
HYDROGEN PEROXIDE

Data were last reviewed in IARC (1985) and the compound was classified in IARC
Monographs Supplement 7 (1987).

1. Exposure Data

1.1 Chemical and physical data
1.1.1 Nomenclature

Chem. Abstr. Serv. Reg. No.: 7722-84-1
Chem. Abstr. Name: Hydrogen peroxide
IUPAC Systematic Name: Hydrogen peroxide
Synonyms: Dihydrogen dioxide; hydrogen dioxide; hydrogen oxide; hydroperoxide;
peroxide

1.1.2 Structural and molecular formulae and relative molecular mass

H2O2 Relative molecular mass: 34.0

1.1.3 Chemical and physical properties of the pure substance
(a) Description: Colourless liquid with a bitter taste (Budavari, 1996; Lide, 997)
(b) Boiling-point: 150.2°C (Lide, 1997)
(c) Melting-point: –0.43°C (Lide, 1997)
(d) Solubility: Very soluble in water; soluble in diethyl ether; insoluble in petro-

leum ether (Budavari, 1996; Lide, 1997)
(e) Vapour pressure: 665 Pa at 30°C (American Conference of Governmental Indus-

trial Hygienists, 1992)
(f) Reactivity: May decompose violently if traces of impurities are present; decom-

posed by many organic solvents (Budavari, 1996)
(g) Conversion factor: mg/m3 = 1.39 × ppm

1.2 Production and use
Production capacity of hydrogen peroxide in North America (including plants in the

United States, Canada and Mexico) in 1995 was reported to be 547 thousand tonnes; that
in the United States in 1992 was reported to be 348 thousand tonnes and, in Canada, 143
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thousand tonnes. Worldwide capacity for hydrogen peroxide is estimated at 1800–1900
thousand tonnes per year (Anon., 1992, 1995; Hess, 1995).

Hydrogen peroxide is an oxidizing agent widely used for the bleaching or deodorizing
of textiles, wood pulp, hair, fur and foods; in the treatment of water and sewage; as a
disinfectant; as a component of rocket fuels; and in the manufacture of paper and pulp,
foam rubber and many chemicals and chemical products. It has also been used in the
synthesis of organic and inorganic peroxides; in the manufacture of glycerol, plasticizers
and antichlors; in epoxidation, hydroxylation, oxidation, and reduction reactions; for vis-
cosity control for starch and cellulose derivatives; for refining and cleaning metals; in
dyeing and electroplating; and as a laboratory reagent, seed disinfectant and neutralizing
agent in wine distillation (IARC, 1985; American Conference of Governmental Industrial
Hygienists, 1992; Lewis, 1993).

Other uses for hydrogen peroxide in the United States are in the removal of hydrogen
sulfide from the steam produced by geothermal power plants, during the mining and pro-
cessing of uranium, pickling of copper and copper alloys, cleaning metals (germanium)
and silicon semiconductors used in the electronics industry, and a variety of small-volume
applications in photography, cosmetics (e.g., hair bleaches and dyes, mouthwashes), anti-
septics and cleansing agents, food and wine processing and treatment of package liners in
aseptic packaging (IARC, 1985).

The consumption pattern for hydrogen peroxide in the United States in 1995 was
(%): pulp and paper, 50; environmental uses, including water treatment, 17; chemical
synthesis, 15; textiles, 9; and miscellaneous, including mining, electronic, food and cos-
metic uses, and the distributor market, 9 (Anon., 1995). 

1.3 Occurrence
1.3.1 Occupational exposure

Occupational exposures may occur in the production of hydrogen peroxide, in waste-
water treatment, metal cleaning, and chemical synthesis, and in the textile, pulp and
paper, geothermal energy and mining industries (IARC, 1985).

1.3.2 Environmental occurrence
Gaseous hydrogen peroxide is a key component and product of the earth’s lower

atmospheric photochemical reactions, in both clean and polluted atmospheres. Atmos-
pheric hydrogen peroxide is believed to be generated exclusively by gas-phase photo-
chemical reactions (IARC, 1985). Low concentrations of hydrogen peroxide have been
measured in the gas-phase and in cloud water in the United States (United States National
Library of Medicine, 1998). It has been found in rain and surface water, in human and
plant tissues, in foods and beverages and in bacteria (IARC, 1985).

