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Summary

This chapter describes basic 
principles in study design, data 
analysis, and interpretation of 
epidemiological studies of genetic 
polymorphisms and disease risk, 
including the assessment of gene–
environment interactions. The 
case–control design (hospital-
based, population-based or nested 
within a prospective cohort) is 
frequently used to study common 
genetic variants and disease risk. 
Because of their widespread use, 
the analysis of case–control data will 
be the focus of this chapter. Two key 
considerations in the study design 
will be addressed: the selection of 
genetic markers to be evaluated, 
and sample size considerations to 
ensure adequate power to detect 

associations with disease risk. 
Single nucleotide polymorphisms 
(SNPs) are the most frequent form 
of common genetic variation, thus 
the discussion on data analysis 
will be based on the evaluation of 
associations between SNPs and 
disease risk. This chapter will begin 
with the evaluation of quality control 
of genotyping data, which is a critical 
first step in the analysis of genetic 
data. A description of statistical 
methods will follow, aimed at the 
discovery of genetic susceptibility 
loci, including analysis of candidate 
SNPs and genome-wide association 
studies, haplotype analyses, and 
the evaluation of gene–gene and 
gene–environment interactions.

Introduction

The approaches to studying genetic 
susceptibility factors for disease 
have evolved very quickly over the 
last several years, due to advances 
in genotyping technologies, 
substantial reductions in genotyping 
costs, and improvements in the 
annotation of common genetic 
variation, particularly the most 
common type of variant, the single 
nucleotide polymorphism. These 
advances have enabled investigators 
to move beyond evaluating a few 
candidate variants in key genes, to 
conducting more comprehensive, 
as well as exploratory, evaluations 
of common genetic variation in 
candidate pathways/networks to 
disease, and performing genome-
wide association studies (GWAS). 
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Over the last year, there has been 
an explosion of new discoveries 
of susceptibility loci for a wide 
range of diseases derived from 
GWAS (http://www.genome.gov/
gwastudies/). This rapid trend of 
discoveries is likely to continue in 
the near future, as an increasing 
number of epidemiological studies 
use this approach to identify novel 
susceptibility loci. A major factor in 
the success of these breakthroughs 
has been the formation of very 
large collaborative efforts through 
consortia of studies that is creating 
unprecedented opportunities for 
discovery.

The discovery of disease 
susceptibility loci can bring about 
improvements in the understanding 
of disease etiology, and may 
ultimately lead to improvements in 
risk assessment, targeted preventive 
or screening strategies to reduce 
disease incidence and mortality, 
and improvements in therapy 
through the identification of drug 
targets. The aim of this chapter is 
to describe basic principles in study 
design and data analysis in studies 
on common genetic polymorphisms 
and disease. A discussion of biases, 
and other considerations in the 
interpretation of data analyses, is 
outside the scope of this chapter 
and can be found in previous 
publications (1–3).

Study design

The study designs used in molecular 
epidemiology studies, and a 
description of their advantages 
and disadvantages, can be found 
elsewhere in this book (see Chapter 
14) and in previous publications 
(4). Discussed here are aspects of 
these epidemiologic study designs 
that are most relevant to studies of 
genetic susceptibility to disease. 
The hereditability of a disease, 
or the proportion of variation in 

disease susceptibility due to genetic 
factors, is directly related to the 
ability to identify susceptibility 
loci in epidemiological studies 
(5). Therefore, one of the first 
considerations is to evaluate the 
heritability, or a priori evidence, that 
the disease of interest is caused by 
genetic variation.

The case–control design (3,6), 
either nested in a prospective 
cohort or by retrospective sampling 
of a population, is by far the most 
commonly used design in genetic 
epidemiology studies of unrelated 
individuals. Hospital-based case–
control studies are particularly 
popular, as the hospital setting 
facilitates the rapid enrolment 
of subjects, and the collection 
and processing of biological 
specimens with high participation 
rates. The case–control design 
is of particular importance for 
the study of uncommon diseases 
that occur in small numbers in the 
population or prospective cohort 
studies. Given that most members 
of a prospective cohort will not 
develop disease, these studies 
often use sampling strategies, such 
as nested case–control and (less 
commonly) case–cohort designs, 
to improve efficiency (7). In these 
designs, only samples from cases 
and a random subset of non-cases 
are analysed, reducing the DNA 
extraction and genotyping costs 
considerably. The case–cohort 
design allows for the evaluation of 
several disease endpoints using the 
same comparison group (referred 
to as a subcohort); however, since 
the same disease-free subjects 
are repeatedly used as controls 
for different disease endpoints, 
depletion of DNA samples from this 
group can be an issue. Until whole-
genome sequencing is cost-effective 
and commonly available, whole-
genome amplification of DNA, from 
cases and controls can be used to 

address the problem of limited DNA 
in epidemiologic studies; however, 
this amplified DNA might not be 
suitable for all genomic assays (8).

Biased sampling, or non-
random selection of cases and/or 
controls, can be used to improve 
efficiency to discover genetic 
markers associated with disease. 
For instance, selection of cases with 
a family history of breast cancer 
can lead to gains in power to detect 
genetic susceptibility loci, assuming 
a polygenic model of inheritance with 
loci interacting multiplicatively (9). 
However, the generalizability of risk 
estimates and evaluations of gene-
environment (G-E) interactions can 
be compromised.

Genotyping hundreds of 
thousands of genetic markers in 
thousands of individuals can be 
costly. Multistage designs are 
commonly used to reduce the cost 
of genotyping very large numbers 
of samples (10). In these designs, 
a proportion of samples are 
genotyped for a large number of 
markers (e.g. SNPs that represent 
genetic variation across the genome 
in GWAS). In subsequent stages, 
only those markers showing the 
most significant associations with 
disease are genotyped in additional 
samples (10). The reduced cost 
is offset by a reduction in power 
compared to a study genotyping all 
markers in all available samples. 
Since the majority of genetic 
association studies use some sort of 
case–control design, the description 
of methods for data analyses in the 
section Analysis of Genetic Data, 
which follows, will focus on case–
control data.

Selection of genetic markers

This chapter focuses on single 
nucleotide polymorphisms (SNPs) 
– the most common form of 
variation in the human genome. A 
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SNP is a DNA sequence variation 
occurring when a single nucleotide 
base differs among members of a 
population. There are thought to be 
at least 10 million SNPs in the human 
genome, and the vast majorities are 
bi-alleleic, having only two alleles 
or nucleotide variant forms. SNPs 
occur throughout the genome and 
can be measured (genotyped) 
accurately. Although the genotyping 
costs have decreased dramatically 
in the last few years, it is still cost-
prohibitive to genotype all known 
SNPs or sequence the entire human 
genome. Therefore, current studies 
must select subsets of markers to be 
evaluated.

SNP selection strategies take 
advantage of the correlation among 
genetic variants located close 
together on the same chromosome, 
or linkage disequilibrium (LD), 
to select a minimal set of tag 
SNPs that capture the majority of 
common genetic variation in human 
populations (11,12). The selection 
of tag SNPs has been aided by the 
International HapMap Project (http://
www.hapmap.org/), a public resource 
that has genotyped millions of SNPs 
in 270 individuals from different 
ethnicities (30 Yoruba from Ibidan, 
Nigeria, 45 Japanese residents of 
Tokyo, 45 Han Chinese, and 30 
Caucasian trios from Utah, USA) 
(13). Several methods have been 
proposed to use extensive data sets 
like the HapMap to select tag SNPs. 
Pairwise tagging is a method where 
tag SNPs are selected by examining 
the LD measures between pairs of 
SNPs using a squared correlation 
coefficient, r2. A SNP is said to ‘cover’ 
another SNP if the r2 value between 
them exceeds a given threshold 
(e.g. 0.80). The Carlson algorithm to 
select optimal tag SNPs is iterative 
and begins by considering all SNPs 
as potential tags. At each step, the 
SNP that covers the most correlated 
SNPs is chosen as a tag SNP. That 

SNP and all other SNPs that it covers 
(called a bin) are removed, and the 
algorithm begins again and continues 
until all SNPs are either taken as 
tags or are covered by a tag (14). 
Multimarker or aggressive tagging 
algorithms examine correlations 
among two or more SNPs using a 
generalized correlation coefficient 
to determine coverage (15,16). This 
approach typically reduces the 
total number of tag SNPs required; 
however, the selection algorithm is 
computationally more intense than 
pairwise methods, and statistically 
more complex, since an appropriate 
multimarker test should be used to 
test the associations with disease. 
Multimarker tagging approaches 
are also more affected by missing 
genotype data, since several SNPs 
are often required to perform tests. 
The current generation of genotyping 
arrays used to perform GWAS 
include about 300 000 to 1 million 
SNPs to capture common genetic 
variation. The proportion of SNPs in 
HapMap covered by SNPs in each of 
these genotyping assays depends on 
the ancestral origin of the underlying 
population.

