Appendix 2 Activity profiles for genetic and related tests

Appendix 2 Activity profiles for genetic and related tests

Methods

and

The x-axis of the activity profile represents the bioassays in phylogenetic sequence by endpoint, and the values on the y-axis represent the logarithmically transformed lowest effective doses (LED) and highest ineffective doses (HID) tested. The term 'dose', as used in this report, does not take into consideration length of treatment or exposure and may therefore be considered synonymous with concentration. In practice, the concentrations used in all the in-vitro tests were converted to $\mu g/ml$, and those for in-vivo tests were expressed as mg/kg bw. Because dose units are plotted on a log scale, differences in molecular weights of compounds do not, in most cases, greatly influence comparisons of their activity profiles. Conventions for dose conversions are given below.

Profile-line height (the magnitude of each bar) is a function of the LED or HID, which is associated with the characteristics of each individual test system — such as population size, cell-cycle kinetics and metabolic competence. Thus, the detection limit of each test system is different, and, across a given activity profile, responses will vary substantially. No attempt is made to adjust or relate responses in one test system to those of another.

Line heights are derived as follows: for negative test results, the highest dose tested without appreciable toxicity is defined as the HID. If there was evidence of extreme toxicity, the next highest dose is used. A single dose tested with a negative result is considered to be equivalent to the HID. Similarly, for positive results, the LED is recorded. If the original data were analysed statistically by the author, the dose recorded is that at which the response was significant (p < 0.05). If the available data were not analysed statistically, the dose required to produce an effect is estimated as follows: when a dose-related positive response is observed with two or more doses, the lower of the doses is taken as the LED; a single dose resulting in a positive response is considered to be equivalent to the LED.

In order to accommodate both the wide range of doses encountered and positive and negative responses on a continuous scale, doses are transformed logarithmically, so that effective (LED) and ineffective (HID) doses are represented by positive and negative numbers, respectively. The response, or logarithmic dose unit (LDU_{ij}) , for a given test system *i* and chemical *j* is represented by the expressions

$$LDU_{ii} = -\log_{10}(\text{dose})$$
, for HID values; $LDU \leq 0$

(1)

$$LDU_{ii} = -\log_{10}(dose \times 10^{-5})$$
, for LED values; LDU ≥ 0

These simple relationships define a dose range of 0 to -5 logarithmic units for ineffective doses (1–100 000 μ g/ml or mg/kg bw) and 0 to +8 logarithmic units for effective doses (100 000–0.001 μ g/ml or mg/kg bw). A scale illustrating the LDU values is shown in Figure 1. Negative responses at doses less than 1 μ g/ml (mg/kg bw) are set equal to 1. Effectively, an LED value \geq 100 000 or an HID value \leq 1 produces an LDU = 0; no quantitative information is gained from such extreme values. The dotted lines at the levels of log dose units 1 and -1 define a 'zone of uncertainty' in which positive results are reported at such high doses (between 10 000 and 100 000 μ g/ml or mg/kg bw) as to call into question the adequacy of the test.

Fig. 1. Scale of log dose units used on the y-axis of activity profiles

Positive			Log dose	
$(\mu g/ml \text{ or } mg/l)$	(g bw)		units	
0.001			8	•
0.01	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	7	
0.1	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	6	<u> </u>
1.0	•••••	• • • • • • • • • • • • • • • •	5	
10	•••••	• • • • • • • • • • • • • • • •	4	
100	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	3	}
1000	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	2	┣
10 000	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	1	
100 000		• • • • • • • • • • • • • • •	0	
	10		-1	
	100	••••	-2	
	1000	• • • • • • • • • • • • • • •	-3	
	10 000	• • • • • • • • • • • • • •	-4	
	100 000	•••••	-5	L
	Negative			

 $(\mu g/ml \text{ or } mg/kg)$

LED and HID are expressed as $\mu g/ml$ or mg/kg bw.

In practice, an activity profile is computer generated. A data entry programme is used to store abstracted data from published reports. A sequential file (in ASCII) is created for each compound, and a record within that file consists of the name and Chemical Abstracts Service number of the compound, a three-letter code for the test system (see below), the qualitative test result (with and without an exogenous metabolic system), dose (LED or HID), citation number and additional source information. An abbreviated citation for each publication is stored in a segment of a record accessing both the test data file and the citation file. During processing of the data file, an average of the logarithmic values of the data

APPENDIX 2

subset is calculated, and the length of the profile line represents this average value. All dose values are plotted for each profile line, regardless of whether results are positive or negative. Results obtained in the absence of an exogenous metabolic system are indicated by a bar (-), and results obtained in the presence of an exogenous metabolic system are indicated by an upward-directed arrow (\uparrow) . When all results for a given assay are either positive or negative, the mean of the LDU values is plotted as a solid line; when conflicting data are reported for the same assay (i.e., both positive and negative results), the majority data are shown by a solid line and the minority data by a dashed line (drawn to the extreme conflicting response). In the few cases in which the numbers of positive and negative results are equal, the solid line is drawn in the positive direction and the maximal negative response is indicated with a dashed line.

Profile lines are identified by three-letter code words representing the commonly used tests. Code words for most of the test systems in current use in genetic toxicology were defined for the US Environmental Protection Agency's GENE-TOX Program (Waters, 1979; Waters & Auletta, 1981). For this publication, codes were redefined in a manner that should facilitate inclusion of additional tests in the future. If a test system is not defined precisely, a general code is used that best defines the category of the test. Naming conventions are described below.

