	Ghent	11	13	15	16
	France	Lille	14	17	19	22
	France	Toulouse	9	13	11	10
	France	Strasbourg	22	22	23	19
	Switzerland	Ticino	20	13	15	16
	Switzerland	Vaud-Fribourg	13	17	13	10
Eastern Europe	Russian Federation	Novosibirsk	14	17	44	35
	Russian Federation	Moscow	13	8	33	22
	Lithuania	Kaunas	22	20	45	32
	Poland	Warsaw	18	22	26	29
	Poland	Tarnobrzeg V.	13	15	32	36
	Czech Republic	Czech Republic	21	23	32	30
Southern Europe			9	16	24	25
	Italy	Area Brianza	11	14	15	18
	Italy	Friuli	16	17	19	19
North America	United States	Stanford	10	20	14	23
Asia	China	Beijing	3	4	10	8

Source: www.ktl.fi/publications/monica
black women in the middle-aged groups.

In Canada, the prevalence of obesity is lower than in the United States, being about 15\% in 1991 (Reeder et al., 1992). An increasing trend, however, may have occurred from the late 1970s to the early 1990s, especially in men (Table 5).

Data from Brazil are also based on
nationally representative nutrition surveys showing that increases in adult obesity have been occurring in both men and women. The most recent data show that about 7% of men and 13% of women are obese (Monteiro et al., 2000). The prevalence is high in the Caribbean, especially in women in Barbados, Cuba, Jamaica and St Lucia (Forrester et al.,
1996). However, since these data were not reported using the cut-off value of BMI $30 \mathrm{~kg} / \mathrm{m}^{2}$, the numbers are not comparable with those from other countries. In the Dutch Caribbean Island of Curaçao, 36% of women older than 18 years are obese (Grol et al., 1997).

Obesity is still uncommon ($1-3 \%$) in Japan and China, but slightly more

Population	Period	Age (yrs)	Men	Women	Reference
United Kindom, national surveys	1987/89	$16+$	7	12	Seidell, 2001
	1993		13	16	
	1994		14	17	
	1995		15	17	
	1996		16	18	
	1997		17	19	
Belgium (Flanders and Brussels)	1994	18-64	11	9	Moens et al., 1999
The Netherlands, national surveys	1987-91	20-59	7	9	Seidell et al., 1995
	1993		8	10	
	1994		10	11	
Sweden	1963	>50	6	-	Rosengren et al., 2000
	1994	> 50	11	-	
Euralim study					
The Netherlands	1990-92	20-59	12	14	Beer-Borst et al., 2000
France	1995-96	35-65	8	7	Beer-Borst el al., 2000
Italy (Naples)	1993-96	30-69	-	19	
Italy (Latina)	1993-96	20-84	20	37	
Switzerland (Geneva)	1993-96	29-83	11	9	
UK (Belfast)	1991-92	25-65	15	16	
Spain (Catalonia)	1992	25-75	11	22	

Figure 12 Time trends in the prevalence (\%) of obesity in the United Kingdom (UK) and the Netherlands (NL)

IARC Handbooks of Cancer Prevention, Volume 6: Weight Control and Physical Activity

Population	Period	Age (yrs)	Men	Women	Reference
United States					
NHES 1	1960-62	20-74	10	15	Flegal et al., 1998
NHANES I	1971-74		12	16	
NHANES II	1976-78		12	17	
NHANES III	1988-94	20-74	20	25	
- non-hispanic white	1976-78		12	15	
	1988-94		20	22	
- non-hispanic black	1976-78	20-74	15	30	
	1988-94		21	37	
- Mexican-American	1976-78	20-74	15	25	
	1988-94		23	34	
Canada	1978	20-70	6.8	9.6	WHO Consultation on Obesity, 1998
	1981	20-70	8.5	9.3	
	1988	20-70	9.0	9.2	
National survey	1986-92	18-74	13	14	Reeder et al., 1992
	1991	18-74	15	15	
Brazil, national surveys	1975	25-64	2.4	7.0	Monteiro et al., 2000
	1989		4.7	12.0	
	1997		6.9	12.5	
Curaçao	1993-94	>18	19	36	Grol et al., 1997

frequent in Thailand and Malaysia (4-8\%) (Table 6). The MONICA Project showed an increase in prevalence of obesity among urban people in Beijing over ten years (www.ktl.fi/publications/monica). Nationwide nutrition surveys have shown the same phenomenon, but since the data-sets are not agestandardized and rarely use the WHO classification, the numbers are again non-comparable (WHO Consultation on Obesity, 1998). Similar trends can be seen in India, where obesity is increasing among urban middle-class people (Dhurandhar \& Kulkarni, 1992).

The prevalence of obesity is about $10-15 \%$ in Australia and New Zealand. Among different ethnic groups in Australia, the prevalence is lowest ($1-2 \%$) in the Chinese (Hsu-Hage \& Wahlqvist, 1993) and highest (25% in men and 38% in women) in the Aboriginals in the south-east (Guest
et al., 1993). The differences in prevalence between Aboriginal groups living in different areas apparently reflect different degrees of westernization.

The prevalence of obesity is very high in Polynesian populations. About $50-60 \%$ of men and up to 77% of women are obese (Hodge et al., 1995). However, Polynesians have a higher ratio of lean mass to fat mass than Europeans (see Chapter 1) and so the prevalence of obesity is somewhat lower than that estimated using the BMI criteria developed for Caucasians (Swinburn et al., 1999). There is an urban-rural difference, with a higher prevalence of obesity in urban areas, as well as a pronounced increasing trend. The influence of urbanization is clearly seen among the Papua New Guineans: the prevalence of obesity is only about 5% among those still living in the highlands but 36%
in men and 54% in women living in urban areas.

Obesity is a severe problem in the Eastern Mediterranean Region (Table 7). Although most of the data are based on small studies except for the national surveys in Saudi Arabia (Al-Nuaim et al., 1996), they show that the prevalence of obesity increases rapidly in women as they enter the childbearing age. Over 40% of adult women are obese. In contrast, obesity is not common in Iran, the prevalence being only 2.5% in men and 8% in women (Pishdad, 1996).

