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unit 2.
biomarkers: practical aspects

chapter 8.  

Measurement error 
in biomarkers: Sources, 

assessment, and impact 
on studies*

Emily White
*Parts of this chapter appear in White E. Effects of biomarker measurement error on epidemiological studies. In: Toniolo P, Boffetta P, Shuker DEG, Rothman N, Hulka B, Pearce N, 
editors. Applications of biomarkers in cancer epidemiology. Lyon, IARC Scientific Publication; 1997. p. 73–94

Summary

Measurement error in a biomarker 
refers to the error of a biomarker 
measure applied in a specific way 
to a specific population, versus 
the true (etiologic) exposure. In 
epidemiologic studies, this error 
includes not only laboratory 
error, but also errors (variations) 
introduced during specimen 
collection and storage, and due 
to day-to-day, month-to-month, 
and year-to-year within-subject 
variability of the biomarker. Validity 
and reliability studies that aim to 
assess the degree of biomarker 
error for use of a specific biomarker 
in epidemiologic studies must be 
properly designed to measure all 
of these sources of error. Validity 
studies compare the biomarker to 
be used in an epidemiologic study 
to a perfect measure in a group of 

subjects. The parameters used to 
quantify the error in a binary marker 
are sensitivity and specificity. 
For continuous biomarkers, the 
parameters used are bias (the mean 
difference between the biomarker 
and the true exposure) and the 
validity coefficient (correlation 
of the biomarker with the true 
exposure). Often a perfect measure 
of the exposure is not available, so 
reliability (repeatability) studies are 
conducted. These are analysed 
using kappa for binary biomarkers 
and the intraclass correlation 
coefficient for continuous 
biomarkers. Equations are given 
which use these parameters from 
validity or reliability studies to 
estimate the impact of nondifferential 
biomarker measurement error on the 
risk ratio in an epidemiologic study 

that will use the biomarker. Under 
nondifferential error, the attenuation 
of the risk ratio is towards the null 
and is often quite substantial, even 
for reasonably accurate biomarker 
measures. Differential biomarker 
error between cases and controls 
can bias the risk ratio in any 
direction and completely invalidate 
an epidemiologic study.

Introduction

Importance of understanding 
the degree of measurement 
error in biomarkers

When a biomarker is being 
considered for use in an 
epidemiologic study, or has 
been selected, the researcher 
needs to become familiar with its 
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measurement properties (i.e. how 
well the measure selected reflects 
the underlying exposure of interest). 
There are many sources of error 
in biomarkers when they are used 
in epidemiologic studies. These 
include not only laboratory error, but 
also errors due to variation in the 
specimen collection and processing 
methods, as well as a single measure 
of the biomarker not reflecting the 
longer time period during which 
the biomarker actually influences 
the disease. Validity and reliability 
studies that aim to assess the degree 
of biomarker error for use of a specific 
biomarker in epidemiologic studies 
must be designed to measure all of 
these sources of error; this differs 
from laboratory validation, which 
aims to assess only the laboratory 
component of error. If studies 
have not been published on these 
measurement issues, then a validity 
or reliability study of the biomarker 
should be conducted to determine 
its measurement error.

Once the measurement error in 
the biomarker has been quantified, 
the researcher can estimate the 
impact of that magnitude of error 
on the planned epidemiologic study 
in terms of the bias in the risk ratio 
of the relationship of the biomarker 
to the disease outcome. If there is a 
large degree of error, the researcher 
would need to improve the method 
or select a different one. If the 
biomarker measure is sufficiently 
valid to use in an epidemiologic 
study, then knowing the degree 
of measurement error will help in 
interpreting the results.

Definition of terms

The term parent epidemiologic 
study refers to the epidemiologic 
study that will use the biomarker. For 
simplicity, the assumption is made 
that the parent study is a case–
control, cohort, or nested case–

control study of the relationship 
between the biomarker and a binary 
outcome, such as incident disease 
or death. Measurement error in 
the biomarker leads to bias in the 
risk ratio for the association of the 
biomarker to disease in the parent 
study. This bias is called information 
bias or misclassification bias.

The measurement error for 
an individual can be defined 
as the difference between their 
measured biomarker and true 
exposure. The true exposure can 
be conceptualized as the underlying 
biologic or external factor that the 
biomarker is meant to measure (the 
causal factor for etiologic studies), 
without laboratory or other sources 
of error. If the biomarker measure 
can fluctuate over time, the true 
exposure would also be integrated 
over the time period of interest (e.g. 
the average of the true exposure 
over the etiologically important 
time period for etiologic studies). 
Nondifferential measurement error 
occurs when the measurement 
error does not differ between 
the disease and non-disease 
groups in the parent epidemiologic 
study. Differential measurement 
error occurs when the degree of 
biomarker error differs between 
those with and without the disease 
in the parent study. The sources 
and effects of both differential and 
nondifferential measurement error 
will be discussed in this chapter.

Validity is the relation of the 
biomarker measure to the true 
exposure in a population of interest. 
Measures of validity are parameters 
that describe the measurement error 
in the population. A validity study 
is defined here as one in which a 
sample of individuals is measured 
twice: once using the biomarker 
measure of interest and once using 
a perfect (or near-perfect) measure 
of the true exposure, and the values 
compared.

Often a perfect measure of the 
exposure does not exist or is not 
feasible to use in a validity study. 
In a reliability study, repeated 
measurements of the same 
biomarker are taken on a group 
of subjects and compared; they 
usually only measure part of the 
measurement error. However, 
certain designs of reliability studies 
can be used to measure the validity 
of a biomarker without having a 
perfect measure of the biomarker.

Overview of chapter

The first topics covered in this 
chapter are sources of measurement 
error in biomarkers and design 
issues in validity and reliability 
studies for biomarkers. The chapter 
then covers the parameters used 
in a validity study to measure the 
error in a binary biomarker and in 
a continuous biomarker. Equations 
are given for using these parameters 
to estimate the bias in the risk ratio 
in an epidemiologic study that will 
use the biomarker for both binary 
and continuous biomarkers. While 
these equations rely on simplifying 
assumptions, the purpose is to allow 
the researcher to easily estimate 
the impact of biomarker error on 
the parent epidemiologic study. 
Finally, these same concepts will be 
addressed for reliability studies.

Techniques to reduce biomarker 
measurement error, and therefore 
to reduce the bias in the results 
of the parent study caused by 
measurement error, are of great 
importance. Approaches to reduce 
measurement error are only briefly 
mentioned in this chapter, but are 
covered throughout the book.

Many related topics are beyond 
the scope of this chapter. The reader 
is referred to other sources for the 
effects of measurement error in a 
categorical measure with more than 
two categories (1–3), the design 
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and analysis of more complex types 
of reliability studies (4), and the 
effect of measurement error when 
the parent study is the relationship 
between a biomarker and a 
continuous outcome (5). General 
reviews of measurement error 
effects in epidemiologic studies, and 
their correction for continuous and/
or categorical exposures, are given 
in (6–12).

Sources of biomarker error 
and study designs to measure 
it

Sources of error in biomarkers

When used in an epidemiologic 
study, there are numerous sources 
of measurement error in a biomarker 
in comparison to the true exposure 
of interest (5,13). Examples have 
been discussed in previous 
chapters and are given here in Table 
8.1. Measurement error can be 
introduced by errors in the choice 
of laboratory method selected to 
be a measure of the exposure 
of interest. The method selected 
may not measure all sources of 
the true exposure. For example, 
if the true exposure of interest is 
total carotenoids, then using only 
serum β-carotene as the biomarker 
would not capture all of the relevant 
exposure. Alternately, the measure 
selected may detect other related 
exposures beyond the etiologically 
significant one (i.e. it may not be 
‘specific’ to the exposure of interest). 
For example, if the true exposure of 
etiologic importance is β-carotene, 
the choice of serum total carotenoids 
as the biomarker measure would 
include other exposures not relevant 
to the epidemiologic true exposure. 
Other sources of error that must 
be considered, especially in the 
selection of the biomarker method, 
are whether the method has a 
sufficiently long half-life in the tissue 

Table 8.1. Sources of measurement error in biomarkers in epidemiologic studies

Errors in the choice of laboratory method or specimen 
(as a measure of the true exposure of interest)

• Method may not measure all sources of the true etiologic exposure of interest (e.g. use of 
serum beta-carotene when the disease is influenced by all carotenoids)