Dose conversions for activity profiles

Doses are converted to $\mu g/ml$ for in-vitro tests and to mg/kg by per day for in-vivo experiments.

- 1. In-vitro test systems
 - (a) Weight/volume converts directly to $\mu g/ml$.
 - (b) Molar (M) concentration × molecular weight = $mg/ml = 10^3 \ \mu g/ml$; mM concentration × molecular weight = $\mu g/ml$.
 - (c) Soluble solids expressed as % concentration are assumed to be in units of mass per volume (i.e., $1\% = 0.01 \text{ g/ml} = 10\ 000\ \mu\text{g/ml}$; also, $1\ \text{ppm} = 1\ \mu\text{g/ml}$).
 - (d) Liquids and gases expressed as % concentration are assumed to be given in units of volume per volume. Liquids are converted to weight per volume using the density (D) of the solution (D = g/ml). If the bulk of the solution is water, then D = 1.0 g/ml. Gases are converted from volume to mass using the ideal gas law, PV = nRT. For exposure at 20-37°C at standard atmospheric pressure, 1% (v/v) = 0.4 µg/ml× molecular weight of the gas. Also, 1 ppm (v/v) = 4×10⁻⁵ µg/ml× molecular weight.
 - (e) For microbial plate tests, concentrations reported as weight/plate are divided by top agar volume (if volume is not given, a 2-ml top agar is assumed). For spot tests, in which concentrations are reported as weight or weight/disc, a 1-ml volume is used as a rough approximation.

- (f) Conversion of asbestos concentrations given in $\mu g/cm^2$ are based on the area (A) of the dish and the volume of medium per dish; i.e., for a 100-mm dish: $A = \pi R^2 = \pi \times (5 \text{ cm})^2 = 78.5 \text{ cm}^2$. If the volume of medium is 10 ml, then 78.5 cm² = 10 ml and 1 cm² = 0.13 ml.
- 2. In-vitro systems using in-vivo activation

For the body fluid-urine (BF-) test, the concentration used is the dose (in mg/kg bw) of the compound administered to test animals or patients.

- 3. In-vivo test systems
 - (a) Doses are converted to mg/kg bw per day of exposure, assuming 100% absorption. Standard values are used for each sex and species of rodent, including body weight and average intake per day, as reported by Gold *et al.* (1984). For example, in a test using male mice fed 50 ppm of the agent in the diet, the standard food intake per day is 12% of body weight, and the conversion is dose = 50 ppm \times 12% = 6 mg/kg bw per day.

Standard values used for humans are: weight — males, 70 kg; females, 55 kg; surface area, 1.7 m^2 ; inhalation rate, 20 l/min for light work, 30 l/min for mild exercise.

(b) When reported, the dose at the target site is used. For example, doses given in studies of lymphocytes of humans exposed *in vivo* are the measured blood concentrations in $\mu g/ml$.

Codes for test systems

For specific nonmammalian test systems, the first two letters of the three-symbol code word define the test organism (e.g., SA- for Salmonella typhimurium, EC- for Escherichia coli). In most cases, the first two letters accurately represent the scientific name of the organism. If the species is not known, the convention used is -S-. The third symbol may be used to define the tester strain (e.g., SA8 for S. typhimurium TA1538, ECW for E. coli WP2uvrA). When strain designation is not indicated, the third letter is used to define the specific genetic endpoint under investigation (e.g., -D for differential toxicity, -F for forward mutation, -G for gene conversion or genetic crossing-over, -N for an euploidy, -R for reverse mutation, -U for unscheduled DNA synthesis). The third letter may also be used to define the general endpoint under investigation when a more complete definition is not possible or relevant (e.g., -M for mutation, -C for chromosomal aberration).

For mammalian test systems, the first letter of the three-letter code word defines the genetic endpoint under investigation: A— for aneuploidy, B— for binding, C— for chromosomal aberration, D— for DNA strand breaks, G— for gene mutation, I— for inhibition of intercellular communication, M— for micronucleus formation, R— for DNA repair, S— for sister chromatid exchange, T— for cell transformation and U— for unscheduled DNA synthesis.

For animal (i.e., nonhuman) test systems *in vitro*, when the cell type is not specified, the code letters –IA are used. For such assays *in vivo*, when the animal species is not specified, the code letters –VA are used. Commonly used animal species are identified by the third

APPENDIX 2

letter (e.g., --C for Chinese hamster, --M for mouse, --R for rat, --S for Syrian hamster).

For test systems using human cells *in vitro*, when the cell type is not specified, the code letters –IH are used. For assays on humans *in vivo*, when the cell type is not specified, the code letters –VH are used. Otherwise, the second letter specifies the cell type under investigation (e.g., –BH for bone marrow, –LH for lymphocytes).

Some other specific coding conventions used for mammalian systems are as follows: BF- for body fluids, HM- for host-mediated, --L for leucocytes or lymphocytes *in vitro* (-AL, animals; -HL, humans), -L- for leucocytes *in vivo* (-LA, animals; -LH, humans), --T for transformed cells.

Note that these are examples of major conventions used to define the assay code words. The alphabetized listing of codes must be examined to confirm a specific code word. As might be expected from the limitation to three symbols, some codes do not fit the naming conventions precisely. In a few cases, test systems are defined by first-letter code words, for example: MST, mouse spot test; SLP, mouse specific locus test, postspermatogonia; SLO, mouse specific locus test, other stages; DLM, dominant lethal test in mice; DLR, dominant lethal test in rats; MHT, mouse heritable translocation test.