Sample size considerations

As in any epidemiological study, 
sample size considerations are 
critical for the design of studies 
of genetic associations and G-E 
interactions (10,17,18). The main 
parameters that determine the 
required sample size to attain a 
specified statistical power are:
• Disease prevalence in the 
population
• Magnitude of association (often 
measured by the odds ratio)
• Alpha-level or P-value threshold to 
designate a ‘statistically significant’ 
finding
• Genotype or allele frequency in the 
population
• Mode of inheritance

Generally, hundreds to 
thousands of subjects are needed 
to evaluate genetic associations 
with risk of complex diseases, 
as the magnitude of association 
between individual genetic variants 
on disease risk tends to be small 
(see http://www.genome.gov/
gwastudies/ for a catalogue of 
discoveries using GWAS in different 
diseases and traits).

Most studies measure genetic 
markers for disease rather than 
directly measuring the causal 
variant itself, as it is often unknown. 
The sample size needed to detect 
an association between a genetic 
marker and disease depends on the 
degree of linkage disequilibrium, or 
correlation due to physical proximity, 
between the marker and the 
causative variant. In approximate 
terms, the sample size requirements 
for studies using single SNPs as 
genetic markers are increased by a 
factor of 1/r2, where r2 is the squared 
correlation between the marker and 
the causal unmeasured SNP (19). 
Sample size approximations are 
more complex when the disease 
susceptibility locus is in LD with 
multiple SNPs (10).

One limitation of standard 
power calculation methods is that 
they focus on the power for the 
detection of a single susceptibility 
locus with a given minor allele 
frequency (MAF) and disease odds 
ratio. In GWAS, however, there is 
likely to be a variety of susceptibility 
SNPs with a spectrum of MAF and 
disease odds ratios. The goal is 
to discover a certain number of 
underlying susceptibility loci, not 
some specific loci. A recent report 
has suggested novel approaches to 
power calculation that can provide 
realistic assessment for several 
probable discoveries in GWAS, 
accounting for the likely distribution 
of effect sizes for the underlying 
susceptibility loci (20).
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An important challenge in large-
scale evaluations of candidate 
genes/regions/pathways and 
GWAS, is to identify the few variants 
truly associated with disease among 
the large number being tested 
(21,22). Given the low probability 
of a true association (i.e. low prior 
probability) and the small expected 
magnitude of true associations 
(often resulting in low statistical 
power, particularly for less common 
variants), the standard threshold for 
statistical significance of an α-level 
of 0.05 results in the identification 
of a very high percentage of false-
positive findings (23). Therefore, 
several authors have recommended 
reducing the P-value threshold to 
maintain a low probability that a 
statistically significant finding is a 
false-positive (i.e. false-positive 
report probability (FPRP)) (24,25). 
For instance, P-value thresholds 
of 10−4–10−5 were estimated for 
variants in candidate genes, and 
10−7 for random variants to reach 
high probabilities of true findings (~ 
>80%) (25). Inversely, FPRP also 
depends on the prior and statistical 
power to detect an association. 
Therefore since the priors are often 
low, to reach a desirably low FPRP, 
the sample size of the study should 
be large enough to attain adequate 
statistical power. For instance, a 
P-value of 0.0024 for a SNP with 
a prior probably of 0.001 in a study 
of 300 cases and 300 controls will 
correspond to an FPRP of 72%; 
however, increasing the sample size 
to 1500 cases and 1500 controls, 
and keeping everything else 
constant, would lower the FPRP 
to 20% (23). Figure 16.1 shows the 
sample size requirements to detect 
genetic associations with a per-
allele OR ranging from 1.1–1.5 for 
a variety of frequencies of the at-
risk allele (assuming a log-additive 
mode of inheritance) and P-value 
threshold of 10−5. Sample size 

needs increase dramatically for 
small changes in the OR when the 
magnitude of the OR is small, and for 
allele frequencies in the extremes 
(i.e. away from 0.50). The minimum 
sample size to detect a per-allele 
OR of 1.2 (i.e. assuming log-additive 
risk per allele and homozygous 
variant OR = 1.44) is 3300 cases 
and 3300 controls, whereas at least 
12 000 cases and 12 000 controls 
are needed to detect a per-allele 
OR of 1.1 (i.e. homozygous variant 
OR = 1.21). Sample size needs 
would increase by a factor of 1.4 if a 
P-value threshold of 10−7 were to be 
used instead of 10−5. These numbers 
illustrate that current studies of 
hundreds or a few thousand cases 
and controls have adequate power 
to detect an OR between 1.2–1.5 for 
common risk alleles (frequency > 
10%); however, much larger studies 
are needed to detect ORs of 1.1 for 
less-common risk alleles.

The statistical power of 
multistage GWAS designs depends 
on several factors: total number 
of available samples, number of 
samples and markers genotyped in 
each stage, α-level, the size of the 

genetic effects to be detected, and 
type of analysis (10). The price of 
genotyping for different technologies 
used at each stage is also an 
important factor determining the 
optimal design of multistage studies. 
In general, joint analysis of data from 
the different stages is more powerful 
than replication analysis (26). As the 
cost of genotyping and sequencing 
methods continue to decrease, 
studies will be able to scan all 
individuals and eventually obtain a 
full genomic sequence, which will 
allow the evaluation of rarer variants 
as well as the mapping of causative 
variants. Sample size requirements 
for more complex analyses of 
genotype data, such as pathway-
based, haplotype and novel high-
dimensional analyses, are less well 
understood.

Evaluation of G-E interactions 
often requires large sample sizes 
that are further increased by the 
presence of errors measuring 
environmental and/or genetic 
exposures, even when the errors 
are small (17,27). Although 
multiplicative parameters for G-E 
interactions tend to be attenuated 

Figure 16.1. Sample size requirements to attain 80% power to detect a range of per-
allele odds ratios (OR) for an association between disease risk and a bi-allelic SNP
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by differential misclassification of 
exposure (17), this type of bias could 
lead to overestimation of the main 
effects of the exposure, joint effects, 
and subgroup effects, or additive 
interactions. Thus, high-quality 
exposure assessment and almost 
perfect genotype determinations 
are required for the evaluation of 
G-E interactions. This highlights the 
importance of validating genotype 
assays and including quality 
control samples during genotype 
determinations. This will help 
assess the reproducibility of the 
assays to identify problematic ones 
for possible re-genotyping or assay 
optimization.

There are several free statistical 
software programs to carry out 
power calculations for genetic 
association studies. POWER (http://
dceg.cancer.gov/bb/tools/power) 
can be used for binary outcome 
studies (case–control or cohort 
studies) based on a logistic-like 
regression model with one or two 
covariates (e.g. gene-exposure 
interactions) (18); POWER for 
Genetic Association Analyses 
(http://dceg.cancer.gov/bb/tools/
pga) can be used in case–control 
studies, fine-mapping studies, and 
whole-genome scans, for power 
and sample size calculations 
under various genetic models and 
statistical constraints; QUANTO 
(http://hydra.usc.edu/gxe/) is 
useful in matched case–control, 
case–sibling, case–parent, and 
case-only designs to compute 
sample size or power calculations 
to evaluate genetic associations, 
G–E interaction, or gene–gene 
(G–G) interaction; the CaTS Power 
Calculator (http://www.sph.umich.
edu/csg/abecasis/CaTS/) is a 
user-friendly interface for power 
calculations for large genetic 
association studies, including two-
stage GWAS (26); a spreadsheet 
can be downloaded to calculate 

FPRP (http://jnci.oxfordjournals.org/
cgi/content/full/96/6/434/DC1) (23).

