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CHAPTER I1 

FUNDAMENTAL MEASURES OF DISEASE 
OCCURRENCE AND ASSOCIATION 

The occurrence of particular cancers varies remarkably according to a wide range 
of factors, including age, sex, calendar time, geography and ethnicity. Etiological studies 
attempt to explain such variation by relating disease occurrence to genetic markers, or 
to exposure to particular environmental agents, which may have a similar variation 
in time and space. The cancer epidemiologist studies how the disease depends on the 
constellation of risk factors acting on the population and uses this information to 
determine the best measures for prevention and control. This process requires a 
quantitative measure of exposure, as well as one of disease occurrence, and some 
method of associating the two. 

In this chapter we introduce the fundamental concepts of disease incidence rates, 
cumulative incidence, and risk. These will allow us to make a precise comparison of 
disease occurrence in different populations. Relative risk is defined and shown to have 
both empirical and logical advantages as a measure of disease/risk factor association, 
especially in connection with case-control studies. The close connection between cohort 
and case-control studies is emphasised throughout. 

2.1 Measures of disease occurrence 

Two measures of disease frequency, incidence and prevalence, are commonly intro- 
duced in textbooks on epidemiology. Point prevalence is the proportion of a defined 
population affected by the disease in question at a specified point in time. The numerator 
of the proportion comprises all those who have the disease at that instant, regardless 
of whether it was contracted recently or long ago. Thus, diseases of long duration tend 
to have a higher prevalence than short-term illnesses, even if the total numbers of 
affected individuals are about equal. 

Incidence refers to new cases of disease occurring among previously unaffected 
individuals. This is a more appropriate measure for etiological studies of cancer and 
other chronic illnesses, wherein one attempts to relate disease occurrence to genetic 
and environmental factors in a framework of causation. The duration of survival of 
patients with a given disease, and hence its prevalence, may be influenced by treat- 
ment and other factors which come into play after onset. Early reports of an associa- 
tion between the antigen HL-A2 and risk for acute leukaemia (Rogentine et al., 1972), 
for example, were later corrected when it was shown that the effect was o n  survival 
rather than- on incidence (Rogentine et al., 1973). Since causal factors necessarily 
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operate prior to diagnosis, a more sensitive indication of their effects is obtained by 
using incidence as the fundamental measure of disease. 

Rates, as opposed to frequencies, imply an element of time. The rate of occurrence 
of an event in a population is the number of events which occur during a specified 
time interval, divided by the total amount of observation time accumulated during that 
interval. For an incidence rate, the events are new cases of disease occurring among 
disease-free individuals. The denominator of the rate can be calculated by summing 
up the length of time during the specified interval that each member of the population 
was alive and under observation, without having developed the disease. It is usually 
expressed as the number of person-years of observation. Mortality rates, of course, 
refer to deaths occurring among those who remain alive. 

The annual incidence rate for a particular calendar year is the number of new cases 
diagnosed during the year, divided by an approximation of the person-years of observa- 
tion, such as the midyear population. If the disease is a common one, the denominator 
should refer more specifically to the subjects who are disease-free at midyear and hence 
at risk of disease development. This correction is rarely needed for cancer occurring at 
specific sites because the number of people alive with disease will be relatively small. 
One exception to this which illustrates the general principle is that of uterine cancer. 
In societies where a substantial fraction of older women have undergone a hysterectomy, 
the denominators used to calculate rates of cervical or endometrial cancer should 
include only women with an intact uterus, as the remainder are no longer at risk 
for the particular disease. This adjustment is particularly important when comparing 
cancer incidence among populations with different hysterectomy rates. 

In calculating incidence rates time is usually taken to be calendar time. An annual 
rate is thus based on all cases which occur between January 1 and December 31 of a 
given year. However, there are other ways of choosing the origin of the time-scale 
besides reference to a particular date on the calendar. 

Chronological age, for example, is simply elapsed time from birth. The fact that 
cancer incidence rates are routinely reported using age as the fundamental "time" 
variable reflects the marked variation of incidence with age which is found for most 
cancer sites. A typical practice is to use J = 18 age intervals, each having a constant 
length of five years (0-4, 5-9, . . . 80-84, 85-89), ignoring cases occurring at age 90 or 
over. Sometimes the first interval is chosen to be of length l1 = 1 (first year of life), 
the second of length 1, = 4 (ages 1-4) and the remainder to have a constant length 
of 5 years. Cases of disease are allocated to each interval according to the age at 
diagnosis. Since individual ages will change during the period of observation, the 
same person may contribute to the person-years denominators for several age intervals. 

Yet another possibility for the time variable is time on  study. In prospective epi- 
demiological investigations of industrial populations, for example, workers may enter 
the study after two or five years of continuous employment. Time is then measured as 
years elapsed since entry into the study. Survival rates for cancer and other diseases 
are presented in terms of elapsed months or years since diagnosis or definitive treat- 
ment. Here of course the endpoint is death for patients with disease. When using time 
on study as the fundamental time variable it is usually quite important to account also 
for the effects of age, whether one is calculating survival rates among cancer patients 
or cancer incidence rates among a cohort of exposed workers. 
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Fig. 2.1 Schematic illustration of age-specific incidence rates. (D = diagnosis of 
cancer; W = withdrawn, disease free.) 

Period 1 Period 2 Period 3 

Number of events 2 4 3 
Total observation time 59.7 93.5 43.6 
rate 0.034 0.04 3 0.069 

Figure 2.1 illustrates schematically the method of calculation of incidence rates for 
a study in which the time axis is divided into intervals: 45-54, 55-64 and 65-72 years 
inclusive. In this case time in fact means age. Subjects are arranged according to their 
age at entry to the study, which for simplicity has been taken to correspond to a 
birthday. The first subject, who entered the study on his 45th birthday and developed 
the disease (D) early in his 57th year, contributes 10 years of observation and no events 
to the 45-54 age period and 2.1 years and one event to the 55-64 age period. The 
third subject, who entered the study at age 47, was withdrawn (W) from observation 
during his 61st year (perhaps due to death from another disease) and hence contributes 
only to the denominator of the rate. 

The least ambiguous definition of a rate results from making the time intervals short. 
This is because populations themselves change over time, through births, deaths or 
migrations, so that the shorter the time interval, the more stable the denominator used 
in the rate calculations. Also, the rate itself may be changing during the interval. If the 
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change is rapid it makes sense to consider short intervals-so that information about the 
magnitude of the change is not lost; but if the intervals are too short only a few events 
will be observed in each one. The instability of the denominator must be balanced 
against statistical fluctuations in the numerator when deciding upon an appropriate 
time interval for calculation of a reasonably stable rate. 

If an infinite population were available, so that statistical stability was not in question, 
one could consider making the time intervals used for the rate calculation infinitesimal. 
As the length of each interval approaches zero, one obtains in the limit an instantaneo~rs 
rate i,(t) defined for each instant t of time. This concept has proved very useful in 
actuarial science, where, with the event in question being death, i.(t) represents the 
force of mortality. In the literature of reliability analysis, where the event is failure of 
some system component, L(t) is referred to as the hazard rate. When the endpoint is 
diagnosis of disease in a previously disease-free individual, we can refer to the instan- 
taneous incidence rate as the force of morbidity. 

The method of calculation of the estimated rate will depend upon the type of data 
available for analysis. It is perhaps simplest in .the case of a longitudinal follow-up study 
of a fixed population of individuals, for example: mice treated with some carcinogen 
who are followed from birth for appearance of tumours; cancer patients followed from 
time of initial treatment until relapse or death; or employees of a given industry or  
plant who are followed from date of employment until diagnosis of disease. A com- 
mon method of estimating incidence or mortality rates with such data is to divide the 
time axis into J intervals having lengths lj  and midpoints tj. Denote by nj the number 
of subjects out of the original population of no who are still under observation and at 
risk at tj. Let dj  be the number of events- (diagnoses or deaths) observed during the 
jth interval. Then the incidence at time tj may be estimated by 

that is; by the number of events observed per subject, per unit time in the population 
at  risk during the interval. Of course the denominator in equation (2.1) is only an 
approximation to the total observation time accumulated during the interval, which 
should be used if available. 

Example: An example of the calculation of incidence rates from follow-up studies is given. in Table 2.1 
which lists the days until appearance of skin tumours for a group of 50 albino mice treated with benzo[a]- 
pyrene (Bogovski & Day, 1977). For the purpose of illustration, the duration of the study has been divided 
into four periods of unequal length: 0-179 days, 180-299 days, 300-419 days and 420-549 days. These 
are rather wider than is generally desirable because of limited data. Nineteen of the animals survived the 
entire 550 days without developing skin tumours, and are listed together at the bottom of the table. The 
contribution of each animal to the number of tumours and total observation time for each period are 
shown. Thus, the mouse developing tumour at 377 days contributes 0 tumours and 180 days observation 
to Period 1, 0 tumours and 120 days observation to Period 2, and 1 tumour and 78 days observation to 
Period 3. 

Tumour incidence rates shown at the bottom of Table 2.1 were calculated in two ways. The first used 
the actual total observation time in each period, while the second used the approximation to this based 
on the number of animals alive at the midpoint (equation 2.1). Thus the incidence rate for Period 1 is 0 
as no tumours were observed. For Period 2, 7 tumours were seen during 5 415 mouse-days of observa- 
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tion for a rate of (7/5 415) x 1 000 = 1.293 per 1 0 0 0  mouse-days. The approximate rate is [7/(47 x 
120)) x 1 000 = 1.241 tumours per 1 000 mouse-days. The rate increases during the third period and 
then falls off. 