References

- Garrett, N.E., Stack, H.F., Gross, M.R. & Waters, M.D. (1984) An analysis of the spectra of genetic activity produced by known or suspected human carcinogens. *Mutat. Res.*, 134, 89-111
- Gold, L.S., Sawyer, C.B., Magaw, R., Backman, G.M., de Veciana, M., Levinson, R., Hooper, N.K., Havender, W.R., Bernstein, L., Peto, R., Pike, M.C. & Ames, B.N. (1984) A carcinogenic potency database of the standardized results of animal bioassays. *Environ. Health Perspect.*, 58, 9-319
- Waters, M.D. (1979) The GENE-TOX program. In: Hsie, A.W., O'Neill, J.P. & McElheny, V.K., eds, Mammalian Cell Mutagenesis: The Maturation of Test Systems (Banbury Report 2), Cold Spring Harbor, NY, CHS Press, pp. 449-467
- Waters, M.D. & Auletta, A. (1981) The GENE-TOX program: genetic activity evaluation. J. chem. Inf. comput. Sci., 21, 35-38

TABLE 1. ALPHABETICAL LIST OF TEST SYSTEM CODE WORDS

Endpoint	Code	Definition	Endpoint	Code	Definition
С	ACC	Allium cepa, chromosomal aberrations	С	CIR	Chromosomal aberrations, rat cells in vitro
A	AIA	Aneuploidy, animal cells in vitro	С	CIS	Chromosomal aberrations, Syrian hamster cells in vitro
A	AIH	Aneuploidy, human cells in vitro	С	CIT	Chromosomal aberrations, transformed animal cells in vitro
G	ANF	Aspergillus nidulans, forward mutation	С	CLA	Chromosomal aberrations, animal leucocytes in vivo
R	ANG	Aspergillus nidulans, genetic crossing-over	С	CLH	Chromosomal aberrations, human lymphocytes in vivo
Α	ANN	Aspergillus nidulans, aneuploidy	С	COE	Chromosomal aberrations, oocytes or embryos ti 1 ted in vivo
G	ANR	Aspergillus nidulans, reverse mutation	С	CVA	Chromosomal aberrations, other animal cells in vivo
G	ASM	Arabidopsis species, mutation	С	CVH	Chromosomal aberrations, other human cells in vivo
Α	AVA	Aneuploidy, animal cells in vivo	D	DIA	DNA strand breaks, cross-links or related damage, animal cells
Α	AVH	Aneuploidy, human cells in vivo			in vitro
F	BFA	Body fluids from animals, microbial mutagenicity	D	DIH	DNA strand breaks, cross-links or related damage, human cells
F	BFH	Body fluids from humans, microbial mutagenicity			in vitro
D	BHD	Binding (covalent) to DNA, human cells in vivo	С	DLM	Dominant lethal test, mice
D	BHP	Binding (covalent) to RNA or protein, human cells in vivo	С	DLR	Dominant lethal test, rats
D	BID	Binding (covalent) to DNA in vitro	С	DMC	Drosophila melanogaster, chromosomal aberrations
D	BIP	Binding (covalent) to RNA or protein in vitro	R	DMG	Drosophila melanogaster, genetic crossing-over or recombination
G	BPF	Bacteriophage, forward mutation	С	DMH	Drosophila melanogaster, heritable translocation test
G	BPR	Bacteriophage, reverse mutation	С	DML	Drosophila melanogaster, dominant lethal test
D	BRD	Other DNA repair-deficient bacteria, differential toxicity	G	DMM	Drosophila melanogaster, somatic mutation (and recombination)
D	BSD	Bacillus subtilis rec strains, differential toxicity	Α	DMN	Drosophila melanogaster, aneuploidy
G	BSM	Bacillus subtilis, multigene test	G	DMX	Drosophila melanogaster, sex-linked recessive lethal mutations
D	BVD	Binding (covalent) to DNA, animal cells in vivo	D	DVA	DNA strand breaks, cross-links or related damage, animal cells
D	BVP	Binding (covalent) to RNA or protein, animal cells in vivo			in vivo
С	CBA	Chromosomal aberrations, animal bone-marrow cells in vivo	D	DVH	DNA strand breaks, cross-links or related damage, human cells
С	CBH	Chromosomal aberrations, human bone-marrow cells in vivo			in vivo
С	CCC	Chromosomal aberrations, spermatocytes treated in vivo,	G	EC2	Escherichia coli WP2, reverse mutation
		spermatocytes observed	D	ECB	Escherichia coli (or E. coli DNA), strand breaks, cross-links or
С	CGC	Chromosomal aberrations, spermatogonia treated in vivo,			related damage; DNA repair
		spermatocytes observed	D	ECD	Escherichia coli pol A/W3110-P3478 differential toxicity (spot test)
С	CGG	Chromosomal aberrations, spermatogonia treated in vivo,	G	ECF	Escherichia coli exclusive of strain K12, forward mutation
		spermatogonia observed	G	ECK	Escherichia coli K12, forward or reverse mutation
С	CHF	Chromosomal aberrations, human fibroblasts in vitro	D	ECL	Escherichia coli pol A/W3110-P3478, differential toxicity (liquid
С	CHL	Chromosomal aberrations, human lymphocytes in vitro			suspension test)
С	CHT	Chromosomal aberrations, transformed human cells in vitro	G	ECR	Escherichia coli (other miscellaneous strains), reverse mutation
С	CIA	Chromosomal aberrations, other animal cells in vitro	G	ECW	Escherichia coli WP2 uvrA, reverse mutation
С	CIC	Chromosomal aberrations, Chinese hamster cells in vitro	D	ERD	Escherichia coli rec strains, differential toxicity
С	CIH	Chromosomal aberrations, other human cells in vitro	G	G51	Gene mutation, mouse lymphoma L5178Y cells in vitro, all other
С	CIM	Chromosomal aberrations, mouse cells in vitro			loci