Current case–control or cohort 
studies usually include between 
a few hundred to a few thousand 
cases and a similar numbers of 
controls. Therefore, to meet the 
larger sample size requirements 
to identify weak associations (Cf. 
Figure 16.1) and interactions, 
especially when considering disease 
subtypes, an increasing number of 
consortia of existing studies have 
been and continue to be formed 
(28). Consortia can achieve the 
large sample sizes necessary to 
confirm or refute associations by 
coordinating the analysis of pooled 
data from many studies, as well as 
evaluating consistency of findings 
across studies of different quality 
and with different sources of biases 
(29). However, comparability of 
data on environmental exposures 
across studies may be a limitation. 
Therefore, very large, well-designed 
studies with high-quality exposure 
data and tumour specimens 
might be needed. To date, there 
are very few examples of gene–
environment interactions that 
have been demonstrated in large 
pooling efforts. One example is 
the demonstration of interactions 
between cigarette smoking and 
polymorphism in the NAT2 and 
GSTM1 genes in the context of a 
bladder cancer GWAS (30).

Analysis of genetic data

Quality control of DNA 
and genetic data

Quality control analyses are 
conducted both before and after 
genotyping of DNA samples (31). 
Ideally, DNA samples should 
be accurately quantified before 
genotyping (e.g. using fluorescence 
nucleic stains, such as PicoGreen® 

(Molecular Probes Inc.)), and 

profiled to obtain a “DNA fingerprint” 
using a panel of genetic markers 
that uniquely identify each sample 
(e.g. the Amp/STR® Identifiler® kit 
(Applied Biosystems) uses 15 SNPs 
and the Amelogenin marker for 
gender determination). This allows 
precise verification of duplicate 
DNA samples, identification of 
unexpected duplicates (e.g. due to 
sample collection, storage, labelling 
or plating errors), identification of 
gender mismatches between the 
DNA and self-reported gender, 
and identification of contaminated 
samples that should be excluded 
from further analyses. After 
genotyping assays have been 
performed, the quality of the 
resulting genotyping calls can 
be assessed by evaluating the 
scatter plots of allele-specific probe 
intensity values used for genotype 
determination. SNP genotype calls 
are made based on the clustering 
patterns of the probes, where 
clusters for each homozygote and 
heterozygote genotype state should 
be observed. High quality assays 
will demonstrate tight clusters with 
clear separation between them 
(Figure 16.2A versus 16.2B).

Genotyping completion rates 
can be calculated for DNA samples 
or loci:

• Overall completion rates—
number of loci with genotype calls 
divided by the total number of 
genotyped loci

• Completion rates by sample—
number of loci with genotype calls 
for a given sample divided by the 
total number of genotyped loci in 
that sample

• Genotype completion or call 
rates—number of samples with 
genotype calls for a given SNP 
divided by the total number of 
genotyped samples

Decreased completion 
rates often reflect poor assay 
performance, which may be due to 
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chemical and physical properties of 
the assay or the quality of the input 
DNA. Completion rates should also 
be calculated separately by DNA 
source, processing laboratory, DNA 
extraction method, case–control 
status and genotyping plate to detect 
systematic variation in genotype 
quality. Low genotype call rates can 
help detect loci with problematic 
assays that require re-genotyping, 
a new assay, or selection of a 
surrogate SNP. Completion rates by 
sample or plate can detect problems 
with specific samples or plates 
that could result in exclusion of 
data from those samples or plates. 
Analyses of completion rates by 
case–control status can detect 
assay performance differences due 
to varying DNA quality for cases 
and controls, which would result 
in differential misclassification. 
When large numbers of SNPs are 
genotyped, such as in GWAS, it is 
useful to look at the distribution and 
plot the completion rates by sample 
or loci (genotype calls) to detect 
outliers. Figure 16.3A shows an 
example of such plots, which utilize 
data from a scan using the Illumina 
HumanHap 1M assay with good 

overall completion rates for most 
samples and loci.

Sample heterozygosity is 
the percentage of heterozygous 
genotypes in autosomal SNPs for a 
given sample. For instance, SNPs 
included in the Illumina HumanHap 
1M genome-wide genotyping assay 
in populations of European origin 
have a mean heterozygosity of 
about 27%. Although samples from 
different racial origins will have 
different heterozygosity values, 
extreme outlier values can reflect 
sample quality or assay performance 
problems, which is reflected by a 
correlation between high (or low) 
sample heterozygosity and reduced 
sample completion rates. Plotting 
heterozygosity for all samples and 
against sample completion can help 
identify low performing samples 
(see Figure 16.3B for an example).

Analyses of data from duplicate 
quality control samples include 
calculation of percent agreement 
of informative genotypes (i.e. 
concordance of non-missing 
genotype calls for DNA samples from 
the same individual) among pairs of 
samples. As with completion rates, 
genotype concordance should also 

be evaluated by plate and sample, 
since this can give clues as to the 
source of error (e.g. systematic 
errors often reflect sample handling 
or plate labelling and orientation 
problems, whereas random errors 
reflect assays’ reproducibility).

In very large, randomly mating 
populations with no selection, 
genotype frequencies are expected 
to be constant and ‘in equilibrium’ 
from generation to generation. 
This phenomenon is called Hardy–
Weinberg equilibrium (HWE), 
and the expected genotype 
frequencies under HWE are called 
Hardy–Weinberg proportions 
(HWP). It should be noted that 
although HWE and HWP are often 
used interchangeably, HWE is a 
multigenerational phenomenon 
and cannot be directly assessed in 
standard epidemiological studies. 
Under random mating and no 
selection, HWP implies HWE; 
however, under selection and 
non-random mating, genotype 
frequencies can be in HWP but 
not HWE. For a bi-allelic SNP with 
A-allele frequency p and a-allele 
frequency q = (1-p), the expected 
genotype proportions under HWP 

Figure 16.2. Examples of genotype clustering plots used to make genotype calls (polar cluster plots of the normalized intensity 
and allelic intensity ratio)
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are p2 for genotype AA, 2pq for Aa 
and q2 for aa. Extreme departures 
from HWP in the control population 
(departures in cases could be due to 
associations with disease) can reflect 
assay problems. Other reasons are 
also possible, such as non-random 
mating, selection, population 
admixture, and a genetically non-
homogeneous control population. 
Therefore, a very careful evaluation 
of quality control measures should 
be performed when significant 
departures from HWP (e.g. using 
an exact test (32), Pearson’s χ2 
test comparing observed and 
expected genotype frequencies) are 
observed for a specific SNP assay. 
Evaluation of HWP for all genotyped 
SNPs (i.e. comparison of expected 
and observed number of SNPs 
with significant HWP departures) 
can be helpful in determining if 
the observed departure reflects a 
problem with the controls, such as 
a problem during control selection, 

or the source population not being 
in HWE due to non-random mating. 
If there is no evidence of genotyping 
errors or control selection problems, 
the likely explanation for the 
observed departure is chance. In 
that case, methods of analyses for 
associations between the genotype 
and disease that assume HWP can 
be helpful in evaluating the impact of 
a chance departure on estimates of 
effect, such as the odds ratio (33).

In summary, a list of quality 
control checks before risk analysis 
of genotype data can include:

• Verifying duplicate samples and 
identifying unexpected duplicates 
using DNA profiling data

• Examining genotype clustering 
in scatter plots

• Identifying discrepancies 
between self-reported and 
genetically determined gender

• Completion rates by sample—
excluding data from DNA samples 
with low completion rates

• Genotype call rates—excluding 
data from assays with low call rates

• Examining sample 
heterozygosity and excluding outlier 
samples

• Genotype concordance 
among verified duplicate samples 
(excluding assays with low genotype 
concordance)

• Genotype concordance among 
samples not from the same sample 
(excluding assays with unexpectedly 
high genotype concordance)

• Testing for deviations of Hardy–
Weinberg proportions

Discovery of genetic 
susceptibility loci

Described here are statistical 
analyses of SNP data derived from 
candidate genes or regions, as well 
as genome-wide approaches in a 
case–control study (population, 
hospital-based or nested in a 
prospective cohort). Methods of 

Figure 16.3. Examples of quality control plots using data from 1M Illumina platform
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analyses for prospective cohort 
data (e.g. Cox proportional-hazards 
regression analyses or analyses 
of quantitative traits) will not be 
addressed. The analyses described 
below can be implemented 
using widely available statistical 
packages, such as the commercial 
packages Stata (http://www.
stata.com/), SAS (http://www.sas.
com/) or the software R Project of 
Statistical Computing (http://www.r-
project.org/). R is being used more 
frequently in analyses of genetic 
data, as many novel statistical 
methods are written and freely 
distributed as R add-on packages, 
providing a very flexible computing 
and graphical toolset.

