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Data were last evaluated in IARC (1989).

1. Exposure Data

1.1 Chemical and physical data
1.1.1 Nomenclature

Chem. Abstr. Serv. Reg. No.: 108-95-2
Chem. Abstr. Name: Phenol
IUPAC Systematic Name: Phenol
Synonyms: Carbolic acid; hydroxybenzene

1.1.2 Structural and molecular formulae and relative molecular mass

C6H6O Relative molecular mass: 94.11

1.1.3 Chemical and physical properties of the pure substance
(a) Description: Colourless, acicular crystals with characteristic sweet and acrid

odour (Budavari, 1996)
(b) Boiling-point: 181.8°C (Lide, 1997) 
(c) Melting-point: 40.9°C (Lide, 1997)
(d) Solubility: Soluble in ethanol, water, diethyl ether, chloroform, glycerol, carbon

disulfide, petrolatum and alkalis (Budavari, 1996) 
(e) Vapour pressure: 47 Pa at 25°C; relative vapour density (air = 1), 3.24 (Ame-

rican Conference of Governmental Industrial Hygienists, 1991) 
(f) Flash point: 79°C, closed cup (Budavari, 1996)
(g) Explosive limits: upper, 8.6%; lower, 1.7% by volume in air (American Confe-

rence of Governmental Industrial Hygienists, 1991)
(h) Conversion factor: mg/m3 = 3.85 × ppm
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1.2 Production and use
The estimated worldwide synthetic phenol capacity in 1994 was approximately 5200

thousand tonnes; estimated capacities by region were reported as (thousand tonnes):
Mexico and South America, 155; Europe, 1967; Japan, 800; Asia, 256; China, 126; and
the United States, 1870 (Wallace, 1996). Production in the United States in 1993 was
reported to be 1 544 222 tonnes (United States International Trade Commission, 1994).

Phenol has a wide range of uses, including in the preparation of phenolic and epoxy
resins (bisphenol-A), nylon-6 (caprolactam), 2,4-D, selective solvents for refining lubri-
cating oils, adipic acid, salicylic acid, phenolphthalein, pentachlorophenol and other deri-
vatives; in germicidal paints; as a laboratory reagent and in dyes and indicators; and as a
slimicide, biocide and general disinfectant (Lewis, 1993). The world demand for phenol
by use in 1993 was reported as (%): phenolic resins, 35; bisphenol-A, 30; caprolactam,
15; alkylphenols, 7; aniline, 5; and others, 8 (Wallace, 1996).

1.3 Occurrence
1.3.1 Occupational exposure

Data on levels of occupational exposure to phenol have been presented in a previous
monograph (IARC, 1989).

1.3.2 Environmental occurrence
Phenol is present in plant and animal organic wastes as a result of decomposition.

The level of phenol present in poultry manure, for example, has been shown to increase
as degradation proceeds. Phenol is an important industrial chemical and enters the envi-
ronment in air emissions and wastewater connected with its use as a chemical inter-
mediate, disinfectant and antiseptic (United States National Library of Medicine, 1997). 

1.4 Regulations and guidelines
The American Conference of Governmental Industrial Hygienists (ACGIH) (1997)

has recommended 19 mg/m3 as the threshold limit value for occupational exposures to
phenol in workplace air. Similar values have been used as standards or guidelines in
many countries (International Labour Office, 1991).

No international guideline for phenol in drinking-water has been established (WHO,
1993).

2. Studies of Cancer in Humans

2.1 Industry-based studies 
In the nested case–control study among rubber workers in the United States

(Wilcosky et al., 1984), described in greater detail in the monograph on dichloromethane
(see this volume), one of the substances evaluated was phenol, which was analysed as a
potential risk factor in relation to each of five cancer types. None of the odds ratios was
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significant; the only one greater than 1.0 was that for stomach cancer (odds ratio, 1.4;
n = 6) in white men. The odds ratio for lung cancer in white men was 1.0 (n = 13).