Except in rare instances, cancer incidence rates are not obtained by continuous 
observation of all members of a specified population. Since the production of stable 
rates for cancers at most individual sites requires a population of at least one million 
subjects, the logistic and financial problems of attempting to maintain a constant sur- 

Table 2.1 Calculation of incidence rate of skin tumours in mice treated with benzola Ipyrene" 

No. of Day of tumour No. of Contribution to rate calculation by period 
animals if appearance or animals at 
greater than day of death risk at start of Period 1 Period 2 Period 3 Period 4 
one without each day (0-179 days) (1 80-299 days) (30011 19 days) (420-549 days) 

tumour (*) N o . V a y s c  No. Days No. Days No. Days 

Totals 0 8 999 7 5 4 1 5  

No. animals at risk at midpoint 50 47 
Length of interval (days) 180 120 
Rated (per 1 000 mouse-days) 0 1.293 
Ratee (per 1 000 mouse-days) 0 1.241 

" From Bogovski and Day (1977) 
No. of tumours observed during period 

'Contribution to  obse~a t ion  time during period 
Rate calculated using total observation time in  denominator 
Rate calculated from equation (2.1) 
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veillance system are usually prohibitive. The information typically available to a cancer 
registry for calculation of rates includes the cancer cases, classified by sex, age and 
year of diagnosis, together with estimates of the population denominators obtained 
from the census department. How good the estimated denominators are depends on 
the frequency and accuracy of the census in each locality. 

Example: Table 2.2 illustrates the calculation of the incidence of acute lymphatic leukaemia occurring 
among males aged 0-14 years in Birmingham, UK,  during 1968-72 (Waterhouse e t  al., 1976). The num- 
bers of cases (dj), classified by age, and the number of persons (nj) in each age group in 1971, the mid- 
year of the observation period, are shown. In order to approximate the total person-years of observation, 
nj is multiplied by the length of the observation period, namely five years. While this is adequate if the 
population size and age distribution remain fairly stable, this procedure would not suffice for times of rapid 
change in population structure. A better approximation to the denominator for the 1-4  year age group, 
for example, would be to sum up the numbers of 1 - 4  year-olds in the population at mid-1968 plus 
those at mid-1 969 and so on to 1972. As is standard for cancer incidence reporting, the rates are expressed 
as numbers of cases per 100 000 person-years of observation. Table 2.3 presents the calculated rates for 
three additional sites and a larger number of age groups. 

Table 2.2 Average annual incidence rates of acute lymphatic leukaemia for males aged 0-14 Bir- 
mingham region (1968-72)" 

Age Interval No. of Population No. of years of Rateh 
(Years) length cases (1971) observation (per 100 000 

(1) (d) (n) (1 968-72) person-years) 

' From Waterhouse et al. (1976) 

Rate = d v 100 000 
n x 5 

2.2 Age- and time-specific incidence rates 

If the population has been under observation for several decades, cases of disease 
and person-years at risk may be classified usefully by both calendar year and age at 
diagnosis. The situation is illustrated in Figure 2.2. As each study subject is followed 
forward in time, he traces out a 45" trajectory in the age x time plane. Person-years 
of observation are allocated to the various age x time cells traversed by this path, and 
diagnoses of cancer or other events are assigned to the cell in which they occur. Thus, 
the upper left-hand cell in Figure 2.2, corresponding to ages 50-54 years and the 
194044 time period, contains 1 death and 6 person-years of observation for a rate 
of 1/6x 100 = 16.7 events per 100 person-years. An analysis of age-specific rates 
averaged over a certain calendar period would ignore the time axis in this diagram 
(as in Figure 2.1), while an analysis of time-specific rates would ignore the age classi- 
fication. Typical practice is to consider five-year intervals of age and time, so as to be 
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Fig. 2.2 Schematic diagram of a follow-up study with joint classification by age and 
year. (D = diagnosis of cancer; W = withdrawn, disease free.) 

able to study the reasonably fine details of the variation in rates; but this will depend 
on the amount of data available. 

A cross-sectional analysis results from fixing the calendar periods and examining the 
age-specific incidences. Alternatively, in a birth-cohort analysis, the same cancer 
cases and person-years are classified according to year of birth and age. This is pos- 
sible since any two of the three variables (1) year of birth, (2) age and (3) calendar 
year determine the third. In Figure 2.2, for example, the 1890-99 birth cohort would 
be represented by the diagonal column of 45" lines intersecting the vertical axis be- 
tween 40 and 50 years of age in 1940. 

Example: Figure 2.3 shows the age-specific incidence of breast cancer in Iceland during the three 
calendar periods 1910-29, 1930-49 and 1950-72 (Bjarnasson et al., 1974). While the three curves show 
a general increase in incidence with calendar time, they also have rather different shapes. There was a 
decline in incidence with age after 40 years during the 191 1-29 period, a fairly constant incidence during 
1930-49 and an increase in incidence with age during the latest calendar period. 

If the data are rearranged into birth cohorts, a more coherent picture emerges. Figure 2.4 shows 
the age incidence curves for three cohorts of Icelandic women born in 1840-79, 1880-1909 and 1910-49, 
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Fig. 2.3 Age-specific incidence of breast cancer in Iceland for the three time periods 
1911-29, 193049,  1950-72. From Bjarnasson et al. (1974). 

Age (years) 

respectively. Because the period of case ascertainment was limited to the years 1910-72, the age ranges 
covered by these three curves are different. However, their shapes are much more similar than for the 
cross-sectional analysis of Figure 2.3; there is a fairly constant distance between the three curves on the 
semi-logarithmic plot. Since the ratios of the age-specific rates for different cohorts are therefore nearly 
constant across the age span, one may conveniently summarize the inter-cohort differences in terms of 
ratios of rates. 

2.3 Cumulative incidence rates 

While the importance of calculating age- or time-specific rates using reasonably short 
intervals cannot be overemphasized, it is nevertheless often convenient to have a single 
synoptic figure to summarize the experience of a population over a longer time span 
or age interval. For example, in comparing cancer incidence rates between different 
countries, it is advisable to make one comparison for children aged G14, another for 
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Fig. 2.4 Age-specific incidence of breast cancer in Iceland for three birth cohorts, 1840- 
1879, 1880-1909, 1910-1 949. Adapted from Bjarnasson et al. (1974). 

Age (years) 

young adults aged 15-34, and a third for mature adults aged 35-69. Comparison of 
rates among the elderly may be inadvisable due to problems of differential diagnosis 
among many concurrent diseases. 

The usual method of combining such age-specific rates for comparison across different 
populations is that of direct standardization (Fleiss, 1973). The directly standardized 
(adjusted) rate consists of a weighted average of the age-specific rates for each study 
group, where the weights are chosen to be proportional to the age distribution of some 
external standard population. Hypothetical standard populations have been constructed 
for this purpose, which reflect approximately the age structure of World, European or 
African populations (Waterhouse et al., 1976); however, the choice between them 
often seems rather arbitrary. 

An alternative and even simpler summary measure is the cumulative incidence rate, 
obtained by summing up the annual age-specific incidences for each year in the 
defined age interval (Day, 1976). Thus the cumulative incidence rate between 0 and t 
years of age, inclusive, is 
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t 

A (t) = 2 l ( n )  
n=O 

where the l (n )  give the annual age-specific rates. In precise mathematical terms, the 
cumulative incidence rate between time 0 and t is expressed by an integral 

where l (u )  represents the instantaneous rate. The cumulative incidence between 15 
and 34 years, inclusive, would be obtained from yearly rates as 

In practice, age-specific rates may not be available for each individual year of life 
but rather, as in the previous example, for periods of varying length such as 5 or  
10  years. Then the age-specific rate l ( t i )  for the ith period is multiplied by its length 
li before summing: 

When calculating the cumulative rate from longitudinal data, we have, using (2.1), 

where the di are the deaths and the ni are the numbers at risk at the midpoint of each 
time interval. 

One reason for interest in the cumulative incidence rate is that it has a useful prob- 
abilistic interpretation. Let P(t) denote the net risk, or probability, that an individual 
will develop the disease of interest between time 0 and t. We assume for this definition 
that he remains at risk for the entire period, and is not subject to the competing risks 
of loss or death from other causes. The instantaneous incidence rate at time t then 
has a precise mathematical definition as the rate of increase in P(t), expressed relative 
to the proportion of the population still at risk (Elandt-Johnson, 1975). In symbols 

From this it follows that 

1 -P(t) = exp{-A (t)), 

or, using logarithms' rather than exponentials, 

A (t) = -log{l-P(t)). 

' log denotes the n a t ~ ~ r a l  logarithm. i .e . ,  to the base e .  which is used exclusively throughout the text. 
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These equations tell us that when the disease is rare or the time period short, so that 
the cumulative incidence or mortality is small, then the probability of disease occur- 
rence is well approximated by the cumulative incidence 

P(t) -A (t). 

