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Summary

The rapidly growing number of 
molecular epidemiology studies 
is providing an enormous, often 
multidimensional, body of evidence 
on the association of various disease 
outcomes and biomarkers. The 
testing and validation of statistical 
hypotheses in genetic and molecular 
epidemiology presents a major 
challenge requiring methodological 
rigor and analytical power. The 
non-replication of many genetic 
and other biomarker association 
studies suggests that there may 
be an abundance of spurious 
findings in the field. This chapter 
will discuss ways of combining 
evidence from different sources 
using meta-analysis methods. 
Research synthesis not only aims 
at producing a summary effect 
estimate for a specific biomarker, 

but also offers a unique opportunity 
for a meticulous attempt to critically 
appraise a research field, identify 
substantial differences between or 
within studies, and detect sources 
of bias. Systematic reviews and 
meta-analyses in human genome 
epidemiology are specifically 
discussed, as they comprise the 
bulk of the available evidence in 
molecular epidemiology where 
these methods have been applied 
to date. Considered here are issues 
regarding validity and interpretation 
in genetic association studies, as 
well as strategies for developing 
and integrating evidence through 
international consortia. Finally, there 
is a brief look at how combining 
data through meta-analysis may be 
applied in other areas of molecular 
epidemiology.

Introduction

The number of molecular 
epidemiology studies is constantly 
growing, and this trend is 
expected to accelerate (1–4), 
especially with improvements 
in genotyping technology that 
allow massive testing of genetic 
variants in minimal time and at a 
decreasing cost on a genome-
wide association study platform 
(5–8). The number of potentially 
identifiable genetic markers, and 
the multitude of clinical outcomes 
to which these may be associated, 
make the testing and validation of 
statistical hypotheses in genetic 
and molecular epidemiology a task 
of unprecedented scale. Currently, 
more than 6000 original articles 
on human genome epidemiology 
findings are published annually, and 
the numbers are increasing (9,10). 
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Yet, there has been considerable 
concern about non-replication in 
gene-disease association studies 
(11–19) and other areas of molecular 
epidemiology. The combination 
of high-throughput genotyping, 
selective reporting, and exploratory 
statistical analyses in studies with 
limited sample sizes could potentially 
generate a scientific literature 
replete with spurious findings and 
lead to wasted resources, unless 
mechanisms are put in place to 
promptly evaluate evidence as 
it accumulates (20,21). Related 
concerns also apply to other fields of 
molecular epidemiology where large 
amounts of data are produced and 
it is important to achieve unbiased 
integration of the evidence.

Combining evidence from 
different sources is discussed here. 
The goal of research synthesis is to 
estimate and explain between-study 
heterogeneity, arrive at summary 
effects, and appraise the quality and 
reliability of the evidence procured by 
many studies on the same research 
question. Specifically, systematic 
reviews and meta-analyses in 
human genome epidemiology are 
discussed, as they comprise the 
bulk of the available evidence in 
molecular epidemiology where these 
methods have been applied. Issues 
regarding validity and interpretation 
in genetic association studies are 
considered, as well as strategies 
for developing and integrating high-
quality genomic evidence through 
international consortia. Finally, 
means for applying combined data 
through meta-analysis in other 
areas of molecular epidemiology are 
briefly examined.

Systematic reviews 
and meta-analyses: 
Definitions

Systematic reviews and meta-
analyses provide valuable tools 

for summarizing genetic effects 
and for identifying and explaining 
the underlying differences and 
observed discrepancies between 
studies. The term systematic 
review has been used as a contrast 
to traditional review. Systematic 
reviews use a predefined, structured 
approach to the collection and 
integration of available evidence, 
whereas traditional reviews offer a 
non-structured, non-standardized 
appraisal of the current literature 
distorted in varying degrees by 
the reviewer’s personal opinion 
and experience. The goal of 
this systematic approach is to 
guarantee the transparency and 
completeness of the review process. 
Meta-analyses use quantitative 
research synthesis methodology 
to derive summary estimates of 
the studied effects and to describe 
and explain the variability between 
and within studies (22). Systematic 
reviews and meta-analyses are 
well-established approaches to 
research synthesis in clinical trials, 
where their strengths and limitations 
have been widely assessed (23). 
Increasingly, they have also been 
applied to observational studies (24); 
meta-analyses of observational data 
are currently as common as those 
of clinical trials. Meta-analyses of 
gene–disease association studies 
have been accepted as a key 
method for establishing the genetic 
components of complex diseases 
(14,17). In 1998, The Human 
Genome Epidemiology Network 
(HuGENet) was launched as a 
global collaboration of individuals 
and organizations interested in 
accelerating the development of the 
knowledge base on genetic variation 
and common diseases. HuGENet 
has promoted the publication of 
HuGE reviews as a means of 
integrating evidence from human 
genome epidemiologic studies, that 
is, population-based studies of the 