Dosemeci et al. (1991) reported results concerning phenol from a cohort study in the
United States initiated to assess risks due to formaldehyde. This report concerned 14 861
workers employed before 1966 in five facilities producing or using phenol as well as
formaldehyde. Subjects were traced to 1980. More than 360 000 person–years of follow-
up accrued. Job history records were linked to extensive industrial hygiene data and
expertise to assess possible exposure to formaldehyde and phenol. Relative risk esti-
mates (standardized mortality ratios (SMRs)) for white male workers exposed to phenol
were derived by comparison with the general United States population. The SMR for all
causes of death combined was close to 1.0, as was the SMR for all cancers combined.
Exposed workers had no excess of cancer at any of the following sites: buccal cavity and
pharynx, stomach, colon, liver, pancreas, skin, prostate, testis, brain or leukaemia. There
were slight, unremarkable excesses for cancers of the larynx (SMR, 1.1; 95% CI,
0.5–2.3; n = 7), lung (SMR, 1.1; 95% CI, 0.9–1.3; n = 146), urinary bladder (SMR, 1.1;
95% CI, 0.6–1.4; n = 13), kidney (SMR, 1.3; 95% CI, 0.7–2.1; n = 13) and rectum (SMR,
1.4; 95% CI, 0.8–2.2; n = 18). Only for oesophageal cancer (SMR, 1.6; 95% CI, 0.9–2.6;
n = 15) and Hodgkin’s disease (odds ratio, 1.7; 95% CI, 0.8–3.1; n = 10) were the
excesses noteworthy, albeit not significant. Nor was there any stronger evidence of a
cancer risk when the exposed group was compared with an internal comparison group of
workers unexposed to phenol. When the phenol-exposed group was separated into
subgroups by cumulative exposure, the SMRs were [2.1 (95% CI, 1.0–3.7; n = 11)] for
oesophageal cancer, [1.1 (95% CI, 0.9–1.4; n = 78)] for lung cancer and [0.9 (95% CI,
0.1–3.3; n = 2)] for Hodgkin’s disease for medium and high exposure combined. [The
Working Group noted that workers typically had multiple exposures.]

Kauppinen et al. (1993) carried out a case–control study of respiratory tract cancer
nested within a cohort of 7307 Finnish male woodworkers (IARC, 1995) from 35 plants
(including plywood, particle-board, sawmill and formaldehyde (IARC, 1995) glue
plants). Each case of respiratory tract cancer within the cohort identified in the Finnish
Cancer Registry and diagnosed between 1957 and 1982 (n = 136) was matched by year
of birth with three controls (n = 408) from the cohort. Job history records were supple-
mented by interviews with subjects or next-of-kin, and were linked to a specially devised
plant- and period-specific job–exposure matrix which included 12 substances, one of
which was phenol. The interview, achieved for 65% of subjects, also requested smoking
data. Several logistic regression models were run, varying the treatment of induction
period, smoking status and duration of exposure. Any exposure to phenol, without
adjustment for induction period or smoking, gave an odds ratio of 3.2 (90% CI, 1.8–5.6;
n = 14) for lung cancer. Estimates were slightly higher when a 10-year induction period
was included in the model (odds ratio, 3.5; 90% CI, 1.8–7.0; n = 6). Adjustment for
smoking did not eliminate the association (odds ratio, 2.5; 90% CI, 1.2–5.0; n = 9).
Long-term workers (more than five years’ exposure) (odds ratio, 1.4; 90% CI, 0.6–3.6;
n = 7) had lower risk than short-term workers (one month to five years’ exposure) (odds
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ratio, 3.3; 90% CI, 1.0–11.0; n = 7). While workers exposed to phenol tended also to be
exposed to other substances, none of those substances showed as strong an association
with respiratory tract cancer as did phenol. In particular, although all phenol-exposed
workers were also exposed to formaldehyde, workers exposed to formaldehyde but not
to phenol had no excess risk of respiratory tract cancer (odds ratio, 1.0).

2.2 Community-based studies 
In Siemiatycki’s (1991) population-based case–control study of cancer in Montreal,

Canada (see monograph on dichloromethane in this volume), phenol was one of the
substances evaluated; 1% of the entire study population had been exposed to it at some
time. Among the main occupations to which phenol exposure was attributed in this study
were electric motor repairmen and foundry workers. The publication reported an asso-
ciation between phenol and pancreatic cancer (odds ratio, 4.8; 90% CI, 1.8–12.7; n = 4);
for no other site was cancer risk associated with phenol exposure. [The Working Group
noted that detailed results for other sites were not provided, because they were based on
small numbers, and that workers typically had multiple exposures.]