Example: T o  illustrate the calculation of a cumulative rate, consider the age-specific rates of urinary tract 
tumours (excluding bladder) for Birmingham boys between 0 and 14  years of age (Table 2.3). These 
are almost entirely childhood tumours of the kidney, i.e., Wilms' tumours or  nephroblastomas. The 
period cumulative rate is calculated as (1 x 2.2) + (4 X 1.0) + (5 x 0.4) + (5 x 0.0) = 8.20 per 100 000 
population. Note that the first two age intervals have lengths of 1 and 4 years, respectively, while sub- 
sequent intervals are five years each. Table 2.4 shows the cumulative rates for all four tumours in Table 2.3 
using three age periods: 0-14, 15  -34 and 35-69. Also shown are the cumulative risks, i.e., probabilitiesj 
calculated from the rates according to  equation (2.4). With the excepfion of lung cancer, which has a 
cumulative rate approaching 0.1 for the 35-69 age group, the rates and risks agree extremely well. 

Table 2.3 Average annual incidence per 100 000 population by 
age group for Birmingham region, 1968-72 (males)" 

Age Tumour site 
(years) 

Urinary tract ~ t o ~ a c h  Lung Lymphatic 
(excl. bladder) leukaemia 

"From Waterhouse et al. (1976) 

Estimates of the cumulative rate are much more stable numerically than are estimates 
of the component age- or time-specific rates, since they are based on all the events 
which occur in the relevant time interval. This stability makes the cumulative rate the 
method of choice for reporting results of small studies. An estimate of A(t) for such 
studies may be obtained by applying equation (2.3), with the chosen intervals so fine 
that each event occupies its own separate interval. In other words, we simply sum up, 
for each event occurring before or at time t, the reciprocal of the number of subjects 
remaining at risk just prior to its occurrence. 
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Table 2.4 Cumulative rates and risks, in percent, of developing cancer be- 
tween the indicated ages: calculated from Table 2.3 

Age period 

(Years) 

Tumour site 

Urinary tract Stomach Lung Acute lymphatic 
(excl. bladder) leukaem~a 

0-1 4 Rate 0.0082 0.0 0.0 0.041 2 
Risk 0.0082 0.0 0.0 0.0412 

15-34 Rate 0.0045 0.0075 0.0245 0.01 15 
Risk 0.0045 0.0075 0.0245 0.01 15 

35-69 Rate 0.3355 1.8810 7.131 0 0.1355 
Risk 0.3349 1.8634 6.8827 0.1 355 

Example: Consider the data on murine skin tumours shown in Table 2.1. Since 49 animals remain at risk 
at the time of appearance of the first tumour, t = 187 days, the cumulative rate is estimated as A(187) = 

1/49 = 0.020. The estimate at t = 243 days is given by 

Note that, the contribution from the three tumours occurring at 243 days, when 47 animals remain at risk, 
is given by (1/47) + (1/46) + (1/45) rather than (3/47). This is consistent with the idea that the 
three tumours in fact occur at slightly different times. which are nevertheless too close together to be 
distinguished by the recording system. 

Only 20 animals remain at risk at the time of the last observed tumour, 549 days, the others having 
already died or developed tumours. Hence this event contributes 1/20 = 0.05 to the cumulative rate. 
bringing the total to 

The risk of developing a skin tumour in the first 550 days is thus estimated to be 1 - exp(-0.457) = 0.367 
for mice in this experiment who survive the entire study period. Figure 2.5 shows the cumulative incidence 
rate plotted as a function of days to tumour appearance. 

In summary, three closely related measures are available for expressing the occur- 
rence of disease in a population: the instantaneous incidence rate defined at each point 
in time; the cumulative incidence rate defined over an interval of time; and the probability 
o r  risk of disease, also defined over an interval of time. Our next task is to consider 
how exposure of the population to various risk factors may affect these same rates 
and risks of disease occurrence. 

2.4 Models of disease association 

The simplest types of risk factors are the binary or  "all or none" variety, as exempli- 
fied by the presence or  absence of a particular genetic marker. Environmental variables 
are usually more difficult to quantify since individual histories vary widely with respect 
to the onset, duration and intensity of exposure, and whether it was continuous or  
intermittent. Nevertheless it is often possible to make crude classifications into an 
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Fig. 2.5 Cumulative incidence of skin tumours in mice after treatment with benzo[a]- 
pyrene. From Bogovski and Day (1977). 
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exposed versus a non-exposed group, for example by comparing confirmed cigarette 
smokers with non-smokers, or  lifelong urban with lifelong rural residents. In order to 
introduce the concept of risk factor/disease association, we suppose here that the 
population has been divided into two such subgroups, one exposed to the risk factor 
in question and the other not exposed. 

As shown in the earlier examples, incidence rates may vary widely within the popula- 
tion according to such factors as age, sex and calendar year of observation. Thus 
whatever measure is used to compare incidence rates in the exposed versus non- 
exposed subgroups, this too is likely to vary by age, sex and time. What is clearly 
desired in this situation is a measure of association which is as stable as possible over 
the various subdivisions of the population; the more nearly constant it is, the greater 
is the justification for expressing the effect of exposure in a single summary number; 
the more it varies, the greater is the necessity to describe how the effect of exposure 
is modified by demographic or  other relevant factors on which information is available. 

Suppose that the population has been divided into I strata on the basis of age, sex, 
calendar period of observation, or  combinations of these and other features. Denote 
by ,Ili the incidence rate of disease in the ith stratum for the exposed subgroup and by 
,Ioi the rate for the non-exposed subgroup in that stratum. The first measure of associa- 
tion we consider is the excess risk of disease, defined as the difference between the 
stratum-specific incidences 

Since the measure is defined in terms of incidence rates, rather than risks, it would 
perhaps be more accurate to refer to it as the excess rate of disease. We follow con- 
vention by allowing the distinction between risks and rates to be blurred somewhat 
in discussing measures of association, except when it is critical to the point in question. 

The intuitive idea underlying this approach is that cases contributing to the "natural" 
or  background disease incidence rate in the ith stratum are due to the presence of 
general factors which operate on exposed and non-exposed individuals alike. Cases 
caused by exposure to the particular agent under investigation are represented in 
the excess risk bi (Rothman, 1976). If these two causes of disease, the general and 
the specific, were in some sense operating independently of each other, one might 
expect the number of excess cases of disease occurring per person-year of observation 
to reflect only the level of exposure and to be unrelated to the underlying natural risk. 
Thus the excess risk would be relatively constant from stratum to stratum, apart from 
random statistical fluctuations. 

The idea of a constant excess risk due to the particular exposure may be formally 
expressed by hypothesizing an additive model for the two dimensional sets of rates. 
With b representing the additive effect of exposure, the model states 

Unfortunately the concept of independence leading to this model is rather simplistic 
and breaks down when one considers plausible mechanisms for the disease process 
(Koopman, 1977). Suppose, for example, that a disease was caused in infancy or 
early childhood but took many years to develop. If the age distribution of the cases 
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produced by the specific exposure were the same as that of the spontaneous cases, the 
differences in age-specific rates would be greater for the ages in which the spontaneous 
incidence was higher, even if the general and specific exposures had operated inde- 
pendently of each other early on. Nonetheless (2.7) may be postulated ad hoc, and 
if it appears to correspond reasonably well to  the data, the estimate of b derived from 
the fitted model may be used as an overall measure of the effect of exposure. 

In technical statistical terms, this model states that there are no interactions between 
the additive effects of exposure and strata on incidence rates; exposure to the risk 
factor has the same effect on disease incidence rates in each of the population strata. 
More generally, the absence of interactions between two factors, A and B, means that 
the effects of Factor B on outcome do not depend on the levels of Factor A. It is 
important to recognize, however, that what we mean by the effect of a factor depends 
very much on the scale of measurement. Since the rates are expressed on a simple 
arithmetic scale in (2.7), we speak of additive effects. As the following example shows, 
whether o r  not there are statistical interactions in the data may depend on the scale 
on which the outcome or  response variable is measured. 

Fig. 2.6 Schematic illustration of concept of statistical interaction. 
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Example: Figure 2.6 illustrates the concept of interaction schematically. Conditions for no interaction 
hold when the two response curves are parallel (Panel I). Note that the definition of interaction is com- 
pletely symmetric; the diagram shows also that the effect of Factor A is independent of the level of 
Factor B. 

The non-parallel response curves shown in Panel 11 of the figure indicate that Factor B has a greater 
effect on outcome at level 1 of Factor A than it does at level O. I t  is apparent, however, that if the out- 
come variable were expressed on a different scale, for example a logarithmic or square root scale which 
tended to bring together the more extreme outcomes, the interaction could be made to disappear. In this 
sense we may speak of interactions which are "removable" by an appropriate choice of scale. 

The situation in Panels 111 and IV, characterized by the response curves either crossing over or having 
slopes of different signs, allows far no such remedy. In Panel 111 the effect of Factor B is to increase the 
response at one level of Factor A, and to decrease i t  at another, while in Panel 1V it is the sign of the A 
effect which changes with B. In the present context this would mean that exposure to the risk factor 
increased the rate of disease for one part of the population and decreased it  for another. No change of 
the outcome scale could alter this essential difference. 