• Method may measure other related exposures that are not the true exposure of interest (e.g. 
use of serum total carotenoids, when the disease is only influenced by beta-carotene)

• Biomarker value in tissue sampled may not equal the value in the target tissue

Errors or omissions in the protocol

• Failure to specify the protocol in sufficient detail regarding timing and method of specimen 
collection, specimen handling and storage procedures

• Failure to specify the laboratory analytic procedures in sufficient detail

• Failure to include standardization of the instrument periodically throughout the data collection

Errors due to variations in execution of the protocol

• Variations in method of specimen collection

• Variations in specimen handling or preparation before reaching the laboratory or freezer

• Variations in length of specimen storage or freeze-thaw cycles (leading to possible analyte 
degradation)

• Contamination of specimen

• Variations in technique between laboratories

• Variations in technique between laboratory technicians

• Variations between batches (due to different batches of chemicals, drift in calibration of 
instrument)

• Any of the above that vary between disease and non-disease groups (e.g. unequal 
assignments of lab technicians to cases and controls)—differential measurement error

• Biases due to knowledge of lab technicians of disease status—differential measurement 
error

• Random variation within batch

Errors due to biomarker variability between and within subjects

• Biomarker may be influenced by the disease under study, its pre-clinical effects or its 
treatment or sequelae - differential measurement errora

• Short-term variability (hour-to-hour, day-to-day) in biomarker within-subjects due to diurnal 
variation, posture (sitting versus lying down), time since last meal, time since last exposure to 
agent of interest in relation to the half-life of the biomarker

• Medium-term variability (month-to-month) within subjects due to, for example, seasonal 
changes in diet, transient illness

• Long-term change (year-to-year) within subjects due to, for example, purposeful dietary 
changes over time, changes in occupational exposures

• Lack of variability in biomarker with changes in exposure to agent of interest, due to 
homeostasis

a This is a source of differential error for etiologic studies, not for studies of biomarkers for early detection.
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selected to measure the exposure of 
interest, and whether homeostasis 
leads to the method not reflecting 
the actual level of external exposure. 
These sources of error can be 
minimized by careful selection of the 
biomarker measure to be used in the 
epidemiologic study.

Further sources of biomarker 
error are variations in the method of 
specimen collection and laboratory 
technique used between subjects. 
Due to variations in the collection 
and handling of the specimen by the 
study field staff, and by variations 
in the length of time or temperature 
the specimen was stored before 
analysis, errors often occur during 
the conduct of the epidemiologic 
study. Additional sources of error are 
the variations that occur between 
batches and between laboratory 
technicians even when the protocol 
is well specified. To reduce these 
sources of error, the protocol needs 
specific details in terms of subject 
instructions (e.g. fasting), method 
of specimen collection, handling of 
the specimen (e.g. maximum time 
at room temperature), methods 
of specimen processing before 
storage or analysis, and laboratory 
procedures. These procedures 
also must be carefully monitored 
throughout the study.

A final source of error that is 
common in molecular epidemiology 
is due to medium-term (e.g. month-
to-month) variability or long-term 
change in the biomarker over 
years within-subjects. This type 
of error is often ignored when 
assessing laboratory measurement 
error, but can have great impact 
on an epidemiologic study. This 
is due to the fact that unless the 
biomarker is a fixed characteristic 
within individuals, the underlying 
true biomarker (that influences 
the disease of interest) is rarely an 
individual’s measured biomarker on 
a single day, but rather the average 

over some much longer time period. 
Thus, even a perfect measure of 
the biomarker at a single point in 
time could be a poor measure of 
the true etiologic exposure. For 
example, even if an ideal laboratory 
method existed for serum estradiol 
in women, it could be a very poor 
measure of the true exposure (e.g. 
average serum estradiol) over the 
prior 15 years, which may influence 
breast cancer. This source of error 
can be controlled for by averaging 
multiple measures of exposure 
collected periodically over the time 
period of interest (12,14).

While it is essential to minimize 
the above sources of biomarker 
error, it is even more important 
to ensure that any errors are 
nondifferential between those with 
and without the disease (or other 
outcome) under study. Differential 
measurement error can invalidate 
a study, as discussed below, and 
should be avoided. A primary 
concern in case–control studies of 
biomarker-disease associations, 
when the specimens are obtained 
after diagnosis for the cases, is that 
the biologic effects of the disease 
or its treatment may affect the 
biomarker. In such situations, the 
biomarker does not measure the 
true (e.g. long-term, pre-disease) 
exposure for cases. (This concern is 
for etiologic studies, not for studies 
of biomarkers tested for early 
detection.) Differential measurement 
error can be avoided or reduced by 
selecting a cohort study rather than 
a case–control design when the 
disease or its treatment can affect 
the biomarker. The early cases 
occurring in a cohort study may also 
have their biomarker influenced by 
the preclinical phase of the disease 
under study. However, this can 
be tested by removing cases with 
diagnoses that occur within some 
time period (e.g. a year or two after 
the specimen collection) to see if this 

modifies the cohort study results.
Other potential sources of 

differential biomarker error are the 
laboratory technicians’ knowledge 
of the disease status of the subjects 
and differences in the specimen 
collection, or other methods, between 
those with and without the disease. 
Thus, not only must laboratory 
personnel be blinded to disease 
status, but also the researcher 
must ensure that all procedures of 
specimen collection, processing, 
storage and analysis are identical for 
cases and controls. One cannot, for 
example, collect specimens in a clinic 
and immediately freeze them for 
cases, yet collect specimens in the 
field when freezing will be delayed 
for controls, if length of time at room 
temperature can have any impact on 
the biomarker. Since some variation 
is inevitable, it is important that the 
sources of error are matched by 
case–control status or adjusted for 
in the analysis. For example, one can 
control for systematic differences 
between laboratory technicians, 
between laboratory batches, or 
between specimens stored for 
different lengths of time, through 
matching controls to cases on these 
factors (15).

Design of validity 
and reliability studies

To design a validity or reliability 
study that measures the amount 
of measurement error that will 
occur in the parent epidemiologic 
study, several design issues must 
be considered. First, the subjects 
in the validity or reliability study 
should represent those in the parent 
epidemiologic study. The subjects 
could be a random sample from the 
parent study (e.g. 100–200 randomly 
selected individuals from the larger 
parent study). If that is not possible, 
the subjects in the validity/reliability 
study should be comparable to the 
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subjects in the parent study in terms 
of age, sex and other parameters 
that could influence the distribution 
(variance) of the biomarker. Second, 
the biomarker should be collected, 
processed, stored and analysed in 
the validity/reliability study using the 
same procedures that will be used in 
the parent study.

A third issue is the selection of the 
comparison measure to be used in a 
validity study. Subjects need to be 
measured using a perfect measure 
of the true exposure in the validity 
study to compare to the imperfect 
biomarker. Sometimes a perfect or 
near-perfect measure exists that 
is too costly or not feasible for the 
parent epidemiologic study, but 
could be used for a validity study. 
This true measure must reflect the 
underlying true exposure without 
error, including without error due to 
variation in laboratory procedures or 
variations over time. The last issue 
is particularly problematic because 
the true biomarker of interest is often 
the average value over many years.

A reliability study can be 
conducted even when a perfect 
measure is not feasible or does 
not exist. For reliability studies, it 
is ideal if the two or more repeated 
biomarker measures taken on each 
subject vary in a way so as to capture 
all of the sources of error in the 
biomarker. Therefore, the repeated 
measures on a subject should be 
based on specimens taken years 
apart to reflect error due to year-
to-year variation, and be analysed 
by different laboratory technicians 
if more than one will be used in the 
parent study, etc. This differs from a 
reliability study that aims to assess 
only the laboratory component of 
error; those studies might split a 
single specimen (e.g. blood from 
a single blood draw) from each 
subject and send the two samples 
per subject to the same laboratory 
for analysis. The importance and 

methods of measuring all sources of 
error will be discussed in more detail 
below.