3. Studies of Cancer in Experimental Animals

Phenol was tested for carcinogenicity by oral administration in drinking-water in one
strain of mice and one strain of rats. No treatment-related increase in the incidence of
tumours was observed in mice or in female rats. In male rats, an increase in the incidence
of leukaemia was observed at the lower dose but not at the higher dose. Phenol was tested
extensively in the two-stage mouse skin model and showed promoting activity (IARC,
1989).

3.1 Skin application 
Mouse: Groups of five male TG.AC or FVB/N non-carrier mice, six to seven weeks

of age, were administered 3 mg phenol (reagent grade) per animal in acetone by skin
application twice per week for up to 20 weeks. A skin papilloma occurred in an exposed
TG.AC mouse, whereas none occurred in controls (not considered to be significant)
(Spalding et al., 1993).

3.2 Administration with known carcinogens
3.2.1 Mouse

Groups of 22–24 female CC57 Br mice, weighing 12–14 g, were administered
phenol (‘chemically pure’) twice a week orally [method not stated] for total doses of 0,
0.02 or 1.0 mg in three modes; phenol was given for 2.5 months and 1 mg per animal
benzo[a]pyrene subsequently for 2.5 months; 1 mg per animal benzo[a]pyrene was given
for 2.5 months followed by phenol for 2.5 months; or the two were given concurrently
for 2.5 months. The high dose of phenol given in combination with benzo[a]pyrene pro-
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duced a 27.2% incidence of malignant forestomach tumours (p < 0.01) compared with
4.6% when benzo[a]pyrene was given alone. In groups given 1.0 mg phenol either
before or after the initiator, the incidence of malignant forestomach tumours was reduced
from that in mice given only the initiator (Yanysheva et al., 1992).

Groups of 7–10 male Sprague-Dawley rats, weighing 200 g, were administered
phenol (purity, > 99.5%) at doses of 0 or 100 mg/kg bw by gavage on five days per week
for six weeks beginning one week after partial hepatectomy and intraperitoneal injection
of 30 mg/kg bw N-nitrosodiethylamine to initiate liver carcinogenesis. Phenol did not
increase the multiplicity of enzyme-altered (γ-glutamyltranspeptidase) foci compared
with that in a group subjected only to initiation (Stenius et al., 1989). 

4. Other Data Relevant to an Evaluation of Carcinogenicity
and its Mechanisms

4.1 Absorption, distribution, metabolism and excretion
The major route of phenol metabolism is conjugation with sulfate and, at high dose,

with glucuronic acid. In addition, hydroquinone (see this volume) is formed, which is
excreted as a sulfate or glucuronide conjugate. Several glutathione conjugates can be
formed from the reactive 1,4-benzoquinone formed from hydroquinone (Figure 1).

4.1.1 Humans
In a case of lethal human phenol intoxication (a phenol-containing disinfectant was

ingested), the phenol concentration in brain, kidney, liver and muscle was determined
several hours after death. The concentration in the brain was highest, followed by the
kidney; the concentrations in liver and muscle were half that in the brain (Lo Dico et al.,
1989).

Studies in flow-through diffusion cells showed that full-thickness rat skin absorbed
[14C]phenol at a slightly faster rate than human skin (Hotchkiss et al., 1992), which
absorbs phenol reasonably well (Bucks et al., 1990).

The sulfation of phenol and the glucuronidation of its hydroquinone metabolite were
measured in human liver cytosols and microsomes, respectively. The rate of phenol sul-
fation varied between 0.31 and 0.92 nmol/mg protein/min; this is slightly higher than the
rate for mice (0.46) and lower than that for rats (1.20). The rate of hydroquinone glucuro-
nidation was between 0.10 and 0.28 nmol/mg protein/min, slightly higher than that for rats
(0.08) and lower than that for mice (0.22). These enzyme-kinetic data were subsequently
used to simulate phenol metabolism in mice, rats and humans in vivo, using a com-
partmental pharmacokinetic model with benzene as phenol precursor (Seaton et al., 1995).