Table 1 (contd)

Endpoint	Code	Definition	Endpoint	Code	Definition
G	G90	Gene mutation, Chinese hamster lung V79 cells, ouabain resistance	D	RVA	DNA repair exclusive of unscheduled DNA synthesis, animal cells in vivo
G	GCL	Gene mutation, Chinese hamster lung cells exclusive of V79 in vitro	G	SA0	Salmonella typhimurium TA100, reverse mutation
G	GCO	Gene mutation, Chinese hamster ovary cells in vitro	G	SA0	Salmonella typhimurium TA100, reverse mutation
G	G9H	Gene mutation, Chinese hamster lung V79 cells, hpri locus	G	SA3	Salmonella typhimurium TA1530, reverse mutation
G	GIA	Gene mutation, other animal cells in vitro	G	SA3	Salmonella typhimurium TA1030, reverse mutation
G	GIH		G	SA4 SA5	
G	GML	Gene mutation, human cells in vitro	G		Salmonella typhimurium TA1535, reverse mutation
U	UML	Gene mutation, mouse lymphoma cells exclusive of L5178Y	G	SA7	Salmonella typhimurium TA1537, reverse mutation
G	G5T	in vitro	G	SA8	Salmonella typhimurium TA1538, reverse mutation
G		Gene mutation, mouse lymphoma L5178Y cells in vitro, TK locus	-	SA9	Salmonella typhimurium TA98, reverse mutation
	GVA	Gene mutation, animal cells in vivo	D	SAD	Salmonella typhimurium, DNA repair-deficient strains, differential
н	HMA	Host-mediated assay, animal cells in animal hosts	_		toxicity
н	нмн	Host-mediated assay, human cells in animal hosts	G	SAF	Salmonella typhimurium, forward mutation
H	НММ	Host-mediated assay, microbial cells in animal hosts	G	SAS	Salmonella typhimurium (other miscellaneous strains), reverse
С	HSC	Hordeum species, chromosomal aberrations	_		mutation
G	HSM	Hordeum species, mutation	G	SCF	Saccharomyces cerevisiae, forward mutation
1	ICH	Inhibition of intercellular communication, human cells in vitro	R	SCG	Saccharomyces cerevisiae, gene conversion
1	ICR	Inhibition of intercellular communication, animal cells in vitro	R	SCH	Saccharomyces cerevisiae, homozygosis by mitotic recombination
G	KPF	Klebsiella pneumonia, forward mutation			or gene conversion
G	MAF	Micrococcus aureus, forward mutation	A	SCN	Saccharomyces cerevisiae, aneuploidy
С	MHT	Mouse heritable translocation test	G	SCR	Saccharomyces cerevisiae, reverse mutation
М	MIA	Micronucleus test, animal cells in vitro	G	SGR	Streptomyces griseoflavus, reverse mutation
М	MIH	Micronucleus test, human cells in vitro	S	SHF	Sister chromatid exchange, human fibroblasts in vitro
G	MST	Mouse spot test	S	SHL	Sister chromatid exchange, human lymphocytes in vitro
M	MVA	Micronucleus test, other animals in vivo	S	SHT	Sister chromatid exchange, transformed human cells in vitro
M	MVC	Micronucleus test, hamsters in vivo	S	SIA	Sister chromatid exchange, other animal cells in vitro
М	MVH	Micronucleus test, human cells in vivo	S	SIC	Sister chromatid exchange, Chinese hamster cells in vitro
М	MVM	Micronucleus test, mice in vivo	S	SIH	Sister chromatid exchange, other human cells in vitro
М	MVR	Micronucleus test, rats in vivo	S	SIM	Sister chromatid exchange, mouse cells in vitro
G	NCF	Neurospora crassa, forward mutation	S	SIR	Sister chromatid exchange, rat cells in vitro
А	NCN	Neurospora crassa, aneuploidy	S	SIS	Sister chromatid exchange, Syrian hamster cells in vitro
G	NCR	Neurospora crassa, reverse mutation	S	SIT	Sister chromatid exchange, transformed animal cells in vitro
С	PLC	Plants (other), chromosomal aberrations	S	SLH	Sister chromatid exchange, human lymphocytes in vivo
М	PLI	Plants (other), micronuclei	G	SLO	Mouse specific locus test, other stages
G	PLM	Plants (other), mutation	G	SLP	Mouse specific locus test, postspermatogonia
S	PLS	Plants (other), sister chromatid exchanges	Р	SPF	Sperm morphology, F1 mice
D	PLU	Plants, unscheduled DNA synthesis	p	SPH	Sperm morphology, humans in vivo
D	PRB	Prophage induction, SOS repair test or DNA strand breaks,	P	SPM	Sperm morphology, mice
		cross-links or related damage	P	SPR	Sperm morphology, rats
С	PSC	Paramecium species, chromosomal aberrations	D	SSB	Saccharomyces species, DNA strand breaks, cross-links or related
Ğ	PSM	Paramecium species, entoniosonial aberrations	D	330	damage
D	RIA	DNA repair exclusive of unscheduled DNA synthesis, animal cells	D	SSD	Saccharomyces species, DNA repair-deficient strains, differential
		in vitro			toxicity
D	RIH	DNA repair exclusive of unscheduled DNA synthesis, human cells	G	STF	Streptomyces coelicolor, forward mutation
		in vitro	G	STR	Streptomyces coelicolor, reverse mutation