Obesity is still uncommon in most African countries (Table 8). However, in countries in transition such as Mauritius, the prevalence is increasing rapidly with increasing urbanization (Hodge et al., 1996). Among the different ethnic groups, the Creole have the highest prevalence (8% in men and 21% in women) and the Chinese the

Population	Period	Age (yrs)	Men	Women	Reference
Japan, national surveys	$\begin{aligned} & 1976 \\ & 1982 \\ & 1987 \\ & 1993 \end{aligned}$	$20+$	$\begin{aligned} & 0.7 \\ & 0.9 \\ & 1.3 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.6 \\ & 2.8 \\ & 2.6 \end{aligned}$	WHO Consultation on Obesity, 1998
Japan, national surveys	1990-94	35-64	1.9	2.9	Asia-Pacific Perspective, 2000
China, Beijing		35-64	$\begin{array}{r} 3 \\ 10 \end{array}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	www.ktl.fi/publications/monica
China, national survey Urban Rural	1992	20-45	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 0.7 \end{aligned}$	Asia-Pacific Perspective, 2000
Thailand, national survey	1991	20+	4.0	5.6	Asia-Pacific Perspective, 2000
Malaysia Urban Rural Indian Chinese		18-60	$\begin{aligned} & 4.7 \\ & 5.6 \\ & 1.8 \end{aligned}$	$\begin{array}{r} 7.9 \\ 8.8 \\ 2.6 \\ 17.1 \\ 4.3 \end{array}$	Ismail et al., 1995
New Zealand, national survey	1989	18-64	10	12	Ball et al., 1993
Australia					
National surveys	$\begin{aligned} & 1980 \\ & 1983 \\ & 1989 \end{aligned}$	25-64	$\begin{array}{r} 9.3 \\ 9.1 \\ 11.5 \end{array}$	$\begin{array}{r} 8.0 \\ 10.5 \\ 13.2 \end{array}$	Bennett \& Magnus, 1994
Australians Melbourne Chinese	$\begin{aligned} & 1990 \\ & 1989 \end{aligned}$	$\begin{aligned} & 20-64 \\ & 25-69 \end{aligned}$	$\begin{aligned} & 9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 11 \\ & 2.3 \end{aligned}$	Hsu-Hage \& Wahlqvist, 1993
Newcastle Perth	$\begin{aligned} & 1986 \\ & 1986 \end{aligned}$	$\begin{aligned} & 35-65 \\ & 35-65 \end{aligned}$	15 9	$\begin{aligned} & 16 \\ & 11 \end{aligned}$	Molarius et al., 1997
South-east Aboriginals Europids		25-64	$\begin{aligned} & 25 \\ & 17 \end{aligned}$	$\begin{aligned} & 38 \\ & 18 \end{aligned}$	Guest et al., 1993
Non-aboriginal Central aboriginal West Kimberiey aborig. Yologu	$\begin{aligned} & 1980 \\ & 1985 \\ & 1986 \\ & 1991 \end{aligned}$		6 22 - 2	$\begin{array}{r} 9 \\ 51 \\ 17 \\ 4 \end{array}$	Jones \& White, 1994
Philippines		$20+$	1.7	3.4	Asia-Pacific Perspective, 2000
Nauru	1987	25-69	65	70	Hodge et al., 1995

Population	Period	Age (yrs)	Men	Women	Reference
Samoa, urban	1978	25-69	39	59	Hodge et al., 1995
	1991	25-69	58	77	
Samoa, rural	1978		18	37	
	1991		42	59	
Papua New Guinea Urban coastal Rural coastal Highlands	1991	25-69			Hodge et al., 1995
			36	54	
			24	19	
			5	5	
Rodrigues, creoles	1992	25-69	10	31	Hodge \& Zimmet, 1994
India, Bombay, middle class	1991	15-30	0.3	2.5	Dhurandhar \& Kulkarni, 1992
		$31-50$	6.5	9.6	
		$50+$	8.1	9.8	

lowest (only 2% in men and 6% in women) (Hodge \& Zimmet, 1994).

Age, sex, social class and education A recent analysis of data from the MONICA Project shows that socioeconomic inequalities in health consequences associated with obesity may be widening in many countries (Molarius et al., 2000). Among women, there was a statistically significant inverse association between educational level and BMI in almost all 26 populations. The difference between the highest and the lowest educational tertiles ranged from -3.1 to $0.4 \mathrm{~kg} / \mathrm{m}^{2}$ in the initial survey and from -3.3 to 0.6 $\mathrm{kg} / \mathrm{m}^{2}$ in the final survey. In men, the difference in BMI between the educational tertiles ranged from -1.2 to $2.2 \mathrm{~kg} / \mathrm{m}^{2}$ and from -1.5 to $1.2 \mathrm{~kg} / \mathrm{m}^{2}$ in the two surveys, respectively. In about two thirds of the populations, the differences in BMI between the educational groups increased over the 10 -year period. There was no geographical pattern in women. In men, the association between educational level and BMI was positive in some eastern and central European populations and in Beijing, China. BMI was positively associated with education in populations with a low prevalence of
obesity and negatively in affluent populations with high prevalence of obesity.

A strong educational gradient has been found in almost all western populations besides the MONICA centres. The prevalence of obesity is higher among those with low education compared with the highly educated groups, especially among women. In many countries (e.g., Denmark, Sweden), the prevalence is not increasing only in women with high education, whereas among men it is increasing in all educational groups (Peltonen et al., 1998; Stam-Moraga et al., 1998; Moens et al., 1999; Heitmann, 2000; Lahti-Koski et al., 2000). The same phenomenon is seen in Brazil, where a very recent trend is a decrease in the prevalence of obesity in urban women (Monteiro et al., 2000). Highly educated women are more resistant to gradual weight gain with ageing than are other population groups.

Although surveys with self-reported height and weight are not generally included in this review, a recent survey among 15239 individuals aged 15 years and over in the European Union is worth quoting since it has information on determinants of obesity (Martinez et al., 1999a). The results concerning over-
weight (BMI 25-29.9 $\mathrm{kg} / \mathrm{m}^{2}$) are also quoted because self-reporting of weight and height leads to underestimation of BMI. Subject selection was quota-controlled to make the sample nationally representative following a multi-stage stratified cluster sampling. Self-reporting and inclusion of persons from age 15 years explain the lower prevalence rates, which were highest in the United Kingdom (12\%) and lowest in France, Italy, Sweden and Switzerland (about 7%). Individuals of higher social class and younger age in all groups had a lower risk for obesity. People with a higher level of education also had lower risk, and the interaction between educational levels and obesity was weaker for men than women.

Among males, the highest prevalence of overweight was found in those aged 45-54 years who had primary school education and those aged 65+ years who had tertiary education. For all educational levels, obesity was more prevalent among the older age groups, particularly among those with a low level of education. A strong inverse association between levels of obesity and education was apparent, with $55-64$-year-old pri-mary-educated women having four times

the level of obesity of those in the same age group with teriary education.

Risk of obesity rose steeply with increasing age, especially for the lowest social class, up to 45-64 years and declined among those over 65 years for all social classes. The highest risk of obesity was observed in 45-64-yearolds of low social class.

Survey data from Jerusalem show that in women the prevalence of obesity was lowest in the more educated and lower in those born in Europe or America than among those born in Israel (Gofin et al., 1996).