4.1.2 Experimental systems
Absorption of phenol in a flow-through diffusion cell in vitro, using full-thickness

rat skin, indicated relatively rapid absorption through rat skin: 27% was absorbed in
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72 h; the rate for human skin was somewhat lower (19%) in the same system (Hotchkiss
et al., 1992). Studies on the disposition of phenol after oral, dermal, intravenous and
intratracheal administration to rats confirmed earlier results (Hughes & Hall, 1995):
even after dermal application, phenol is rapidly excreted in urine, mainly as phenyl
sulfate with smaller amounts of phenyl glucuronide. At higher phenol doses, biliary
excretion of phenyl glucuronide in particular becomes more important, and a 2-S-gluta-
thionylhydroquinone metabolite was observed (Scott & Lunte, 1993). The latter is
probably formed from 1,4-benzoquinone (see this volume), the oxidized hydroquinone
metabolite, which reacts spontaneously at a high rate with glutathione. The glutathione
conjugate can undergo redox cycling, which may cause toxicity (Puckett-Vaughn et al.,
1993). When phenol and hydroquinone are administered simultaneously to mice, their
conjugation may be mutually decreased by competition for the same sulfotransferase
enzyme, resulting in slower elimination, and possibly increased formation of 1,4-benzo-
quinone; the latter may be responsible for bone-marrow toxicity (Legathe et al., 1994).
The formation and pharmacokinetics of phenol and hydroquinone during benzene expo-
sure in rats, mice and humans have been simulated by Seaton et al. (1995). 

Phenol is converted by rat liver microsomes to a reactive metabolite that binds co-
valently to protein; the most likely metabolites involved in this are hydroquinone and, at
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Figure 1. Metabolism of phenol
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a lower rate, catechol, the covalent binding of which does not require NADPH (Wallin
et al., 1985). 1,4-Benzoquinone is responsible for the inactivation of CYP2E1; this does
not require reactive oxygen species, but is a direct effect (Gut et al., 1996). Peroxidases
(e.g., from macrophages), may also catalyse the formation of reactive products from
phenol (Schlosser et al., 1989), in which 1,4-benzoquinone plays a critical role. The con-
version of hydroquinone to 1,4-benzoquinone in vitro was stimulated by phenol (Smith
et al., 1989). A small percentage of phenol is converted in vitro to trihydroxybenzene or,
after ring opening, to muconic acid (Schlosser et al., 1993).

Incubation of mouse peritoneal macrophage lysate with bovine serum albumin and
[14C]phenol or [14C]hydroquinone resulted in covalent binding of 14C to protein depen-
dent on hydrogen peroxide and inhibited by the peroxidase inhibitor aminotriazole or by
the –SH nucleophile antioxidant cysteine. The conversion of [14C]phenol to protein- and
calf thymus DNA-binding metabolite(s) was also catalysed by purified prostaglandin H
synthase and was dependent on either hydrogen peroxide or arachidonic acid (Schlosser
et al., 1989). Phenol (100 μmol/L) induced formation of 8-hydroxydeoxyguanosine in
HL60 cell DNA in vitro, but not in bone-marrow cells of B6C3F1 mice in vivo after a
single intraperitoneal dose of 75 mg/kg (Kolachana et al., 1993).

4.1.3 Comparison of human and rodent data
The metabolism of phenol in humans and in rats or mice is very similar: at low doses,

mainly sulfate conjugates of phenol and hydroquinone are excreted in urine. Whether the
reactive intermediate 1,4-benzoquinone plays an important role in vivo at low exposure
is uncertain; as long as sufficient glutathione is available, this will probably rapidly trap
the 1,4-benzoquinone and protect the cell from damage. Urinary excretion of mercap-
turates reflects formation of the glutathione conjugates. When at higher dose this pro-
tection fails, toxicity may become overt. Whether the covalent binding observed in vitro
has relevance in vivo is uncertain.

4.2 Toxic effects
The toxicity of phenol has been reviewed (WHO, 1994).

4.2.1 Humans
Phenol poisoning can occur in humans after skin absorption, inhalation of vapours

or ingestion. Acute local effects are severe tissue irritation and necrosis. At high doses,
the most prominent systemic effect is central nervous system depression (IARC, 1989).