Table 1 (contd)

Endpoint	Code	Definition	Endpoint	Code	Definition
S	SVA	Sister chromatid exchange, animal cells in vivo	М	TSI	Tradescantia species, micronuclei
S	SVH	Sister chromatid exchange, other human cells in vivo	G	TSM	Tradescantia species, mutation
D	SZD	Schizosaccharomyces pombe, DNA repair-deficient strains,	Т	TVI	Cell transformation, treated in vivo, scored in vitro
		differential toxicity	D	UBH	Unscheduled DNA synthesis, human bone-marrow cells in vivo
G	SZF	Schizosaccharomyces pombe, forward mutation	D	UHF	Unscheduled DNA synthesis, human fibroblasts in vitro
R	SZG	Schizosaccharomyces pombe, gene conversion	D	UHL	Unscheduled DNA synthesis, human lymphocytes in vitro
G	SZR	Schizosaccharomyces pombe, reverse mutation	D	UHT	Unscheduled DNA synthesis, transformed human cells in vitro
Т	TBM	Cell transformation, BALB/c 3T3 mouse cells	D	UIA	Unscheduled DNA synthesis, other animal cells in vitro
Т	TCL	Cell transformation, other established cell lines	D	UIH	Unscheduled DNA synthesis, other human cells in vitro
Т	ТСМ	Cell transformation, C3H 10T1/2 mouse cells	D	UPR	Unscheduled DNA synthesis, rat hepatocytes in vivo
Т	TCS	Cell transformation, Syrian hamster embryo cells, clonal assay	D	URP	Unscheduled DNA synthesis, rat primary hepatocytes
Т	TEV	Cell transformation, other viral enhancement systems	D	UVA	Unscheduled DNA synthesis, other animal cells in vivo
Т	TFS	Cell transformation, Syrian hamster embryo cells, focus assay	D	UVC	Unscheduled DNA synthesis, hamster cells in vivo
Т	TIH	Cell transformation, human cells in vitro	D	UVH	Unscheduled DNA synthesis, other human cells in vivo
Т	TPM	Cell transformation, mouse prostate cells	D	UVM	Unscheduled DNA synthesis, mouse cells in vivo
Т	T7R	Cell transformation, SA7/rat cells	D	UVR	Unscheduled DNA synthesis, other rat cells in vivo
T ·	TRR	Cell transformation, RLV/Fischer rat embryo cells	С	VFC	Vicia faba, chromosomal aberrations
Т	T7S	Cell transformation, SA7/Syrian hamster embryo cells	S	VFS	Vicia faba, sister chromatid exchange
С	TSC	Tradescantia species, chromosomal aberrations			· · ·