1.4 Regulations and guidelines
The American Conference of Governmental Industrial Hygienists (ACGIH) (1997)

has recommended 1.4 mg/m3 as the 8-h time-weighted average threshold limit value for
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occupational exposures to hydrogen peroxide in workplace air. Similar values have been
used as standards or guidelines in many countries (International Labour Office, 1991).

No international guideline for hydrogen peroxide in drinking-water has been esta-
blished (WHO, 1993).

2. Studies of Cancer in Humans

In the Montreal case–control study carried out by Siemiatycki (1991) (see the mono-
graph on dichloromethane in this volume), the investigators estimated the associations
between 293 workplace substances and several types of cancer. Hydrogen peroxide was
one of the substances. About 0.7% of the study subjects had ever been exposed to hydro-
gen peroxide. Among the main occupations to which this exposure was attributed were
hairdressers, textile bleachers and furriers. For all types of cancer examined (oeso-
phagus, stomach, colon, rectum, pancreas, lung, prostate, bladder, kidney, skin mela-
noma, lymphoma), there was no indication of an excess risk due to hydrogen peroxide
exposure. [The interpretation of the null results has to take into account the small
numbers and possibly low exposure levels.]

3. Studies of Cancer in Experimental Animals

Hydrogen peroxide had been tested for carcinogenicity in mice, by oral adminis-
tration in drinking-water, by skin application and by subcutaneous administration. Ade-
nomas and carcinomas of the duodenum were reported following its oral adminis-
tration. The other studies were inadequate for an evaluation of carcinogenicity. One
study by skin application indicated that hydrogen peroxide has no promoting activity
(IARC, 1985).

3.1 Topical administration
Hamster: Groups of 25 male and 25 female Syrian golden hamsters, 8–10 weeks of

age, were administered hydrogen peroxide at a concentration of 0.75% in dentifrice intro-
duced into the buccal cheek pouches five times per week for 20 weeks. The hydrogen
peroxide-containing dentifrice induced no neoplasms in 37 animals surviving to 20 weeks
(Marshall et al., 1996). [The Working Group noted the unusual vehicle and the short dura-
tion of the study.]

3.2 Administration with known carcinogens
3.2.1 Hamster

Groups of 30–40 male and female Syrian golden hamsters, eight weeks of age, were
administered hydrogen peroxide [purity unspecified] by topical application to the cheek
pouch of 20 μL of a 30% solution on five days per week for 24 weeks, after which they
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were maintained for up to 16 months. Another group received hydrogen peroxide for 24
weeks after an initiating dose of 4-(nitrosomethylamino)-1-(3-pyridyl)-1-butanone, after
which they were also maintained for up to 16 months. In the group given hydrogen
peroxide after initiation, 1/31 animals developed a cheek pouch adenoma, compared with
1/15 with initiator alone (Padma et al., 1989).

3.2.2 Trout
Groups of 52–93 Shasta rainbow trout embryos, 23 days of age, were exposed to N-

methyl-N′-nitro-N-nitrosoguanidine to initiate hepatic carcinogenesis and four weeks
after hatching were administered hydrogen peroxide [purity unspecified] at 0, 600 or
3000 ppm [mg/kg] in diets containing two levels of vitamin E for 10 months. Hydrogen
peroxide increased the incidence of liver tumours, mainly mixed hepatocholangiocellular
carcinomas, in a dose-related manner, especially in fish given the higher level of
vitamin E, from about 15% in fish exposed only to the initiator to about 25% with low-
dose hydrogen peroxide and to about 45% with high-dose hydrogen peroxide (p < 0.02)
(Kelly et al., 1992). [The Working Group noted the complexity of oral administration in
the diet and the presence of other variables in the diets.]

4. Other Data Relevant to an Evaluation of Carcinogenicity
and its Mechanisms

4.1 Absorption, distribution, metabolism and excretion
4.1.1 Humans

Glutathione peroxidase, responsible for decomposing hydrogen peroxide, is present
in normal human tissues. Hydrogen peroxide has been detected in serum and in intact
liver (IARC, 1985).

4.1.2 Experimental systems
Hydrogen peroxide is formed intracellularly by mitochondria, endoplasmic reticulum,

peroxisomes and soluble enzymes, where it results from oxidase-catalysed reactions or
superoxide dismutase-catalysed superoxide breakdown. It is decomposed by catalase or
glutathione peroxidase. Levels of hydrogen peroxide are particularly high in rat kidney,
reflecting the high peroxisomal content, and polymorphonuclear leukocytes during
phagocytosis (IARC, 1985). These levels are markedly increased in rat liver homogenates
after in-vivo administration of peroxisome proliferators (Tamura et al., 1990).