impact of human genetic variation 
on health and disease (25). Initial 
efforts to apply quantitative methods 
were cautious, but there is now wide 
agreement that a meta-analysis 
of the evidence is almost always 
indicated and can provide more 
useful insights than a simple narrative 
review, provided the caveats of data 
synthesis are properly recognized. 
By the end of 2009, approximately 
1200 systematic reviews and meta-
analyses had been published on 
human genome epidemiology topics 
(ht tp: //www.cdc.gov/genomics/
hugenet/default.htm); most of 
them, however, tried to integrate 
information on only one or a few 
specific gene–disease associations 
at a time. The unknown extent of 
unpublished data and the likelihood 
of biases inherent in single studies 
threaten the credibility of genetic 
findings.

While most meta-analyses in 
the past have been retrospective 
exercises, there is an increasing 
interest for prospective collaborative 
analyses that use the same 
statistical methods as traditional 
retrospective meta-analyses. 
Collaborative meta-analyses may 
be undertaken by consortia or 
networks of investigators working 
on the same disease and/or set of 
research questions. Participating 
teams may combine already-
collected data, perform projects 
that use both retrospectively and 
prospectively collected information, 
or develop new collaborative 
projects on a completely 
prospective basis. With the advent 
of genome-wide association studies 
(GWAS), it is common practice to 
immediately seek replication of 
proposed discovered associations 
by other teams of investigators 
and publish the combined data in 
the same article. As a more recent 
alternative, meta-analyses have 
been implemented by combining 



  Unit 4 • Chapter 18. Combining molecular and genetic data from different sources 325

U
n

it
 4

C
h

a
p

te
r

  1
8

multiple data sets at the discovery 
stage under a consortium umbrella 
(26–28). This is a prospective 
use of meta-analysis methods. 
Furthermore, for many diseases and 
research questions, numerous such 
coalitions of investigators may exist; 
bringing their data together presents 
a new field of application for meta-
analysis methods.

Reviewing methods: 
Basic aspects

Recommendations have been 
developed regarding the conduct 
of systematic reviews and meta-
analyses. In 2006, HuGENet 
posted online the first edition of a 
handbook for conducting HuGE 
reviews (29,30). The reporting of 
these studies may need further 
improvement and standardization 
in the literature and should 
become more evidence-based 
with increasing experience. Such 
standards may follow the examples 
of similar initiatives for genetic 
association studies (e.g. STREGA 
(31)), as well as other designs and 
disciplines (e.g. CONSORT (32,33), 
MOOSE (34), PRISMA (35), STARD 
(36) and TREND (37)).

First, typical retrospective 
systematic reviews and meta-
analyses will be discussed. A 
typical systematic review includes 
the following stages: 1) formulation 
of the research question requiring 
appraisal of the available evidence, 
2) identification of the eligible studies 
and data extraction, 3) synthesis of 
the available evidence, 4) assessing 
and addressing potential biases, 
and 5) interpreting the results.

Research questions

Formulating the research question is 
fundamental for systematic reviews, 
as for any other research endeavour. 
Decisions must be made upfront 

about which gene and variants 
and which disease and outcomes 
to assess, as well as the eligibility 
criteria for the study designs and the 
study and population characteristics. 
Different eligibility criteria may lead 
to different data being synthesized 
and possibly different conclusions.

Data

Identifying the studies eligible for 
inclusion in a systematic review 
requires comprehensive, systematic 
literature searches. One must 
specify which eligible databases 
to search, and decide whether 
to consider data without regard 
for their prior publication in peer-
reviewed literature or the specific 
language(s) of publication (38). (For 
more details on issues pertaining to 
the eligibility and choice of sources 
of data, see (39).) Data extraction 
for published information is typically 
performed by two independent 
investigators with critical discussion 
of any discrepancies.

Data synthesis

Synthesizing the available evidence 
is best done in a quantitative way, 
producing summary estimates of the 
assessed effect and estimates of the 
between-study heterogeneity, as 
well as measures of the uncertainty 
thereof. A quantitative synthesis 
must be strongly encouraged, 
whenever feasible, as a means of 
producing a summary estimate, but 
most importantly for quantification 
of heterogeneity and identification of 
potential bias. Some key issues on 
methods for evaluation of between-
data set heterogeneity and for 
obtaining summary effects will be 
touched on briefly; a discussion on 
issues of multivariate models and 
adjustments will follow.