While the excess risk is a useful measure in certain contexts, the bulk of this mono- 
graph deals with another measure of association, for reasons which will be clarified 
below. This is the relative risk of disease, defined as the ratio of the stratum-specific 
incidences: 

The assumed effect of exposure is to multiply the background rate ,Ioi by the quantity 
ri. Absence of interactions here leads to a multiplicative model for the rates such that, 
within the limits of statistical error, these may be expressed as the product of two 
terms, one representing the underlying natural disease incidence in the stratum and 
the other representing the relative risk r. More precisely, the model states 

where P=log(r). Alternatively, if the incidence rates are expressed on a logarithmic 
scale, it takes the form 

log ,Ili = log ,Ioi +p. 

Comparing this with equation (2.7) it is evident that they have precisely the same 
structure, except for the choice of scale for the outcome measure (incidence rate). In 
other words, the multiplicative model (2.8) is identical to an additive model in log 
rates. Such models are called log-linear. 

While excess and relative risk are defined here in terms of differences and ratios of 
stratum-specific incidence rates, analogous measures for the comparison of cumulative 
rates and risks may be deduced directly from equations (2.2) and (2.4). Suppose, for 
example, that the two sets of incidence rates have a (constant) difference of 10 cases 
per 100 000 person-years observation for each year of a particular 15-year time 
period. Then the difference between the cumulative rates over this same period will be 
1 0 x  15 = 150 cases per 100 000 population. On the other hand, if the two sets of 
rates have a (constant) ratio of 5 for each year, the ratio of the cumulative rates will 
also equal 5. 
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Because there is an exponential term in equation (2.4), the derived relationships 
between the probabilities, o r  risks, for this same time period are not so simple. Let 
Po(t) denote the net probability that a non-exposed person develops the disease during 
the time period from 0 to t years, and let Pl(t) denote the analogous quantity for the 
exposed population. If the corresponding incidence rates satisfy the multiplicative 
equation ill(u) = rilo(u) for all u between 0 and t, then 

This relationship is well approximated by that for the cumulative rates 

providing the disease is sufficiently rare, or the time interval sufficiently short, so that 
both risks and rates remain small. In general, the ratio of disease risks is slightly less 
extreme, i.e., closer to unity, than is the ratio of the corresponding rates. 

We have now introduced the two principal routes by which one may approach the 
statistical analysis of cancer incidence data: the additive model, where the fundamental 
measure of association is the excess risk, and the multiplicative model, where the 
effect of exposure is expressed in relative terms. In order to arrive at a choice between 
these two, or  indeed to decide upon any particular statistical model, several considera- 
tions are relevant. From a purely empirical viewpoint, the most important properties 
of a model are simplicity and goodness of fit to the observed data. The aim is to be 
able to describe the main features of the data as succinctly as possible. Clarity is 
enhanced by avoiding models with a large number of parameters which must be 
estimated from the data. If, in one type of model many interaction terms (see 
3 6.1) are required to fit the data adequately, whereas with another only a few are 
required, the latter would generally be preferred. 

The empirical properties of a model are not the only criteria. We also need to 
consider how the results of an analysis are to be interpreted and the meaning that 
will be attached to the estimated parameters. Excess and relative risks inform us about 
two quite different aspects of the association between risk factor and disease. Since 
relative risks for lung cancer among smokers versus non-smokers are generally at least 
five times those for coronary heart disease, one might be inclined to say that the lung 
cancer-smoking association is stronger, but this ignores the fact that the differences in 
rates are generally greater for heart disease. From a public health viewpoint the 
impact of smoking on mortality from heart disease may be more severe than its effect 
on lung cancer death rates. This fact has led some authors to advocate exclusive use 
of the additive measure (Berkson, 1958). Rothman (1976), as noted earlier, has 
argued that it is the most natural one for measuring interaction. 

In spite of these considerations, the relative risk has become the most frequently 
used measure for associating exposure with disease occurrence in cancer epidemiology, 
both because of its empirical behaviour and because of several logical properties it 
possesses. Empirically it provides a summary measure which often requires little quali- 
fication in terms of the population to which it refers. Logically it facilitates the evalua- 
tion of the extent to which an observed association is causal. The next two sections 
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explore these important properties of the relative risk in some detail. We merely point 
out here that, once having obtained an estimate of the relative risk, it is certainly 
possible to interpret that estimate in terms of excess risk provided one knows the 
disease incidence rates for unexposed individuals in the population to which it refers. 
For example, if the baseline disease incidence is 20 cases per year per 100 000 popula- 
tion and the relative risk is 9, this implies that the difference in rates between the 
exposed and unexposed is (9-1) x 20 = 160 cases per 100 000. In our opinion, the 
advantages of using the relative measure in the analysis far outweigh the disadvantage 
of having to perform this final step to acquire a measure of additive effect, if in fact 
that is what is wanted. No measure of association should be viewed blindly, but instead 
each should be interpreted using whatever information exists about the actual magnitude 
of the rates. 

2.5 Empirical behaviour of the relative risk 

Several examples from the literature of cancer epidemiology will illustrate that the 
relative risk provides a stable measure of association in a wide variety of human popu- 
lations. When there are differences in the (multiplicative) effect of exposure for 
different populations, it is often true that the levels of exposure are not the same, or  
that there are definite biological reasons for the discrepancies in the response to the 
same exposure. 

Temporal variation in age-specific incidence 

Table 2.5 shows the age-specific incidence rates for breast cancer in Iceland for two 
of the birth cohorts represented in Figure 2.4.. The ratios of these rates for the two 
cohorts are remarkably stable in the range 1.66-1.81, whereas the differences between 
them triple over the 50-year age span. Thus, while one can describe the relationship 
between birth cohort and incidence by saying that the age-specific rates for the later 
cohort are roughly 1.7 times those for the earlier one, no such simple summary is 
possible using the excess risk as a measure of association. Note that the ratio of the 
cumulative rates summarizes that for the age-specific ones, and that the cumulative risk 
ratio is only slightly less than .the rate ratio despite the 50-year age span. 

Table 2.5 Average annual incidence rates for breast cancer in Iceland, 1910-72, per 100 000 popula- 
tiona 

Year of Age (years) Cumulative (ages 40-89) 
birth 4 0 4 9  50-59 60-69 70-79 80-89 Rate (%) Risk (%) 

Difference 27.20 41.30' 57.80 59.00 91 .OO 2.77 2.63 
Ratio 1.70 1.78 1.81 1.73 1.66 1.73 1.70 

From ~jarnasson et al. (1974) 
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Geographical variation in age-specific incidence 

Figure 2.7 gives a plot of incidence rates against age for stomach cancer occurring 
in males in three countries (Waterhouse e t  al., 1976). In calculating these rates, 
six 5-year age intervals were used: 35-39, 40-4.4, 4 5 4 9 ,  50-54, 55-59, 60-64. Since 
a logarithmic scale is used for both axes, the plotted points appear to lie roughly on 
three parallel straight lines, each with a slope of about 5 or  6. This quantitative 
relationship, which is common for many epithelial tumours, may be expressed sym- 
bolically as follows. Denote by &(t) the average annual incidence rate for the ith area 
at age t, where t is taken to be the midpoint of the respective age interval: t = 37.5, 
42.5, etc. The fact that the log-log plots are parallel and linear means that approximately 

where we arbitrarily set PI = 0, thus using country 1 as a baseline for comparison. 
Raising each side of this equation to the power e, the relationship may also be expressed 
as 

Ai(t) = earitY, (2.10) 
where ri = exp(Pi). 

The values of the parameters in (2.9) which give the best "fit" to the observed 
data points, using a statistical technique known as 'weighted least squares regression' 
(Mosteller & Tukey, 1977, p. 346), are a = -18.79, PI = 0, P2 = 0.67, P3 = 1.99 and 
y = 5.49. Although the deviations of the plotted points about the fitted regression 
lines are slightly larger than would be expected from purely random fluctuations, the 
equations well describe the important features of the data. 

The parameters r (= exp P)  describe the relative positions of the age-incidence 
curves for the three countries. By considering ratios of incidence rates, the relative 
risk of stomach cancer in males in Japan versus those in Connecticut is 

while the relative risk in Birmingham versus that in Connecticut is 

exp @I2d1) = 1.9. 

The most important feature of the above relationships is that, to the extent that 
equations (2.9) or (2.10) hold, the relative risks between different areas d o  not vary 
with age. The chance that a Birmingham male of a given age contract stomach cancer 
during the next year is roughly twice that of his New England counterpart, and the 
same applies whether he is 45, 55 o r  65 years old. On the other hand, the absolute 
differences in the age-specific rates, i.e., J-,(t)A1(t), vary markedly with age. The 
percentage increase in incidence associated with each 10% increase in age is related 
to the parameter y through the equation 

and varies neither with age nor with area. 



a 

31 5 42.5 47.5 52.5 57.5 62.5 67.5 
Age (years) 
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As shown by Cook, Doll & Fellingham (1969), most epithelial tumours have age- 
incidence curves of a similar shape to .that of gastric cancer, differing between popula- 
tions only by a proportionality constant, i.e., relative risk. This is a good technical 
reason for choosing the ratio as a measure of association, since it permits the relation- 
ship between each pair of age-incidence curves to be quite accurately summarized in 
a single number. 

The two epithelial tumours which deviate most markedly from this pattern are those 
of the lung and the breast. For breast cancer we have already shown how irregularities 
in the cross-sectional age curves reflect a changing incidence by year of birth, and 
that a basic regular behaviour is seen when the data are considered on a cohort basis 
(Figures 2.3 and 2.4; Bjarnasson et al., 1974). A similar phenomenon has been noted 
for lung cancer, where a large part of the inter-cohort differences are presumably due 
to increasing exposure to tobacco and other exogenous agents (Doll, 197 1). 