Association between individual 
SNPs and disease risk: 
Genotype-based analyses

In genotype-based analyses, 
each individual SNP is evaluated 
in relation to disease risk by 
comparing the genotype distribution 
for cases and controls. The odds 
ratio (OR) approximates the ratio 
of disease incidence in exposed (or 
susceptible) and unexposed (or non-
susceptible) individuals, and is often 
used as a measure of association 
in case–control studies, as it does 
not require estimates of the actual 
incidence rates (34). Table 16.1 
illustrates a 2x3 table often used 
to display the number of cases and 
controls with the three possible 
genotypes in the population under 
study. This data can be used to 
estimate genotype ORs for subjects 
carrying the heterozygous and 
uncommon homozygous genotypes 
relative to subjects with the common 
homozygous genotype. Genotype-
based ORs can be estimated using 
logistic regression models (34) with 
disease status as the outcome and 
the SNP as the explanatory variable 
coded as either indicator or dummy 

for each genotype. Although these 
analyses yield unbiased and efficient 
estimates of the OR, the estimate of 
the intercept parameter is biased 
due to the retrospective nature of 
the case–control design (35). Data 
from studies with cases individually 
matched to controls by variables 
such as age, hospital or region 
should be analysed by conditional 
logistic regression models to ensure 
unbiased and efficient estimates of 
the OR (34). However, when data on 
genotype or exposure information 
is missing for either the case or the 
control in a matched pair, information 
from both subjects is lost resulting 
in decreased efficiency. Therefore, 
individually matched studies are 
often analysed as unmatched 
studies, adjusting for categories 
of the matching factors using 
indicator variables. This can result 
in incomplete adjustment for the 
matched design, but the impact is 
generally minimal and compensated 
for by the gain in efficiency.

Below is the form of a logistic 
model for genotype (G) variables 
(additional variables can be added 

to adjust for potential confounders) 
and disease (D) outcome:

Pr(D|G) = exp(β0+ βAa Aa + βaa aa)/
(1+exp(β0+ βAa Aa + βaa aa) 

or
logit (Pr(D|G)) = β0+ βAa Aa + βaa aa

where Aa, aa are 0,1 indicator 
variables for each genotype (AA is 
the reference).

The genotype-specific OR and 
95% confidence intervals (CI) can be 
estimated from the logistic regression 
coefficients and its standard error 
(SE) as:

OR(Aa) = exp(βAa); 
95% CI = exp(βAa ± 1.96 SE (βAa))
OR(aa) = exp(βaa); 
95% CI = exp(βaa ± 1.96 SE (βaa))
The null hypothesis (H0) for a 

test of SNP-disease association 
(sometimes called co-dominant test) 
can be written as:

H0: OR(Aa) = 1.0 and OR(aa) =  
1.0 with 2 degrees of freedom (df)
Hypothesis testing can be 

carried out by conventional score-
test, Wald test or likelihood ratio test. 

Table 16.1. Genotype frequencies and odds ratio (OR) estimates for genotype-based 
analyses in a case–control Study 
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The variance of the OR estimates for 
each genotype is inversely related to 
each of the cell counts (Table 16.1), 
which gives an intuitive sense of why 
the larger the cell counts are, the 
smaller the variance and the tighter 
the confidence intervals. This also 
shows that estimation of genotype-
specific ORs can be unreliable for 
uncommon SNPs with only a few 
subjects carrying the homozygous 
variant genotype (aa).

Genotype ORs can also be 
estimated under the assumption 
of specific models of genetic 
inheritance, such as the log-
additive (or multiplicative) model, 
which assumes a log linear trend 
for genotypes with an increasing 
number of variant alleles; the 
recessive model, which assumes the 
same risk for Aa and aa carriers; and 
the dominant model, which assumes 
the same risk for AA and Aa carriers. 
When using these approaches, 
keep in mind that these models of 
inheritance were originally developed 
for simple Mendelian diseases with 
near-complete penetrance, and thus 
might be over simplistic for complex 
diseases that are influenced by 
variants in multiple loci. Estimates 
of ORs and tests for genetic 
associations under different models 
for genetic risk can be obtained 
using logistic regression models with 
disease status as the outcome. The 
three possible genotypes for a given 
SNP are often coded as 0 for AA, 1 
for Aa, and 2 for aa. ORs for Aa and 
aa (relative to AA) can be estimated 
by including two dummy variables 
for Aa and aa in a logistic regression 
model of the form:

Logit (P(D|G)) = β0+ βG G
Log-additive trend model: G coded 
as 0 for AA, 1 for Aa, 2 for aa

exp(βG) = per allele OR
Dominant model: G coded as 0 for 
AA and 1 for (Aa+aa)

exp(βG) = OR(Aa/aa) vs AA
Recessive model: G coded as 0 for 

(AA+Aa) and 1 for aa
exp(βG) = OR(aa) vs AA/Aa

The H0 for a test of association under 
the models above can be written as:

H0: OR = exp(βG) = 1.0, 1 df.
The power to detect disease 

susceptibility loci is maximized 
when the assumed genetic model of 
inheritance is the true model. Thus, 
since the true mode of inheritance 
is often unknown, one might chose 
to test several models (with the 
caveat mentioned above that simple 
modes of inheritance might not hold 
for complex diseases). However, 
reporting the most significant finding 
after testing different models will 
result in an inflated type 1 error or 
an underestimate of the precision of 
the confidence intervals. Therefore, 
it is important to use appropriate 
statistical tests, such as permutation 
testing (36), to account for testing 
of multiple models. Multiple testing 
might result in no increases or even 
decreases in power, compared to 
testing only one pre-defined model 
with good performance under 
different alternative models, such 
as the 2 df genotype-based test or 
the trend test under the log-additive 
model (37). The advantage of the 
1 df trend test, assuming a log-
additive model, is that it uses one 
less df; it is generally more powerful 
than the 2 df genotype-based test, 
when the genetic effect is additive 
or log-additive; and it has good 
power to detect dominant effects. 
However, the trend test has poor 
power to detect recessive effects. 
Although the 2 df test for genotype 
effects has substantially better 
power to detect recessive effects, 
the actual power is often low. It 
should be noted that, even if the 
underlying model for the disease 
loci were recessive, the association 
with disease with a marker SNP 
(correlated with the causal SNP) 
would tend to look log-additive due 
to misclassification of subjects with 

respect to the true genotypes for the 
disease allele. Finally, a 2-sided test 
for trend is not affected by the sign 
of the LD between the minor allele 
of the marker SNPs and the causal 
SNP, whereas this can be affected 
for the other tests (38). No matter 
what model is used for testing for 
associations, genotype-specific 
estimates of the OR are often 
presented (unless the homozygous 
carriers are very uncommon), 
since they do not make any 
assumptions about the underlying 
mode of inheritance, and provide 
more information of the possible 
underlying models.

Association between individual 
SNPs and disease risk: Allele-
based analyses

In genotype-based analyses, the 
unit of observation is the subject or 
genotype, whereas in allele-based 
analyses, the unit of observation is 
the allele. Since each subject has 
two alleles at any autosomal locus, 
the total number of observations 
in allele-based analyses is twice 
the number of subjects. Table 16.2 
illustrates a 2x2 table for the allele 
frequencies for cases and controls, 
and the allele-based ORs and 
variance. Allele-based tests for 
association with disease assume 
independent distribution of alleles 
in the population, or HWP, for both 
cases and controls (39). HWP in 
controls implies HWP in cases 
only if there is no association with 
the disease (i.e. under the H0), or if 
the alleles have multiplicative (log-
additive) effects on disease risk. 
Therefore, if the control population 
is in HWP, the allele-based tests 
with variance estimates under 
Ho are valid, but estimation of 
confidence intervals will require 
the additional assumption that the 
alleles have multiplicative effects. It 
should be noted that under HWP, the 
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allele-based test is asymptotically 
equivalent to the trend test in 
genotype-based analyses (39). 
The interpretation of the allele-
based ORs is less intuitive than the 
genotype-based ORs, as individuals 
always carry a combination of two 
alleles, and thus might not have a 
useful risk interpretation. Because 
of the more restricted interpretation 
and set of assumptions of the allele-
based analyses, genotype-based 
analyses are often preferable (39).