Heterogeneity

One should distinguish between 
clinical, biological and statistical 
heterogeneity. Statistical 
heterogeneity can be tested in any 
quantitative synthesis. Its presence 
may signal genuine biological 
and clinical heterogeneity or bias 
and errors. Often it is difficult to 
pinpoint what the exact reasons are 
for heterogeneity, and inferences 
should be cautious. Conversely, the 
absence of demonstrable statistical 
heterogeneity cannot be interpreted 
as proof of clinical and biological 
homogeneity.

Several heterogeneity tests and 
metrics are traditionally used in 
meta-analyses. (For more details and 
mathematical formulas, see (39).) 
The Q statistic provides a χ2-based 
test and is considered significant for 
P < 0.10, but it is still underpowered 
in most meta-analyses whenever 
there are few (roughly < 20) data 
sets combined (40).

The between-study variance, 
τ2, is not commonly used as a 
metric of heterogeneity, because 
its magnitude depends on the 
respective effect size metric (e.g. 
standardized mean difference, 
odds ratio, hazard ratio) and it is not 
comparable among meta-analyses 
using different effect metrics (41). 
However, a useful metric often 
neglected is the ratio of τ over the 
effect size. This ratio can provide a 
measure of the extent of variability 
(between-study standard deviation) 
as compared with the effect 
size. Given that many molecular 
epidemiology effects are small, the 
relative magnitude of the uncertainty 
versus the effect is a useful measure 
to consider. The most popular 
metric for conveying between-
study heterogeneity is nevertheless 
the I2. This metric has the major 
advantage that it is independent 
of the number of studies, and 
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thus can be standardized for use 
across different meta-analyses with 
different effect metrics and different 
numbers of studies (40). I2 is directly 
interpreted as the percentage of 
total variation across studies due to 
heterogeneity rather than chance, 
and it takes values between 0 and 
100% (42). Values over 50% indicate 
large heterogeneity. However, I2 also 
becomes uncertain when only a few 
studies are combined, as in the large 
majority of current meta-analyses 
(41,43), and therefore presentation 
of 95% confidence intervals should 
be considered routinely. This 
will help avoid spuriously strong 
inferences regarding heterogeneity 
or lack thereof.

Summary effects

To date, most meta-analyses have 
used either fixed or random effects 
methods for combining the data 
across eligible studies and data 
sets. Fixed effects models assume 
a common effect estimate for all 
studies and attribute all observed 
between-study variability to chance. 
Fixed effects models include 
inverse-variance weighting, and 
Mantel-Haenszel and Peto methods 
(44), and seem inappropriate in 
the presence of demonstrable or 
anticipated heterogeneity if used as 
the single methodology for the effect 
estimate calculation. In the absence 
of demonstrable heterogeneity, keep 
in mind that failure to reject the null 
hypothesis of homogeneity does not 
prove homogeneity. Random effects 
assume that there is a different 
underlying effect size for each study. 
There are many different proposed 
estimators for the between-
study variance; the most popular 
was suggested by DerSimonian 
and Laird (45). Random effects 
accommodate between-study 
heterogeneity and thus should 
be preferred in the presence or 

anticipation of heterogeneity. In the 
absence of any heterogeneity, fixed 
and random effects give similar 
results in any case.

Unfortunately, these issues 
are not yet well understood in the 
literature, as shown by empirical 
evaluations of candidate gene meta-
analyses and also meta-analyses 
of GWAS (46,47). Until recently, 
the choice of model for combining 
results from candidate gene studies 
lay on the straightforward concept 
of underlying heterogeneity. 
Nevertheless, in a GWAS setting, the 
presence of heterogeneity may not 
necessarily correspond to replication 
failure, but can signal difficulty in 
extending the probed association in 
diverse populations (48). In light of 
the generally limited power to detect 
moderate signals of effect at the 
discovery stage, the exclusive use of 
random effects models, and the more 
conservative confidence intervals 
produced when heterogeneity is 
present would result in forbidding 
possibly true signals to pass the 
genome-wide significance threshold 
and seek further replication however 
large the discovery data sets might 
be (power desert phenomenon) (49). 
Thus, it would be more appropriate to 
report the results from both models 
and make critical decisions on the 
basis of the stage at which meta-
analysis is performed.

Besides traditional fixed and 
random effects models, there is 
an increasing application of more 
fully Bayesian methods in meta-
analysis. Their discussion is beyond 
the scope of this chapter, but the 
interested reader is referred to a 
reference textbook (50) and the 
WinBUGS software manual (51).