In addition, the researcher 
should consider conducting the 
validity/reliability study on two 
groups: those with the disease and 
those without the disease. This is 
particularly important if there is the 
possibility that the biomarker error 
could differ between the disease 
and non-disease groups that will 
be used in the parent study. As 
noted earlier, this is a concern if 
the parent epidemiologic study 
is a case-control study in which 
the disease could influence the 
biomarker test. For validity/reliability 
studies to be able to assess 
differential measurement error in 
the biomarker measure between 
cases and controls, the comparison 
measure must be perfect (i.e. a 
validity study), or if an imperfect 
comparison measure is used, it 
must not have differential error. For 
example, the comparison measure 
could be based on specimens 
collected years before diagnosis for 
cases and during a similar period for 
controls. The design, analysis and 
interpretation of studies to measure 
differential error are only briefly 
discussed in this chapter (see (16) 
for a more detailed review).

Finally, a validity or reliability 
study should be analysed using 
parameters that provide information 
about the impact of biomarker 
measurement error on the parent 
epidemiologic study. These 
parameters, and their interpretations 
in terms of bias in the risk ratio in the 
parent study, are discussed in the 
remainder of this chapter.

Measuring the error in a 
binary biomarker: Sensitivity 
and specificity

Binary (dichotomous) biomarkers 
are those that classify an analyte or 

characteristic as present (positive) 
or absent (negative) for each study 
subject. Measurement error in a 
binary biomarker is usually referred 
to as misclassification. Binary 
biomarkers are subject to all of the 
sources of measurement error as 
described above and in Table 8.1.

The degree of misclassification 
in a binary biomarker is measured 
by its sensitivity and specificity. 
These can be measured in a validity 
study in which the biomarker under 
evaluation (the mismeasured 
biomarker) is compared to a perfect 
measure of the underlying true 
exposure among a sample of the 
population of interest. Individuals 
are then cross-classified by their 
results on each test:

The sensitivity (sens) of the 
biomarker under evaluation is the 
proportion of those who are true 
positives (positive on the criterion 
test) and are correctly classified as 
positive by the biomarker test:

sens =    a     .
     a+c

(Note that the definition given 
here of sensitivity is different from 
the meaning in some laboratory 
contexts, i.e. the lowest level 
detectable by a measurement 
method.) The specificity (spec) is 
the proportion of those who are 
true negatives and are classified as 
negative by the biomarker test:

spec =    d     .
     b+d

Even though both sensitivity and 
specificity can range from zero to 
one, it is assumed that sensitivity 
plus specificity is greater than or 
equal to one. In other words, for the 
biomarker test to be considered a 
measure of the true biomarker, the 
probability that the biomarker test 
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classifies a truly positive person 
as positive (sensitivity) should be 
greater than the probability that it 
classifies a truly negative individual 
as positive (1 – specificity) (i.e. sens 
> 1 – spec, or sens + spec > 1). Thus, 
the parameter (sens + spec –1), 
called the Youden misclassification 
index (17), is a good measure of the 
total degree of misclassification. If 
the Youden index is close to 1, the 
biomarker test is close to perfect, 
and if the Youden index is close 
to zero, the biomarker has little 
association with the true exposure.

For a validity study to measure 
sensitivity and specificity of a 
biomarker, the study sample may 
be subjects selected independent 
of their biomarker status, or who 
are true positives and those who 
are true negatives by the perfect 
test. However, one cannot sample 
subjects based on the results of the 
mismeasured biomarker test and 
correctly compute sensitivity and 
specificity.

If the validity study is conducted 
on a sample of cases and a sample 
of controls, then sensitivity and 
specificity would be computed 
separately for the cases and for the 
controls.

Impact of error in a binary 
biomarker on epidemiologic 
studies

Effect of nondifferential 
misclassification 
on the odds ratio

The effects of misclassification of a 
binary biomarker on the results of 
the parent epidemiologic study of the 
relationship between the marker and 
a binary disease are straightforward 
(18–24). In an unmatched case–
control study of a binary biomarker, 
under the assumption that the disease 
is correctly classified, the effect of 
misclassification of the biomarker is 

The association between the 
biomarker and disease in the parent 
study would be measured by the 
odds ratio in a case–control or 
nested case–control study. (The 
results presented here would be 
similar for the hazard ratio from a 
cohort study as well.) When there is 
measurement error, the observable 
odds ratio, ORO, differs from the 
true odds ratio, ORT, because ORO 
is based on p1 and p2:

ORO
 
=    p1(1 - p2)    .                   (2)

      p2(1 - p1)

The magnitude of the bias can 
be estimated by computing p1 and 
p2 from Equation 1 and ORO from 
Equation 2 and comparing it to ORT, 
using estimates of P1 and P2.

As an example, suppose current 
infection with Helicobacter pylori 
(H. pylori), an organism associated 
with several upper digestive tract 
diseases, is the true exposure of 
interest in a cohort study being 
planned. An ELISA test on serum, 
although imperfect, is the most 
feasible exposure measure to be 
used in the epidemiologic study. 
Information on the accuracy of 
the ELISA test comes from a 
validity study conducted in Taiwan, 
China on 170 patients undergoing 

to rearrange individuals in the true 
2x2 table into an observable 2x2 
table. Individuals in the disease group 
remain in the disease group, but may 
be misclassified as to biomarker 
status, and the non-disease group 
is also rearranged as to biomarker 
status:

    
P1 and P2 are the true proportions of 
subjects who are exposure-positive 
in the disease and non-disease 
groups respectively, and similarly p1 
and p2 refer to the proportions that 
would be “observable” as positive by 
the biomarker test in the two groups. 
The term observable means what 
would be seen, on average, when 
the imperfect biomarker is used in 
the parent epidemiologic study.

There is nondifferential 
misclassification when the 
sensitivity of the biomarker test is 
the same for both disease and non-
disease groups in the parent study, 
and the specificity is the same for 
both groups. The misclassification 
leads the observable p1 and p2 to be 
different from the true P1 and P2 (21):

p1 = sens • P1 + (1 - spec) • (1-P1) }(1)
p2 = sens • P2 + (1 - spec) • (1-P2).

The first equation states that 
the proportion of cases who will 
be classified by the biomarker 
test as positive (p1) is made up 
of a proportion (sens) of those 
truly exposed (P1) in the disease 
group, plus a proportion (1-spec) of 
those truly unexposed (1-P1) in the 
disease group. The second equation 
expresses the same concept for the 
non-disease group.

 
                          

 
                                    

p1 p2

1  p1 1  p2

 - 
 - 

 - 
 - 
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respectively, as the true probabilities 
of exposure), and would yield an 
observed odds ratio of 3.0 rather 
than the true odds ratio of 4.3.

Nondifferential misclassification 
leads to an attenuation of the odds 
ratio towards the null hypothesis 
value of 1 (20). The observable 
odds ratio does not cross over the 
null value of 1, under the reasonable 
situation that sens + spec > 1 (see 
above). The degree of attenuation in 
the observable odds ratio depends 
on the sensitivity and specificity of 
the biomarker test and on P1 and 
P2, or equivalently, on the true odds 
ratio and on P2, the proportion of 
the non-disease group who are 
truly exposed. Table 8.2 gives 
further examples of the effect of 
nondifferential misclassification on 
the odds ratio for reasonable values 

of sensitivity (0.5–0.9), specificity 
(0.8–0.99), P2 (0.1, 0.5), and a true 
odds ratio of 2 and 4. As can be seen 
from the table, the attenuation in 
the odds ratio can be considerable. 
When the proportion who are truly 
exposed in the non-disease group 
is low (e.g. P2 = 0.1 in upper half of 
Table 8.2), the attenuation of the 
odds ratio is severe except when the 
specificity is very high (e.g. spec = 
0.99). When the proportion who are 
truly exposed is high (e.g. P2 = 0.5 in 
lower half of Table 8.2), the observed 
OR is strongly attenuated from the 
true OR except when the sensitivity 
is very high (e.g. sens = 0.9). Even 
strong associations between the 
true biomarker and disease would 
be obscured by moderate values 
of sensitivity and specificity. For 
example, for sens = 0.7, spec = 0.8, 

Table 8.2. Impact of nondifferential misclassification of a binary biomarker on the 
Observable Odds Ratio (ORO)

Biomarker Test
Sensitivity

Biomarker Test
Specificity

True OR=2.0
ORo

b
True OR=4.0

ORO
b

P2 = 0.1a

0.5                                 0.80                               1.14                                1.38

0.7 0.80 1.23 1.64

0.9 0.80 1.32 1.92

0.5 0.90 1.28 1.76

0.7 0.90 1.39 2.09

0.9 0.90 1.48 2.41

0.5 0.99 1.75 3.06

0.7 0.99 1.83 3.33

0.9 0.99 1.89 3.61

P2 = 0.5a

            0.5                                0.80                                1.24                               1.46

0.7 0.80 1.40 1.83

0.9 0.80 1.64 2.59

0.5 0.90 1.35 1.69

0.7 0.90 1.50 2.07

0.9 0.90 1.73 2.85

0.5 0.99 1.48 1.96

0.7 0.99 1.61 2.33

0.9 0.99 1.82 3.11

a P2 is the proportion with the true exposure in the non-disease group. By definition of ORT, P1, the proportion with 
the true exposure in the diseased group is: P1 = P2 • ORT/(1 + P2 (ORT – 1)).
b ORO from Equations 1 and 2.

gastroendoscopy (25). The serum 
ELISA test was compared to a 
highly accurate measure, assessed 
by either a positive culture or two 
positive tests among three others 
(histology, Campylobacter-Like 
Organism (CLO) test and 13C-urea 
breath test), with these results:

Sensitivity and specificity of the 
ELISA test were:

sens = 103/107 = 0.96
spec = 47/63 = 0.75.