The presence of oxygen bubbles in the tongue and jugular veins following sublingual
application of 3–30% hydrogen peroxide solutions to dogs, cats and rabbits suggests that
significant amounts of hydrogen peroxide were absorbed. Ingested hydrogen peroxide
can increase the oxygen content of blood, also indicating absorption by the intestine. It
can penetrate the epidermis and mucous membranes and decomposes in the underlying
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tissues. Within 1 h, 33% of the 18O of a 19% solution of H2
18O2 was recovered in expired

air following sublingual application to cats (IARC, 1985).

4.2 Toxic effects
The toxicity of hydrogen peroxide has been reviewed (Li, 1996).

4.2.1 Humans
A characteristic whitening of the skin occurs after topical application of hydrogen

peroxide, which is believed to be the result of oxygen bubbles acting microembolically in
the capillaries. Human erythrocytes exhibit increased osmotic fragility when incubated
with hydrogen peroxide; this is related to lipid peroxidation. Erythrocytes from indi-
viduals with enzyme deficiencies related to oxygen radical metabolism, such as those with
acatalasaemia, favism, paroxysmal nocturnal haemoglobinuria, erythropoietic proto-
porphyria or thalassaemia, or with glutathione-metabolizing enzyme or vitamin E defi-
ciencies, are unusually sensitive to hydrogen peroxide-induced haemolysis (IARC, 1985).

4.2.2 Experimental systems
Hydrogen peroxide, administered extrinsically or produced intrinsically, generates

hydroxyl radicals and induces lipid peroxidation and may lead to DNA damage and cell
death. In in-vitro studies, these effects may be prevented by antioxidants or iron chelators
(IARC, 1985). In line with these findings, hydrogen peroxide evoked a dose-dependent
increase in dichlorofluorescein fluorescence intensity in Hep G2 cells, and this effect was
completely blocked by catalase or a water-soluble vitamin E (Trolox C) (Wu et al.,
1997). Low (10–8 mol/L), but not high (≥ 10–5 mol/L) concentrations of hydrogen per-
oxide stimulated the growth of immortalized hamster BHK-2 cells, H-ras transformed
RFAGT1 rat cells (Burdon et al., 1990) and BHK-21 fibroblasts in vitro (Burdon et al.,
1996).

Hydrogen peroxide induced squamous metaplasia in hamster tracheal explants at con-
centrations of 50–100 μmol/L, while cytotoxicity was observed only at concentrations
≥ 500 μmol/L. Squamous metaplasia was prevented by exogenous addition of catalase
(Radosevich & Weitzman, 1989). 

At a concentration of 700 μmol/L, hydrogen peroxide induced necrosis of immor-
talized rat embryo fibroblasts, while at a concentration of 150 μmol/L, it induced apop-
tosis (Guénal et al., 1997). In primary human diploid fibroblasts, low concentrations
(50–100 μmol/L) of hydrogen peroxide induced a senescence-like state, while higher
concentrations (300–400 μmol/L) induced apoptosis (Bladier et al., 1997). Apoptosis
was also observed in BHK-21 fibroblasts at hydrogen peroxide concentrations of
≥ 100 μmol/L (Burdon et al., 1996).

Hydrogen peroxide (50 μmol/L) induced transcription of the early growth response
1 gene (EGR1) in a human HL-525 myeloid leukaemia cell line; this was prevented by
N-acetyl-L-cysteine (Datta et al., 1993).
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4.3 Reproductive and developmental effects
No data were available to the Working Group.

4.4 Genetic and related effects 
4.4.1 Humans

No data were available to the Working Group.

4.4.2 Experimental systems (see Table 1 for references)
Hydrogen peroxide induced DNA damage in bacteria and mutation in Salmonella

typhimurium and Escherichia coli in the absence of exogenous metabolic activation. It
was not mutagenic in S. typhimurium in the presence of exogenous metabolic activation.
It induced forward mutation in Saccharomyces cerevisiae and was mutagenic to Asper-
gillus nidulans and Neurospora crassa. In a single study, sex-linked recessive lethal
mutations were not induced in Drosophila following larval injections with 3% hydrogen
peroxide.