4.2.2 Experimental systems
Phenol causes irritation, dermatitis, central nervous system effects and liver and

kidney toxicity in experimental animals (IARC, 1989).
Phenol induced fluorescence from 2′,7′-dichlorofluorescin in HL60 human leukae-

mia cells in vitro at concentrations that were not cytotoxic; this was interpreted to indi-
cate generation of reactive oxygen species (Shen et al., 1996). When phenol was incu-
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bated with hydrogen peroxide and horseradish peroxidase, disappearance of polyunsatu-
rated cis-parinaric fatty acid was observed in a cell-free system, and also when cis-pari-
naric acid was incorporated into cellular lipids of HL60 cells; the reaction was inhibited
by ascorbate and glutathione. The authors interpreted this to demonstrate the generation
from phenol of phenoxy radicals capable of direct oxidation of polyunsaturated fatty acid
(Ritov et al., 1996).

In contrast to catechol and hydroquinone, phenol was a weak inducer of apoptosis in
HL60 human promyelocytic leukaemia cells, and had an apoptotic effect only at the
highest concentration tested (0.75 mmol/L) (Moran et al., 1996). Phenol (≤ 10 mmol/L)
had no effect on the colony formation of granulocytes/macrophages induced by a recom-
binant granulocyte/macrophage colony-stimulating factor of murine bone-marrow cells
(Irons et al., 1992).

In a study on the immunotoxic effects of cigarette tar components, it was shown that
phenol (≤ 1 mmol/L) had no effect on interleukin-2-dependent DNA synthesis or cell
proliferation in cultured human lymphoblasts (Li et al., 1997).

Phenol (25, 50, 75 or 100 mg/kg, single intraperitoneal administration) decreased the
incorporation of 59Fe by erythrocytes in a dose-dependent fashion in female Swiss mice,
when administered with hydroquinone (50 mg/kg, single intraperitoneal administration)
(Snyder et al., 1989). Phenol (≤ 40 μmol/L) had no consistent effect on the number of
erythroid colony-forming bone-marrow cells from Swiss Webster or C57BL/J6 mice
(Neun et al., 1992) and only inhibited the growth of bone-marrow cells from female
C57 BL/6 × DBA/2 mice at millimolar concentrations (Seidel et al., 1991).

4.3 Reproductive and reproductive effects
4.3.1 Humans

No data were available to the Working Group.

4.3.2 Experimental systems
Phenol was toxic in cultured rat conceptuses at 10 μmol/L, the lowest concentration

tested, and killed all embryos at 200 μmol/L (Chapman et al., 1994).

4.4 Genetic and related effects 
4.4.1 Humans

No data were available to the Working Group.

4.4.2 Experimental systems (see Table 1 for references)
Phenol was mutagenic to Escherichia coli B/Sd-4 at highly toxic doses only (survival

level, 0.5–1.7%; Demerec et al., 1951), but it did not induce filamentation in the lon–

mutant of Escherichia coli (Nagel et al., 1982) and was not mutagenic to Salmonella
typhimurium strains in most studies. In one study, it was weakly mutagenic to S. typhi-
murium TA98 in the presence of an exogenous metabolic system, but only when the
assay was performed using a modified medium.



Phenol weakly induced mitotic segregation in Aspergillus nidulans.
Phenol did not increase the frequency of sex-linked recessive lethal mutations in

Drosophila melanogaster following feeding or administration by injection.
Phenol did not induce DNA single-strand breaks in mouse lymphoma L5178Y cells.

It was reported in abstracts that phenol induced DNA strand breaks in mouse lymphoma
cells, as measured by the alkaline unwinding technique followed by elution through
hydroxyapatite (Garberg & Bolcsfoldi, 1985), but that it did not induce strand breaks, as
measured by the alkaline elution technique, in rat germ-cell DNA after either single or
multiple dose treatments (Skare & Schrotel, 1984).