These estimates can be used 
to approximate the effect of the 
biomarker error on the results of 
the epidemiologic study. If one 
assumes that the measurement 
error in the future cohort study 
will be nondifferential, i.e. that the 
sensitivity and specificity are the 
same for cases and controls, then 
Equations 1 and 2 can be used to 
estimate the observed odds ratio, 
ORO. If the estimated true H. pylori 
infection prevalence is 70% in cases 
(P1) and 35% in controls (P2), then 
the true odds ratio, ORT, is:

ORT
 
=    .70(.65)    

= 4.3
      .35(.30)

Then by Equations 1 and 2:

p1 = 0.96 • 0.70 + 0.25 • 0.30 = 0.75
p2 = 0.96 • 0.35 + 0.25 • 0.65 = 0.50

ORO
 
=    .75(.50)    

= 3.0
      .50(.25)

This validity study shows that 
a study using the misclassified 
H. pylori test would find 75% of 
cases positive and 50% of controls 
positive (rather than 70% and 35%, 
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and ORT = 4.0, the observable odds 
ratio would be 1.64 for P2 = 0.01 and 
1.83 for P2 = 0.5. These observable 
odds ratios would not be detectable 
as different from the null value of 
1 unless the parent epidemiologic 
study sample size was large.

Effect of differential 
misclassification 
on the odds ratio

There is differential misclassification 
when the sensitivity of the biomarker 
test for the disease group differs 
from that for the non-disease 
group, and/or the specificity of the 
biomarker test for the disease group 
differs from that for the non-disease 
group. Differential misclassification 
can have any effect on the odds 
ratio: the observable odds ratio can 
be closer to the null hypothesis of 
OR = 1, be further from the null, or 
crossover the null compared with 
the true odds ratio. Thus, while the 
odds ratio under nondifferential 
measurement error can be assumed 
to be conservative (biased towards 
the null), the odds ratio when there 
is nondifferential error could be 
biased away from the null or even 
be in the wrong direction (e.g. it 
could make the biomarker appear to 
be a risk factor when it is, in fact, a 
protective factor). Equations 1 and 2 
can be used to estimate the impact 
of differential measurement error, 
by using the estimates of sensitivity 
and specificity in the disease group 
for the equation for p1, and estimates 
of sensitivity and specificity in the 
non-disease group for the equation 
for p2.

Measuring the error 
in a continuous biomarker 
using a validity study

Often a biomarker assay yields 
quantitative information about the 
amount of an analyte in a biologic 

specimen; these measures can 
usually be considered to be 
continuous variables. This section 
covers the parameters used to 
assess measurement error in 
a continuous biomarker from a 
validity study in which each subject 
is measured twice: once using the 
mismeasured biomarker and once 
using a perfect measure of the true 
exposure of interest.

The theory of measurement 
error in continuous variables 
was developed in the fields of 
psychometrics, survey research 
and statistics (26–32). The effects 
of measurement error also have 
been derived in the context 
of epidemiologic studies of a 
continuous exposure variable and a 
binary disease outcome (3,33–35).

A model of measurement error

A simple model of measurement 
error in a continuous measure X is:

Xi = Ti + b + Ei,

where:
μE = 0
ρTE = 0.

In this model for a given 
individual i, the measured biomarker, 
Xi, differs from the true value, Ti, by 
two types of measurement error. 
The first is systematic error, or bias, 
b, that would occur (on average) for 
all measured subjects. The second, 
Ei, is the additional error in Xi for 
subject i. E will be referred to as 
subject error to indicate that it varies 
from subject to subject. It does not 
refer just to error due to subject 
characteristics; rather it includes all 
of the sources of error outlined in 
Table 8.1.

For the population of potential 
study subjects, X, T and E are 
variables with distributions (e.g. the 
distribution of E is the distribution 

of subject measurement errors in 
the population of interest). X, T and 
E would have expected means in 
the population of interest denoted 
by μX, μT, and μE, respectively, 
and variances denoted by σ2

X, 
σ2

T, and σ2
E. Because the average 

measurement error in X in the 
population is expressed as a 
constant, b, it follows that μE, the 
population mean of the subject 
error, is zero. The assumption of the 
model that the correlation coefficient 
of T with E, ρTE, is zero states that 
the true value of the biomarker is not 
correlated with the measurement 
error. In other words, individuals 
with high true values are assumed 
to not have systematically higher (or 
lower) errors than individuals with 
lower true values.

Measures of measurement 
error: Bias and validity 
coefficient

Two measures of measurement error 
are used to describe the relationship 
of X to T in the population of interest, 
based on the above model and 
assumptions. One is the bias (i.e. 
the average measurement error in 
the population):

b = μX - μT 
.

The bias in X can be estimated 
from a validity study as the 
difference between the mean of X 
and the mean of T: b = X - T. If b 
is positive, then X overestimates T 
on average; if b is negative, then X 
underestimates T on average.

The other measurement error is 
a measure of the precision of X (i.e. 
the variation of the measurement 
error in the population). One 
measure of precision is σ2

E, the 
variance of E, which is often called 
the within-subject variance. (Note 
that b is a constant for all subjects 
and therefore does not contribute 



  Unit 2 • Chapter 8. Measurement error in biomarkers: Sources, assessment, and impact on studies 151

U
n

it
 2

C
h

a
p

te
r

 8

to the variance of the error, σ2
E.) A 

more useful measure of precision 
is the correlation of T with X, 
ρTX, termed here as the validity 
coefficient of X. The measure ρTX 
is important because it relates the 
within-subject variance, σ2

E, to the 
total variance, σ2

X, and it is this ratio, 
along with the bias, that measures 
the impact of biomarker error on 
the parent epidemiologic study. ρTX 

can range between zero and one, 
with a value of one indicating that 
X is a perfectly precise measure 
of T. ρTX is assumed to be zero or 
greater (i.e. for X to be considered 
to be a measure of T, X must be at a 
minimum positively correlated to T).

The validity coefficient ρTX can 
be estimated in a validity study by 
the Pearson correlation coefficient 
of X with T. Thus, using the standard 
interpretation of a correlation 
coefficient, the correlation squared 
(ρ2

TX) can be interpreted as the 
proportion of the variance of X 
explained by T. For example, if ρTX 
were 0.8, this would mean that 
only 64% of the variance in X is 
explained by T, with the remainder 
of the variance due to the error.

To further understand the 
concepts of bias and precision, 
consider a situation in which X has 
a systematic bias, but is perfectly 
precise (i.e. Ei = 0 for all subjects). 
Suppose that the only source 
of error in a measure of serum 
cholesterol, for example, were that 
it quantified each individual exactly 
100 mg/dl too high. X would be 
biased (b = 100 mg/dl), but would 
have perfect precision (ρTX = 1.0). 
Then, in a population, the measure 
X, even though it has systematic 
measurement error, could be used 
to perfectly order each person in the 
population by their value of T.

There could also be situations in 
which there is no bias, yet there is 
lack of precision. Suppose that the 
measurement error, Ei, varied from 

person-to-person, but for some 
subjects their measured X was 
higher than their actual T, and for 
other subjects their measured X was 
lower than their actual T, but X on 
average in the population equaled 
the average T in the population. In 
this situation there is no bias (b = 
0), but there is lack of precision (ρTX 

< 1.0). In this case, the ordering of 
subjects is lost. Of course, most 
likely a biomarker has both bias and 
lack of precision.