Association between other types 
of variants and disease risk

The previous section described 
analyses of SNP variants, which 
have two alleles for any autosomal 
loci (males are hemizygotes, i.e. 
they have only one allele for SNPs 
in X-linked genes). Analyses of 
other types of genetic variation, 
for instance multiallele variants in 
variable tandem repeats (VTR) 
or copy number variations (CNV), 
follow similar principles and will not 
be discussed here. Because of the 
increased number of categories, 
model-based analyses of multiallelic 
loci or haplotypes can be very helpful 
in reducing the number of parameters 
to be estimated (40).

Haplotype analyses

Haplotype analyses exploit the 
LD, or correlation among genetic 
markers that are physically close, 
to improve the statistical efficiency 
and interpretability of studies of 
genetic associations with disease 
risk (41). These analyses can be 
aimed at comprehensively scanning 
a candidate region for disease 
susceptibility loci, or used to detect 
associations with markers that 
act in cis (i.e. when two or more 
variants affect disease only if they 
are on the same chromosome). 
A methodological challenge in 

studies of unrelated individuals is 
the estimation of phased haplotypes 
using unphased genotype data. The 
estimation of haplotype frequencies 
among cases and controls is done 
iteratively using methods such as 
the expectation-maximization (EM) 
algorithm, which can be implemented 
using software packages such as 
PROC HAPLOTYPE in the SAS 
Genetics Package, SNPHAP (http://
www-gene.cimr.cam.ac.uk/clayton/
software/snphap.txt) and tagSNP 
(http://www-hsc.usc.edu/~stram/
tagSNPs.html). There is a wide 
range of statistical methods to 
analyse haplotype associations with 
disease using regression models 
that allow for the adjustment of 
potential confounders (41,42). Single-
imputation or “plug-in” methods model 
estimates of individual haplotypes 
as if they were observed, whereas 
marginal regression methods take 
into account phase ambiguity in 
the estimation of measures of 
association between haplotypes 
and disease risk (41,43). The main 
advantage of plug-in methods 
is that they are computationally 
simple; they can be implemented 
using standard statistical software, 

which uses estimates of posterior 
haplotype probabilities. More 
advanced methods use EM type 
algorithms for simultaneous 
estimation of haplotype frequencies 
and haplotype-disease odds ratio 
parameters. These methods produce 
more accurate variance estimates 
and confidence intervals, since they 
properly account for the fact that 
haplotype phases are not directly 
observed. These methods require 
specialized software, such as the 
R function haplo.glm in the haplo.
stats package, Chaplin (http://www.
genetics.emory.edu/labs/epstein/
software/chaplin/) or HAPSTAT 
(ht tp: //www.bios.unc.edu/~ l in /
hapstat/).

Analysis of GWAS data

GWAS generate very large 
genotype data sets, often including 
billions of genotypes per study (e.g. 
1 million SNPs in 4000 subjects) 
that require the development of 
tools to accommodate the demands 
for data storage, management, 
quality control and risk analyses. 
These tools are likely to expand 
and improve to meet the needs of 

Table 16.2. Allele frequencies and odds ratio (OR) estimates for allele-based 
analysis in a case–control Study 
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increasingly large data sets. Two free 
and available tools that can meet the 
needs of data management, quality 
control, population stratification and 
association analyses of GWAS data 
are PLINK (http://pngu.mgh.harvard.
edu/~purcell/plink) (44) and the 
Genotype Library and Utilities (GLU) 
package (http://code.google.com/p/
glu-genetics).

Analyses of GWAS data usually 
include: quality control analysis of 
genotype data, as described above; 
analysis of population structure and 
decisions on the need and method 
for adjustment for population 
stratification; definition of the 
analytical data set after exclusions 
of data from samples or loci based 
on quality control analyses; and 
analysis of the association between 
genotypes and disease risk.

Analysis of population structure. 
Epidemiological studies often collect 
information on self-reported ethnicity 
and geographical location from 
cases and controls. Self-reported 
ethnicity, race and geographical 
location are surrogates for a 
complex mixture of unmeasured 
factors, which reflect variation 
in genetic background, culture, 
language, religion and health-
related behaviour (45). Because 
these unmeasured factors could 
introduce confounding bias when 
related to disease and exposures of 
interest, cases are usually matched 
to controls by race, ethnicity and 
geographical location to facilitate 
adjustment during the analyses. 
However, population substructure 
information (i.e. heterogeneous or 
admixed populations) not captured 
by self-reported ethnicity could 
lead to population stratification or 
confounding bias due to differences 
in allele frequency and disease risk 
across subpopulations (46–48). 
Population structure analyses use 
multilocus genetic data to assign 
individuals to populations of origin. 

This determines if there is population 
substructure not accounted 
for by variables measured in 
epidemiological studies. Population 
structure in GWAS can be analysed 
using a Bayesian clustering 
approach (49). This method uses 
information on linkage between a 
set of SNPs and Hardy–Weinberg 
disequilibrium to decompose a 
group of individuals (e.g. cases and 
controls) into genetically similar 
populations or clusters. Reference 
subjects of fixed populations (e.g. 
Asian, European and African from 
HapMap) can be used to guide 
the clustering process, to estimate 
the degree of admixture of each 
study sample. The SNPs for these 
analyses are selected from SNPs 
in the scan with high completion 
rates and low residual LD (e.g. r2 

< 0.1–0.01 for pairs of SNPs less 
than 200Kb apart). As an outcome 
of these analyses, each individual 
is assigned an admixture coefficient 
reflecting the estimated degree of 
membership with each population. 
The degree of membership in a 
structure analysis, assuming the use 
of the three HapMap populations 
as fixed reference populations, 
can be plotted in an equilateral 
triangle, also called an admixture 
plot. Membership estimates for 
each of the three populations are 
represented by the distance to each 
of the three corners of the triangle. 
The software STRUCTURE can be 
used to carry out these analyses 
and can be downloaded from http://
pritch.bsd.uchicago.edu/software.
html.

Genetically-determined race 
using admixture analyses can be 
compared to self-reported race and 
ethnicity to identify, and possibly 
exclude, outliers from subsequent 
risk analyses. Figure 16.4A shows 
an example of an admixture plot 
generated by STRUCTURE from 
a population self-identified as 

Caucasians. Red dots represent 
cases and green dots represent 
controls.

According to this plot, most 
subjects are estimated to be of more 
than 85% European descent (i.e. 
they are clustered in the European 
corner) with no evidence for 
substructure. The few subjects that 
are estimated to be of less than 85% 
European descent can be excluded 
from risk analyses to reduce 
population heterogeneity. However, 
if strong evidence for population 
structure were to be found, this 
method cannot be easily used to 
adjust for population structure in 
the risk analyses. EIGENSTRAT is 
a software that has been proposed 
to detect and adjust for population 
stratification in GWAS (50). This 
method uses principal component 
analyses (PCA) to reduce high-
dimensional genotyping data to lower 
dimensions that can be used in the 
analyses. These analyses produce 
a set of continuous variables, called 
principal components (PC), that 
capture the maximum of the genetic 
variation across individuals in a 
data set (Figure 16.4B). Each PC is 
defined as the top eigenvector of a 
covariance matrix between samples, 
thus the name EIGENSTRAT. 
Inclusion of related individuals in 
PCA analyses can create problems 
because of the high genetic 
correlation between relatives. 
Epidemiological studies of unrelated 
individuals can occasionally 
unknowingly enrol family members. 
Therefore, analyses to determine 
the degree of relatedness between 
individuals, such as Pedigree 
Relationship Statistical Test 
(PREST) analyses (http://galton.
uchicago.edu/~mcpeek/software/
prest/) (51), should be carried out 
before the PCA analysis to identify 
and exclude relatives. Significant PC 
from these analyses can be used to 
model ancestry differences between 
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in missing genotype data due to 
assay failures (e.g. 2% of samples 
with missing genotypes for a 
SNP with 98% completion rate), 
and increasing genetic coverage 
through imputation of SNPs that 
have not been genotyped. These 
methods use information from a 
reference panel, such as HapMap, 
to impute untyped SNPs. In addition 
to increasing power, SNP imputation 
can sometimes help localize signal 
for an association in a region, 
and facilitate the combination of 
data from studies using different 
genotyping chips or platforms, 
including overlapping, but not 
identical, sets of SNPs. Several 
methods and software are available 
to impute SNP data, such as IMPUTE 
(ht tp: //mathgen.stats.ox.ac.uk /
impute/impute.html) (53), MACH 
(http://www.sph.umich.edu/csg/
abecasis/MACH/download/) (54), 
and BimBam (http://stephenslab.
uc h i c ag o .e du /s o f t wa re .h t m l ) 
(55). In all of these methods, it 
is important to keep in mind that 
imputation accuracy will depend 

Figure 16.4A. Example of an triangular admixture plot generated by STRUCTURE 
for a population self-defined as Caucasians in the USA. The ancestry estimate is 
represented by the distance to each side of the triangle. Red dots represent cases and 
green dots represent controls. Reprinted by permission from Macmillan Publishers 
Ltd: Nature Genetics, copyright (2007).