Hydrogen peroxide induced DNA damage in Chinese hamster cell cultures. It
induced a weak mutagenic response at the hprt locus in one study using L5178Y mouse
lymphoma cell sublines (LY-R and LY-S). Only one of six studies reviewed reported that
hydrogen peroxide induced gene mutation in Chinese hamster V79 cells at the hprt locus.
Hydrogen peroxide induced sister chromatid exchanges in Chinese hamster cell cultures
(Chinese hamster ovary CHO or lung V79) and inhibited gap junctional intercellular
communication in WB-Fischer 344 rat liver epithelial cells. It did not bind covalently to
DNA in mouse keratinocytes in vitro. It did induce chromosomal aberrations in Chinese
hamster cells and in ascites tumour cells of mice treated in vivo. In a single study in vivo,
hydrogen peroxide did not increase the frequency of chromosomal aberrations in rat bone
marrow.

DNA single-strand breaks and fragmentations were observed in human lymphocytes
and respiratory tract epithelial cells and in cultures of transformed human cells. Hydro-
gen peroxide induced unscheduled DNA synthesis and chromosomal aberrations in
human fibroblast cells in vitro. It induced sister chromatid exchanges or chromosomal
aberrations in human lymphocyte cultures and gave inconclusive results for induction of
aneuploidy.

Hydrogen peroxide transformed mouse myeloid progenitor cells (FDC-P1) from
interleukin-3 dependence to factor independence, but only at cytotoxic concentrations
(≥ 12/5 μmol/L). Such a transformation was not induced by non-specific insults to the
cells, such as sodium fluoride or heat shock treatment. The transformed cells produced
tumours when injected into pre-irradiated mice (Crawford & Greenberger, 1991). Hydro-
gen peroxide (10 μmol/L) induced overexpression of the proto-oncogene c-jun in
hamster tracheal epithelial (HTE) cells; c-jun overexpression led to proliferation and
increased growth rate, as well as increased anchorage-independence of HTE cells
(Timblin et al., 1995).
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Table 1. Genetic and related effects of hydrogen peroxide

Test system Resulta Reference

Without
exogenous
metabolic
activation

With
exogenous
metabolic
activation

Doseb

(LED or HID)

PRB, Prophage, induction/SOS response/strand-breaks/or cross-links + NT 0.5 Müller & Janz (1993)
PRB, Prophage, induction/SOS response/strand-breaks/or cross-links + NT 1 Northrop (1958)
PRB, Prophage, induction/SOS response/strand-breaks/or cross-links + NT 45 Nakamura et al. (1987)
BRD, Escherichia coli, differential toxicity + NT 20 Hartman & Eisenstark

(1978)
BRD, Escherichia coli, differential toxicity + NT 340 Ananthaswamy &

Eisenstark (1977)
SAF, Salmonella typhimurium BA13, forward mutation + NT 0.2 Ariza et al. (1988)
SAF, Salmonella typhimurium (SV50), forward mutation + NT 0.22 Xu et al. (1984)
SA0, Salmonella typhimurium TA100, reverse mutation – NT 340 Stich et al. (1978)
SA0, Salmonella typhimurium TA100, reverse mutation (+) NT 136 Norkus et al. (1983)
SA0, Salmonella typhimurium TA100, reverse mutation – – 0.9 Xu et al. (1984)
SA0, Salmonella typhimurium TA100, reverse mutation (+) NT 5 Fujita et al. (1985)
SA0, Salmonella typhimurium TA100, reverse mutation (+) – 5780 Kensese & Smith (1989)
SA2, Salmonella typhimurium TA102, reverse mutation (+) – 5780 Kensese & Smith (1989)
SA2, Salmonella typhimurium TA102, reverse mutation (+) NT 20.4 Abu-Shakra & Zeiger

(1990)
SA4, Salmonella typhimurium TA104, reverse mutation + NT 10 Abu-Shakra & Zeiger

(1990)
SA7, Salmonella typhimurium TA1537, reverse mutation + – 4046 Kensese & Smith (1989)
SA8, Salmonella typhimurium TA1538, reverse mutation (+) – 5780 Kensese & Smith (1989)
SA9, Salmonella typhimurium TA98, reverse mutation – NT 340 Stich et al. (1978)
SA9, Salmonella typhimurium TA98, reverse mutation – – 0.9 Xu et al. (1984)
SA9, Salmonella typhimurium TA98, reverse mutation (+) – 5780 Kensese & Smith (1989)
SAS, Salmonella typhimurium hisC3108, reverse mutation + NT 30 Ames et al. (1981)