а	
ETHANOL	

Test code	End point	Test system	Results No act	Act	Dose (LED or HID)	Reference
PRB	D	Prophage induction/SOS repair test/DNA strand breaks, cross-links, etc.	-	0	55000.0000	Kvelland (1983)
ERD	D '	Escherichia coli rec strains, differential toxicity	(+)	(+)	25000.0000	De Flora et al. (1984a)
BRD	D	Other DNA repair-deficient bacteria, differential toxicity	-	0	79000.0000	Braun et al. (1982)
SA0	Ğ	Salmonella typhimurium TA100, reverse mutation	-	-	6130.0000	Cotruvo et al. (1977)
SA0	G	Salmonella typhimurium TA100, reverse mutation		-	5000.0000	McCann et al. (1975)
SA0	G	Salmonella typhimurium TA100, reverse mutation	-		0.0000	Blevins & Shelton (1983)
SA0	G	Salmonella typhimurium TA100, reverse mutation		0	0.0000	De Flora et al. (1984a)
SA2	G	Salmonella typhimurium TA102, reverse mutation	(+)	(+)	80000.0000	De Flora et al. (1984b)
SA5	G	Salmonella typhimurium TA1535, reverse mutation	-	-	0.0000	Blevins & Shelton (1983)
SA5	G	Salmonella typhimurium TA1535, reverse mutation		-	39500.0000	Blevins & Taylor (1982)
SA5	Ğ	Salmonella typhimurium TA1535, reverse mutation	-		6130.0000	Cotruvo et al. (1977)
SA5	G	Salmonella typhimurium TA1535, reverse mutation	-	0	0.0000	De Flora et al. (1984a)
SA7	G	Salmonella typhimurium TA1537, reverse mutation	-	-	0.0000	Blevins & Shelton (1983)
SA7	G	Salmonella typhimurium TA1537, reverse mutation	-		39500.0000	Blevins & Taylor (1982)
SA7	G	Salmonella typhimurium TA1537, reverse mutation	-		6130.0000	Cotruvo et al. (1977)
SA7	G	Salmonella typhimurium TA1537, reverse mutation	-	0	0.0000	De Flora et al. (1984a)
SA8	G	Salmonella typhimurium TA1538, reverse mutation	-	-	0.0000	Blevins & Shelton (1983)
SA8	G	Salmonella typhimurium TA1538, reverse mutation	-	-	39500.0000	Blevins & Taylor (1982)
SA8	G	Salmonella typhimurium TA1538, reverse mutation	-	-	6130.0000	Cotruvo et al. (1977)
SA8	G	Salmonella typhimurium TA1538, reverse mutation	-	0	0.0000	De Flora et al. (1984a)
SA9	G ·	Salmonella typhimurium TA98, reverse mutation	-	-	0.0000	Blevins & Shelton (1983)
SA9	G	Salmonella typhimurium TA98, reverse mutation	0	-	29625.0000	Arimoto et al. (1982)
SA9	G	Salmonella typhimurium TA98, reverse mutation	-	-	39500.0000	Blevins & Taylor (1982)
SA9	G	Salmonella typhimurium TA98, reverse mutation		-	6130.0000	Cotruvo et al. (1977)
SA9	G	Salmonella typhimurium TA98, reverse mutation	-	0	0.0000	De Flora et al. (1984a)
SAS	G	Salmonella typhimurium (miscellaneous strains), reverse mutation	-	-	6130.0000	Cotruvo et al. (1977)
SCG	R	Saccharomyces cerevisiae, gene mutation	-	0	39450.0000	Barale et al. (1983)
ANG	R	Aspergillus nidulans, genetic crossing-over	+	0	39500.0000	Harsanyi et al. (1977)
SCF	G	Saccharomyces cerevisiae, forward mutation	+ ·	0	150000.0000	Bandas & Zakharov (1980)
SCF	G	Saccharomyces cerevisiae, forward mutation	+	0	15780.0000	Hamada et al. (1985)
SCF	G	Saccharomyces cerevisiae, forward mutation	(+)	0	39250.0000	Cabeça—Silva et al. (1982)
ANF	G	Aspergillus nidulans, forward mutation	-	0	61320.0000	Gualandi & Bellincampi (1981
ANN	A	Aspergillus nidulans, aneuploidy	+	0	31560.0000	Käfer (1984)
ANN	A	Aspergillus nidulans, aneuploidy	+	0	47000.0000	Morpurgo et al. (1979)
ANN	A	Aspergillus niculans, aneuploidy	+	0	55230.0000	Gualandi & Bellincampi (1981
ANN	A	Aspergillus nidulans, aneuploidy	+	0	39500.0000	Harsanyi et al. (1977)
VFS	A S	Vicia faba, sister chromatid exchanges	+	0	9200.0000	Schubert et al. (1979)
PLS	S	Plants (other), sister chromatid exchanges	+	0	782.0000	Cortés et al. (1986)
TSI	M	Tradescantia species, micronuclei	+	0	98625.0000	Ma et al. (1984)
PLI	M	Plants (other), micronuclei	-	0	7820.0000	Cortés et al. (1986)
VFC	C	Vicia faba, chromosomal aberrations	+	0	2300.0000	Rieger & Michaelis (1960)
VFC	c	Vicia faba, chromosomal aberrations	+	0	9200.0000	Schubert et al. (1979)
ALC.	c	Vicia faba, chromosomal aberrations	+	0	0.0000	Rieger & Michaelis (1970)