The degree of measurement 
error is not an inherent property 
of a biomarker test, but rather is a 
property of the test applied using 
a particular protocol to a specific 
population. Therefore, the error 
can vary for a biomarker test when 
applied using a different protocol or 
when applied to different population 
groups. In addition, ρTX is generally 
greater in populations with greater 
variance of the true exposure 
(36). Therefore, a validity study 
conducted on one population may 
not directly apply to another study 
population.

Finally, measurement error 
could differ between those with and 
without the disease, particularly 
in a case–control study. Separate 
assessment of the bias and 
precision in these two groups is 
needed to assess differential error 
(see below).

The terminology surrounding 
measurement error varies between 
fields. In this chapter, the terms 
validity, accuracy and measurement 
error are used as general terms 
reflecting the relationship of X to 
T, including both the concepts of 
bias and precision. (In laboratory 
quality control, the terms validity 
and accuracy are sometimes used 
to refer to unbiasedness only.)

Impact of error 
in a continuous biomarker 
on epidemiologic studies

When the bias and validity coefficient 
of the biomarker (X) are known, 
one can estimate the impact of the 
degree of measurement error in X 
on the parent epidemiologic study 
that will use X. Both nondifferential 
and differential measurement errors 
will be discussed, but first the effect 
of measurement error on a single 
study population will be considered.

Effect of measurement error 
on the observable mean 
and variance

In a single study population, both the 
mean and variance of the measured 
biomarker X would differ from 
the true mean and variance due 
to measurement error. Under the 
above model, the population mean 
of X would differ from the true mean 
(the population mean of T) by b:

μX = μT + b.                               (3)

The population variance of X, 
based on the above model, would 
be (30):

σ2
X = σ2

T/ρ
2

TX.                          (4)

The variance of X in the 
population is greater than the 
variance of T, due to the addition of 
the variance of the measurement 
error. For example, if the validity 
coefficient (ρTX) were 0.8, then the 
variance of X would be 56% greater 
than the variance of T (σ2

X = σ2
T/.8

2 
= 1.56 σ2

T by Equation 4).
Figure 8.1 demonstrates the 

effect of measurement error on the 
distribution of X in a population using 
a normally distributed biomarker 
and normally distributed error as an 
example. The bias in the measure X 
causes a shift in the distribution of 
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X compared with T. The increased 
variance of X compared with 
T (measured by ρTX) causes a 
flattening of the distribution of X. 
Even if a measure X were correct 
on average (b = 0), there could still 
be substantial measurement error 
due to lack of precision, which could 
lead to a greater dispersion in the 
measured exposures.

Effect of nondifferential 
measurement error 
on the odds ratio

While measurement error has an 
effect on the observable mean 
and variance of an exposure 
variable within a single population, 
a greater concern would be the 
impact of measurement error in 
an epidemiologic study comparing 
those who have the disease of 
interest to those who do not. In 
a case–control or nested case–
control study, the common measure 
of association between a biomarker 
and disease is the odds ratio, which 
is often expressed as the odds ratio 
of disease for a u unit increase in the 
level of the biomarker. The results 
given here also approximately apply 
to estimates of the hazard ratio from 

data from a cohort study and the risk 
ratio from a matched case–control 
study (33). The results given in this 
section do not apply to odds ratios 
expressed as odds of disease for 
the upper quantile of the biomarker 
versus lowest quantile. They also 
do not apply when X and T are 
measured in different units in the 
validity study. For a discussion of 
these situations, see (12).

Errors in the measurement of 
the biomarker X would bias the 
odds ratio in the epidemiologic 
study. There is nondifferential 
misclassification when there is equal 
bias and equal precision (equal ρTX) 
in the biomarker test when applied 
to both the disease and non-disease 
groups in the parent epidemiologic 
study. Figure 8.2 illustrates 
the effects of nondifferential 
misclassification. Under 
nondifferential misclassification, 
the distribution of exposure in 
cases and in controls may shift, but 
because there is equal bias for the 
two groups, they are not shifted with 
respect to each other. However, the 
lack of precision flattens and leads 
to more overlap and less distinction 
between the distributions of XD, the 
biomarker in the disease group, and 

of XN, the biomarker in the non-
disease group, compared with the 
distributions of the true exposure in 
the two groups (TD and TN).

The effect of nondifferential 
measurement error in X on the 
odds ratio can only be easily 
quantified when certain simplifying 
assumptions are made. Results can 
be derived for case–control studies 
under the following assumptions: a) 
XD and XN meet the assumptions of 
the simple model of measurement 
error given above; b) TD and TN are 
normally distributed with different 
true means in the disease and 
non-disease groups, but the same 
variance, σ2

T ; c) the bias in X is the 
same for the two groups; and d) the 
errors, E, are normally distributed 
with mean zero and common 
variance,σ2

E, in the two groups. 
Assumption c and the second part of 
assumption d are the assumptions of 
nondifferential error (i.e. equal bias 
and equal precision of XD and XN).

The above assumptions imply 
a logistic regression model for the 
probability of disease (pr(d)) as a 
function of true biomarker T, with a 
true logistic regression coefficient 
βT (37):

 

Figure 8.1. Distribution of true (T) and measured (X) biomarker
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log    pr(d)    
= aT + bTT.

       1-pr(d)

The true odds ratio for any u unit 
increase in T would be ORT = ebTu.

With measurement error in the 
biomarker test X, the assumptions 
also lead to a logistic model:

 

log     pr(d)    
= ao + boX.

        1-pr(d)

ORO = ebou is the observable 
odds ratio for a u unit increase in X.

The observable logistic regression 
coefficient, βO, differs from βT due to 
the measurement error in X. Under 
nondifferential misclassification, βO 
is attenuated towards the null value 
of zero in comparison to βT (34,37) 
by this equation:

βO = ρ2
TXβT .                             (5)

Equivalently, ORO is attenuated 
towards the null value of 1 in 
comparison to ORT by this equation:

ORO = ORρ2
TX .                         (6)

         T

This states that the observable 
odds ratio for any fixed difference in 
units of the biomarker is equal to the 

true odds ratio for the same fixed 
difference to the power ρ2

TX. Since  
0 ≤ ρ2

TX ≤ 1, the observable odds 
ratio will be closer to the null value of 
1 (no association) than the true odds 
ratio. The observable odds ratio 
does not cross over the null value if 
X and T are at a minimum positively 
correlated.

Equation 6 shows that the 
attenuation in the odds ratio under 
nondifferential misclassification 
is a function of the precision of X 
(measured by ρTX), but not of the bias 
in X. Thus, even when X is correct 
on average for cases and correct 
on average for controls (bias = 0 
for cases and for controls), the lack 
of precision of X can substantially 
bias the odds ratio. Examples 
of the effects of nondifferential 
measurement error in a biomarker 
on the odds ratio, based on the 
assumptions above and Equation 
6, are given in Table 8.3. The table 
shows that biomarkers with a validity 
coefficient ρTX of 0.5 would obscure 
all but the strongest associations. 
For example, when ρTX = 0.5 and 
the true odds ratio for a u unit 
change in the biomarker was 4.0, 
this odds ratio would be attenuated 
to an observed odds ratio of 1.41. 

Furthermore, measures as precise 
as ρTX = 0.9 still lead to a modest 
attenuation (e.g. a true odds ratio of 
4.0 would be attenuated to 3.07).

Effect of nondifferential 
measurement error 
on power and sample size

The examples above show that 
nondifferential measurement error 
in a biomarker leads to attenuation 
of the odds ratio for the association 
of the biomarker with the disease. 
This attenuation of the odds ratio 
would reduce the power of the 
epidemiologic study that uses the 
biomarker if the sample size were 
fixed. If the sample size was not 
fixed, it would lead to a need for a 
larger sample size to detect the 
attenuated odds ratio as different 
from the null value of 1.

When a continuous exposure 
with measurement error is used in 
an epidemiologic study, the sample 
size needed, NX, is compared to 
the sample size needed in a study 
in which the exposure is measured 
without error, NT. A simple formula 
shows this comparison (14,38):

NX = NT / ρ
2

TX.