Figure 16.4B. Example of principal component analysis (PCA) to identify principal components (PC) that account for population 
structure

cases and controls and thus adjust 
for population stratification. These 
analyses can be performed using the 
EIGENSOFT package that includes 
population genetics methods (52) 
and the EIGENSRTAT stratification 

correction method (http://genepath.
med.harvard.edu/~reich/Software.
htm) (50).

SNP imputation methods can 
increase the power of studies of 
genetic regions or GWAS by filling 
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on many factors: completeness 
and accuracy to the reference SNP 
panel; the quality of the data (e.g. 
large amounts of missing data will 
decrease accuracy); density of 
SNPs and LD pattern in the region 
(i.e. areas with low coverage or low 
LD are more difficult to impute); 
the similarity of the LD structure 
between the reference population 
(e.g. HapMap) and the population 
under study (e.g. admixed or unique 
populations, such as Amish, might 
be difficult to impute); and allele 
frequency (i.e. rare SNPs are 
harder to impute). Thus, findings 
from analyses of data, including 
imputed SNPs, should be carefully 
interpreted taking into account these 
limitations.

Definition of the analytical data 
set. Analysis of quality control of 
the genotype data and population 
structure can be used to identify 
and exclude samples and loci 
from analyses (e.g. samples with 
low completion rates, samples 
from subjects with discrepancies 
between the self-reported race and 
ethnicity and genetically determined 
race, or loci with low call rates across 
samples or with discordant results 
in duplicated QC samples). Other 
criteria based on epidemiological 
data can also be used to define the 
analytical data set; for instance, 
exclusion of subjects with missing 
data in key variables, such as age, 
or exclusion of rare subtypes of 
disease, such as rare histological 
types of cancer, to decrease disease 
heterogeneity.

Analysis of association between 
genotypes and disease risk. 
The primary aim of analysis of 
GWAS data is to discover markers 
for genetic susceptibility loci. 
Initial analyses usually evaluate 
associations between each individual 
SNP and disease risk and follow the 
principles previously described. In 
multistage designs, an important 

consideration in the analysis is the 
criteria used in the first stage to 
select SNPs to be genotyped in 
subsequent stages (10). A subset 
of the most significant P-values for 
SNP-disease associations is often 
used to select SNPs to be carried 
forward to subsequent stages. Other 
approaches, such as hierarchical 
regression models incorporating 
prior knowledge on the SNP selection 
procedures, can also be used (56). 
In general, joint analysis of data from 
different stages is more powerful 
than replication analysis (26).

Graphical representation of 
results can be very helpful for 
summarizing the large amounts 
of GWAS data. For instance, 
quantile-quantile plots (Q-Q plots) 
for observed P-values for a test of 
the null hypothesis of no association 
between each SNP and disease 
risk against expected P-values 
under the null hypothesis can be 
useful. These plots summarize both 
systematic bias and evidence for 
association. Most SNPs in a GWAS 
will not be associated with disease 
risk; therefore, associated P-values 
will appear in the diagonal of the 
Q-Q plot. Small departures at the 
extreme of the Q-Q plot suggest 
associations with disease. Large 
departures from the diagonal can 
reflect systematic biases leading to 
increases in false-positive findings 
(e.g. due to different DNA quality 
for cases and controls or population 
stratification). Figure 16.5 shows 
an example of a Q-Q plot from an 
analysis of a GWAS of hair colour, 
before (back dots) and after (red dots) 
adjusting for population stratification 
using PC (57). This example shows 
how adjustment by PC was able to 
reduce a large deviation from the 
diagonal that reflected bias due 
to population stratification. Plots 
of the –log10 (P-value) for all SNP 
associations with disease sorted by 
chromosomal location, can also be 

helpful in showing the distribution of 
P-values and identifying the location 
of associations with genomic 
significance.

Analysis of additional outcomes. 
Data from GWAS can also be used 
in ancillary analyses to evaluate 
genetic association with secondary 
outcomes measured in cases 
and controls (e.g. other diseases 
or exposures, such as height or 
smoking habits). The original case–
control sampling can affect measures 
of association with secondary 
outcomes (58,59); however, bias 
is only introduced when both the 
secondary outcome and the genetic 
loci under study are associated 
with the risk of the primary disease 
(58). Because most genetic loci in 
GWAS will not be associated with 
the primary disease, naïve analyses, 
ignoring the sampling design, will be 
valid for most loci.

Hierarchical-Bayesian methods

Prior information on the expected 
magnitude of genetic associations 
(e.g. the OR likely to vary from 
1.1–1.5) can be used in hierarchical 
models to provide more constrained 
estimates than the conventional, 
frequentist analytical approaches 
mentioned above (60,61). Other 
advantages of this approach are that 
it can be used to address problems 
of multiple comparisons and to 
incorporate biological information 
from pathway in the analyses.

Hierarchical models can also 
be used in selecting SNPs to be 
followed-up in multistage GWAS 
(60,61). These models can increase 
the power to detect susceptibility loci 
by incorporating known information 
about the SNPs into the selection, 
rather than just relying on measure 
of association in the data set. Wider 
use of hierarchical models has 
been limited by the unfamiliarity 
of epidemiologists with software 
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packages to fit these models. 
However, their use may increase 
now that SAS codes are available 
for analysing epidemiologic data 
with hierarchical models (60,61).

Evaluation of interactions

Complex diseases are likely to be 
caused by the interplay of multiple 
environmental exposures and 
genetic susceptibilities, hence the 
importance of evaluating G-G and 
G-E interactions (62). Specifically, 
evaluation of interactions can:

• Facilitate the identification of 
underlying risk factors for disease 
(e.g. improve power to detect a 
risk factor that varies according 
to the levels of another factor by 
stratifying on the modifier factor)
• Provide insights into the 
biological mechanisms of disease
• Provide public health benefits, 

such as improved risk prediction 
models and strategies for 
disease prevention (e.g. benefits 
of targeting subjects susceptible 
to specific exposures)
In practice, however, evaluation 

of interactions can be quite 
challenging because it requires 
very large studies with high-
quality exposure assessment and 
availability of biological specimens. 
Even in well-designed, well-
powered epidemiological studies, 
exploring interactions can be a 
computationally daunting task, 
particularly in studies of a very large 
number of genetic markers, such as 
GWAS, evaluated in hundreds of 
thousands of SNPs.

Definition of interaction

In epidemiology, an interaction 
between two factors is usually 

defined as the statistical evaluation 
of whether the association between 
one factor (e.g. cigarette smoking) 
and disease risk varies according 
to the value of the other factor (e.g. 
NAT2 genotype). A multiplicative 
interaction occurs if the association 
between the two factors is measured 
in a multiplicative scale by the relative 
risk (or odds ratio), and an additive 
interaction occurs if the association 
is measured in the additive scale 
by the risk difference (63). A 
multiplicative or additive interaction 
can also be described as a departure 
of the joint effect of the two factors 
from the expected effect under a 
multiplicative or additive model, 
respectively. Table 16.3 shows the 
definitions of measures of association 
between two dichotomous factors 
(an environmental exposure (E) 
and a genotype (G)) and disease 
risk, including joint effects and 
stratum-specific effects, as well 
as multiplicative and additive 
interactions (64,65). A set of three 
ORs characterize the E and G 
associations with disease: OR(G|E = 
0), OR(E|G = 0), and OR(G,E). These 
ORs can be re-parameterized as the 
stratum-specific odds ratios and the 
interaction ORs (i.e. OR(G|E = 0), 
OR(G|E = 1), and ORint; or OR(E|G 
= 0), OR(E|G = 1), and ORint). 
The relationship between these 
parameters is shown in Table 16.3.