Martorell et al. (2000a) have summarized the prevalence of overweight and obesity in women from population surveys carried out in 32 developing countries in the 1990s (Table 9, Figures 13 and 14). All the surveys were cross-sectional surveys of nationally representative samples (sample sizes from 773 to 10747 women). Most were demographic health surveys in which women of child-bearing age (15-49 years) were interviewed and measured using standard survey instruments. These data are available through the internet (http://www. macroint. com.dhs/). South Asian women were the leanest, with about 97.7% having a BMI less than $25 \mathrm{~kg} / \mathrm{m}^{2}$ and only 0.1% a BMI of 30 or over. The percentages of obese women were 2.5% in sub-Saharan Africa, 9.6% in Latin America and the Caribbean, 15.4% in the Central Eastern Europe/Commonwealth of Independent States (CEE/CIS) region and 17.2% in the Middle East and North Africa. In very poor countries, mostly in sub-Saharan Africa, obesity is concentrated among urban and highly educated women. In more developed countries, such as those in Latin America and the CEE/CIS region, levels of obesity are more equally distributed across subgroups in each country.

For comparison, the authors also analysed the prevalence of obesity in
different educational groups from the United States NHANES III survey (Martorell et al., 2000a). Women were divided into four groups depending on the number of years of education completed: middle school or less ($0-9 \mathrm{y}$), high school (10-12 y), university (13-16 y) and graduate work (>16 y). The prevalence of obesity in these groups was $20.1 \%, 24.1 \%, 18.9 \%$ and 9.2%, respectively.

Overweight and underweight people may co-exist in countries in transition, with underweight children living in families with overweight adults (Doak et al., 2000). Data from three large national surveys from Brazil, China and the Russian Federation show that the prevalence of such households was 8% in China and Russia and 11% in Brazil. Even more important from the public health perspective is the finding that these 'underweight/overweight' households accounted for a high proportion of all households that had at least one underweight member (China, 23\%; Brazil, 45%; Russian Federation, 58%). The prevalence of such underweight/overweight households was highest in urban areas in all three countries. The underweight child co-existing with an overweight nonelderly adult was the predominant pair combination in all three countries.

It is to be expected that increasing migration between countries and from rural to urban environments all around the world, and the consequent increasing urbanization, will create wider differences in the prevalence of obesity within populations as the mixture of cultural and educational factors come into play. The findings on the high prevalence of obesity in certain social groups raise questions about the possible structural causes the roles of social, economic, cultural or environmental factors. How such factors may be acting to curtail physical activity and/or influence food habits remains unclear.

Obesity during childhood and adolescence

It is not possible to give an overview of the global prevalence of obesity in children or adolescents because there is no common agreement on the classification of obesity in different periods of growth. BMI cut-points for different ages have recently been proposed (Cole et al., 2000). Obesity is mostly acquired during adulthood and its role in the etiology of cancer usually concerns middle-aged and older adults. However, childhood obesity seems to be increasing in all countries that have data on time trends and it usually persists into adulthood (Rudolf et al., 2001).

Cross-sectional studies in Europe indicate that overweight and obesity are a growing problem (Livingstone, 2000). The prevalence varies in a complex manner with time, age, sex and geographical region. The prevalence of obesity in young children is lower than among adolescents. Gender differences in prevalence are inconsistent. The highest rates of obesity are observed in eastern and southern European countries, particularly in Greece, Hungary, Italy and Spain. In contrast, northern European countries tend to have lower rates that are broadly similar across countries.

In the United States between 1963 and 1994, prevalence of obesity in $6-17$-year olds (defined as a BMI at or above the NHANES II 95th percentile) has increased from approximately 4% to 11%. A further 14% are currently at risk of becoming overweight (BMI between the 85th and 95th percentiles) and these rates are continuing to increase (Livingstone, 2000) (Figure 15). The prevalence of overweight and obesity has increased among young inner-city schoolchildren, for example this was reported in Montreal from the early to late 1990s (O'Loughlin et al., 2000). Primary school children in Australia have also become more obese between 1985 and 1997 (Lazarus et al., 2000). Similar

Country (period)	\% Overweight	\% Obese				
		Total	Urban	Rural	High education	Low education
Sub-Saharan Africa						
Benin (1996)	6.9	2.1	3.5	1.4	8.7	1.7
Burkina Faso (1992/93)	5.9	1.0	3.5	0.6	7.1	0.8
Central African Repubic (1994/95)	5.5	1.1	2.0	0.5	3.1	0.8
Comoros (1996)	15.9	4.4	9.6	2.7	7.0	4.0
Cote d'lvoire (1994)	11.0	3.0	6.2	1.3	5.4	2.7
Ghana (1993)	9.3	3.4	8.1	1.5	12.2	2.9
Kenya (1993)	11.4	2.4	5.4	2.0	3.6	2.1
Malawi (1992)	8.1	1.1	5.	-	8.3	0.8
Mali (1996)	7.2	1.2	3.5	0.4	6.5	1.0
Namibia (1992)	13.8	7.1	13.4	3.4	9.6	5.7
Niger (1992)	6.2	1.2	6.4	0.3	9.6	1.1
Senegal (1992/93)	12.0	3.7	7.2	1.9	9.7	3.4
Tanzania (1992/92)	9.3	1.9	4.1	1.2	9.6	1.6
Tanzania (1996)	10.8	2.6	6.0	1.7	8.4	2.3
Uganda (1995)	7.3	1.2	4.2	0.7	2.6	1.0
Zambia (1992)	11.8	2.4	4.5	0.4	3.9	1.9
Zambia (1996/97)	10.5	2.3	4.3	0.8	3.4	1.9
Zimbabwe (1994)	17.4	5.7	12.5	3.4	7.3	4.8
Middle East and North Africa						
Egypt (1992)	33.9	23.5	35.8	14.8	29.6	21.7
Egypt (1995/96)	31.7	20.1	30.0	26.1	13.0	17.0
Morocco (1992)	22.3	10.5	18.3	5.5	16.4	9.8
South Asia						
Bangladesh (1995/96)	2.2	0.6	2.7	0.4	1.9	0.3
Nepal (1996)	1.5	0.1	1.0	0.1	0.0	0.1
Latin America and Caribbean						
Bolivia (1994)	26.2	7.6	9.8	5.1	8.0	7.4
Brazil (1989)	25.0	9.2	9.4	8.0	13.4	8.7
Brazil (1996)	25.0	9.7	9.9	8.9	8.8	11.0
Colombia (1995)	31.4	9.2	9.2	9.1	8.7	9.9
Dominican Republic (1991)	18.6	7.3	8.8	4.7	7.8	6.9
Dominican Republic (1996)	26.0	12.1	13.4	9.6	10.0	13.8
Guatemala (1995)	26.2	8.0	12.9	5.2	13.1	7.1
Haiti (1994/95)	8.9	2.6	4.8	1.4	9.5	1.5
Honduras (1996)	23.8	7.8	13.0	4.8	6.6	8.1
Mexico (1987)	23.1	10.4	10.0	10.4	5.4	15.8
Peru (1992)	31.1	8.8	11.2	4.6	9.5	8.1
Peru (1996)	35.5	9.4	12.1	4.6	10.4	8.2
Central Eastern Europe/Commonwealth of Independent States (CEE/CIS)						
Kazakstan (1995)	21.8	16.7	17.5	15.6	-	-
Turkey (1993)	31.7	18.6	19.5	17.1	10.5	20.5
Uzbekistan (1996)	16.3	5.4	7.4	4.2	-	-