Risk of cancer following irradiation 

Radiation induces tumours at a wide range of sites, and its carcinogenic effects have 
been studied in a variety of population groups, including the atomic bomb survivors 
in Japan and people treated by irradiation for various conditions. As discussed in the 
previous example, the "natural" incidence of most cancers varies widely with age at 
diagnosis. Here we examine how the carcinogenic effect of radiation varies according 
to age at exposure, i.e., the age of the individual when irradiated. 

In the mid 1950s, Court Brown and Doll (1965) identified over 14'000 individuals 
who had been treated by irradiation for ankylosing spondylitis between 1935 and 1954 
in the United Kingdom. The latest report analyses the mortality of this group up to 
1 June 1970 (Smith, 1979). In Figure 2.8 we show the change with age at exposure 
of the relative risk and-of the absolute risks for leukaemia and for other heavily irra- 
diated sites. For both types of malignancy, the relative risk varies little with age at 
exposure, whereas the absolute risk increases rapidly as age at treatment increases. 
The effect of the radiation is thus to multiply the incidence which would be expected 
among people in the general population of the same age by a factor of rounhlv 4.8 for 
leukaemia and 1.5 for other heavily irradiated sites. As a function of time since exposure, 
the relative risk for leukaemia appears to reach a peak after 3-5 years and then decline 
to zero, whereas the effect on heavily irradiated sites may persist for 20 or more years 
after exposure. 

An analysis of the mortality among atomic bomb survivors for the period 1950-74 
(Beebe, Kato & Land, 1977) demonstrates a similar uniformity of relative risk with age 
at exposure, and the corresponding sharp increase in absolute risk. There is, however, 
one major exception to the uniformity of the relative risk. For those aged less than 
ten years at exposure the relative risks are considerably higher than in subsequent age 
groups, which presumably indicates greater susceptibility among young children. 

Studies of breast cancer induced by radiation include those of atomic bomb survivors 
(MacGregor et al., 1977) and of women treated by irradiation for tuberchlosis (Boice & 
Monson, 1977) or a range of benign breast conditions (Shore et al., 1977). The 
relative risk appears higher among women exposed at younger ages and is particularly 
high among those exposed in the two years preceding menarche or during their first 
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Fig. 2.8 Ratio of observed to expected numbers of deaths and excess death rates from 
leukaemia and cancers of heavily irradiated sites according to age at first treat- 
ment with X-rays for ankylosing spondylitis. From Smith (1979). 

Age at first treatment (years) 

- / ,---- cancers of heavily 
irradiated si tes(H.1.S.) 

Age at first treatment (years) 

No.of { 7 8 8 4 leuk. 

deaths 29 80 6s 43 H.I.S. 

pregnancy (Boice & Stone, 1979). The proliferation of breast tissue during menarche or 
first pregnancy would suggest an increased susceptibility to carcinogenic hazards. 

The relative risk thus seems to provide a fairly uniform measure of the carcinogenic 
effect of radiation as a function of age at exposure, except where a difference in the 
relative risk probably reflects differences in tissue susceptibility. 
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Lung cancer and cigarette smoking 

Smoking and irradiation are perhaps the most extensively studied of all carcinogenic 
exposures. Cigarette smoking is related to tumours at a number of sites including the 
respiratory tract, the oral cavity and oesophagus, and the bladder and pancreas. The 
relationship with cancer of the lung has been the most extensively studied, and the 
results of several large prospective studies have quantified the association in some 
detail. 

Table 2.6 presents the change in incidence with age among continuing smokers and 
among non-smokers, as given by Doll (1971), the data for consecutive five-year age 
groups being averaged. The excess risk increases sharply with age, whereas the relative 
risk, although increasing, changes only slowly. 

Table 2.6 Incidence of bronchial carcinoma among non-smokers and con- 
tinuing smokers, per 100 000 person-yearsa 

Age at risk Non-smokers Smokers Relative risk Excess risk 
(Years) 

"From Doll (1971) 
Likely to be unreliable due to under-reporting 

A more appropriate way of looking at the risk of lung cancer associated with ciga- 
rette smoking, however, is in terms of duration of smoking rather than simply age. 
Figure 2.9 presents the incidence of lung cancer for non-smokers as a function of age, 
and for smokers as a function of both age and duration of smoking. The increase in 
relative risk with age is clear, but more striking is the parallellism of the lines for non- 
smokers and for smokers when incidence is related to duration of smoking. Since for 
non-smokers we might regard exposure as lifelong, one could consider that the two 
time scales both refer to duration of exposure. The figure thus displays a constant 
relative difference in incidence when the more relevant time scales are used. 

Breast cancer and age at first birth 

The large international study by MacMahon and associates (MacMahon et al., 1970) 
showed that age at first birth is the major feature of a woman's reproductive life which 
influences risk for breast cancer. Table 2.7, taken from their work, shows the uniformity 
of the relationship between risk and age at first birth over all centres in a collaborative 
study. Furthermore (not shown in the table), these relative risks change little with 
age at diagnosis. The populations included in the study showed a wide range of inci- 
dence levels, and had age-incidence curves of quite different shapes. The ability of the 
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Fig. 2.9 Age-specific mortality rates from lung cancer for smokers and non-smokers. 
From Doll (1971). ( a  - l = cigarette smokers by duration of smoking; 
0-0 = cigarette smokers by age; x-x = non-smokers by age.) 

20 30 40 50 60 7080 

Years 

Table 2.7 Estimates of relative risk of breast cancer, by age at first birthavb 

Centre Nulliparous Parous, age at first birth (years): 
t 2 0  20-24 2 S 2 9  30-34 35 t  

Boston 100 32 55 76 90 117 
Glamorgan 100 3 8 49 67 73 1 24 
At hens 100 51 71 79 1 06 127 
Slovenia 100 81 74 94 112 118 
Sao Paulo 100 49 65 94 84 175 
Taipei 100 54 45 37 89 106 
Tokyo 100 26 49 78 100 138 

All centres 100 50 60 78 94 122 
- 

a From MacMahon et al. (1970) 
Estimated risk relative to a risk of 100 for the nulliparous; adjusted for age at diagnosis 
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relative risk to summarize the relationships among so wide an array of incidence pat- 
terns indicates that, at least in this situation, it reflects a fundamental feature of the 
disease. The absolute differences in age-specific incidence rates by age at first birth 
vary widely between the populations. 

The failure of previous work on the influence of reproductive factors on risk of 
breast cancer to identify the basic importance of age at first birth was probably due to 
inappropriate measures of disease association. As MacMahon et al. concluded, "Previous 
workers seem not to have considered the differences of sufficient importance to 
warrant detailed exploration. An apparent lack of interest in the relationship may have 
resulted from failure to realize the magnitude of the differences in relative risk that 
underlie it. This lack of recognition of the strength of the relationship can be attributed 
primarily to analyses using summary statistics such as means . . .". 

2.6 Effects of combined exposures 

The previous examples have illustrated the extent to which the relative risk remains 
constant over different age strata, or among different population groups. We shall 
now examine the extent to which the relative risk associated with one risk factor varies 
with changing exposure to a second risk factor, and we shall see that in this situation 
one also frequently observes relative uniformity. Consider the simplest situation, with 
two dichotomous variables A and B. There are four incidence rates, denoted LAB, LA,  
lB and lo according to whether an individual is exposed to both, one or neither of 
the factors. The three relative risks, expressed using lo as the baseline incidence, are 
rAB = lAB/AO, rA = lA/10 and rB = AB/AO, respectively. 

Among those exposed to B, the relative increase in risk incurred by also being 
exposed to A is given by lAB/ lB  = rAB/rB. If the relative risk associated with exposure 
to A is the same, whether or not there is exposure to B, we say that the effects of the 
two factors are independent or do not interact (Figure 2.6). In this case rAB/rB = rA, 
from which TAB = rArB. Thus, the independence of relative risks for two or more 
exposures implies a multiplicative combination for the joint effect. But, if the two risk 
factors each have additive rather than multiplicative effects on incidence, then similar 
calculations show that the relative risk for the joint exposure under the no interaction 
assumption is rAB = rA + rB-1. 

The uniformity of relative risk for the exposures considered in the earlier examples 
can also be interpreted as a multiplicative combination of effects. Since the spontaneous 
incidence of leukaemia increases with age and radiation affects the spontaneous inci- 
dence proportionately, the joint effect is simply the product of the spontaneous rate 
and the radiation risk. Women in the United States have an incidence of breast cancer 
about six times higher than that of Japanese women. The joint action of the factor 
responsible for the elevated risk among United States women, whatever it may be, and 
age at first birth is clearly multiplicative. 