Figure 8.2. Effect of nondifferential measurement error (equal bias and precision) on distribution of true (T) versus measured (X) 
biomarker in an epidemiologic study comparing disease (D) and non-disease (N) groups
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This formula may be of 
theoretical interest only, since 
estimates of the parameters needed 
when calculating the required 
study sample size should be based 
on the mismeasured exposure 
(e.g. σ2

X); as these estimates are 
usually available, the sample size 
calculations will yield the correct 
N. However, the above equation 
can be used to show the potentially 
dramatic effects of inaccurate 
biomarker measurement on the 
sample size required. For example, 
if the correlation between T and X 
is 0.7 (ρ2

TX = 0.49), then the sample 
size required when the imperfect 
measure is used is twice that 
required if a perfect measure were 
available. This shows that the error in 
biomarkers, with what is considered 
to be a good validity coefficient, still 
leads to a large increase in required 
sample size for the epidemiologic 
study that will use the biomarker.

Effect of differential 
measurement error 
on the odds ratio

Differential measurement error 
occurs when the bias in the 

mismeasured biomarker in the 
disease group differs from the bias 
in the non-disease group, and/
or the precision differs between 
groups. As noted above, differential 
measurement error should be a 
concern in a case–control study 
when the biomarker is measured 
within the preclinical disease phase 
before diagnosis or anytime after 
diagnosis, unless the marker is fixed 
(e.g. genotype). Differential bias 
has the most problematic effects: 
depending on the magnitude and 
the direction of the biases in XD 
and XN, the observable odds ratio 
for any u unit increase in X, ORO = 
ebou , could be towards the null value 
of one, away from the null, or cross 
over the null value compared with 
the true odds ratio.

Figure 8.3 presents a graphical 
example of differential measurement 
error, in particular, differential bias 
between cases and controls. In the 
figure, the true mean exposure level 
in the disease group,μTD

, is greater 
than the true mean level in the non-
disease group, μTN

. This would lead 
to an odds ratio above 1 for any u 
unit increase in T. In this example, 
the bias for the non-disease group 

is positive, so the distribution of XN is 
shifted to the right relative to TN, and 
the bias among those with disease 
is negative, so the distribution of 
XD is shifted to the left relative to 
TD. Differential bias would cause 
the observable odds ratio to cross 
over the null value of one (i.e. the 
biomarker would appear to be a 
protective factor, rather than a risk 
factor, as the controls would appear 
to have higher mean exposure than 
the cases).

Differential bias could be 
assessed by comparing the bias 
(X – T) for cases with the bias (X 
– T) among controls. To assess 
differential bias, T does not need 
to be perfect; rather, T only needs 
to have nondifferential bias (e.g. 
T could be based on specimens 
drawn years before diagnosis).

An example of differential bias 
comes from several case–control 
studies which found that low serum 
cholesterol, measured at the time 
of diagnosis, was a risk factor for 
colon cancer (39). This could be 
an artefact if increased catabolism, 
or other effects of colon cancer, 
reduce serum cholesterol. In fact, 
it was found that serum cholesterol 

Figure 8.3. Effect of differential measurement error (b1 ≠ b2) on distribution of true (T) versus measured (X) biomarker in an 
epidemiologic study comparing disease (D) and non-disease (N) groups
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measured 10 years before diagnosis 
was higher in colon cancer cases 
than controls (40). This suggests 
that serum cholesterol measured at 
the time of diagnosis had differential 
bias; it likely underestimated the true 
etiologic exposure (say, true serum 
cholesterols a decade before) among 
cases due to the effects of the cancer, 
while it may have overestimated the 
true serum cholesterol a decade 
before among the controls (due to 
a tendency of cholesterol levels to 
increase with age).

Differential bias is a greater 
concern than differential precision 
because, as described above, 
differential bias can lead to a shift 
in the distribution of the biomarker 
in one group relative to the other. 
Differential measurement error 
will also occur if precision differs 
between groups. If there were 
no differential bias, but precision 
differed, the shape of the odds ratio 
function could change. For example, 
the observable odds ratio curve 
could be U-shaped when the true 
exposure–disease relationship is 
increasing (41).

More details about the design, 
analysis and interpretation of validity 
or reliability studies to assess 
differential measurement error are 
given in (16).

Measuring the error 
in a biomarker using 
a reliability study

The term reliability is used to 
refer to the reproducibility of a 
measure, that is, how consistently 
a measurement can be repeated 
on the same subjects. Reliability 
can be assessed in several ways, 
but only one type, intramethod 
reliability, will be covered in this 
chapter. Intramethod reliability 
studies measure the reproducibility 
of a measurement on the same 
subjects repeated two or more times 

using the same method, but often 
with some variation. For example, 
a comparison could be made of a 
biomarker from a single specimen 
from each subject analysed by the 
same laboratory technician twice, 
or analysed by two laboratory 
technicians, or from two specimens 
on each subject collected at two 
points in time. Reliability studies, in 
which two different analytic methods 
are compared, with one better 
than the other but neither perfect 
(intermethod reliability studies), 
are not covered here (see (12)). 
Measures of reliability are primarily 
important for what they reveal 
about the validity of a biomarker 
test, because as shown above, the 
bias in the odds ratio in the parent 
epidemiologic study is a function 
of the validity of the biomarker 
measure.

This section covers the 
parameters used to measure 
reliability, the interpretation of 
measures of reliability in terms of 
measures of validity, and the use of 
parameters from reliability studies to 
estimate the bias in the odds ratio in 
the parent epidemiologic study that 
will use the biomarker.

A model of reliability 
and measures of reliability 
for continuous biomarkers

Suppose each person in a sample 
of interest is measured two or more 
times using the same continuous 
biomarker test that will be used 
in the parent study. For a given 
subject i, two (or more) biomarker 
measurements, Xi1 and Xi2, are 
obtained. The simple measurement 
error model described above applies 
to each measure:

Xi1 = Ti + b1 + Ei1

Xi2 = Ti + b2 + Ei2

Both Xi1 and Xi2 are measures of 
the subject’s true biomarker Ti, but 
with different errors. In a reliability 
study, information is available on 
X1 and X2 for each subject, but not 
on T. A reliability study can yield 
estimates of the mean of X1 and X2 

(µX1 and 
µX2) and of the correlation 

between the two measures, ρX, 
termed the reliability coefficient.

The intraclass correlation 
coefficient (ICC) is generally used 
as the reliability coefficient for 
continuous biomarkers (see (12,14) 
for computational formulas). The ICC 
differs from the Pearson correlation 
coefficient in that it includes any 
systematic difference between X1 
and X2 (i.e. any difference between 
b1 and b2) as part of the subject error 
E (the error that varies from subject-
to-subject). The assumption is that 
in the parent epidemiologic study, 
each subject will be measured 
once, by either X1 or X2 (e.g. either 
by laboratory technician 1 or 2). 
Therefore, any systematic difference 
between X1 and X2 would not be a 
systematic bias affecting everyone 
in the parent study, but would vary 
between subjects because some 
are measured by X1 and some by 
X2. Thus, the ICC is equal to 1 only 
when there is exact agreement on 
all measures on each subject (which 
differs from the Pearson correlation 
coefficient, which is equal to 1 
when X1 is a linear function of X2). 
Because X1 and X2 will be used as 
interchangeable measures of X in 
the parent study, and more than two 
replicates per subject can be used 
to compute the ICC, the reliability 
coefficient of X is written as ρX.

Two measures of the validity of 
a continuous biomarker measure 
X, the bias and the validity 
coefficient, were shown to be 
important in assessing the impact 
of measurement error on the parent 
epidemiologic study, which will use 
X. Unfortunately, reliability studies 
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generally cannot provide information 
on the bias in X, because a similar 
bias often affects both X1 and X2. 
The inability of many reliability 
study designs to yield information 
on the bias, and on differential bias 
between cases and controls, is a 
major limitation. It should be recalled, 
however, that under nondifferential 
measurement error (and certain 
other assumptions), the attenuation 
of the odds ratio depends only on 
the validity coefficient and not on 
the bias. The reliability coefficient 
does provide information about the 
validity coefficient, and thus can 
be used to estimate the effects of 
measurement error on the parent 
study under the assumption of 
nondifferential measurement error.