Source: adapted from Martorell et al., 2000a

Figure 13 Obesity in women (15-49 yrs) in Sub-Saharan Africa
Adapted from Martorell et al., 2000a

Figure 14 Obesity in women ($15-49$ yrs) in Latin America/Caribbean
Adapted from Martorell et al., 2000a
$\overline{22}$

Figure 15 Prevalence (\%) of obesity in 6-11-year-old and 12-17-year-old children in surveys in the United States from the 1960 s to the late 1980s
trends have been reported from Denmark (Sørensen et al., 1997; Thomsen et al., 1999), the Netherlands (Fredriks et al., 2000) and Portugal (de Castro et al., 1998).

In a large analysis on overweight and obesity in preschool children in developing countries, 71 national nutrition surveys since 1986 from 50 countries were used (Martorell et al., 2000b). For this analysis, overweight and obesity were defined as values >1 or >2 standard deviations above the WHO/NCHS mean weight-for-height. The prevalence of overweight and obesity was lowest in Asia and sub-Saharan Africa. Overweight was more common in urban areas, in children with mothers with high education, and in girls. In a number of countries in Latin America and the Caribbean, the Middle East and North Africa, and the CEE/CIS region, levels were as high as in the United States. A recent study of Bahraini school children found that the mean BMI for girls aged 13 years and above exceeded that of their American counterparts (Musaiger \& Gregory, 2000).

Since fatness can change at a constant BMI, it is possible that children
may be getting fatter at the expense of lean tissue, which may be decreasing as a result of diminishing physical activity.

Physical activity

Because physical activity is important in the prevention of a variety of diseases and conditions (US Department of Health and Human Services, 1996), it has been included as part of health behaviour monitoring in many countries.

Many countries monitor only leisuretime physical activity because national policies assume that individuals find this type of activity most amenable to intervention, and because occupational physical activity is now uncommon in westernized countries, which are the source of most comparative national data (Caspersen, 1994). However, individuals who perform large amounts of occupational activity would be misclassified as inactive if they performed little or no leisure-time activity. Even though countries may not employ a common survey assessment methodology, there is value in comparing existing data while carefully examining factors that may be responsible for differences in the estimates. Little
information from developing countries is available.

National surveys

Seven countries have included questions on physical activity as part of national surveys during the 1990s. (1) Australia conducted a National Physical Activity Survey in 1997 and 1999 (Armstrong et al., 2000); (2) Canada conducted a National Population Health Survey in 1994-95 and 1996-97 (Health Canada, 1999); (3) England conducted a National Health Survey in 1994-95 and 1998-99 (Prior, 1999); (4) Finland conducted a National Health Monitoring Survey annually from 1978 through 1999 (Helakorpi et al., 1999); (5) Ireland conducted the Happy Heart National Survey in 1992 (Irish Heart Foundation, 1994); (6) New Zealand conducted the Life in New Zealand Survey in 1989-90 (Hopkins et al., 1991; Russell \& Wilson, 1991); and (7) the United States conducted the National Health Interview Survey (NHIS) in 1985, 1990 and 1991 (US Department of Health and Human Services, 1996). In addition, one multinational comparison of physical activity was conducted in 1997 among the 15

Country, survey name (reference) year(s) of survey	Sponsor	Type of survey sample	Mode of administration	Months of survey	Sample size	Age of sample	Response rate
Australia							
National Physical Activity Survey (Armstrong et al., 2000), 1997, 1999	Australia Institute of Health and Welfare, Department of Health and Aged Care	Households randomly selected using electronic White Pages directory. Individuals of the household with the most recent birthdate were asked to participate.	Telephone interview	NovemberDecember	3841	18-75	49-58\%
Canada							
National Population Health Survey (Health Canada, 1999), 1994-95, 1996-97	Health Canada	Target population was provincial residents aged 12 years and older, except those living on Indian reserves, Canadian Forces bases, and in remote areas of Ontario and Quebec	Household interview	June 1994August 1995 and June 1996August 1997	69524	>12	$N R^{a}$
England							
National Health Survey for England (Prior, 1999), 1994-95, 1998-99	National Centre for Social Research, Department of Health	Multi-stage stratified random sample with households drawn from Postcode Address File. Sampled addresses selected from 720 postal sectors.	Computerassisted household interview	January 1994- April 1995 and January 1998- April 1999	1908	≥ 16	63\%
European Union ${ }^{\text {b }}$							
Pan-European Union Survey (European Commission, 1999; Kearney et al., 1999), 1997	European Commission, DirectorateGeneral for Employment, Industrial Relations and Social Affairs	Multi-stage stratified cluster sample with quota samples in 15 countries based on age, sex and social class	Household interview	March-April	1239	≥ 15	NR

		TED 640	0 Lt 9				
Country, survey name, (reference) year(s) of survey	Sponsor	Type of survey sample	Mode of administration	Months of survey	Sample size	Age of sample	Response rate
Finland							
National Health Behaviour Monitoring System (Helakorpi et al., 1999), 1978-99	National Public Health Institute	Random sample selected from the National Population Register	Postal survey	April	3371	15-64	68\%
Ireland							
Happy Heart National Survey (Irish Heart Foundation, 1994), 1992	Irish Heart Foundation	Household address chosen at random from Electoral Register. Interviewers chose remainder of households within the cluster. Additional sample quotas by age and sex.	Household interview	November	1798	30-69	N/R
New Zealand							
Life in New Zealand Survey (Hopkins et al., 1991; Russell \& Wilson, 1991), 1989-90	Hillary Commission for Recreation and Sport	Random sample drawn from 97 electoral rolls of 1988. Mailing sent to about 10 persons per month	Phase I: Postal survey Phase II: Intervieweradministered survey at health examination	April 1989March 1990	11295	≥ 15	45\%
United States							
National Health Interview Survey (USDHHS, 1996), 1985, 1990, 1991	National Center for Health Statistics	Stratified multi-stage probability design with oversampling of African-Americans and Hispanics	Household interview	JanuaryDecember	$\begin{aligned} & 36399- \\ & 43732 \end{aligned}$	≥ 18	83-88\%