IA
RC M

O
N

O
G

RA
PH

S V
O

LU
M

E 71
678

Table 1 (contd)

Test system Resulta Reference

Without
exogenous
metabolic
activation

With
exogenous
metabolic
activation

Doseb

(LED or HID)

SAS, Salmonella typhimurium TA96, reverse mutation + NT 50 Levin et al. (1982)
SAS, Salmonella typhimurium TA97, reverse mutation (+) – 2890 Kensese & Smith (1989)
SAS, Salmonella typhimurium TA97, reverse mutation + NT 4.25 Abu-Shakra & Zeiger

(1990)
SAS, Salmonella typhimurium SB1106p, reverse mutation + NT 5.1 Abu-Shakra & Zeiger

(1990)
SAS, Salmonella typhimurium SB1111, reverse mutation (+) NT 10 Abu-Shakra & Zeiger

(1990)
SAS, Salmonella typhimurium SB1106, reverse mutation + NT 10 Abu-Shakra & Zeiger

(1990)
ECF, Escherichia coli (excluding K12), forward mutation + NT 3 Abril & Pueyo (1990)
ECR, Escherichia coli WP2, reverse mutation + NT 2160 Demerec et al. (1951)
BSM, Bacillus subtilis, multigene test + NT 7.2 Sacks & MacGregor

(1982)
MAF, Micrococcus aureus, forward mutation + NT 6 Clark (1953)
SCF, Saccharomyces cerevisiae ade2, forward mutation + NT 100 Thacker (1976)
SCF, Saccharomyces cerevisiae ade2, forward mutation + NT 2000 Thacker & Parker (1976)
SGR, Streptomyces griseoflavus, reverse mutation – NT 1440 Mashima & Ikeda (1958)
ANR, Aspergillus chevalieres, reverse mutation (+) NT 1440 Nanda et al. (1975)
NCF, Neurospora crassa, forward mutation (+) NT 9180 Han (1997)
NCR, Neurospora crassa, reverse mutation + NT 7140 Dickey et al. (1949)
NCR, Neurospora crassa, reverse mutation + NT 6800 Jensen et al. (1951)
DMX, Drosophila melanogaster, sex-linked recessive lethal
  mutations

– 43200 inj Dipaolo (1952)
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Table 1 (contd)

Test system Resulta Reference

Without
exogenous
metabolic
activation

With
exogenous
metabolic
activation

Doseb

(LED or HID)

DIA, DNA single-strand breaks, Chinese hamster lung V79 cells
  in vitro

(+)c NT 12 Bradley et al. (1979)

DIA, DNA single-strand breaks, rat hepatocytes in vitro + NT 3.4 Olson (1988)
DIA, DNA single-strand breaks, Chinese hamster ovary CHO cells
  in vitro

+ NT 3.4 Cantoni et al. (1989)

DIA, DNA single-strand breaks, Chinese hamster lung V79-379A
  fibroblasts  in vitro

+ NT 0.34 Prise et al. (1989)

DIA, DNA single-strand breaks, Chinese hamster ovary CHO cells
  in vitro

+ NT 0.85 Cantoni et al. (1992)

DIA, DNA single-strand breaks, Chinese hamster ovary CHO cells
  in vitro

+ NT 0.68 Iliakis et al. (1992)

G9H, Gene mutation, Chinese hamster lung V79 cells, hprt locus
  in vitro

– NT 12 Bradley et al. (1979)

G9H, Gene mutation, Chinese hamster lung V79 cells, hprt locus
  in vitro

– NT 20 Bradley & Erickson
(1981)

G9H, Gene mutation, Chinese hamster lung V79 cells, hprt locus
  in vitro

– NT 3.4 Tsuda (1981)

G9H, Gene mutation, Chinese hamster lung V79 cells, hprt locus
  in vitro

– NT 7 Nishi et al. (1984)

G9H, Gene mutation, Chinese hamster lung V79 cells, hprt locus
  in vitro

– NT 13.6 Speit (1986)

G9H, Gene mutation, Chinese hamster lung V79 cells, hprt locus
  in vitro

+ NT 17 Ziegler-Skylakakis &
Andrae (1987)