Example: As an example of the joint effects of two risk factors, Table 2.8 summarizes results from a 
case-control study of oral cancer as related to alcohol and tobacco consumption (Rothman & Keller, 
1972). The 483 cases and 492 controls were cross-classified according to four levels of consumption of 
each risk factor and also two age categories, under and over 60 years of age. Using methods which will be 
introduced in Chapter 4, age-adjusted relative risks of oral cancer were calculated for each of the 16 
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Table 2.8 Joint effect of alcohol and tobacco consumption on risk for oral 

Alcohol Tobacco (cigarette equiv.1day) Alcohol risk 
(ozlday) 0 1-19 20-39 40+ (adjusted for tobacco) 

0 1 .O 1.6 1.6 3.4 1 .O 
0.14.3  1.7 1.9 3.3 3.4 1.8 
0.4-1.5 1.9 4.9 4.9 8.2 2.9 
1.6+ 2.3 4.8 10.0 15.6 4.2 

Tobacco risk 1 .O 1.4 2.4 4.2 
(adjusted for 
alcohol) 

"From Rothman and Keller (1972) 
Relative risks adjusted for age at diagnosis 

alcohol/tobacco categories shown. These may be denoted rij, where i refers to tobacco level and j to 
alcohol level. Since the category of lowest exposure to both factors is used as a baseline for comparison 
with other groups, r,, = 1.0. 

The multiplicative hypothesis in this framework takes the form 

whereby the relative risk for a given category of tobacco/alcohol consumption is obtained as the product 
of a relative risk for the tobacco level times that for the alcohol level. Again, this expresses the idea that 
relative risks for different tobacco levels do not vary according to alcohol consumption, and vice versa. 
Of course the rij presented in Table 2.8 do not satisfy this requirement exactly. Procedures are presented 
in Chapter 6 for finding estimates of ril and rlj which yield the best fit to the observed data under the 
model. These estimates, shown in the margins of Table 2.8, were used to calculate the expected number 
of cases in Table 2.9. Comparison of the observed numbers of cases with those expected under the model 
shows that agreement between the model and the data is about as good as can be expected, given the 
errors inherent in random sampling. 

Table 2.9 Observed number of cases and controls by smoking and drinking category, and the number 
expected under the multiplicative modela 

Alcohol Tobacco. (cigarette equiv.1day) 
(ozlday) 0 1-19 2 0 3 9  40 + 

Cases Controls Expected Cases Controls Expected ' Cases Controls Expected Cases Controls Expected 
cases cases cases cases 

a From Rothman and Keller (1972) 

The multiplicative effects of alcohol and tobacco have been demonstrated by Wynder 
and Bross (1961) for cancer of the oesophagus, and for cancer of the mouth in an 
earlier publication (Wynder, Bross & Feldman, 1957). 

Example: A second example concerns the joint effect of asbestos exposure and cigarette smoking on 
risk for bronchogenic carcinoma. Selikoff and Hammond (1978) followed 17 800 asbestos insulation 
workers prospectively from 1 January 1967 to 1 January 1977. Smoking histories were obtained for the 
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majority of the cohort. Risk estimates for smoking obtained from the American Cancer Society pro- 
spective study (Hammond, 1966) were applied to generate expected numbers of deaths from lung 
cancer among the insulation workers. Table 2.10 gives the observed and expected numbers of lung cancer 
deaths among continuing smokers and among non-smokers. 

Since the asbestos-related risks in the two groups are about equal, it follows that the risk for cigarette 
smoking asbestos insulation workers, compared with non-smokers not exposed to asbestos, is the product 
of their smoking risk, from which the expected numbers were derived, and their asbestos risk. Similar 
results have been reported by Berry, Newhouse and Turok (1972) and reviewed by Saracci (1977). 

Table 2.10 The joint effect of cigarette smoking and asbestos 
exposure on risk for lung cancer. Lung cancer mortality among 
17 800 asbestos insulation workers, 1967-77" 

Lung cancer deaths 

Observed Expectedb Relative risk 

Non-smokers 8 1.82 4.40 
Smo kers 228 39.7 5.74 

"From Hammond, Selikoff and Seidman (1979) 
Based on age-specific general population rates for men smoking equivalent numbers of 

cigarettes 

The epidemiology of cancer thus provides empirical reasons for choosing relative 
risk as the natural measure of association of cancer and exposure. On many occasions 
similar exposures lead to similar relative risks, almost independent of the population 
group exposed. When appreciable differences in relative risk are observed, these often 
can be expected to reflect real differences in susceptibility or exposure which may not 
be immediately apparent. As an interesting contrast, Table 2.11 gives data for ischaemic 
heart disease (Doll & Peto, 1976), where the biological processes are presumably 
different. The relative risks change markedly with age, and a different measure of 
association might be more appropriate. 

Table 2.1 1 Smoking and risk for ischaemic heart disease, by agea 

Annual death rate per 100 000 menb (no. of deaths in parentheses) 

Age Non-smokers Current smokers, smoking cigarettes only (no./day) 
(years) 

R R 1-14 R R 15-24 R R 25+ RR 

" From Doll and Peto (1 976) 
Indirectly standardized for age to make the four entries in any one line comparable 
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2.7 Logical properties of the relative risk 

In addition to an empirical justification for its use, the relative risk has some pro- 
perties of a logical nature which are useful for appraising the extent to which the 
observed association may be explained by the presence of another agent, or may be 
specific to a particular disease entity. Cornfield et al. (1959) gave a precise statement 
and formal proof of these properties (see also 5 2.9). 

"If an agent, A, with no causal effect upon the risk of disease, nevertheless, because 
of a positive correlation with some other causal agent, B, shows an apparent risk, r, 
for those exposed to A, relative to those not so exposed, then the prevalence of B, 
among those exposed to A, relative to the prevalence among those not so exposed, 
must be greater than r." 

Thus, in order that the smoking-lung cancer association be explained by a tendency 
for people with a cancer-causing genotype to smoke, the putative genetic trait must 
carry a risk of at least ninefold in addition to being at least nine times more prevalent 
among smokers. Spurious associations due to confounding are always weaker than the 
underlying genuine associations when strength of association is measured by relative 
risk. 

Cornfield et al. also note that the relative measure is a sensitive indicator of the speci- 
ficity of the association with a particular disease entity: 

"If a causal agent A increases the risk for disease I and has no effect on the risk for 
disease 11, then the relative risk of developing disease I, alone, is greater than the 
relative risk of developing disease I and I1 combined, while the absolute measure is 
unaffected." 

Thus, if the agent in question increases the risk of a certain histological type of cancer 
at a given site (e.g., "epidermoid" as opposed to other types of lung cancer) but has 
little or no effect on other types, a greater relative risk is obtained when the calculation 
is restricted to the particular histological type than when all cancers at that site are 
considered. But, it makes no difference to the excess risk if the other histological 
types are included or not. 

Finally, from the point of view of case-control studies, there is one compelling reason 
for adopting the relative risk as the primary measure of association even in the absence 
of other considerations. This is simply that, as shown in the next section, the relative 
risk is in principle directly estimable from data collected in a case-control study. Addi- 
tional information, namely knowledge of actual incidence rates for at least one of the 
exposed or non-exposed populations, is required to estimate the excess risk. 

2.8 Estimation of the relative risk from case-control studies - basic concepts 

A full understanding of how .the data from a case-control study permit estimation 
of the relative risk requires careful description of how cases and controls are sampled 
from the population. The studies whose analysis is considered in this monograph involve 
the ascertainment of new (incident) cases which occur in a defined study period. 
Ideally these cases are identified through a cancer registry or some other system which 
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covers a well-defined population; with hospital-based studies the referent population, 
consisting of all those "served" by the given hospital, may be more imaginary than 
real. Most commonly the sample will contain all new cases arising during the study 
period, or at least all those successfully interviewed. Otherwise they are assumed to be 
a random sample of the actual cases. 

The controls in a case-control study are assumed to represent a random sample of 
the subjects who are disease-free, though otherwise at risk. The control sample may 
be stratified, for example on the basis of age and sex, so that it has roughly the same 
age and sex distribution as the cases. Or, the controls may be individually matched to 
cases on the basis of family membership, residence or other characteristics. Under 
such circumstances the controls are assumed to constitute a random sample from 
within each of the subpopulations formed by the stratification or matching factors. 

If infinite resources were available, one would ideally conduct a prospective investiga- 
tion of the entire population. Subjects would be classified at the beginning of the study 
period on the basis of exposure to the risk factor, and at the end of the period according 
to whether or not they had developed the disease. Suppose that a proportion p of the 
individuals at risk in a particular stratum were exposed at the beginning of the study. 
Denote by Pi = Pl(t) the probability that an exposed person in this stratum develops 
the disease during a study period of length t, and by Po = Po(t) the analogous quantity 
for the unexposed. Let Q = 1-P and q = 1-p. Then the expected proportions of indi- 
viduals who fall into each of the resulting four categories or cells.may be represented 
thus: 

Exposed Unexposed Total 

Diseased 

Total P ‘I 1 

If the study period is reasonably short, which means of the order of a year or two 
for most cancers and other chronic disease, the probabilities Pi and Po will be quite 
small. According to 5 2.4, their ratio will thus be a good approximation to the ratio r 
of stratum-specific incidence rates averaged over the study period. In other words, 
we have as an approximation r = ll/lo-Pl/Po. Since Q1 =Qo= 1 under these same 
circumstances, it follows that Pl/Ql ==PI and Po/Qo=Po, and thus that the relative 
risk is also well approximated by the odds ratio w of the disease probabilities: 

The term "odds ratio" derives from the fact that $J may also be written in the form 
(Pl/Ql)+(Po/Qo), i.e., as the ratio of the "odds" of disease occurrence in the 
exposed and non-exposed sub-groups. 
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Example: Suppose the average annual incidence rates for the exposed and non-exposed substrata are 
A ,  = 0.02 and A, = 0.01 and that the study lasts three years. Then the cumulative rates are A ,  = 0.06 
and A. = 0.03, while the corresponding risks (2.4) are PI = 1 - exp(-0.06) = 0.05824 and Po = 1 - 
exp(-0.03) = 0.02956. It follows that the odds ratio is 

as compared with a relative risk r = l1/AO of exactly 2. 