[^0]| | | | 2ble 11 (60\% |) | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Country, survey name, (reference), year(s) of survey | Recall period | Total survey items | Method of activity probing | Type of physical activity and nature and detail of survey data | Activity summary score |
| | Past 4 weeks | 5 | Close-ended | Work
 Combination of Standard Occupational Classification code and perception of degree of physical activity on the job (mainly sitting down/standing up/walking about, doing any climbing (excluding climbing stairs), lifting/ carrying heavy loads. Work coded as vigorous if on a selected list of vigorous occupations. | Three non-independent groups:
 1. Mainly sitting or standing
 2. Climbing
 3. Lifting/carrying heavy loads |
| European Union ${ }^{\text {b }}$ | | | | | |
| Pan-European Union Survey (European Commission, 1999; Kearney et al., 1999), 1997 | Average week | 18 activities (17 listed, 1 'other') | List-specific | Leisure
 Recall of hours/week in 18 activities spent in 7 categories of duration: $\leq 0.5,1,1.5,2,3,4$ $\geq 5 \mathrm{~h} /$ week | Sum of time/week spent in 18 activities.
 Summarized into 4 groups: none, < 1.5, 1.5-3.5, > $3.5 \mathrm{~h} /$ week |
| | Typical day at work, college, in office or at home | 3 activities | List-specific | Work
 Recall of hours/day spent in 3 intensity levels of work activity (sitting, standing/walking, physical work) for 10 categories of duration ranging from $0-\geq 8$ h/day | Time/day spent in each of 3 work intensity levels. Summarized into 4 groups: none, < 2, 3-6, > $6 \mathrm{~h} /$ day |
| Finland | | | | | |
| National Health Behaviour Monitoring System (Helakorpi et al., 1999), 1999 | Past year | 1 | Close-ended | Leisure
 Physical activities performed for at least one half hour and that at least causes light sweating or breathlessness | Categories of a few times a year or less, 2-3 times a month, once a week, 2-3 time/week, 4-6/per week, and daily (noted those who cannot exercise) |
| | Usual work day | 1 | Close-ended | Work 'How physically demanding is respondent's job ?' | Categories included: 'Job mainly involves sitting', 'Work involves quite a lot of walking,' 'Work involves much walking and lifting,' and 'Work is very physically demanding' |
| | Usual work day | 1 | Close-ended | Transportation ${ }^{C}$
 Time spent travelling to and from work by walking or cycling | Categories of 15, 15-30, $30-60, \geq 60$ minutes/day |

a $\mathrm{NR}=$ not reported
The 15 countries included in the European Union survey were Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden and the United Kingdom.
${ }^{c}$ Response included those who did not work or worked at home.
The two regression equations used to estimate the respondent's maximum cardiorespiratory capacity (expressed in metabolic equivalents, METs) are: 60-0.55 x age (years)] 3.5 for men, and [48-0.37 x age(years)] 3.5 for women (Jones \& Campbell, 1982).

Figure 16 Finlandia Ski Race, with thousands of participants
member states of the European Union (EU) (European Commission, 1999; Kearney et al., 1999; Margetts et al., 1999; Vaz de Almeida et al., 1999). To be considered in this section, the data for each country had to have been drawn from some sort of representative national sample and had to offer sufficient details of the physical activity survey and mode of administration to allow to understanding of the summary scores that were presented.

The methods used for these surveys are summarized in Table 10 and show the following common features: the surveys in most countries except Ireland had governmental sponsors; each country used some form of random sampling strategy to derive a population sampling frame; and the most common mode of survey administration was a household interview, except for a telephone interview (Australia) and postal surveys (Finland and New Zealand). Many countries conducted surveys in several different seasons of the year, although Canada, England, New Zealand and the United States collected data for 12-month periods. Although
countries had different sample sizes that paralleled the sizes of their populations, they tended to have different lower age bounds for their samples but generally no upper age bound, except for Australia (age 75), Finland (age 64) and Ireland (age 69). Overall survey response rates varied from 49-58\% for Australia to 88% for the United States.

The summary of the characteristics of physical activity surveys in Table 11 shows that the recall period varied from a usual work day to the prior year (both for Finland); the total survey items ranged from four single-item queries with closed-ended responses (Finland) to batteries of listed activities with questions on average frequency, duration and intensity of activity participation (United States). Each country assessed leisuretime physical activity, while four countries (England, Finland, Ireland and New Zealand) and the EU assessed work activity, and two countries (Finland and New Zealand) assessed transport to and from work. The wording of the activity questions varied in many ways from survey to survey. Although countries had collected physical activity data via
self-reported questionnaires having less than ideal reliability and validity (see also Chapter 1), more accurate, meaningful and cost-effective physical activity measures are not available for representative, population-based samples.

Physical activity summary scores ranged from selecting one or combining several closed-ended response options (Finland), to scoring specific patterns of frequency and duration of leisure-time physical activity (England and the United States) or estimating daily expenditure of energy (per kg body weight) (Canada). At the highest levels of activity (see Table 12), summary scores usually reflected energy expenditure (regular activity at least five times per week and lasting ≥ 30 minutes duration) or the likelihood of enhancing and maintaining aerobic capacity (vigorous activity performed at least three times per week and lasting ≥ 20 minutes duration) - the traditional exercise prescription (Caspersen et al., 1994). Most countries could be compared according to the lowest levels of physical activity, which ranged from physical inactivity in leisure time to $\leq 6.3 \mathrm{~kJ}$ (1.5 kcal$) / \mathrm{kg} /$ day of total estimated energy expenditure (Canada). Summary scores for work activity focused on prolonged times spent sitting on the job (EU and Finland) to participation in jobs requiring a lot of walking, lifting or physically demanding tasks (Finland). Generally, higher prevalence of the lowest levels of activity, regardless of whether this reflected leisure, work or transportation activities, were most likely to be considered as risk factors for disease or as detrimental to health.

Total prevalence of physical activity

In the surveys, the country-specific prevalence of the lowest activity levels in leisure time varied greatly (Table 12). The lowest prevalence was associated with restrictive activity definitions that were hard to meet, such as performing leisuretime activity for only a few times a year or
being unable to exercise (10.7% for Finland), or performing absolutely no physical activity during the previous week (14.6% for Australia) or during leisure-time (24.3% for the United States). The prevalence was highest for Canada $(56.7 \%$), where the definition (<6.3 kJ (1.5 kcal)/kg/day) could be easily satisfied by either doing no activity or even small amounts of physical activities. All other country-specific prevalence estimates were intermediate between those from these countries with extremes in definitions.