373

ETHANOL	(contd)
---------	---------

'est ode '	End point	Test system	Results No act		Dose (LED or HID)	Reference
FC	с	Vicia faba, chromosomal aberrations				
MG	R	Drosophila melanogaster, genetic crossingrover or recembination	+	0	9200.0000	Rieger et al. (1985)
MM	G	Drosophila melanogaster, somatic mutation (and recombination)	-	0 0	78900.0000	Graf et al. (1984)
MX	G	Drosophila melanogaster, sex-linked recessive lethal mutations	-	0.	78900.0000	Graf et al. (1984)
MX	G	Drosophila melanogaster, sex-linked recessive lothal mitations	-	0	39450.0000	Vogel & Chandler (1974)
MX	G	Drosophila melanogaster, sex-linked recessive lethal mutations		0	237600.0000	Woodruff et al. (1984)
1X	G	Drosophila melanogaster, sex-linked recessive lethal mutations	-	0	30000.0000	Creus et al. (1983)
[A	D	DNA strand breaks, cross-links, etc., animal cells in witro	-	0	3925.0000	Vogel et al. (1983)
бT	G	Gene mutation, mouse lymphoma L5178Y cells in vitro TK locus	-	0	7900.0000	Sina et al. (1983)
IC DI	S	Sister chromatid exchange, Chinese hamster cells in witro	-	•	31878.0000	Amacher et al. (1980)
(C	S	Sister chromatid exchange, Chinese hamster cells in without	+	† ь	3900.0000	De Raat et al. (1983)
C	S	Sister chromatid exchange, Chinese hamster cells in vitro	~	+	7360.0000	Darroudi & Natarajan (1987
IC j	S	Sister chromatid exchange, Chinese hamster cells in vitro	-	+	4600.0000	Takehisa & Kanaya (1983)
C	S	Sister chromatid exchange, Chinese hamster cells in vitro	-	0	790.0000	Obe & Ristow (1977)
A	S	Sister chromatid exchange, other animal cells in vitro	-	0	7900.0000	Schwartz et al. (1982)
A	м	Micronucleus test, animal cells in vitro	-	0	7900.0000	Garcia Heras et al. (1982)
C	С	Chromosomal aberrations, Chinese hamster cells in vitro	-	0,ь	39450.0000	Lasne et al. (1984)
м	Т	Cell transformation, C3H 10T1/2 mouse cells	-	+	7360.0000	Darroudi & Natarajan (1987
s	т	Cell transformation, Syrian hamster embryo cells, clonal assay	(+)	0	0.0000	Abernethy et al. (1982)
L	S	Sister chromatid exchange, human lymphocytes in vitro	-	0	3950.0000	Bokkenheuser et al. (1983)
L	S	Sister chromatid exchange, human lymphocytes in vitro	+	0	395.0000	Alvarez et al. (1980a)
L	S	Sister chromatid exchange, human lymphocytes in vitro	-	0	15780.0000	Jansson (1982)
L	S	Sister chromatid exchange, human lymphocytes in vitro	-	0	3950.0000	Obe et al. (1977)
L	s	Sister chromatid exchange, human lymphocytes in vitro	-	0	3950.0000	Véghelyi & Osztovics (1978)
L	S	Sister chromatid exchange, human lymphocytes in vitro	-	0	1578.0000	Athanasiou & Bartsocas (198
L	s	Sister chromatid exchange, human lymphocytes in vitro	-	0	3200.0000	Hill & Wolff (1983)
r	S	Sister chromatid exchange, transformed human cells in vitro	-	0	7900.0000	Königstein et al. (1984)
ſ	s	Sister chromatid exchange, transformed human cells in vitro		-	790.0000	Sobti et al. (1982)
	С	Chromosomal aberrations, human lymphocytes in vitro	-	-	790.0000	Sobti et al. (1983)
	с	Chromosomal aberrations, human lymphocytes in vitro	-	0	5000.0000	Cadotte et al. (1973)
	с	Chromosomal aberrations, human lymphocytes in vitro	+	0	1160.0000	Badr et al. (1977)
	с	Chromosomal aberrations, human lymphocytes in vitro	-	0	3950.0000	Obe et al. (1977)
	c	Chromosomal aberrations, human lymphocytes in vitro	-	0	7900.0000	Königstein et al. (1984)
	č	Chromosomal aberrations, human lymphocytes in vitro	-	0	7900.0000	Banduhn & Obe (1985)
	s	Sister chromatid exchange, animal cells in vivo	-	0	7900.0000	Kuwano & Kajii (1987)
	s	Sister chromatid exchange, animal cells in vivo	+	0	6000.0000	Alvarez et al. (1980b)
	s	Sister chromatid exchange, animal cells in vivo	-		157000.0000	Korte & Obe (1981)
	s	Sister chromatid exchange, animal cells in vivo	+	0	3850.0000	Tates et al. (1980)
	s	Sister chromatid exchange, animal cells in vivo	+	0	2250.0000	Czajka et al. (1980)
-	S	Sister chromatid exchange, animal cells <u>in vivo</u> Sister chromatid exchange, animal cells in vivo	+	0	13000.0000	Obe et al. (1979)
	s	Sister chromatid exchange, animal cells in vivo Sister chromatid exchange, animal cells in vivo	-	0	25000.0000	Korte et al. (1981)
	-	Micronucleus test, mice in vivo	-	0	0.0000	Nayak & Buttar (1986)
	M	Micronucleus test, mice in vivo	-	0	53000.0000	Chaubey et al. (1977)
		Actomacieus cesc, mice in Vivo	-	0	1580.0000	Watanabe et al. (1982)

Test code	End point	Test system	Results No act	Act	Dose (LED or HID)	Reference
MVR	M	Micronucleus test, rats in vivo	+	0	1500.0000	Baraona et al. (1981b)
MVR	м	Micronucleus test, rats in vivo	_	0	7700.0000	Tates et al. (1980)
CBA	c	Chromosomal aberrations, animal bone-marrow cells in vivo	-	0	25000.0000	Korte et al. (1981)
CBA	c	Chromosomal aberrations, animal bone-marrow cells in vivo		0	13833.0000	Korte et al. (1979)
CBA	с	Chromosomal aberrations, animal bone-marrow cells in vivo		0	7700.0000	Tates et al. (1980)
CLA	с	Chromosomal aberrations, animal leucocytes in vivo		0	157000.0000	Korte & Obe (1981)
CLA	С	Chromosomal aberrations, animal leucocytes in vivo		0	7700.0000	Tates et al. (1980)
CGG	Ċ	Chromosomal aberrations, spermatogonia treated in vivo		0	7880.0000	Halkka & Eriksson (1977)
CGG	c	Chromosomal aberrations, spermatogonia treated in vivo	-	0	3906.0000	Kohila et al. (1976)
COE	c	Chromosomal aberrations, oocytes or embryos treated in vivo	+	0	3140.0000	Kozachuk & Barilyak (1982)
COE	С	Chromosomal aberrations, occytes or embryos treated in vivo		0	0.0000	Barilyak & Kozachuk (1983)
DLM	с	Dominant lethal test, mice	?	0	1580.0000	James & Smith (1982)
DLM	с	Dominant lethal test, mice	+	0	1900.0000	Badr & Badr (1975)
DLR	с	Dominant lethal test, rats	+	0	1970.0000	Mankes et al. (1982)
DLR	с	Dominant lethal test, rats	+	0	10000.0000	Klassen & Persaud (1976)
DLR	c	Dominant lethal test, rats		0	12835.0000	Chauhan et al. (1980)
AVA	A	Aneuploidy, animal cells in vivo	+	0	2800.0000	Kaufman & Bain (1984a)
AVA	А	Aneuploidy, animal cells in vivo	+	0	2800.0000	Kaufman & Bain (1984b)
AVA	А	Aneuploidy, animal cells in vivo	+	0	3950.0000	Kaufman (1983)
AVA	А	Aneuploidy, animal cells in vivo	+	0	3490.0000	Hunt (1987)
AVA	А	Aneuploidy, animal cells in vivo	-	0	6250.0000	Daniel & Roane (1987)

ETHANOL (contd)

^aThe genetic activity profile was prepared in collaboration with the Genetic Toxicology Division of the US Environmental Protection Agency, who also determined the doses used. Only results from experimental systems are given.