Relation of reliability to 
validity under the parallel test 
model

When certain assumptions are 
met, reliability studies can yield 
estimates of the validity coefficient. 
One such set of assumptions is the 
model of parallel tests (27,29–31). 
The first assumption of the parallel 
test model is that the error variables, 
E1 and E2, are not correlated with the 
true value T. The second is that E1 
and E2 have equal variance σE

2. This 
also implies that X1 and X2 have 
equal variance and that X1 and X2 
are equally precise (ρTX1 = ρTX2). This 
is usually a reasonable assumption 
in intramethod reliability studies, 
since X1 and X2 are measurements 
from the same method. Third, it is 
assumed that E1 is not correlated with 
E2. This important (and restrictive) 
assumption implies, for example, 
that an individual who has a positive 
error, E1, on the first measurement 
is equally likely to have a positive or 
a negative error, E2, on the second 
measurement. These assumptions 
are often summarized by saying that 
two measures are parallel measures 

of T if their errors are equal and 
uncorrelated.

Under the assumptions of 
parallel tests, it can be shown that 
(30):  

ρTX = ѴρX .                                 (7)

This equation states that the 
validity coefficient of X, ρTX, can be 
estimated to be the square root of 
the reliability coefficient, ρX. This 
result is important because it shows 
that if the assumptions are correct, 
the reliability coefficient, which is a 
measure of the correlation between 
two imperfect measures, can be 
used to estimate the correlation 
between T and X without having a 
perfect measure of T. The correlation 
of the replicates of X is less than 
the correlation of X with T, as each 
replicate has measurement error.

A reliability study of a biomarker 
test can often be assumed to have 
equal and uncorrelated errors if 
the replicates within each person 
are sampled over the entire time 
period to which the true biomarker is 
intended to relate (if the biomarker 
can vary over time); the specimen 
handling, storage and analytic 
techniques vary in the reliability 
study as they will in the parent study; 
and the true exposure is defined as 
the mean measure over the relevant 
time period of repeated measures of 
the assay.

An example comes from 
a study which examined the 
reliability of serum hormone 
levels in premenopausal women 
(42). The goal was to understand 
whether a single blood draw was 
sufficiently accurate to be used 
in a large prospective study of 
serum hormones and cancer risk 
among premenopausal women. 
The reliability study included 113 
women who had blood drawn once 
a year for three years during both 
the middle of the follicular and luteal 

phases of their menstrual cycles. 
The reliability coefficient (intraclass 
correlation coefficient) was 0.38 for 
total estradiol during the follicular 
phase and 0.45 during the luteal 
phase. The repeated measures in 
this study are close to the parallel 
test model: the errors on each of the 
repeated measures can be assumed 
to be equal because the same test 
procedure was repeated, and the 
errors are likely to be uncorrelated 
(i.e. a woman whose hormone 
measure was higher than her “true” 
three-year average on one measure 
is not more likely to be higher than her 
true average on another measure). 
This study also measured most 
sources of error, such as error due 
to variations in blood processing, 
storage and laboratory technique, 
and error due to long-term variation 
of plasma hormones within women. 
Therefore, the estimated validity 
coefficient (ρTX) for a single measure 
of total estradiol (X) as a measure of 
average estradiol over three years 
(T), based on Equation 7, is 0.62 if 
blood were drawn during the mid-
follicular phase and 0.67 if drawn 
during the mid-luteal phase.

Based on Equation 7, the results 
in the last section on the effects of 
measurement error on the odds 
ratio can be expressed in terms of 
ρX rather than ρT

2
X. When the parallel 

model holds, Equation 6 can be 
written:

ORO = ORT
ρX  .                            (8)

From the example above (42), 
use of a single measure of total 
estradiol during the mid-luteal 
phase, with a reliability coefficient 
of 0.45 in a cohort study of total 
estradiol and breast cancer, would 
attenuate a true odds ratio of, for 
example, 4.0 to an observed odds 
ratio of 1.9 (from Equation 8). Other 
examples of the bias in the odds 
ratio (under the parallel test model) 
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from various degrees of unreliability 
are given in Table 8.3.

Relation of reliability to 
validity for correlated errors

In actual reliability studies, the 
assumptions of parallel tests are 
often incorrect. One assumption 
that is frequently violated is that 
of uncorrelated errors. Often the 
error in one measure is positively 
correlated with the error in the other 
(ρE1E2 > 0). Correlated errors occur 
when the sources of error in the first 
measurement on a subject tend to 
repeat themselves in the second. 
If in a reliability study, for instance, 
blood was drawn only once on 
each subject and analysed twice, 
and the true marker of interest was 
the mean value of the biomarker 
over several years surrounding the 
time of measurement, there would 
be correlated error. For example, 
suppose the reliability of serum 
β-carotene was assessed by 
repeated laboratory analysis from a 
single blood draw. This would have 
correlated error, as an individual 
whose β-carotene level was higher 

on the first measure than the true 
long-term average (perhaps due 
to a seasonal variation in intake of 
β-carotene) would also likely be 
higher on the second measure than 
the true value, because the second 
measure used the same specimen. 
Because part of the error is repeated 
in both X1 and X2, the errors are 
correlated. This means the reliability 
study does not capture all sources 
of error in X, and therefore the 
reliability coefficient, ρX, is artificially 
too high.

When the errors of the measures 
used in a reliability study are positively 
correlated, then the reliability study 
can only yield an upper limit for 
the validity coefficient. Specifically, 
when X1 and X2 are equally precise, 
and the assumptions of the above 
model hold except that the errors 
are correlated, then the validity 
coefficient is less than the square 
root of the reliability coefficient (1):  

ρTX < ѴρX .                               (9)

Thus, a measure can appear 
to be reliable (repeatable) even 
if it has poor validity. While a low 

reliability coefficient implies poor 
validity, a high reliability does not 
necessarily imply a high validity 
coefficient. The high reliability may 
be due instead to correlated errors 
within subjects. The reliability 
coefficient is only diminished by 
part of the error in X (the part that is 
not repeated in X1 and X2), whereas 
the validity coefficient is a measure 
of all sources of error. When there 
is correlated error (i.e. when only 
part of the error is measured by a 
reliability study), then the attenuation 
of the odds ratio will be even greater 
than that predicted by Equation 
8. Reliability studies should be 
designed, therefore, to capture all of 
the sources of error in the biomarker 
X, including error due to variations 
of specimen collection, variations 
between laboratory technicians, and 
within-person variations over time. 
(The concepts of correlated error, 
repeated within-person error, and 
failure of a reliability study to capture 
all sources of error, each describe 
the same phenomenon.)

Sometimes it is only possible 
or desirable to assess some 
components of error. To assess the 
laboratory error, a blinded test-retest 
reliability study on split samples from 
a single specimen from each subject 
in the reliability study, analysed in 
separate batches and by different 
laboratory technicians (if multiple 
laboratory technicians were going to 
be used in the parent epidemiologic 
study), would yield an intraclass 
correlation coefficient that measures 
the laboratory component of error 
only. Similarly, other reliability 
studies could be designed to test 
the effect of handling, storage, and 
short-, medium- and long-term 
biologic variation by only varying 
these components. When only some 
components of error are measured, 
there is correlation error and the 
resulting intraclass correlation just 
provides an upper estimate of the 

ρTX
a ρX

b True ORc=2.0
ORO

d
True ORc=4.0

ORO
d

.50 .25 1.19 1.41

.60 .36 1.28 1.65

.70 .49 1.40 1.97

.75 .56 1.48 2.18

.80 .64 1.56 2.42

.85 .72 1.65 2.72

.90 .81 1.75 3.07

.95 .90 1.87 3.49

Table 8.3. Impact of nondifferential measurement error in a normally distributed 
biomarker X on the Observable Odds Ratio (ORO)

aρTX is the validity coefficient of X.
bρX is the reliability coefficient of X under the parallel test model (see text):

ρX = ρ2
TX

cThe true OR = is the odds ratio for a u unit difference in T for comparison to ORO for a u unit difference in X.
dORO from Equation 6 or 8. See text for model and assumptions.
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validity coefficient (see Equation 
9). However, by estimating the 
components of error, the researcher 
can seek to improve those aspects 
having the most adverse effects. 
For example, enhanced laboratory 
quality control procedures could be 
used to reduce laboratory error, or 
multiple specimens (over time) per 
subject could be used to reduce the 
error due to medium- or long-term 
biologic variation. Finally, nested 
reliability study designs can be used 
to estimate the different components 
of error within one reliability study (4).