Adjustments for other 
variables

Both adjusted and unadjusted effect 
estimates from single studies may 

be combined in meta-analyses. 
Questionnaire-based data are used 
to some extent to adjust effects 
estimates, including minimum 
information, such as age and sex, or 
more complex data, such as clinical 
features of the disease under study 
defining a potentially differentiating 
risk profile, where genetic or other 
molecular information could add 
additional information (52). This is 
more likely to be the case in large 
multicenter clinical trials or cohort 
studies, where a “nested” genetic 
association study is performed.

An issue with adjusted estimates 
is to ensure that similar or at least 
comparable adjustments have been 
performed across different studies. 
For retrospective efforts there is 
usually large variability in the types 
of adjustments. Moreover, even data 
on the same variables may have been 
collected across different studies 
using different questionnaires or 
procedures, and standardization 
may be difficult or even impossible. 
Finally, caution should be used when 
differentiating between variables 
that are independent predictors and 
others that may be surrogates of 
the genetic/molecular effect under 
study.

Assessing and addressing 
potential biases

There are often considerable and 
justifiable concerns regarding the 
quality and validity of molecular 
epidemiology studies. Critical 
appraisal of the studies included in 
a systematic review is of paramount 
importance for identifying the 
sources of bias inherent in each 
study. The types of biases include 
selection bias, information bias 
and confounding. Moreover, issues 
such as multiple testing should be 
considered, as well as concerns 
pertinent to specific types of 
biomarkers and studies (e.g. Hardy–
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Weinberg equilibrium violations 
for genetic association studies). 
Appraisal of potential biases is 
often hampered by poor reporting 
of the primary studies. Poor 
reporting of observational studies 
(53) is a common challenge in 
synthesizing evidence; statements 
about STrengthening the Reporting 
of OBservational studies in 
Epidemiology (STROBE) (54–56), 
and STrengthening the REporting 
of Genetic Associations (STREGA) 
(31), a similar effort in human 
genome epidemiology sponsored by 
the Human Genome Epidemiology 
Network (HuGENet), contribute to 
the transparency of reporting and 
the prompt identification of potential 
sources of study discrepancies and 
bias.

Detailed discussion of the specific 
biases that may be encountered in 
single studies is beyond the scope 
of this chapter. Some suggested 
references follow for the interested 
reader: selection bias (57–65); 
information bias involving biomarker 
measurement (e.g. genotyping), 
capture of environmental factors, 
or outcome assessment (8,66–69); 
and confounding which for genetic-
association studies in particular 
manifests primarily through 
population stratification (70–75). 
For genome-wide investigations and 
other massive testing approaches, 
even minor biases on any of these 
fronts may create some highly 
statistically significant spurious 
signals among the many thousands 
being probed. Therefore, careful 
selection of cases and controls, high 
standards of genotyping and quality 
control, and routine use of principal 
component analysis, genomic 
control, family-based design, 
or other techniques that more 
rigorously control for stratification, 
are indispensable.

Interpreting the results

Interpreting the results of a 
systematic review and meta-analysis 
on an assessed biomarker includes 
consideration of the quantity and 
quality of the evidence and rigorous 
scrutiny for publication bias and 
selective reporting in the field at 
large. In terms of the quantity of 
accumulated evidence, it is unclear 
how much genetic information would 
be sufficient to validate a genetic 
association. Empirical evidence has 
demonstrated that initial research 
publications often fail to predict 
the subsequently established 
genetic effects and may even show 
substantial discrepancies with later 
research (14,76).

Publication and selective 
reporting bias

The tendency to publish studies with 
positive rather than negative results 
(preferring studies with large effects 
or statistically significant results) 
introduces publication bias (13,34). 
Publication bias is very difficult to 
address in a retrospective collection 
of published evidence. Tests such 
as funnel plots are notoriously 
unreliable and subjective, and they 
should be abandoned. Even formal 
statistical testing for funnel plot 
asymmetry cannot fully discriminate 
between publication bias and 
other sources of bias or genuine 
heterogeneity. In addition, the tests 
are generally underpowered (77–79) 
and subject to extensive limitations 
that make them useful only in a few 
meta-analyses (80). If these tests 
are employed, a suitable modified 
regression test should be selected 
that has appropriate type 1 error 
properties (81). Such tests would be 
more correctly called tests for small 
study effects, since they essentially 
evaluate whether small studies differ 
in their results from larger ones.

