APPENDIX 1

SUMMARY TABLES OF GENETIC AND RELATED EFFECTS

Summary table of genetic and related effects of diazepam

Non-mar	Non-mammalian systems		Mammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo	
				Animal cells	Human cells	Animals	Humans
D G	DRGA	DGC	RGCA	D G S M C A T I	D G S M C A T I	D G S M C DL A	D S M C A
	1			+ ? + +	- + - ? - '	_' ? _ ? ?"	? -¹ ? +¹

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- + considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

[&]quot;Somatic cell, -; germ cells: sperm, +; oocyte, -

Summary table of genetic and related effects of doxefazepam

Non-mammalian systems		Mammalian systems					
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo	
				Animal cells	Human cells	Animals	Humans
D G	DRGA	DGC	RGCA	D G S M C A T I	D G S M C A T I	D G S M C DL A	D S M C A
_ 1	_1					_' _'	

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +1 considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of estazolam

Non-mammalian systems		Mammalian systems	Mammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo	
			,	Animal cells	Human cells	Animals	Humans
D G	DRGA	DGC	RGCA	D G S M C A T I	D G S M C A T I	D G S M C DL A	D S M C A
						_1 _1 _1	

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +1 considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- -1 considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of oxazepam

Non-mammalian systems Mamma			Mammalian systems	ammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo		
			· ·	Animal cells	Human cells	Animals	Humans	
D G	DRGA	D G C	RGCA	D G S M C A T I	D G S M C A T I	D G S M C DL A	D S M C A	
_'	_' _'	_1		-' +' +'	+' +' +'	_' _'		

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- + considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of prazepam

Non-mar	Non-mammalian systems			Mammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo		
				Animal cells	Human cells	Animals	Humans	
D G	DRGA	D G C	RGCA	D G S M C A T I	DGSMCATI	D G S M C DL A	D S M C A	
		_'				_'		

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +1 considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of temazepam

Non-mai	Non-mammalian systems		Mammalian systems	Mammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo		
				Animal cells	Human cells	Animals	Humans	
DG	DRGA	DGC	R G C A	D G S M C A T I	DGSMCATI	D G S M C DL A	D S M C A	
						_1		

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +' considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of phenytoin

Non-mai	Non-mammalian systems Mammalian syste		Mammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo	·
				Animal cells	Human cells	Animals	Humans
D G	DRGA	DGC	RGCA	D G S M C A T I	D G S M C A T I	D G S M C DL A	D S M C A
_			_'	-' -' - +' + +	+' ?, ? +'	- ? - +' ?	?

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +1 considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- -1 considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of droloxifene

Non-ma	Non-mammalian systems		Mammalian systems				
Proka- ryotes			Insects	In vitro		In vivo	
				Animal cells	Human cells	Animals	Humans
DG	DRGA	DGC	RGCA	D G S M C A T I	D G S M C A T I	D G S M C DL A	D S M C A
	·			_1		_!	

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +' considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of tamoxifen

Non-mai	Non-mammalian systems		Mammalian systems	The state of the s	TO 4TO 400	The second secon	
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo	
				Animal cells	Human cells	Animals	Humans
D G	DRGA	DGC	RGCA	D G S M C A T I	D G S M C A T I	D G S M C DL A	DSMCA
				-' +'	+	+ +¹ +¹	-

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- + considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of toremifene

Non-mar	Non-mammalian systems			Mammalian systems	Mammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo			
				Animal cells	Human cells	Animals	Humans		
D G	DRGA	DGC	R G C A	D G S M C A T I	D G S M C A T I	D G S M C DL A	D S M C A		
					+' +	?			

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +1 considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of clofibrate

Non-mai	Non-mammalian systems		Mammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro	In vivo	M. P	
				Animal cells	Human cells	Animals	Humans
DG	DRGA	DGC	RGCA	D G S M C A T I	DGSMCATI	D G S M C DL A	D S M C A
_1 _	. <u>_</u> !			' -' -' - ?		'	

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +' considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)

Summary table of genetic and related effects of gemfibrozil

Non-mai	Non-mammalian systems			Mammalian systems				
Proka- ryotes	Lower eukaryotes	Plants	Insects	In vitro		In vivo		
				Animal cells	Human cells	Animals	Humans	
D G	DRGA	DGC	RGCA	D G S M C A T I	D G S M C A T I	D G S M C DL A	DSMCA	
1								

A, aneuploidy; C, chromosomal aberrations; D, DNA damage; DL, dominant lethal mutation; G, gene mutation; I, inhibition of intercellular communication; M, micronuclei; R, mitotic recombination and gene conversion; S, sister chromatid exchange; T, cell transformation

- + considered to be positive for the specific end-point and level of biological complexity
- +1 considered to be positive, but only one valid study was available to the Working Group
- considered to be negative
- considered to be negative, but only one valid study was available to the Working Group
- ? considered to be equivocal or inconclusive (e.g. there were contradictory results from different laboratories; there were confounding exposures; the results were equivocal)