Coefficient of variation

One additional analytic technique 
for reliability studies of continuous 
biomarkers, the coefficient of 
variation (CV) deserves mention 
(43). For laboratory measures, 
reliability is often assessed by 
repeated analysis of a single 
reference material. For example, a 
single pooled blood sample might be 
analysed 10 times to yield measures 
of the biomarker X. In such studies, 
the mean and variance of X can be 
used to assess the reliability of X. 
A reliability coefficient cannot be 
estimated because there is only one 
sample. Instead a CV, defined as the 
standard deviation of X divided by 
the mean of X x 100, is often used:

CV % =  s.d.X  x  100.
X

A small CV is considered to indicate 
a reliable measure. 

The CV provides only limited 
information about measurement 
error for two reasons. First, this type 
of reliability study only assesses 
the laboratory error and excludes 
errors due to storage and handling 
of specimens, and to the variation 
in the measure over time within 
individuals, which are usually greater 
sources of error in epidemiologic 
studies than the laboratory error. 

Second, the CV cannot be used to 
even assess the effect of laboratory 
error on the odds ratio. This is due 
to the fact that the CV is an estimate 
of the ratio of the standard deviation 
of X (which is an estimate of the 
standard deviation of the error (σE), 
as the true value of T is the same 
for each replicate) to X, but it is ρTX 
which is a function of the ratio of the 
error variance to the total variance 
in X in the population of interest, that 
is needed to understand the impact 
of measurement error.

Reliability studies 
of binary biomarkers

Issues in the design and 
interpretation of reliability studies 
of binary biomarkers are similar 
to the issues discussed above for 
continuous biomarkers. However, 
the parameter used to measure the 
reliability of binary biomarkers is 
kappa (κ) rather than the intraclass 
correlation coefficient (44).

To compute κ for a binary marker, 
subjects are cross-classified by 
results on their first and second 
repeated measurements into a 2x2 
table as follows:

where p11 is the proportion of relia-
bility study subjects classified as 
positive on both measures, p12 is the 
proportion classified as positive on 
measure 1 but negative on measure 
2, etc. Note that the four proportions 
(pij) sum to 1. The overall (marginal) 
proportions of those who are posi-
tive and negative for measure 1 are 
r1 and r2 respectively, and the margi-
nal proportions on the second mea-
sure are s1 and s2.

One measure of agreement is 
the observed proportion for whom 

there was agreement. The observed 
proportion of agreement, Po, is 
the sum of the proportions on the 
diagonal:

Po = p11 + p22.

However, this simple measure 
does not take into consideration the 
agreement that would be expected 
by chance. For example, suppose 
the first reader of a stain on a slide 
accurately classified 10% of subjects 
as positive and 90% as negative, but 
the second reader simply classified 
all slides as negative. Then the 
percentage agreement would be 
90%, which does not reflect the poor 
repeatability across readers.

Kappa is a measure of 
agreement that corrects for the 
agreement expected by chance. 
The expected agreement by chance 
(on the diagonal), Pe, is:

Pe = r1s1 + r2s2.

Kappa is the observed 
agreement beyond chance divided 
by the maximum possible agreement 
beyond chance, and is estimated as:

                       .

Kappa ranges from zero (no 
agreement beyond chance) to 1 
(perfect agreement), although it 
can be less than zero if agreement 
is less than expected by chance. 
(See (12,45) for the computation of 
confidence intervals for κ.)

Similar to the concepts discussed 
above for continuous biomarkers, 
the results of a reliability study of 
a binary biomarker can, in some 
situations, be used to estimate the 
impact of biomarker error in the 
parent epidemiologic study that will 
use the biomarker. If the reliability 
study meets the assumptions of 
equal and uncorrelated error of 
the parallel test model (described 

 =
PO - Pe

1 - Pe
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above), and of nondifferential 
measurement error, then κ can be 
used to estimate the bias in the odds 
ratio. Specifically, it has been shown 
that under these assumptions, this 
equation provides an approximation 
of the attenuation of the odds ratio 
(46):

ORo = ORT 
Ѵκ.                        (10)

Similar to continuous measures, 
when the reliability study of a binary 
maker does not capture all sources 
of error (i.e. when some sources of 
error are repeated within-subjects 
(correlated)), κ will be artificially too 
high. Therefore, the attenuation of 
the odds ratio will be even greater 
than that predicted by Equation 10.

Review and conclusion

Before embarking on an 
epidemiologic study that uses a 
biomarker, it is important to research 
and understand the measurement 
error in that biomarker. This can be 
accomplished by reading previously 
published works on validity/reliability 
studies of the biomarker of interest, 
or conducting a new validity/
reliability study. Measurement error 
in a biomarker refers to the error of a 
specific biomarker test, as applied in a 
specific way to a specific population, 
versus the true (etiologic) exposure. 
In epidemiologic studies, this error 
includes not only laboratory error, 
but also errors (variations) introduced 
during specimen collection, handling 
and storage, and due to month-
to-month and year-to-year within-
person variability of the biomarker.

Validity studies compare 
the biomarker to be used in an 
epidemiologic study to a perfect or 
near-perfect measure on a sample 
of subjects. The parameters used to 
quantify the error in a binary marker 
are sensitivity and specificity. For a 
continuous biomarker, X, the validity 

can be estimated by the bias (X - T)   
and by the validity coefficient ρXT 

(correlation coefficient of X with T), 
where T is the (continuous) measure 
of the true exposure. To assess 
whether the error is differential 
between those with and without 
the disease, separate analyses on 
a group of cases and a group of 
controls are needed.

Often a perfect measure of the 
exposure is not available, so reliability 
(repeatability) studies are conducted. 
For these, a sample of subjects is 
measured twice using the same 
marker to measure errors (variations) 
in the biomarker over time, between 
laboratory technicians, etc. The 
reliability study should be designed to 
capture all sources of error, so that the 
error in one measure is not repeated 
in (correlated with) the errors in the 
other measures. To design a reliability 
study without correlated error, the 
repeated specimens for each person 
must be collected at different times 
over the relevant etiologic time period 
and handled, stored, and analysed 
with the degree of variation (different 
specimen collectors/laboratory 
technicians/batches) as would occur 
in the parent epidemiologic study. 
Reliability studies are analysed using 
κ for binary biomarkers and the 
intraclass correlation coefficient for 
continuous biomarkers.

Equations 1, 2, 6, 8 and 10 can be 
used to interpret these parameters 
from validity or well-designed 
reliability studies to estimate the 
degree of bias in the risk ratio in an 
epidemiologic study that will use the 
biomarker. These equations assume 
nondifferential measurement error 
(i.e. equal biomarker error for those 
with and without the disease). 
Nondifferential measurement error 
in the biomarker attenuates the 
risk ratio in an epidemiologic study 
towards the null value of one. This 
attenuation is often quite substantial, 
even for reasonably accurate 

biomarker measures. For continuous 
markers, the impact of nondifferential 
measurement error depends only on 
the validity coefficient ρXT, and not on 
the bias (Equation 6).

Differential biomarker error 
between those with the disease and 
those without can bias the risk ratio 
in any direction, and even make a risk 
factor appear to be protective. Thus, 
differential error can completely 
invalidate an epidemiologic study 
and must be avoided. Differential 
measurement error is a particular 
concern in case–control studies (and 
among the early cases in cohort 
studies) when the biomarker is not 
a fixed marker (e.g. genotype), and, 
therefore could be influenced by the 
disease, its preclinical phase, or its 
treatment. Assessment of differential 
error requires specimens on a sample 
of cases years before diagnosis and 
comparable early specimens on 
controls. This measure can serve 
as the “true” marker, even if it is not 
perfect, as long as it does not have 
differential error. For continuous 
variables, differential bias has the 
most problematic effects on the 
risk ratio; it could be estimated by 
comparing bias (X - T) for cases with 
bias (X - T) among controls.

One goal of giving examples of 
the large effects that even moderate 
degrees of biomarker measurement 
error have on epidemiologic studies, 
is to motivate attention to reducing 
the biomarker error. The researcher 
should focus on reducing the errors 
through appropriate quality control 
techniques for specimen collection, 
storage and laboratory analyses, 
and, if needed, by use of multiple 
measures over time in the parent 
epidemiologic study to reduce the 
errors caused by biomarker variation 
over time. These important methods 
and additional approaches to reduce 
biomarker error in epidemiologic 
studies are covered in other chapters 
of this book and by (12,15).
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