G9O, Gene mutation, Chinese hamster lung V79 cells, ouabain
  resistance in vitro

– NT 3.4 Tsuda (1981)
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Test system Resulta Reference

Without
exogenous
metabolic
activation

With
exogenous
metabolic
activation

Doseb

(LED or HID)

G51, Gene mutation, mouse lymphoma L5178Y cell subline LY-R,
  hprt locus in vitro

(+) NT 0.17 Kruszewski et al. (1994)

G51, Gene mutation, mouse lymphoma L5178Y cell subline LY-S,
  hprt locus in vitro

(+) NT 0.34 Kruszewski et al. (1994)

SIC, Sister chromatid exchange, Chinese hamster lung V79 cells
  in vitro

(+) NT 12 Bradley et al. (1979)

SIC, Sister chromatid exchange, Chinese hamster ovary CHO cells
  in vitro

+ NT 0.13 MacRae & Stich (1979)

SIC, Sister chromatid exchange, Chinese hamster ovary CHO cells
  in vitro

(+) NT 17 Wilmer & Natarajan
(1981)

SIC, Sister chromatid exchange, Chinese hamster lung V79 cells
  in vitro

+ NT 3.4 Speit et al. (1982)

SIC, Sister chromatid exchange, Chinese hamster lung V79 cells
  in vitro

+ (+) 0.34 Mehnert et al. (1984a)

SIC, Sister chromatid exchange, Chinese hamster ovary CHO cells
  in vitro

+ (+) 0.34 Mehnert et al. (1984a)

SIC, Sister chromatid exchange, Chinese hamster lung V79 cells
  in vitro

(+) NT 7 Nishi et al. (1984)

SIC, Sister chromatid exchange, Chinese hamster lung V79 cells
  in vitro

+ NT 0.68 Speit (1986)

SIC, Sister chromatid exchange, Chinese hamster ovary CHO
  AU × 91 cells in vitro

+ NT 1.4 Tucker et al. (1989)

MIA, Micronucleus test, C57BL/6J mouse splenocytes in vitro – NT 0.68 Dreosti et al. (1990)
CIC, Chromosomal aberrations, Chinese hamster ovary CHO cells
  in vitro

(+) NT 10 Stich et al. (1978)
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Table 1 (contd)

Test system Resulta Reference

Without
exogenous
metabolic
activation

With
exogenous
metabolic
activation

Doseb

(LED or HID)

CIC, Chromosomal aberrations, Chinese hamster DON-6 cells
  in vitro

+ NT 34 Sasaki et al. (1980)

CIC, Chromosomal aberrations, Chinese hamster ovary CHO-K1
  cells in vitro

+ NT 3.4 Tsuda (1981)

CIC, Chromosomal aberrations, Chinese hamster lung V79 cells
  in vitro

+ NT 3.4 Tsuda (1981)

CIC, Chromosomal aberrations, Chinese hamster ovary CHO cells
  in vitro

(+) NT 340 Wilmer & Natarajan
(1981)

CIC, Chromosomal aberrations, Chinese hamster ovary CHO cells
  in vitro

(+) NT 1 Hanham et al. (1983)

CIM, Chromosomal aberrations, newborn BALB/c mouse back-skin
  cells in vitro

+ NT 0.34 Tsuda (1981)

CIS, Chromosomal aberrations, Syrian hamster lung cells in vitro + NT 3.4 Tsuda (1981)
DIH, DNA single-strand breaks, transformed human WI-38 & XP
  cells in vitro

(+) NT 3.4 Hoffmann & Meneghini
(1979)

DIH, DNA single-strand breaks, human D98/AH2 cells in vitro + NT 2 Wang et al. (1980)
DIH, DNA single-strand breaks, human epithelioid P3 cells in vitro + NT 0.21 Peak et al. (1991)
DIH, DNA single-strand breaks, human cells in vitro + NT 0.85 Meyers et al. (1993)
DIH, DNA single-strand breaks, human leukocytes in vitro + NT 17 Rueff et al. (1993)
DIH, DNA damage, human bronchial epithelium (HBEI) cells
  in vitro

+ NT 1.7 Spencer et al. (1995)

DIH, DNA damage, human bronchial epithelium (BEAS and NHBE)
  cells in vitro

+ NT 0.68 Lee et al. (1996)