Another common issue that 
could have an increasingly important 
impact in molecular epidemiology 
is selective reporting of specific 
analyses and outcomes among 
the many that may be performed, 
often in pursuit of nominal statistical 
significance (82–85). Ideally, 
straightforward a priori hypotheses 
should be explicitly reported, and 
study objectives and future analyses 
should be documented at their 
outset under a collaborative initiative 
(20,31). However, this may not be 
as transparent as it should be, and 
lack of transparency is compounded 
by the exploratory nature of much 
molecular epidemiological research. 
A meta-analysis diagnostic that can 
be used to evaluate the presence 
of “significance-chasing” biases, 
including publication and other 
selective reporting biases, has been 
proposed (86). The test is most 
useful for application across many 
meta-analyses (e.g. evaluation of 
large research fields), while it is 
expected to be underpowered for 
meta-analyses with few studies.

Causal inference

An observed association may 
be spurious or real. Spurious 
associations may be due to chance, 
bias within studies, or bias across 
studies (reporting biases affecting 
the whole research field of interest). 
For genetics of common diseases, 
real associations, not attributable 
to confounding, may be due to a 
direct causal variant or to a variant 
in linkage disequilibrium (LD) with a 
direct causal variant (13,87,88). They 
can be a source of the heterogeneity 
found between studies of gene-
disease associations.

Traditional epidemiological criteria 
for establishing causation include 
consistency, strength, biological 
plausibility (including analogy), dose–
response, temporality, experimental 
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support, and coherence (89,90). 
Nevertheless, rarely are all of these 
issues taken into account, and the 
last three are not really relevant to 
human genome epidemiology. In 
genetic epidemiology, replication 
as an expression of consistency 
has received the greatest attention 
(13,14,17). Strength would be 
difficult to assess, as genetic effects 
are generally modest with odds 
ratios below two or even below 
1.5 (91). Furthermore, the size of 
an effect is a characteristic of the 
genetic association being studied 
rather than a biologically consistent 
feature, as it depends on the relative 
prevalence of other causes (92).

In theory, biological plausibility 
should be an important criterion 
for causation, bringing under the 
same denominator epidemiologic 
evidence and diverse forms of 
biological evidence (93–99). 
Biological data on gene function, 
and on the tissue(s) in which a gene 
is expressed, could contribute to 
making a causal inference about 
gene-disease associations. On 
the other hand, there is concern 
that a biological argument can 
be constructed for virtually any 
associated allele because of 
the “...relative paucity of current 
understanding of the mechanisms 
of action of complex trait loci.” (11). 
Thus, some form of mechanistic 
evidence might be identified and 
(mis)used selectively to reinforce 
an assertion of causality. Empirical 
evidence suggests very low 
agreement between biological 
and epidemiological evidence 
for common genetic variants and 
complex diseases (100). While 
candidate gene studies are often 
based on some biological knowledge 
of the candidate gene, genome-
wide linkage and association 
studies initially identify variants 
without consideration of their 
biological function. Yet, the absence 

of mechanistic evidence or evidence 
of high quality would not exclude 
inferring that an association is causal 
if other guidelines for causation 
are satisfied. As knowledge of the 
genome is incomplete, biological 
plausibility may not always be 
apparent (97,101-103).

Criteria for assessing 
cumulative evidence

For genetic associations, a 
consensus approach recently 
developed interim guidelines 
for grading of the cumulative 
epidemiological evidence (104). The 
grading considers three aspects 
(known as the Venice criteria): 
amount of evidence, consistency of 
replication, and protection from bias 
(Table 18.1, Figure 18.1). Particularly 
for retrospective meta-analyses, 
protection from bias cannot be 
assumed if: the effect size is small 
(odds ratio deviating less than 
1.15 from the null), the summary 
results lose their formal statistical 
significance when the first study 

that proposed the association is 
removed or when Hardy–Weinberg 
equilibrium-violating studies are 
removed, there are strong signals 
of small-study effects (e.g. a 
significant modified regression 
test) or significance-chasing bias 
(as discussed above), or if there 
are other demonstrable major 
biases in any aspect. Additional, 
yet weaker, signals for potential 
bias would be unclear/misclassified 
phenotypes with possible differential 
misclassification against genotyping 
or vice versa, major concerns for 
population stratification, or any 
other reason (case-by-case basis) 
that would jeopardise the validity 
of the proposed association. For 
prospective consortium-endorsed 
meta-analyses, all of the above 
parameters must be taken into 
consideration with the exception 
of small effect size, small study 
effects, and significance-chasing 
bias based on the basic assumption 
that selective reporting bias is not 
operating in the field.