As Cornfield (195 1) observed, the approximation (2.13) provides the critical link 
between prospective and retrospective (case-control) studies vis-a-vis estimation of 
the relative risk. If the entire population were kept under observation for the duration 
of the study, separate estimates would be available for each of the quantities p, PI and 
Po, so that one could determine all the probabilities shown in (2.12). If we were to 
take samples of exposed and unexposed individuals at the beginning. of the study and 
follow them up, this would permit estimation of PI and Po and thus of both excess 
and relative risks, but not of p; of course such samples would have to be rather large 
in order to permit sufficient cases to be observed to obtain good estimates. With the 
case-control approach, on the other hand, sampling is done according to disease rather 
than exposure status. This ensures that a reasonably large number of diseased persons 
will be included in the study. From such samples of cases and controls one may estimate 
the exposure probabilities given disease status, namely: 

p1 = pr(exposed 1 case) = PPI and 
pP1+ qpo 

po = pr(exposed 1 control) = PQI 
pQl+ qQo 

It immediately follows that the odds ratio calculated from the exposure probabilities 
is identical to the odds ratio of the disease probabilities, or  in symbols: 

Consequently the ratio of disease incidences, as approximated by the odds ratio of the 
corresponding risks, can be directly estimated from a case-control study even though the 
latter provides no  information ahout the absolute magnitude of the incidence rates 
in the exposed and non-exposed subgroups. 

Example: As an illustration of this phenomenon, suppose the incidence rates from the previous example 
applied to a population of 10 000 persons, of whom 30% were exposed to the risk factor. If the entire 
population were kept under observation for the study period one would expect to find P, x 3 000 = 175 
exposed cases and Po x 7 000 = 207 non-exposed cases. The data could thus be summarized: 

Exposed Unexposed Total 

Total 3 000 7 000 10 000 
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If, instead of making a complete enumeration of the population, one carried out a case-control study in 
which all 382 cases of disease were ascertained along with a 10% sample of controls, the expected distri- 
bution of the study data would be: 

Exposed Unexposed Total 

Diseased 

Disease-free 

From this we calculate the exposure odds ratio for the case-control sample: 

which differs from the previous figure of yp  = 2.03 only because the expected values in the table have 
been rounded to whole numbers. 

One fundamental sampling requirement to which attention is drawn is that thesampling 
fractions for cases and controls must be the same regardless of exposure category. If 
exposed subjects are more or less likely to be included in the sample than are the 
unexposed, serious bias can result. In the previous example, if only 5 % of the unexposed 
control population had been sampled rather than 10% as for the exposed, the computed 
odds ratio would be 1.02, indicating no apparent effect. This source of bias is especially 
serious when using "hospital-based" controls, since exposure may be related to other 
diagnoses besides those under investigation. 

In studies for which the period of case acquisition is longer than a year or two, several 
potential problems arise. First, the odds ratio approximation to the relative risk does 
not hold when the cumulative rates and risks on which it is based are large. Second, 
the classification of cases and controls according to variables which change over time 
becomes confused; it is not immediately clear, for example, whether a subject's age 
should be recorded at the beginning of the study, at the end, or at the time of diagnosis 
and interview. And finally, whereas the preceding development implicitly assumed 
that the controls remained disease-free for the duration of the study, in practice con- 
trols are usually sampled continuously throughout the study period, along with the 
cases. This raises the possibility that someone interviewed as a control during the first 
year of the study will turn up as a case later on; thus, we must decide whether such a 
person is to be treated in the analysis as a case, a control, both or neither. 

In fact the resolution of these queries and potential difficulties is surprisingly easy. 
W e  simply divide up the time period of the study into a number of shorter intervals 
and use time interval as one of the bases for stratification of the population. Yearly 
intervals are probably more than satisfactory in most instances. Suppose, for example, 
that the population at risk was initially divided into six 5-year age groups from 35-39 
through to 60-64 years. With a 5-year study there would thus be 30 = 5 x 6 age-time 
strata. Most individuals would move from one age group to the next at some point 
during the study, unless its start happened to correspond exactly with their 35th, 40th 
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or similar birthday. A separate estimate of the relative risk would be obtained for each 
stratum by computing the odds ratio of the exposure probability of cases and controls 
in the usual fashion. If the 30 estimates appeared reasonably stable with respect to age 
and time, they would be combined into a single summary of relative risk for the entire 
population. Otherwise variations in the relative risk could be modelled as a function 
of age and/or time in the statistical analysis. 

Partition of the study period into several time intervals resolves each of the problems 
mentioned above. First, by making the intervals sufficiently short, the cumulative 
incidence rates over each one are guaranteed to be so small as to be virtually indistin- 
guishable from the cumulative risks; this means that the odds ratio approximation to 
each relative risk will involve negligible error. Second, the fact that ages are changing 
throughout the study period is explicitly accounted for in that each case and control 
is assigned to the appropriate age category in which he finds himself at the time of 
ascertainment; in practice this means that ages are recorded at the time of interview, 
as is commonly done anyway. Finally, while such an event would usually be rare, a 
person could be included as both a case and a control; having been sampled as a 
disease-free control at one time, he might develop the disease later on and thus be 
re-interviewed as a case. Exclusion of either of his interview records from the statistical 
analysis would, technically speaking, bias the result. 

It is of interest to consider the limiting form of such a partition of the study period 
in which the time intervals become arbitrarily small. The effect is that each case is 
matched with one or more controls who are disease-free at the precise moment that 
the case is diagnosed. Such controls are usually chosen to be of the same age and sex 
and may have other features in common as well. This approach, which in fact accords 
reasonably well with the actual conduct of many studies, avoids completely the odds 
ratio approximation to the relative risk since the relevant time periods are infinitesimally 
small. It implies, however, that the resultant data are analysed so as to preserve intact 
the matched sets of case and control(s). Prentice and Breslow (1978) present a more 
mathematical account of this idea, while in Chapters 5 and 7 we discuss methods of 
analysis appropriate for matched data collected in this fashion [see also Liddell et al. 
(1 977)l. 

In the sequel we will use repeatedly and without further comment the odds ratio 
approximation to the relative risk, assuming that the conditions for its validity as out- 
lined here have been met for the data being analysed. 

2.9 Attributable risk and related measures 

Case-control studies provide direct estimates of the relative increase in incidence 
associated with an exposure. They may also yield unbiased estimates of the distribution 
of exposure levels in the population, provided of course that the control samples have 
been drawn from the population at risk according to a well-defined sampling scheme, 
rather than on the basis of matching to individual cases. By combining the information 
about the distribution of exposures with the estimates of relative risk, one can determine 
the degree to which cases of disease occurring in the population are explained by the 
exposure. Likewise, knowledge of the differences in the distribution of exposure among 
two or more populations permits calculation of the extent to which differences in risk 
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between them are due to confounding by the exposure. In this section we explore 
briefly a few such auxiliary measures derived from the relative risk. While these are 
useful in interpreting the results of a study, questions on the statistical significance of 
.the results should be directed primarily towards the relative risk. 

In order to simplify the discussion, let us ignore the possible agelsexltime variation 
in incidence rates. Suppose that ,Io and ,I1 denote the overall incidence rates for the 
non-exposed and exposed subgroups and let r=,Il/,Io represent the relative risk. Then 
the proportion of the cases of disease occurring among exposed persons which is in 
excess in comparison with the non-exposed is 

a quantity which has been labelled by Cole & MacMahon (1971) as the attributable 
risk for. e x p ~ s e d ' ~ e r s o n s .  If p denotes the proportion of persons in the population 
exposed to the risk factor, then the total disease incidence is 

The excess among the exposed is given by p(,Il-,Io), from which one arrives at the 
expression 

for the population attributable risk (AR), first described by Levin (1953). This repre- 
sents the proportion of cases occurring in the total population which can be explained 
by the risk factor. Walter (1975) has investigated some of the statistical properties of 
this measure. 

Example: To illustrate these calculations. Table 2.12 gives the distribution of cases and controls by 
amount smoked for the Rothman and Keller (1972) data on oral cancer considered in 5 2.6. Assuming 
that the controls are representative, 81 % of the population at risk smokes. Weighting the relative risks 
for each smoking category by the proportion of smokers in that category, we find an overall relative risk 
of 4.1 for smokers versus non-smokers, the same figure obtained from simply collapsing the smoking 

Table 2.12 Distribution of oral cancer cases and controls according to number of cigarettes (or 
equivalent) smoked per daya 

Smoking category None Light Medium Heavy Total 
1-19 20-39 40+ 

Cases 
Controls 

RR 1 .O 2.2 4.1 6.9 - 

% cases explained 
by smoking 0 55 76 88 72 
Oh distribution (controls) 19.0 21.7 44.1 15.2 100.0 

- - - - -- 

a From Rothrnan and Keller (1972) 
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categories into one and calculating a single odds ratio from the resulting 2 x 2 table. The population 
attributable risk is calculated from (2.15) as 

Alternatively we could reason that 55 % of the cancers occurring among light smokers, 76% of those among 
medium smokers and 86% of those among heavy smokers were in excess as compared with non-smokers. 
After consideration of the percentage of smokers in each category, this leads to precisely the same evalua- 
tion of the overall percentage of cases in  the population attributable to smoking, namely 72%. 