DIH, DNA damage, human lymphobastoid (GM1899A) cells in vitro +d NT 0.34 Duthie & Collins (1997)
UHF, Unscheduled DNA synthesis, human fibroblasts in vitro + NT 20 Stich et al. (1978)
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Table 1 (contd)

Test system Resulta Reference

Without
exogenous
metabolic
activation

With
exogenous
metabolic
activation

Doseb

(LED or HID)

UHF, Unscheduled DNA synthesis, human fibroblasts in vitro + NT 9 Coppinger et al. (1983)
SHL, Sister chromatid exchange, human lymphocytes in vitro + (+) 2.7 Mehnert et al. (1984b)
CHF, Chromosomal aberrations, human fibroblasts in vitro + NT 0.07 Parshad et al. (1980)
CHL, Chromosomal aberrations, human lymphocytes in vitro – NT 0.17 Smith et al. (1990)
CIH, Chromosomal aberrations, human embryonic fibroblasts
  in vitro

+ NT 0.34 Oya et al. (1986)

CIH, Chromosomal aberrations, human lymphocytes in vitro + NT 510 Rueff et al. (1993)
AIH, Aneuploidy, human lymphocytes in vitro ? NT 0.17 Smith et al. (1990)
CBA, Chromosomal aberrations, rat bone-marrow cells in vivo – NG Kawachi et al. (1980)
CVA, Chromosomal aberrations, mouse ascites tumour cells in vivo + 340 μg/mouse Schöneich (1967)
CVA, Chromosomal aberrations, mouse ascites tumour cells in vivo + 170 μg/mouse Schöneich et al. (1970)
BID, DNA binding (covalent), 8-hydroxydeoxyguanosine, BALB/c
  mouse keratinocytes in vitro

– NT 680 Beehler et al. (1992)

ICR, Inhibition of  cell communication, WB-Fischer 344 rat liver
  epithelial cells in vitro

+ NT 3.4 Upham et al. (1997)

a +, positive; (+), weakly positive; –, negative; NT, not tested; ?, inconclusive
b LED, lowest effective dose; HID, highest ineffective dose; in-vitro tests, μg/mL; in-vivo tests, mg/kg bw/day; inj, injection; NG, not given
c Negative for DNA–DNA and DNA–protein cross-links
d Positive at 50 μM (1.7 μg/mL) for HeLa, CaCo-2 colon cells and HepG2 liver cells.



5. Summary of Data Reported and Evaluation

5.1 Exposure data
Hydrogen peroxide is produced in moderately high volume and is widely used. Its

primary uses are as a chemical intermediate, as a bleaching agent in the textile and paper
and pulp industry and in water treatment operations. It occurs naturally at low levels in
the air and water, in human and plant tissues and bacteria, and in food and beverages.

5.2 Human carcinogenicity data
No adequate data on the carcinogenicity of hydrogen peroxide were available to the

Working Group.

5.3 Animal carcinogenicity data
Hydrogen peroxide was tested in mice by oral administration, skin application and

subcutaneous administration and in hamsters by topical application to oral mucosa. In
mice, adenomas and carcinomas of the duodenum were found following oral admi-
nistration. The other studies in mice and the study in hamsters were inadequate for eva-
luation. One study in mice and one study in hamsters showed no promoting activity of
hydrogen peroxide.

5.4 Other relevant data
Hydrogen peroxide is formed intracellularly as a result of certain enzymatic

reactions. Hydrogen peroxide, either from this source or externally applied, generates
hydroxyl radicals that initiate lipid peroxidation chain reactions within exposed cells and
can lead to DNA damage and cell death. DNA damage has been demonstrated in bacteria
and in cultured mammalian cells. In addition, hydrogen peroxide induced mutations in
bacteria, yeast and other fungi and there is some evidence that it can do so in Chinese
hamster V79 and mouse lymphoma L5178Y cells at the hprt locus. Chromosomal
aberrations and sister chromatid exchanges are induced in both human and other
mammalian cells in vitro, but it did not induce chromosomal aberrations in the bone-
marrow cells of exposed rats.

5.5 Evaluation
There is inadequate evidence in humans for the carcinogenicity of hydrogen peroxide.
There is limited evidence in experimental animals for the carcinogenicity of

hydrogen peroxide.

Overall evaluation
Hydrogen peroxide is not classifiable as to its carcinogenicity to humans (Group 3).
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