The biological implications 
of these two statistical forms of 
interactions have long been debated 
in the epidemiologic literature. The 
main problem in making biological 
inferences based on epidemiological 
interactions is that the presence or 
absence of interaction depends on 
the scale in which the association 
with disease is measured. The 
correspondence between statistical 
and biological modes for interaction 
can be defined under simple 
biological models (62). For instance, 
under models such as the single-

Figure 16.5. Example of a Quartile-Quartile (Q-Q) plot of observed quartiles of 
log10(P-values) against the expected values under the null hypothesis. Black and 
red dots represent P values from analyses not adjusted and adjusted, respectively, 
for population stratification using principal components (57).
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hit or the sufficient-component-
cause, two factors with biologically 
independent actions on disease 
result in additive joint effects on 
the incident rate of the disease (3). 
However, relationships between 
biological actions and statistical 
models in complex diseases with 
multiple known and unknown causes 
cannot be easily made, except when 
the interaction is independent of the 
scale of measurement of association 
(66,67). These interactions occur 
when the effect of one or both 
factors exists only in the presence 
of the other, and can be referred 
to as non-removable interactions. 
Using notation from Table 16.3, 
‘non-removable interactions’ can be 
defined as:
• OR(G|E = 0) = 1 and OR(E|G = 0) = 1 
and OR(E,G)≠1
• OR(G|E = 0) = 1 and OR(E|G = 0)≠1 
and OR(E,G)≠OR(E|G = 0)
• OR(G|E = 0)≠1 and OR(E|G = 0) = 1 
and OR(E,G)≠OR(E|G = 0)

The interaction between the 
NAT2 genotype and smoking status 

in bladder cancer risk, where NAT2 
slow acetylators are at increased 
risk of bladder cancer compared 
to rapid acetylators only among 
cigarette smokers, is an example 
of non-removable interactions 
(68). Crossover, or qualitative 
interactions, where the effect of one 
factor is reversed by the presence 
of the other, is an extreme form of 
non-removable interactions (69). 
There are only a few established 
examples of such interactions in 
the epidemiologic literature; for 
instance, the interaction between 
BMI and menopausal status, where 
BMI reduces the risk of breast 
cancer among pre-menopausal 
women, while it increases the risk 
among post-menopausal women 
(70). It is unclear how often G-E 
or G-G interactions are going to 
show crossover effects; however, 
biologically, this extreme type of 
interaction is generally believed to 
be rare.

Statistical evaluation 
of interaction

Interactions between two factors. 
Table 16.3 shows different 
definitions of interactions between 
two risk factors (either a G-E or G-G 
interaction) and the null hypotheses 
that can be tested using data from 
case–control studies of genetic 
associations. Logistic regression 
models, including interaction terms 
between two or more factors, are 
commonly used to test multiplicative 
interactions:

logit (Pr(D|G, E)) 
= β0 + βG G + βE E + βGE G*E

OR(G|E = 0) = exp(βG)

OR(E|G = 0) = exp(βE)

OR(G,E) = exp(βG)*exp(βE)*exp(βGE)

OR(E|G = 1) = exp(βE + βGE)

OR(G|E = 1) = exp(βG + βGE)

Table 16.3. Odds ratio (OR) estimates for the effects of two binary factors, exposure (E) and genotype (G) 
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Re-parameterization to obtain 
stratum-specific ORs:

logit (Pr(D|G, E)) = β0 + βG|E = 0 G0 + 
βG|E = 1 G1 + βE E,

where G0 and G1 are two dummy 
variables defined as:

G0 = G if E = 0; 0 otherwise

G1 = G if E = 1; 0 otherwise

OR(G|E = 0) = exp(βG|E = 0) = exp(βG)

OR(G|E = 1) = exp(βG|E = 1)

Test for multiplicative interaction 

H0: βGE = 0 or exp(βGE) = ORint = 1

In addition to characterizing and 
testing differences in the relative risk 
of a factor across levels of another 
factor, interactions can also be used 
to increase the power to discover 
susceptibility loci. This is achieved 
by accounting for the underlying 
heterogeneity of the genetic risk due 
to G-G and G-E interactions (71,72). 
An omnibus test of the joint null 
hypothesis of no genetic main effects 
and interaction (e.g. Ho: βG = 0 and 
βGE = 0 in model above) can be used 
for this purpose. Thus, using notation 
from Table 16.3, one can specify 
three tests for detecting a genotype 
effect defined as:

• G-only test: H0: OR(G) = 1, 1 df
• Subgroup-specific test: 
H0: OR(G|E = 1) = 1, 1 df
• Omnibus test: H0: OR(G|E = 0) 
= 1 and OR(G|E = 1) = 1, 2 df
The power of the omnibus test 

to detect a genetic effect depends 
on the precision of both the main 
effect and the interaction parameter. 
Therefore, strategies that improve 
the efficiency of the interaction 
parameter can increase the power 
of the omnibus test. For instance, 
assuming independence between 

genetic factors, or between genetic 
and environmental factors, can lead 
to important gains in power; however, 
violation of these assumptions 
can lead to false-positive findings. 
Sampling strategies, such as 
oversampling for uncommon 
exposures, could interact with 
genetic markers and also increase 
the power of the omnibus test. The 
power advantage of the omnibus 
test, compared to testing for genetic 
main effects, is decreased by the 
presence of error in measuring the 
interacting exposure (2). The gain 
in power of the omnibus test with 
respect to the main effect test is 
robust to exposure measurement 
error. For poorly measured 
exposures, such as diet, there might 
not be much benefit in accounting 
for an underlying G-E interaction 
to detect genetic effects. The 
disadvantage of the omnibus test 
derived from the increase in degrees 
of freedom spent to account for the 
interaction and the performance 
of the test is that it can become 
poor when the degrees of freedom 
required to model the interaction 
becomes large. For example, when 
genetic variation is characterized 
by tag SNPs within a gene or 
region, the number of parameters 
in standard methods required 
to model interactions with other 
genes of exposures can become 
very large. Methods to address 
this limitation have been proposed 
(72). Another strategy is to perform 
multiple omnibus tests for a given 
genetic factor over a large number 
of other factors, such as potentially 
interacting SNPs or exposures. This 
approach can retain a gain in power, 
even after adjustment for multiple 
testing (15,72,73).

The odds ratio interaction 
parameter can be estimated using 
only data from cases, if the two 
interacting factors are independent 
in the source population of the 

cases and the disease is rare in the 
population (74). This can be easily 
shown if the ORint is expressed as:
ORint = OREG|cases/OREG|controls = 1.0,
where OREG|cases is the OR for the 
association between G and E 
among cases and OREG|controls is the 
OR for the association between G 
and E among controls.
If the G-E independence assumption 
holds (i.e. OREG|controls = 1.0), then 
ORint = OREG|cases

.
An important limitation of this 

approach is that it does not allow 
the estimation of other important 
parameters estimable in case–
control data, such as the stratum-
specific effects and joint effects of 
G and E. However, when data from 
a case–control study is available, 
assuming independence between 
interacting factors can be used to 
increase the power to detect an 
interaction, without the limitation 
of the number of parameters that 
can be estimated (75,76). As in the 
case-only approach, these methods 
are subject to severe biases leading 
to detection of spurious interactions 
or masking of true interactions if the 
assumptions are violated. Two-step 
procedures first test for the G-E 
independence among the controls, 
and, based on the acceptance or 
rejection of the Ho, a second test 
uses the case-only (77) or case–
control estimator. However, when 
the G-E association in the controls 
is modest or the sample size is 
small, the test in the first step might 
not have adequate power to reject 
Ho. Empirical Bayes methods have 
been proposed to address the trade-
offs between bias and efficiency due 
to the independence assumption. 
A comparison of the different 
approaches mentioned above has 
been previously described (2,78,79).

Restricting evaluation of 
interactions only to loci that have 
previously shown some evidence of 
an overall association with disease, 
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independent of the exposures of 
interest, substantially reduces the 
possible number of interactions to 
be evaluated. Of course, the cost 
of reducing complexity through this 
approach is that interactions that 
result in very weak or no overall 
associations with disease can easily 
be missed. Data mining techniques 
that attempt to address this problem 
are discussed in the next section. 
Variation in allele frequencies 
among interacting SNPs can have a 
strong impact on the power to detect 
their main effects, which can result 
in difficulties to replicate findings 
across populations (73). As larger 
numbers of epidemiological studies 
obtain comprehensive genetic 
data and the methods to evaluate 
interactions are further developed, 
the scientific community will be in 
a better position to characterize 
complex G-G interactions and 
evaluate their impact in risk 
characterization in the population.