Phenol induced mutations at the hprt locus of Chinese hamster V79 cells in the
presence of an exogenous metabolic system from the livers of phenobarbital-induced mice
and tk locus mutations in mouse lymphoma L5178Y cells in the presence or the absence of
an exogenous metabolic activation system. Micronuclei were induced by phenol in
Chinese hamster ovary cells in one study and sister chromatid exchanges in mammalian
cells were increased in several studies, including three with human lymphocytes.

Phenol was reported to induce DNA oxidative damage in human promyelocytic HL60
cells and to inhibit repair of radiation-induced chromosomal breaks in human leukocytes
(Morimoto et al., 1976). However, it only slightly inhibited DNA repair synthesis and
DNA replication synthesis in WI-38 human diploid fibroblasts (Poirier et al., 1975).

DNA oxidative damage was not found in bone marrow of mice given a single
intraperitoneal injection of phenol. Administration of phenol did not induce micronuclei
in bone-marrow cells in three studies; however, micronuclei were induced in the bone
marrow of pregnant CD-1 mice after a single oral dose, but micronuclei were not seen
in the liver of fetuses. As reported in an abstract, phenol induced micronuclei in male and
female mice at doses of 150 and 200 mg/kg bw (Sofuni et al., 1986). In one study, FISH
probes for centromeres were used to demonstrate that the micronuclei in the bone-
marrow cells of mice injected three times intraperitoneally with 160 mg phenol/kg bw
were the result of chromosomal breakage and not aneuploidy. This result substantiates a
similar finding reported as an abstract [details not given] (Lowe et al., 1987). Inhibition
of topoisomerase I in vitro was not found and inhibition of topoisomerase II in vitro was
observed only if a peroxidase/hydrogen peroxide system was added to the reaction
mixture. Covalent binding to DNA was not observed in rat Zymbal glands after in-vivo
exposure. In Chinese hamster cells in vitro, phenol did not inhibit intercellular commu-
nication in two studies, but in a third study, inhibited intercellular communication in
CYP1A1-, CY1A2- and CYP2B1-transfected cell lines as well as in the parental line.

5. Summary of Data Reported and Evaluation

5.1 Exposure data
Phenol is a basic feedstock for the production of phenolic resins, bisphenol A, capro-

lactam, chlorophenols and several alkylphenols and xylenols. Phenol is also used in
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Test system Resultsa Doseb

(LED or HID)
Reference

Without
exogenous
metabolic
system

With
exogenous
metabolic
system

SA0, Salmonella typhimurium TA100, reverse mutation – – 9140c Contruvo et al. (1977)
SA0, Salmonella typhimurium TA100, reverse mutation – – 282 Florin et al. (1980)
SA0, Salmonella typhimurium TA100, reverse mutation – NT 2000 Kinoshita et al. (1981)
SA0, Salmonella typhimurium TA100, reverse mutation – – 250 Pool & Lin (1982)
SA0, Salmonella typhimurium TA100, reverse mutation – – 800 Haworth et al. (1983)
SA0, Salmonella typhimurium TA100, reverse mutation – – 1500 Kazmer et al. (1983)
SA5, Salmonella typhimurium TA1535, reverse mutation – – 9140c Contruvo et al. (1977)
SA5, Salmonella typhimurium TA1535, reverse mutation – – 282 Florin et al. (1980)
SA5, Salmonella typhimurium TA1535, reverse mutation – NT 50 Gilbert et al. (1980)
SA5, Salmonella typhimurium TA1535, reverse mutation – – 250 Pool & Lin (1982)
SA5, Salmonella typhimurium TA1535, reverse mutation – – 800 Haworth et al. (1983)
SA7, Salmonella typhimurium TA1537, reverse mutation – – 9140c Cortruvo et al. (1977)
SA7, Salmonella typhimurium TA1537, reverse mutation – – 282 Florin et al. (1980)
SA7, Salmonella typhimurium TA1537, reverse mutation – – 250 Pool & Lin (1982)
SA7, Salmonella typhimurium TA1537, reverse mutation – – 800 Haworth et al. (1983)
SA8, Salmonella typhimurium TA1538, reverse mutation – – 9140c Cortruvo et al. (1977)
SA8, Salmonella typhimurium TA1538, reverse mutation – NT 25 Gilbert et al. (1980)
SA8, Salmonella typhimurium TA1538, reverse mutation – – 250 Pool & Lin (1982)
SA8, Salmonella typhimurium TA1538, reverse mutation – – 800 Haworth et al. (1983)
SA9, Salmonella typhimurium TA98, reverse mutation – – 9140c Cortruvo et al. (1977)
SA9, Salmonella typhimurium TA98, reverse mutation – – 282 Florin et al. (1980)
SA9, Salmonella typhimurium TA98, reverse mutation – (+) 2350 Gocke et al. (1981)
SA9, Salmonella typhimurium TA98, reverse mutation – – 250 Pool & Lin (1982)
SAS, Salmonella typhimurium TA1536, reverse mutation – – 9140c Cortruvo et al. (1977)
ANN, Aspergillus nidulans, aneuploidy (+) NT 1412 Crebelli et al. (1987)
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Table 1 (contd)