The country-specific prevalence for the highest activity levels in leisure time also varied widely (Table 12), being lowest for large amounts of vigorous activity such as running for ≥ 3 hours per week (12.7% for Ireland). The prevalence of regular participation in vigorous physical activity during the prior two weeks was 16.4% in the United States. In contrast, the highest prevalence was 59.0% (EU countries) for those reporting >3.5 hours/week in 18 leisure
activities and 62.8\% (Finland) for those participating in as little as two episodes per week of physical activity producing light sweating or breathlessness lasting ≥ 30 minutes (Figure 17). The prevalence for other countries varied between 20.6\% (Canada) and 45.2\% (Australia). Estimates of persons who reported that they did not participate in any recreational activities were compiled for the 15 individual member countries of the EU (Figure 18). The lowest prevalence (8.1%, average for men and women) was in Finland and the highest (59.8\%) in Portugal, a nearly threefold difference. The average for all EU countries was 30.9%, with countries of more northerly latitude having lower prevalence and Mediterranean countries and those of more southerly latitude having higher prevalence than the average.

Four countries assessed work-related physical activity (Table 12); the lowest prevalence (19.0%) for the lowest work levels was noted for EU countries report-
ing at least six hours of sitting at work. The highest prevalence was for Finland (50.9%) for work that involves mainly sitting. The prevalence of the highest levels of work-related physical activity that had definitions most indicative of more physically demanding jobs was 31.6% for active or very active work in Ireland, and 45.0% for liffing and/or carrying heavy loads in England.

Only Finland assessed activity associated with travel to or from work (Table 12), with 46.0% of employed adults reporting the use of car or bus for transport and 39.0% walking or cycling for at least 15 minutes per day.

Prevalence of physical activity according to sociodemographic characteristics

Within a data-set, differences in cross-sectional prevalence between sexes (Table 12), age groups (Figure 19) or levels of socioeconomic status (Table 13) are described by the absolute size of the difference in percentage points (in

Figure 17 Examples of recreational activities (practised in Finland)

2abe ex 2		1 MOM M Cmpes	21) 15 AbI	OHE 14 ST $62=$	2le a $)^{1} \mathrm{C}$	0. 454			¢	898	
Type of activity, country, survey name (reference), year of survey	Lowest activity			Moderate activity				Highest activity			
	Definition of activity level	Prevalence (\%) ${ }^{\text {a }}$		Definition of activity level	Prevalence (\%)			Definition of activity level	Prevalence (\%)		
		T M	F			M	F		T	M	F
Leisure activity											
Australia											
National Physical Activity Survey (Armstrong et al., 2000), 1999	Sedentary No physical activity during previous week	14.614 .6	14.7	Insufficiently active $>$ sedentary and < sufficiently active	40.2	38.3	41.9	Sufficientily active $\geq 150 \mathrm{~min} /$ week and ≥ 5 sessions/week in walking, moderate, or vigorous activity	45.2	47.1	43.4
Canada											
Nationa Population Health Survey (Health Canada, 1999), 1996-97	Inactive < $1.5 \mathrm{kcal} / \mathrm{kg} / \mathrm{day}$	56.753 .8	59.5	Moderately active $1.5-2.9 \mathrm{kcal} / \mathrm{kg} / \mathrm{day}$		22.3	23.0	Active $\geq 3.0 \mathrm{kca} / / \mathrm{kg} / \mathrm{day}$	20.6	23.9	17.5
England											
National Health Survey for England (Prior, 1999), 1998	Group 1 ≤ 3 occasions/4 weeks of moderate or vigorous activity for $\geq 30 \mathrm{~min}$	38.035 .0	41.0	Group 2 4-19 occasions/4 weeks of moderate vigorous activity for $\geq 30 \mathrm{~min}$	31.0 or		34.0	Group 3 ≥ 20 occasions/4 weeks of moderate or vigorous activity for $\geq 30 \mathrm{~min}$	31.0	37.0	25.0
European Union ${ }^{\text {b }}$											
Pan-European Union	Leisure time			Leisure time				Leisure time			
Survey (Vaz de Almeida et al., 1999), 1997	No time spent in 18 leisure time activities	$31.0 \mathrm{NR}^{\text {c }}$	NR	> 0-3.5 h/week spent in 18 leisure time activities	10.0		NR	$>3.5 \mathrm{~h} /$ week spent in 18 leisure time activities	59.0	NR	NR
Finland											
National Health	Leisure time			Leisure time				Leisure time	62.8	62.9	62.6
Behaviour Monitoring	\leq a few times a	10.712 .1	9.4	1 time/week or 2-3	26.6	25.0	28.0	≥ 2 times/week and			
System (Helakorpi et al.,	year of physical			times/month of				$\geq 30 \mathrm{~min} / 0 c c a s i o n$			
1999), 1999	activity to produce			physical activity				of physical activity to			
	light sweating or			to produce light				produce light sweating			
Ireland											
Happy Heart National	Sedentary			Moderate				Active/very active			
Survey (Irish Heart Foundation, 1994), 1992	Sedentary at leisure	39.036 .1	42.0	Moderate (walking, etc., $\geq 4 \mathrm{~h} /$ week)	48.3	47.2	49.4	Active (running, etc $>3 \mathrm{~h} /$ week) and very active (regular training, competitive sports)	12.7	16.7	8.6
New Zealand											
Life in New Zealand	Low			Moderate				High			
Survey (Hopkins et al., 1991; Russell \& Wilson, 1991), 1990	Not in moderate or high group	31.037 .0	25.0	Not in high group but had $\geq 21 \mathrm{~h} /$ week of medium/ low-intensity activity		31.0	51.0	≥ 2 occasions/week in high-intensity activity for total of $\geq 1 \mathrm{~h} /$ week	28.0	32.0	24.0