Figure 18.1. Categories for the credibility of cumulative epidemiological evidence. 
The three letters correspond (in order) to amount of evidence, replication and 
protection from bias. Evidence is categorized as strong when there is A for all three 
items, and is categorized as weak when there is a C for any of the three items. All 
other combinations are categorized as moderate

Source: (104). Reproduced with permission of Oxford University Press.
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Table 18.1. Considerations for epidemiologic credibility in the assessment of cumulative evidence on genetic associations

Criteria Categories Proposed operationalization

Amount of evidence A  Large-scale evidence

B  Moderate amount of evidence

C  Little evidence

Thresholds may be defined based on sample size, 
power, or false discovery rate considerations. The 
frequency of the genetic variant of interest should be 
accounted for. As a simple rule, it is suggested that 
category A contains over 1000 subjects (total number 
of cases and controls assuming 1:1 ratio) evaluated 
in the least common genetic group of interest, B 
corresponds to 100–1000 subjects evaluated in this 
group, and C corresponds to <100 subjects evaluated 
in this group.*

Replication A  Extensive replication including at least one well-
conducted meta-analysis with little between-study 
inconsistency

B  Well-conducted meta-analysis with some metho-
dological limitations or moderate between-study 
inconsistency

C  No association, no independent replication, failed 
replication, scattered studies, flawed meta-analysis, or 
large inconsistency

Between-study inconsistency entails statistical 
considerations (e.g. defined by metrics such as I2, 
where values of ≥50% are considered large, and values 
of 25–50% are considered moderate inconsistency) 
and also epidemiological considerations for the 
similarity/standardization, or at least harmonization, of 
phenotyping, genotyping, and analytical models across 
studies.

Protection from bias A  Bias, if at all present, could affect the magnitude but 
probably not the presence of the association

B  No obvious bias that may affect the presence of the 
association, but there is considerable missing informa-
tion on the generation of evidence

C  Considerable potential for or demonstrable bias that 
can affect even the presence or not of the association

A prerequisite for A, is that the bias due to phenotype 
measurement, genotype measurement, confounding 
(population stratification), and selective reporting 
(for meta-analyses) can be appraised as not being 
high, plus there is no other demonstrable bias in any 
other aspect of the design, analysis, or accumulation 
of the evidence that could invalidate the presence of 
the proposed association. In category B, although no 
strong biases are visible, there is no such assurance 
that major sources of bias have been minimized 
or accounted for, as information is missing on how 
phenotyping, genotyping and confounding have been 
handled. Given that occult bias can never be ruled out 
completely, note that even in category A the qualifier 
“probably” is used.

* For example, if the association pertains to the presence of homozygosity for a common variant and if the frequency of homozygosity is 3%, then category A amount of evidence 
requires over 30 000 subjects, and category B between 3000 and 30 000.
Adapted from (104)

Networks in human genome 
epidemiology

Although meta-analyses of 
published data provide a 
mechanism for combining evidence 
from different sources, they cannot 
overcome methodological flaws 
originating from the primary studies. 
An alternative approach that may 
also help improve the quality of the 
primary data is a meta-analysis of 
individual participant data (MIPD), 
which involves collecting and 
analysing detailed data on individual 
subjects and, ideally, prospective 

meta-analysis of data collected from 
consortia of investigators (105).

Meta-analysis of individual 
participant data (MIPD)

The MIPD may offer some 
advantages over the meta-analysis 
of published data. In theory these 
advantages include: standardization 
of definitions of cases, molecular 
markers and other variables of 
interest, enhanced ability to contact 
meta-analysis of time-to-event 
outcomes, testing of the assumptions 
of time-to-event models, better 

control of confounding, standardized 
multivariable and adjusted 
analyses, consistent treatment of 
subpopulations, and assessment 
of sampling bias. Not every one of 
these advantages may be relevant 
in all MIPD applications and some 
may be impossible. For example, 
when studies have already been 
established with specific case 
definitions, it may not be possible 
to go back and achieve perfect 
standardization of definitions across 
all studies, or some adjusting 
variables may have been collected 
only in some of the studies but not 
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others. Furthermore, an MIPD is 
far more labour-intensive and time-
consuming than a meta-analysis of 
published data and may remain a 
retrospective effort (106).

Consortia and prospective 
collaborative efforts

An increasing number of consortia of 
investigators have been operating in 
molecular epidemiology. The value 
of such collaborative multicentre 
studies has long been recognized 
by epidemiologists for tackling 
important questions that are beyond 
the scope of a study at a single 
institution (107). Collaboration is of 
even greater significance in human 
genome epidemiology, due to 
the intrinsic characteristics of the 
field that can be better addressed 
through collaborative efforts (108): 
small sample sizes, weak expected 
genetic effects, genotype frequency 
variation in populations of different 
ethnic origin, and publication/
selective reporting bias. Networks of 
scientists from multiple institutions 
can cooperate in research efforts 
involving, but not limited to, the 
conduct, analysis and synthesis of 
information from multiple population 
studies (3,20).