Test system Resultsa Doseb

(LED or HID)
Reference

Without
exogenous
metabolic
system

With
exogenous
metabolic
system

VFS, Vicia faba, sister chromatid exchange + NT 10000 Zhang et al. (1991)
PLS, Hordeum vulgare, sister chromatid exchange + NT 10000 Zhang et al. (1991)
PLS, Secale cereale, sister chromatid exchange + NT 10000 Zhang et al. (1991)
DMX, Drosophila melanogaster, sex-linked recessive lethal mutations – 20000 μg/mLd Sturtevant (1952)
DMX, Drosophila melanogaster, sex-linked recessive lethal mutations – 4700 ppm feed Gocke et al. (1981)
DMX, Drosophila melanogaster, sex-linked recessive lethal mutations – 5250 μg/mL inj Woodruff et al. (1985)
DIA, DNA strand breaks/cross-links, mouse lymphoma L5178YS cells
  in vitro

– NT 94 Pellack-Walker &
Blumer (1986)

G9H, Gene mutation, Chinese hamster V79 cells, hprt locus in vitro NT + 250 Paschin & Bahitova
(1982)

G5T, Gene mutation, mouse lymphoma L5178Y cells, tk locus in vitro ? (+) 300 McGregor et al. (1988)
G5T, Gene mutation, mouse lymphoma L5178Y cells, tk locus in vitro + + 5 Wangenheim &

Bolcsfoldi (1988)
SIM, Sister chromatid exchange, mouse spleen cells in vitro + NT 10000 Zhang et al. (1991)
MIA, Micronucleus test, Chinese hamster ovary CHO cells in vitro (+) (+) 175 Miller et al. (1995)
DIH, DNA oxidative damage, human promyelocytic HL-60 cells in vitro + NT 9.4 Kolachana et al. (1993)
SHL, Sister chromatid exchange, human lymphocytes in vitro (+) NT 94 Morimoto & Wolff

(1980)
SHL, Sister chromatid exchange, human lymphocytes in vitro + + 282 Morimoto et al. (1983)
SHL, Sister chromatid exchange, human lymphocytes in vitro + NT 0.5 Erexson et al. (1985)
SHL, Sister chromatid exchange, human lymphocytes in vitro – NT 188 Jansson et al. (1986)
DVA, DNA oxidative damage, B6C3F1 mouse bone-marrow cells in vivo – 75 ip × 1 Kolachana et al. (1993)
MVM, Micronucleus test, NMRI mouse bone-marrow cells in vivo – 188 ip × 2 d Gocke et al. (1981)
MVM, Micronucleus test, male CD-1 mouse bone-marrow cells in vivo – 250 po × 1 Gad-El Karim et al.