Type of activity, country, survey name (reference), year of survey	Lowest activity			Moderate activity				Highest activity			
	Definition of activity level	Prevalence (\%) ${ }^{\text {a }}$		Definition of activity level	Prevalence (\%)			Definition of activity level	Prevalence (\%)		
United States											
National Health Interview Survey (USDHHS, 1996), 1991	No leisure-time activity	24.321 .4	26.9	100\%- (prevalence of lowest plus highest activity levels)		52.2	52.4	Regular, sustained ≥ 5 times/week and $\geq 30 \mathrm{~min} /$ occasion	23.5	26.6	20.7
Work activity											
England											
National Health Survey for England (Prior, 1999), 1998	Mainly sitting or standing Not in any of the 3 groups (e.g., mainly walking about, climbing, or lifting and/or carrying heavy loads)	36.032 .0	40.0	Climbing 100\% - (prevalence of lowest plus highest activity)	19.0	19.0	19.0	Carrying leavy loads Lifting and/or carrying heavy loads	45.0	49.0	41.0
European Union											
Pan-European Union Survey (European Commission, 1999), 1997	Sitting $\geq 6 \mathrm{~h} / \mathrm{day}$	19.020 .0	18.0	Sitting < 2-6 h/day	75.0	74.0	76.0	Sitting 0 h/day	6.5	6.0	7.0
Finland											
National Health Behaviour Monitoring System (Helakorpi et al., 1999), 1999	Work activities Job mainly sitting	50.948 .9	52.6	Work activities NR	NR	NR	NR	Work activities Work involves quite a lot of walking, much walking and lifting, or is very physically demanding	49.1	51.1	47.5
Ireland											
Happy Heart National Survey (Irish Heart Foundation, 1994), 1992	Sedentary Sedentary during usual working day	27.025 .2	32.1	Moderate Moderately active, walking quite a lot	41.4	35.4	58.8	Active/very active Active/very active during a usual working day	31.6	39.4	9.1
Transport											
Finland											
National Health Behaviour Monitoring System (Helakorpi et al., 1999), 1999	Transport Travel to work by car or by bus	46.055 .8	37.5	Transport < $15 \mathrm{~min} /$ day of walking or cycling to work		14.0		Transport $\geq 15 \mathrm{~min} /$ day of walking or cycling to work	39.0	30.0	46.5

${ }^{a} T,=$ total,$M=$ male, $F=$ female. Total prevalence represents a simple, unweighted average of male and female prevalences for England (for all types of activity) and the European Union (for work activity only).
The 15 countries included in the European Union survey were Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, cNR, not reported

Figure 18 Prevalence of reporting no recreational physical activity participation for 15 member countries of the European Union, sorted from low to high European Commission, 1999
parentheses) as: small ($<5.0 \%$), moderate (5.0-9.9\%), large ($10.0-14.9 \%$), and very large ($\geq 15.0 \%$) (Caspersen et al., 2000). The differences between sexes for the lowest levels of leisure-time physical activity were small for Australia (0.1%) and Finland (2.7%), but large for New Zealand (12.0%), with all other countries having moderate differences of $5.5-6.0 \%$. For the highest activity levels, the same countries showed similar small and moderate differences between the sexes to those noted for the lowest activity levels, except that the largest sex difference (12.0%) was noted for England, where the definition of highest activity included participation in moderate and vigorous physical activity. Because 'vigorous' was defined in absolute terms in England, e.g., $\geq 31 \mathrm{~kJ}$ (7.5 kcal)/min, it may have been harder for women to reach this intensity than for
men, who have a higher average maximal cardiorespiratory capacity at any given age (Caspersen, 1994). Although not tabulated, the sex difference for regular, vigorous physical activity participation was small (3.2\%) in the United States, where the definition of "vigorous" was standardized according to age and sex. Otherwise, sex differences were mainly of moderate magnitude (e.g., 5.9-8.0\%).

Sex differences for individual EU countries were quite variable. Women usually had lower prevalence of physical activity than men, the differences being small for Austria (-2.5), Denmark (-2.5) and Ireland (-1.0), moderate for Germany (-5.6), Italy (-6.9), Spain (-7.2) and Sweden (-7.2), large for France (-12.6) and Greece (-12.8), and very large for Portugal (-20.5). Men had lower prevalence than women for

Belgium (9.4), Finland (1.5), and the United Kingdom (5.0). There was essentially no sex difference for Luxembourg (-0.1) and the Netherlands (0.9).

For Finland, sex differences were small (3.7%) for prolonged time spent sitting on the job, while differences were moderate (8.0%) for lifting and/or carrying heavy loads in England, but very large (30.3\%) for active and/or very active work in Ireland (Table 12). For Finland, sex differences were very large ($\geq 15 \%$) for transport to or from work, with men being more likely to use a car or bus, and women more likely to walk or cycle for ≥ 15 minutes per day.

Most countries showed increases in the lowest levels of physical activity as cross-sectional age increased (Figure 19(a)). Canada had a curvilinear increase essentially reaching an asymptotic plateau for the oldest ages,
(a)

(b)

Figure 19 Changes in the (a) lowest and (b) highest levels of physical activity by cross-sectional age, by country
Data from Vaz de Almeida et al. (1999)
while Australia, Finland and the United States had plateaus across broad age spans following an initial increase at the youngest ages, or which was followed by an increase in prevalence in the oldest age group. The increases in prevalence were nearly identical for England and New Zealand between the ages of 20 and 60 years. The decreases in prevalence with increasing age for the highest levels of physical activity (Figure

19(b)) often corresponded to the increases in the lowest activity levels (Figure 19(a)). Australia and the United States had plateaus that corresponded to increases noted for the lowest activity levels, although Finland's plateau for the lowest activity level became a notable U-shaped curve. The other countries showed varying forms of decreasing prevalence with increasing age.

Each country provided data on prevalence of physical activity levels according to levels of socioeconomic status (Table 13) that suggest not only existing health disparities but also areas needing intervention. In terms of level of education, the differences in prevalence for the lowest leisure-time physical activity levels were moderate for Australia (8.6% comparing <12 and ≥ 12 years of education) and for New Zealand (9.0\% comparing primary school with university or technical school education), and very large for the United States (22.9% comparing <12 years with college education or higher). The differences for the highest levels of physical activity were large for Australia (13.7%) and for the United States (10.4%), and very large for New Zealand (23.0\%), but almost non-existent for Finland (1.0% comparing <10 years and ≥ 13 years of education). Three countries used different constructs to assess socioeconomic status. For the lowest and highest activity levels, respectively, Canada reported a large (10.7%) and a moderate (5.9\%) difference comparing the lowest and highest quartiles of income adequacy; England reported a small (4.0%) and a moderate (9.5%) difference when comparing social class I with class V ; and Ireland reported moderate differences (5.4\% and 6.8\% when comparing persons engaged in unskilled, semiskilled, and skilled manual professions with those engaged in professional and non-manual professions). Hence, there was a tendency, though not uniform, towards larger differences for the highest leisure-time activity levels compared with the lowest levels, regardless of the construct used to assess socioeconomic status. The converse was seen for socioeconomic contrasts for work activity, where differences were larger for the lowest activity levels compared with the highest activity levels for countries of the EU (15.0% and 6.0%, respectively when comparing primary and tertiary
五