HuGENet has launched a global 
network of consortia working on 
human genome epidemiology, aimed 
at coordinating different research 
teams working on the same theme 
(109,110). The goal of the HuGENet 
Network of Investigator Networks 
is to create a resource to share 
information, offer methodological 
support, generate inclusive 
synopses of studies conducted in 
specific fields, and to facilitate rapid 
confirmation of findings. As of this 
writing, consortia in the Network 
of Investigator Networks comprise 
between five and more than 1000 
teams, with accumulated sample 
sizes ranging from 3000 to over a 

half-million participants. Many other 
new consortia are continuously 
being developed. In particular for 
GWAS, it has become standard 
practice to try to replicate the 
derived associations across several 
other replicating teams as part of 
the first article to be published on 
a new proposed association (48). 
The replicating teams may already 
belong to an established consortium. 
Alternatively, their assembly may 
occur on an opportunity basis, but this 
may also form a nucleus for further 
collaborations. Besides choosing 
research targets based on agnostic 
massive testing approaches, 
other targets selected for study by 
consortia may be chosen based 
on a priori biological plausibility, 
supporting linkage evidence from 
genome-wide data, a perception of 
potentially high population risk (e.g. a 
common polymorphism), the number 
and consistency of published reports 
for a specific molecular marker, or 
a high-profile controversy in the 
literature (111,112). Also, consortia 
are increasingly being used to 
replicate associations derived 
from genome-wide association 
approaches independently from 
the first article that describes and 
partially replicates the associations 
(113).

Standardization issues

Members of consortia may share 
both prospective and retrospective 
features in the study design and 
accumulation of information. 
Standardization is one of the more 
significant benefits of consortia 
initiatives. Coordinating centres 
receive the incoming data, including 
both genotype and phenotype 
information, and guarantee 
adequate quality and transparency. 
Data standardization is best 
implemented at the beginning of a 
de novo collaborative study, while 

developing tools for data collection 
and definition of data items, and 
should achieve agreement on 
common data definitions to which 
all data layers must conform (114). 
Nevertheless, it may be difficult to 
achieve complete standardization 
if some data are already available. 
In this situation, consortia should 
still aim to maximize harmonization 
of data obtained from different 
sources.

Standardization or harmonization 
is crucial in order for a network 
to perform better than single 
studies. These processes increase 
the credibility of the derived 
evidence even when non-genetic 
measurements are difficult to 
standardise across teams. One 
criterion for the influence and 
success of a network may be its ability 
to adopt standards for phenotypes 
and covariates to establish the 
use of consistent definitions in 
subsequent studies. Standardization 
of genotypes, on the other hand, is 
usually achieved through central 
genotyping of all samples (115). 
Quality control of genotype results 
is typically straightforward, but 
additional checks are required in 
a multiteam collaboration. In the 
absence of central quality control, 
consortia may depend on post-hoc 
analyses, such as deviation from 
Hardy–Weinberg equilibrium (116) 
in the controls, to identify possible 
genotyping (or other) errors. Although 
large between-study heterogeneity 
in the final analyses may reflect 
measurement errors, these methods 
may still miss sizeable errors and 
their sensitivity and specificity are 
uncertain.

Meta-analyses of genome-
wide association studies

As mentioned above, for many 
diseases several GWAS are 
performed and each may be 
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accompanied by replication efforts 
by several other teams (117,118). 
These studies may have used 
different platforms, but it is still 
possible to combine data for markers 
that are in perfect or almost-perfect 
LD with a correlation coefficient 
r2 approximating 1.00 (119,120). 
Examples of meta-analyses of 
several GWAS are available in the 
early literature (121,122). Meta-
analysis is currently considered 
standard practice for a GWAS 
setting (123–126) (Figure 18.2). 
Apart from using meta-analysis 
in a sequential, multiple-stage 
manner to continuously update, 
refute or replicate association 
signals, it can also be implemented 
early on at the discovery stage 
by combining multiple data sets 
under a consortium umbrella, thus 
augmenting power to detect signals 
for subsequent replication (15,127).

Heterogeneity in the genome-
wide association setting, where 
massive testing of agnostic (rather 
than candidate) markers takes 
place, has some special features. As 
previously mentioned, besides bias 
and errors, the possibility of genuine 
heterogeneity must be seriously 
considered, due to differential LD 
for the culprit gene variant and 
heterogeneity due to association 
with correlated phenotypes across 
the populations enrolled in different 
studies being combined (47).