(1986)
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Table 1 (contd)

Test system Resultsa Doseb

(LED or HID)
Reference

Without
exogenous
metabolic
system

With
exogenous
metabolic
system

MVM, Micronucleus test, pregnant CD-1 mouse bone-marrow cells
  in vivo

+ 265 po × 1 Ciranni et al. (1988)

MVM, Micronucleus test, CD-1 mouse bone-marrow cells in vivo – 160 ip × 1 Barale et al. (1990)
MVM, Micronucleus resulting from chromosomal breakage, male CD-1
  mouse bone marrow in vivo

+e 160 ip × 3 d Chen & Eastmond
(1995a)

AVA, Aneuploidy, male CD-1 mouse bone marrow in vivo –e 160 ip × 3 d Chen & Eastmond
(1995a)

BID, Binding (covalent) to DNA, cultured rat Zymbal gland cells in vitro + NT 750 Reddy et al. (1990)
BVD, Binding (covalent) to DNA, female Sprague-Dawley rat Zymbal
  glands, liver, spleen and bone marrow in vivo

– 75 po × 4 d Reddy et al. (1990)

ICR, Inhibition of intercellular communication, V79 Chinese hamster cells – NT NG Chen et al. (1984)
ICR, Inhibition of intercellular communication, V79 Chinese hamster cells – NT 400 Malcolm et al. (1985)
ICR, Inhibition of intercellular communication, V79 Chinese hamster cells + NT 103 Vang et al. (1993)
Inhibition of topoisomerase I activity in vitro – NT 94 Chen & Eastmond

(1995b)
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Table 1 (contd)

Test system Resultsa Doseb

(LED or HID)
Reference

Without
exogenous
metabolic
system

With
exogenous
metabolic
system

Inhibition of topoisomerase II activity in vitro –f NT 47 Chen & Eastmond
(1995b)

a +, positive; (+), weakly positive; –, negative; NT, not tested; ?, inconclusive
b LED, lowest effective dose; HID, highest ineffective dose; in-vitro tests, μg/mL; in-vivo tests, mg/kg bw /day; NG, not given; inj, injection; ip,
intraperitoneal; po, oral
c 4.1% of this dose was ozonated before testing
d Vaginal douche
e The origin of the bone-marrow micronuclei was determined by a multicolour FISH assay using mouse major and satellite probes. Results showed
that micronuclei are a result of chromosome breakage and not loss of entire chromosome.
f Inhibitory effects were seen following bioactivation using a peroxidase/hydrogen peroxide system.



disinfectants and antiseptics. Occupational exposure to phenol has been reported during
its production and use, as well as in the use of phenolic resins in the wood products
industry. It has also been detected in automotive exhaust and tobacco smoke.

5.2 Human carcinogenicity data
A study of Finnish woodworkers found a high risk of lung cancer among those

exposed to phenol, although the excess risk was stronger in short-term than in long-term
workers. This result was not replicated in three other studies which reported results on
phenol and lung cancer, although two of them had very low statistical power. In the three
studies reporting associations with multiple cancer sites, a few elevated risks were
reported, but not at any cancer site in two or more studies. The pattern of results fails to
demonstrate a risk of cancer due to phenol exposure. 

5.3 Animal carcinogenicity data
Phenol was tested for carcinogenicity by oral administration in rats in one study and

in mice in one study. An increased incidence of leukaemia was reported in male rats
treated with the lower dose but not in high-dose rats or in mice or female rats. Phenol
was a promoter of mouse skin carcinogenesis in two-stage protocols.

5.4 Other relevant data
Phenol is well absorbed from the gastrointestinal tract and through the skin of

animals and humans. It is metabolized principally by conjugation (by sulfation and
glucuronidation) with a minor oxidation pathway leading to quinone-related reactive
intermediates which bind covalently to protein and are detoxified by conjugation with
glutathione. Topically applied phenol is a skin irritant and systemic toxicity is seen in
liver and kidney after topical and oral dosing. 

After in-vivo administration, phenol induced micronuclei in mice and chromosomal
aberrations in rats. It also caused oxidative DNA damage in mice, and it bound covalently
to rat DNA. In cultured mammalian cells, phenol caused mutations, sister chromatid
exchanges and micronuclei. It bound to cellular protein (but not to DNA) and inhibited
intercellular communication. It did not induce recessive lethal mutations in Drosophila
melanogaster and had only a weak effect in inducing segregation in Aspergillus nidulans.
Phenol was not mutagenic in bacteria.

5.5 Evaluation
There is inadequate evidence in humans for the carcinogenicity of phenol.
There is inadequate evidence in experimental animals for the carcinogenicity of

phenol.

Overall evaluation
Phenol is not classifiable as to its carcinogenicity to humans (Group 3).
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