^bPlant activation system

APPENDIX 2

IARC MONOGRAPHS VOLUME 44

376

acetaldehyde^a

لا

rest code	End point	Test system	Results No act	Act	Dose (LED or HID)	Reference
ERD	D	Escherichia coli rec strains, differential toxicity (spot test)	(+)	0	7800.0000	Rosenkranz (1977)
SA0	G	Salmonella typhimurium TA100, reverse mutation	_	-	5000.0000	Mortelmans et al. (1986)
A4	G	Salmonella typhimurium TA104, reverse mutation		0	2515.0000	Marnett et al. (1985)
A5	G	Salmonella typhimurium TA1535, reverse mutation	(+)	0	7800.0000	Rosenkranz (1977)
A5	G	Salmonella typhimurium TA1535, reverse mutation	-	_	5000.0000	Mortelmans et al. (1986)
A7	G	Salmonella typhimurium TA1537, reverse mutation	-		5000.0000	Mortelmans et al. (1986)
SA8	G	Salmonella typhimurium TA1538, reverse mutation	(+)	0	7800.0000	Rosenkranz (1977)
SA9	G	Salmonella typhimurium TA98, reverse mutation	_	_	5000.0000	Mortelmans et al. (1986)
CW	G	Escherichia coli WP2 uvrA, reverse mutation	+	0	39.0000	Véghelyi et al. (1978)
CW	G	Escherichia coli WP2 uvrA, reverse mutation	+	0	780.0000	Igali & Gaszo (1980)
CF	G	Saccharomyces cerevisiae, forward mutation	(+)	0	23400.0000	Bandas (1982)
LS	S	Plants (other), sister chromatid exchanges	+	0	75.0000	Cortés et al. (1986)
LI	М	Plants (other), micronuclei	+	0	75.0000	Cortés et al. (1986)
CC	С	Allium cepa, chromosomal aberrations	+	0	75.0000	Cortés et al. (1986)
FC	С	Vicia faba, chromosomal aberrations	+	0	220.0000	Rieger & Michaelis (1960)
IC	s	Sister chromatid exchange, Chinese hamster cells in vitro	+	0	3,9000	Obe & Beek (1979)
IC	S	Sister chromatid exchange, Chinese hamster cells in vitro	+	0	31.2000	Obe & Ristow (1977)
IC	S	Sister chromatid exchange, Chinese hamster cells in vitro	+	0	4.0000	Obe et al. (1978)
SIA	S	Sister chromatid exchange, other animal cells in vitro	+	+	7.8000	De Raat et al. (1983)
IIA	М	Micronucleus test, animal cells in vitro	+	0	22.0000	Bird et al. (1982)
IR	С	Chromosomal aberrations, rat cells in vitro	+	0	4.4000	Bird et al. (1982)
CM	т	Cell transformation, C3H 10T1/2 mouse cells	_	0	100.0000	Abernethy et al. (1982)
IH	Ď	DNA strand breaks, cross-links, etc., human cells in vitro	+	0	0.4400	Lambert et al. (1985)
HL	S	Sister chromatid exchange, human lymphocytes in vitro	+	0	6.0000	Jansson (1982)
HL	S	Sister chromatid exchange, human lymphocytes in vitro	+	0	8.0000	Böhlke et al. (1983)
HL	S	Sister chromatid exchange, human lymphocytes in vitro	+	0	7.8000	Ristow & Obe (1978)
HL	S	Sister chromatid exchange, human lymphocytes in vitro	+	0	1.8000	Véghelyi et al. (1978)
HL	S	Sister chromatid exchange, human lymphocytes in vitro	+	0	15.6000	Obe et al. (1978)
HL	S	Sister chromatid exchange, human lymphocytes in vitro	+	0	4.4000	He & Lambert (1985)
HL	С	Chromosomal aberrations, human lymphocytes in vitro	+	0	20.0000	Badr & Hussain (1977)
HL	с	Chromosomal aberrations, human lymphocytes in vitro	+	0	16.0000	Böhlke et al. (1983)
HL	С	Chromosomal aberrations, human lymphocytes in vitro	+	0	4.0000	Obe et al. (1985)
HL	С	Chromosomal aberrations, human lymphocytes in vitro		0	15.6000	Obe et al. (1979)
HL	С	Chromosomal aberrations, human lymphocytes in vitro	(+)	0	0.7800	Obe et al. (1978)
IH	С	Chromosomal aberrations, other human cells in vitro	+	0	7.8000	Obe et al. (1979)
VA	S	Sister chromatid exchange, animal cells in vivo	+	0	0.4000	Obe et al. (1979)
VA	s	Sister chromatid exchange, animal cells in vivo	+	õ	0.5000	Korte & Obe (1981)
OE	с	Chromosomal aberrations, occytes or embryos treated in vivo	+	õ	7800.0000	Barilyak & Kozachuk (1983
ID	D	Binding (covalent) to DNA in vitro	+	õ	44100.0000	Ristow & Obe (1978)

From IARC (1987b)

APPENDIX 2

ACETALDEHYDE