Other applications 
of meta-analysis

Many fields of molecular 
epidemiology are characterized by 
large data sets that can be generated 
easily, due to the availability of 
sophisticated, low-cost technology. 
These data sets, derived from 
linkage scans, microarray-based 
gene expression profiling, mass 
spectra-based proteomics and many 
other massive testing platforms, 

usually capture information on 
hundreds of thousands of biological 
variables from a sometimes limited 
number of samples. To maximize 
the power to detect genuine signals 
requires combining data sets 
across different studies. However, 
combining data poses a further 
challenge, since the available data 
sets may have been obtained with 
different experimental conditions, 
platforms, analysis techniques or 
even sample types (e.g. different 

tissue, treatment conditions, or 
species). Meta-analysis could 
provide an appropriate framework 
for large data set synthesis. A few of 
these meta-analysis applications are 
mentioned here, but these are only 
indicative and the list is continuously 
expanding. Also discussed briefly 
are some issues that arise in the 
combination of information on other 
non-genetic biomarkers.

Figure 18.2. Typical work flow for conducting a meta-analysis of GWA data sets

Figure compiled from (104).
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Meta-analysis of linkage 
signals in genome scans

Many teams of investigators 
have performed genome scans 
evaluating linkage between specific 
chromosomal loci and specific 
complex diseases (128–130). 
However, low linkage signals 
(131,132) and discrepancies in the 
findings of different teams often 
make the available evidence on a 
quantitative trait extremely difficult 
to summarize. Genome scan meta-
analysis (GSMA) has been used 
as a method for summation of data 
from diverse genome scans through 
meta-analysis (131), and for formally 
testing whether the heterogeneity 
for specific chromosomal loci across 
genome scans (heterogeneity-
based genome search meta-
analysis (HEGESMA)) is large or 
small (133–134).

Microarrays and other 
multidimensional biology 
platforms

For various diseases, microarray 
platforms allow assessing 
differential expression of a large 
subset of genes. Research groups 
have approached the issue of 
synthesis across different platforms 
from different methodological 
perspectives (135–139). Significant 
computational power, multiple 
testing assumptions, and appropriate 
incorporation of heterogeneity 
estimates are only a few of the more 
challenging methodological issues. 
Given the small sample sizes 
of most microarray experiments 
and the complexity of the signals 
from single biological factors, 

meta-analysis may prove to be a 
very useful approach. Some non-
parametric meta-analysis methods 
may allow synthesizing data from 
diverse platforms and different types 
of multidimensional data (140–142).

Meta-analyses of non-genetic 
prognostic markers

Besides the very large literature 
on genetic markers, there is also a 
burgeoning literature on non-genetic 
biomarkers. Single prognostic 
molecular markers, or combinations 
thereof, are still often considered in 
prognostic and predictive analyses 
for various clinical outcomes, 
such as mortality or other disease 
outcomes. Estrogen and other 
hormones, nutritional and related 
biochemical markers, and lipid or 
DNA adduct biomarkers are some 
of the commonly encountered 
examples in the literature (143–146).

Pertinent research synthesis 
methodology includes meta-
analysis models as described above 
for genetic risk factors. Some of 
these predictors may be continuous 
variables, but the meta-analysis 
methods for combining information 
are very similar to the methods for 
combining data from binary markers 
(for details see (44)). Adjustment for 
covariates is more common in this 
literature, and may present problems 
related to the standardization of 
multivariate models and adjustments 
across the studies to be combined. 
Lack of standardization of biomarker 
measurements tends to be a more 
prominent problem than for genetic 
biomarkers, and error rates are 
expected to be larger and more 
variable across studies. Otherwise, 

heterogeneity testing and bias 
detection follow largely the same 
principles as described above for 
genetic markers.

Empirical evidence has shown 
that readily accessible published 
data can be misleading, producing 
a view of the literature that is 
distorted in a positive direction. An 
empirical evaluation has shown 
that almost all published prognostic 
marker studies on cancer report 
statistically significant results (147). 
Another empirical evaluation has 
shown that after standardising 
the definitions for the prognostic 
marker and the outcome under 
study, and, more importantly, after 
retrieving additional information 
that is unpublished or mentioned in 
only a cursory fashion in published 
articles, the statistical significance 
and predictive effect of a postulated 
prognostic/predictive factor may be 
abrogated (148).

In all, readily available information 
on prognostic factors may be the tip 
of the iceberg, and thus superficial 
perusal of the literature can lead to 
erroneous conclusions. This is yet 
another instance where selective 
reporting may spuriously inflate the 
importance of postulated prognostic 
factors unless retrieval of information 
and standardization of definitions in 
the literature are optimized. Meta-
analyses of prognostic factors 
are likely to benefit from efforts to 
improve the conduct and reporting 
of primary studies, as exemplified by 
the REporting recommendations for 
tumour MARKer prognostic studies 
(REMARK) statement for tumour 
prognostic markers (149).
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