Type of activity, country, survey name (reference), year of survey	Definition of socioeconomic status		Physical activity level ${ }^{a}$					
			Lowest	(\%)	Moderat	(\%)	Highest	
			Socioeconomic status		Socioeconomic status		Socioeconomic status	
	Lowest	Highest	Lowest	Highest	Lowest	Highest	Lowest	Highest
New Zealand Life in New Zealand Survey (Hopkins et al., 1991; Russell \& Wilson, 1991), 1990	Education Primary school	Education University, technical school	46.0	37.0	49.0	35.0	5.0	28.0
United States National Health Interview Survey (USDHHS, 1996) 1991	Education < 12 years	Education College (≥ 16 years)	37.1	14.2	44.8	57.3	18.1	28.5
Work activity								
European Union Pan-European Union Survey (European Commission, 1999) 1997	Education Primary level	Education Tertiary level	13.0	28.0	78.0	69.0	9.0	3.0
Ireland								
Happy Heart National Survey (Irish Heart Foundation, 1994), 1992	Profession Unskilled, semiskilled, and skilled manual professions	Profession Higher professional, lower professional, other non-manual professions	15.9	35.3	48.6	47.5	35.6	22.4
Transport								
Finland National Health Behaviour Monitoring System (Helakorpi et al., 1999), 1999	Education < 10 years	Education ≥ 13 years	NR	NR	NR	NR	45.0	37.0

[^1]

Figure 20 Trends in (a) lowest and (b) highest levels of physical activity by country
educational levels) and for Ireland (19.4% and 13.2%, respectively). For transport to and from work, there was a moderate difference (8.0%) in Finland. From these data, it is clear that socioeconomic status usually has a moderate to very large association with prevalence of physical activity.

Trends in physical activity prevalence

Physical activity trends are described by the absolute size of the average annual rate of change in prevalence (in parentheses) as: small ($<0.5 \% / \mathrm{yr}$), moderate ($0.5-2.9 \% / \mathrm{yr}$), large ($3.0-4.9 \% / \mathrm{yr}$) and very large ($>5.0 \% / \mathrm{yr}$) (Caspersen et al., 2000). Trends in the lowest levels of
physical activity are inconsistent (Figure 20(a)), with a moderate decrease for Canada ($-0.5 \% / \mathrm{yr}$ from 1995 to 1996), a moderate increase for England $(+1.4 \% / \mathrm{yr})$ from 1994 to 1998), and a small decrease for the United States $(-0.2 \% / \mathrm{yr})$ from 1985 to 1990). A decrease for the United States from 1990 to 1991 reflected a survey change (Pereira et al., 1997; US Department of Health and Human Services, 1996), so that further trend determination is not possible.

Trends in the highest levels of physical activity (Figure 20(b)) were also inconsistent, showing small decreases for Canada ($-0.2 \% / \mathrm{yr}$) from 1995 to 1996), for England (+0.4\%/yr from 1994
to 1998) and for the United States (+0.2\%/yr) from 1985 to 1990). Although not shown in Figure 20, there was a small decrease in regular, vigorous physical activity in the United States ($-0.1 \% / \mathrm{yr}$) over the same time period. Conversely, there was a quite large decrease for Australia ($-2.9 \% / \mathrm{yr}$) from 1997 to 1999) which would be truly alarming for this country if continued over an extended period.

Children and adolescents

Childhood is generally the most physically active time during life, although in westernized countries, both crosssectional and longitudinal studies have shown levels of physical activity to decline dramatically during adolescence and early adulthood (Anderssen et al., 1996; van Mechelen et al., 2000; Telama \& Young, 2000). However, there have been few surveys of nationally representative samples of children and adolescents which can be compared (Caspersen et al., 2000). This may arise in part from the difficulty in reliably and validly measuring physical activity in children and adolescents ranging in age from 4 to 17 years (Kohl et al., 2000), while physical activity assessment for children aged $3-5$ years is even more problematic.

Concluding comments

Data from these national surveys reveal that many countries have high prevalence of the lowest physical activity levels in their adult populations, suggesting that many aduits are at risk for chronic diseases. This is reinforced by the often low prevalence of the highest physical activity levels - levels that would be likely to confer health benefits. However, existing surveys have not normally been designed to determine physical activity levels to address population-based cancer risks.

The differences in physical activity prevalence by sex and age, and for contrasting levels of socioeconomic

Figure 21 Winter sporting recreational physical activity
indices, reveal that disparities prevail for physical activity participation between population groups in these countries. Such differences suggest foci for in tervention efforts. The few available trend data are, however, inconsistent from country to country and mostly relate to short time frames (with the exception of Finland), highlighting the need for longerterm, immutable surveillance systems that use questionnaires having high reliability and validity (Caspersen et al, 1994)

In conclusion, national population prevalence data, primarily on participation in leisure-time physical activity, exist for only a small number of industrialized nations. Earlier comparisons of population surveys from various countries concluded that the extent of participation by adults in leisure-time physical activities
of the moderate and vigorous type is not at a satisfactory level (Stephens \& Caspersen, 1994).

- Over half the adult populations of industrialized countries are insufficiently active in their leisure time to yield health benefits.
- One quarter to one third of adults may be classified as totally inactive in their leisure time.
- Less than 15% of adults participate in regular, vigorous activity.
- There is a clear social-class gradient for leisure time physical activity in most industrialized populations; those who are socially and economically disadvantaged are less active.

More recent data on trends in leisuretime physical activity participation show these patterns to have been relatively
stable over the past two decades. There are several examples of significant regional (Bauman et al., 1999; US Department of Health and Human Services, 1996), seasonal (Uitenbroek, 1993) and latitudinal (Centers for Disease Control, 1997) variations in participation in leisure-time physical activity. However, leisure-time activity is just one component of overal energy expenditure - other aspects of physical activity need to be better understood.

For the vast majority of countries worldwide, population data on physical activity participation are unavailable. This is the case for most of the world's developing nations. In these countries, economic transition involves large numbers of people moving from traditionally active rural lifestyles to cities and other urban environments. In such settings, they are likely to be much less physically active. It is plausible that such changes in physical activity are occurring and affecting an increasing proportion of the world's population, but to what extent they are taking place cannot be quantified, in the absence of population surveillance systems. Even in many developed countries, relevant data are unavailable, and where available, often address only leisure-time physical activity.

[^0]: a NR, not reported.
 ${ }^{6}$ The 15 countries included in the European Union survey were Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg,
 the Netherlands, Portugal, Spain, Sweden and the United Kingdom

[^1]: a Prevalence represents a simple, unweighted average of male and female prevalences for England (for all types of activities) and New Zealand (for all types of activity). © Social class of head of household is defined as Class ! and II = professional and intermediate occupations, Class III = manual skilled occupations, Class IV and $\mathrm{V}=$ partly-skilled and unskilled occupations.
 ${ }^{d}$ NR, $=$ not reported