Evaluation of high-order 
interactions

Many of the principles described 
above for studies on interactions 
between two factors, such as one 
G-E or G-G pair, also apply to 
studies of higher order interactions 
with three or more risk factors. 
One of the main difficulties in 
studying higher order interactions 
is the complexity of the models 
to capture relationships between 
many factors, since the number 
of possible combinations can be 
very large. Several data mining 
methods have been proposed to 
select models evaluating high order 
interactions in genetic studies. One 
method is the traditional stepwise 
regression approach, which uses 
statistical significance testing to 
decide whether higher or lower 
interaction terms should be kept 
in the model (80). Other methods 

include the Focused Interaction 
Testing Framework that uses a 
series of marginal and omnibus 
tests controlling for false discovery 
rates to detect susceptibly loci (81). 
Classification and Regression Tree 
(CART) is a data mining method that 
is increasingly being used to explore 
high order G-G and G-E interactions, 
and can be implemented using 
the Rpart package in R (82,83). 
This method uses a recursive-
partitioning algorithm that splits a 
collection of subjects into groups 
based on the factor that results in 
the highest discrimination in the 
disease risk. The procedure starts 
with all the subjects in the study 
(root node) and ends with a set of 
final groups of subjects (nodes) 
with homogeneous disease risk. 
The problem of overfitting the data 
is minimized by cross-validation 
resulting in “pruning” or “trimming” 
of the tree. The main limitation of 
CART is that the resulting model can 
be very sensitive to peculiarities of 
the data set being used to generate 
it, and thus might not be replicated 
in independent data sets. The 
output models from CART can be 
stabilized by bagging, a procedure 
that combines results from a group 
or ensemble of trees generated by 
repeated bootstrap sampling of 
the data (84). The Random Forest 
procedure minimizes the correlation 
between the ensemble of trees by 
choosing a random subset of factors 
or exposures for growing the trees 
in each bootstrap replication (85). 
A useful feature of these ensemble 
approaches is that they can generate 
measures of variable importance of 
the contribution of each factor on 
risk, and these measures can be 
used as an omnibus test statistic 
capturing both the main effect of a 
factor and the interactions with other 
factors. P-values associated with the 
measures of variable importance 
can be generated using permutation-

based resampling methods. The 
randomForest package available in 
R implements this procedure.

The main feature of logic 
regression (86), compared to logistic 
regression models and CART, is that 
it allows combinations of exposures 
using “and” and “or” operations 
rather than only “and.” For instance, 
in a study evaluating the interaction 
between SNPs in three loci, a logic 
regression permits models to have 
similar risk of disease for subjects 
with the variant allele in locus 1 
and variant alleles in either locus 2 
or 3. This specifying “or” operator 
allows the flexibility of specifying 
biologically plausible models in 
which one variant resulting in 
disruption of a protein product only 
requires a variant in a class of 
genetic loci to determine the risk 
of a disease. In this model, the risk 
of carrying multiple variants in this 
class of loci is no higher than just 
carrying one variant. The optimal 
logic-tree is determined by cross-
validation as in CART. Ensamples 
of logic trees can be generated by a 
Markov Chain Monte Carlo method 
that defines measure of variable 
importance (87). Logic regressions 
can be implemented using the 
LogicReg package in R.

The multifactorial dimension 
reduction (MDR) non-parametric 
method has also been proposed to 
evaluate high order G-G and G-E 
interactions (88). In contrast to tree-
based methods that hierarchically 
build complex models, MDR reduces 
the dimensionality of multilocus 
genotype data by creating binary 
variables defining high-risk and 
low-risk groups. This method 
then evaluates the ability of the 
derived binary exposure variables 
to predict disease risk using cross-
validation and permutation testing. 
The parsimony of this method is 
appealing; however, its performance 
depends on how well the simple 
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dichotomization of high-risk and 
low-risk captures the underlying 
joint effects of multiple susceptibility 
loci (88,89). Information software to 
perform MDR analyses (90) can be 
found at http://chgr.mc.vanderbilt.
e d u / r i t c h i e l a b / m e t h o d .
php?method=mdr, and an open-
source version can be downloaded 
from http://www.epistasis.org/
software.html.

The advantage of data mining 
methods is the flexibility to explore 
complex, high-order interactions 
without parametric constraints. 
However, this can also be a limitation 
since information on natural or 
highly plausible constraints is lost, 
which can result in decreased 
power and selection of implausible 
models of interaction. For instance, 
in studies of G-G interactions it 
might be reasonable to assume 
some sort of monotonic trend with 
increasing number of variant alleles 
on disease risk. In the case of SNP 
data, this would mean that the risk 
of carrying two variant alleles in a 
given locus is larger than carrying 
only one variant allele, irrespective 
of the genotype status of other 
loci. In logistic regression models, 
or other parametric models, this 
constrain is imposed by assuming 
additive or multiplicative (log-
additive) effects of the variant on 
disease risk. Recent discoveries 
from GWAS studies provide support 
for additive or multiplicative effects 
of genetic markers on disease risk, 
although these studies might have 
been underpowered to detect other 
models, such as recessive mode of 
inheritance. When evaluating G-E 
interactions, on the other hand, it 
might also be reasonable to assume 
some sort of dose–response 
relationship between a continuous 
exposure, such as smoking dose, 
BMI, or dietary intake of vegetables, 
and disease risk. This limitation 
can be addressed by the FlexTree 

method, which allows imposing 
parametric constraints in binary 
tree-based regression models (91). 
An R-package to implement this 
method can be requested at http://
www-stat.stanford.edu/~olshen/
flexTree/.

In summary, data mining 
methods are promising tools for 
exploring higher-order G-G and G-E 
interactions. Their ability to identify 
reproducible interactions, however, 
has not yet been demonstrated. 
Different methods have 
complementary strengths, and thus 
the best analytical strategy might be 
to use a combination of methods and 
follow-up findings in independent 
data sets for replication.

Analyses of complex 
pathways or networks

Candidate genes are often selected 
from among genes involved in 
biochemical pathways that are 
known or thought to be related to 
the risk factors (e.g. carcinogen 
metabolizing genes in lung 
cancer, and other smoking-related 
cancers). However, the information 
on how the different genes act in 
the biological pathway is typically 
ignored in conventional analyses 
of the data. As information on the 
biochemical pathways and networks 
increases, thanks to the use of 
profiling or “omics” technologies, 
such as metabolomics, proteomics 
and transcriptomics, the interest 
in incorporating biochemical 
information in pathway/network 
analyses of epidemiological studies 
will grow. Hierarchical-Bayesian 
methods (92) have been proposed 
to integrate pathway information 
into the analyses, although the 
quantification and integration of 
biologic information from different 
sources can be very challenging 
and potentially limit the usefulness 
of these approaches. The need for 

methodologies for pathway analyses 
of complex data from molecular 
epidemiology studies is increasing, 
and novel methodologies to meet 
these requirements will likely be 
developed in the near future.

Concluding remarks

In the coming years, important 
advances in the understanding of 
the genetic contribution to complex 
diseases are likely to be made, 
facilitated by further advances 
in genotyping and sequencing 
technology. The initial discovery 
of markers of susceptibility in 
epidemiological studies is just the 
beginning of new areas of research. 
Others include:

• Identification of causal genetic 
variants through fine mapping and 
functional laboratory studies;

• Evaluation of differences 
in genotype frequencies and 
associations with disease in ethnic 
groups;

• Evaluation of complex 
interactions and joint effects of 
multiple susceptibility loci;

• Evaluation of G-E interactions 
that might facilitate the discovery and 
characterization of environmental 
risk factors for disease;

• Evaluation of heterogeneity 
of genetic associations by disease 
subtypes;

• Evaluation of the impact of 
susceptibility loci on individual risk 
prediction, and identification of 
population groups with low and high 
risk of disease; and

• Evaluation of associations 
between susceptibility loci with 
additional outcomes, such as disease 
recurrence, survival and response to 
therapy.

Therefore, this promising field 
of research is likely to lead to better 
understanding of disease etiology, 
enhancements in risk prediction at 
the individual and population levels, 
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and improvements in treatment of 
disease.
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