An important fact illustrated by this example is that the attributable risk does not 
depend on how the various exposure categories are defined or grouped together, as 
long as there is an unambiguous baseline category. Unfortunately, such a category does 
not exist for continuous variables such as body weight, serum cholesterol, dietary fat 
or  fibre and degree of air pollution. For these the selection of a "lowest level" of 
exposure is essentially arbitrary. Yet it may have a marked effect on the attributable 
risk since the more extreme one makes the definition of the baseline level, the greater 
is the percentage of cases which will be said to be attributable to the higher levels of 
exposure. 

If two factors are both associated with the same disease, and if their combined effect 
on risk is multiplicative or at least more than additive, the sum of the attributable risks 
associated with each of them individually may exceed 100%. The obvious interpretation 
of such a result is that both factors are required to produce the disease in a large 
proportion of the cases, which would presumably not occur if either one was absent. 
This phenomenon calls into question the practice of attributing a certain fraction of 
the cancers occurring at each site to individual environmental agents. When the disease 
has a multifactorial etiology, such an attribution can be rather arbitrary. 

Example: Table 2.13 gives a hypothetical example of a multiplicative relationship between two risk 
factors which, for illustrative purposes, can be considered to be cigarette smoking and asbestos exposure 
among factory workers. Note the positive association between the two, such that persons exposed to 
asbestos are more likely to be smokers and vice versa. The lung cancer risk attributable to smoking is 
calculated to be 5/8 = 62.5% in the low asbestos areas, 20/27 = 74.1% in the high exposure areas. The 
overall attributable risk is then the average of these two figures weighted by the number of cases in the 
low and high asbestos areas, respectively, a figure which will vary with the distribution of asbestos exposure. 
In the present instance, the proportion of cases in the low asbestos area is given by 

Table 2.13 Joint distribution of a hypothetical population 
according to two risk factors, A and B, with relative risks of I 

lung cancer in parentheses 

Factor B Factor A 
(e.g., asbestos (e.g., smoking) 
exposures) Unexposed Exposed Total 

Low 
High 
Total 



76 BRESLOW & DAY 

and the overall attributable risk is thus equal to 

Similarly, the attributable risk for asbestos varies from 54.5% among non-smokers to 61.5% among 
smokers and is 60.6% overall. These hypothetical figures tell us that it might be possible to "eliminate" 
70.6% of cancers by eliminating smoking, 59.4% by reducing all asbestos exposures to low levels, and 
88.8% by altering both factors simultaneously. However, all these estimates depend on the degree of 
association between the two risk factors. Thus it is desirable to consider each of the smoking categories 
separately in determining the incidence attributable to asbestos, and vice versa. 

Similar calculations may be performed to indicate how much of the relative difference 
in incidence between two populations is explained by the difference in patterns of 
exposure to a particular risk factor. Suppose there are K levels of exposure besides the 
non-exposed category and let ro = 1, rl, . . ., r~ denote the associated relative risks, 
which are assumed to apply equally to the two populations; let plk be the proportion 
of the first population exposed to level k of the risk factor, and, similarly, PZk for the 
second population. The crude ratio R of overall incidence rates is then 

where Ale and are the incidence rates for the non-exposed in populations 1 and 2, 
and the summation is over all values of k from 0 to K. This ratio may be decomposed 
into the product of two terms, the ratio of rates Ro = 120/110 which would persist if the 
two populations had the same patterns of exposure, and a multiplicative factor w = 
CpZkrk/~plkrk,  which indicates how much Ro is changed by the exposure discrepancy. 
The ratio w has been termed the confounding risk ratio as it measures the degree to 
which the effects of one factor on incidence are confounded by the effects of another 
(Miettinen, 1972 ; Eyigou & McHugh, 1977; Schlesselman, 1978). 

The difference in incidence rates between the two populations is 

which would be reduced to 

if the second population had the same distribution of exposures as the first. One can 
therefore attribute an absolute amount 12&(~2k-~ lk ) rk ,  or a proportional amount 

of the difference in rates to the exposure. This ratio, which might well be called the 
relative attributable risk (RAR), may be written in the form 
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RAR = 
AR2-AR1 - . R-1 

1-AR1 ' R  

where AR1 and AR2 are the attributable risks for populations 1 and 2. It is much less 
sensitive to changes in the definition of the baseline level for continuous variables than 
are the attributable risks themselves. 

Example: Table 2.14 shows the distribution of women in Boston and Tokyo according to age at first 
birth, together with associated relative risks for breast cancer as estimated in an international case-control 
study by MacMahon et al. (1970). The data are essentially the same as shown in Table 2.7 except we 
now use the category "age at first birth under 20" as the baseline or referent category. Breast cancer 
rates for United States women are generally about R = 5 times those in Japan, and we assume that the 
same relationship holds for Boston versus Tokyo. In order to estimate the portion of this increase which 
can be attributed to the fact that more Japanese women tend to have children, and have them at younger 
ages, we calculate 

and 

RAR = 
5 (0.081) 

= 0.094. 
(1.081) 4 

Thus, only 9.4% of the excess risk in Boston can be attributed to the different child-bearing customs 
there as compared with Japan. Even after accounting for the effects of this factor, the relative risk for 
Boston versus Tokyo would be of the order of 5 + 1.081 = 4.63. 

Using the under age 20 category as baseline, the attributable risks may be calculated to be AR, = 0.379 
for Boston and AR, = 0.328 for Tokyo. Suppose that the under age 30 category were used instead, and 
that the relative risks for the remaining categories were changed to 1.8811.25 = 1.50, 2.4411.25 = 1.95 
and 2.0011.25 = 1.60, respectively. The attributable risks would then change to AR, = 0.203 for Boston 
and AR, = 0.139 for Tokyo. But the relative attributable risk would remain nearly constant at RAR = 
0.093. 

Table 2.14 Age at first birth and risk for breast cancera 

Centre Age at first birth (years) 

<20 20-24 25-29 30-34 35 + Nulliparous 

Percentage of women Boston 7.5 27.2 23.5 10.7 4.1 27.0 
in control population Tokyo 7.5 41.4 24.5 6.2 2.2 18.2 

Relative risk (all centres as in 
Table 2.7) 1 .O 1.20 1.56 1.88 2.44 2.00 

"From MacMahon et al. (1970) 

The decomposition (2.16) was essentially provided by Cornfield et al. (1959) in 
the course of proving the assertions of 3 2.7, viz that a confounding factor can explain 
an observed relative risk R between two populations only if the relative risk r associated 
with the confounder, and the ratio of the proportions exposed in each population, are 
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both even greater than R. Consider the above formulation in the case R = 9, Ro = 1 
and K = 1. Let p2 denote the proportion of exposed individuals in population 2 and 
let pl be the same for population 1. In order for the difference between .these two 
proportions to explain completely the ninefold excess we must have w>9, i.e., 
(1-p2) + rp2 > 9{(1-pl) + rpl), which implies both p, > 9p, + 8/(r-1) > 9pl and r > 9. 

We end this chapter with a brief word of caution regarding the interpretation of 
attributable risks, whether relative or absolute. For pedagogic reasons, language was 
occasionally used which seemed to imply that the elimination of a particular risk factor 
would result in a measured reduction in incidence. This of course supposes that the as- 
sociation between risk factor and disease as estimated from the observational study is in 
fact a causal one. Unfortunately, the only way to be absolutely certain that a causal 
relationship exists is to intervene actively in the system by removing the disputed 
factor. In the absence of such evidence, a more cautious interpretation of the attributable 
risk measures would be in terms of the proportion of risk explained by the given factor, 
where "explain" is used in the limited sense of statistical association. The next chapter 
considers in some detail the problem of drawing causal inferences from observational 
data such as .those collected in case-control studies. 
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LIST OF SYMBOLS - CHAPTER 2 (in order of appearance) 

length of jth time interval for rate calculation 
instantaneous event (e-g., incidence) rate at time t 
midpoint of jth time interval for rate calculation 
number of events (e.g., cancer diagnoses) in jth time interval 
number of subjects under observation at midpoint of jth time interval 
cumulative event (e.g., incidence) rate at time t 
cumulative risk or probability of occurrence of an event (e.g., diagnosis 
of disease) by time t 
approximate equality 
estimated cumulative rate 
disease incidence rate in ith stratum among persons exposed to risk factor 
disease incidence rate in ith stratum among persons not exposed to risk 
factor 
difference in incidence rates for exposed versus non-exposed in ith 
stratum 
difference in incidence rates for exposed versus non-exposed in additive 
model 
ratio of incidence rates for exposed versus non-exposed in ith stratum 
ratio of incidence rates for exposed versus non-exposed in multiplicative 
model; rate ratio; relative risk 
logarithm of relative risk for exposed versus non-exposed 
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Plk 
P2 k 

R 
110  

20 

Ro 
W 

RAR 
ARl 
AR2 

cumulative risk or  probability of disease diagnosis among those not 
exposed to the risk factor 
cumulative risk or probability of disease diagnosis among those exposed 
to the risk factor 
average annual incidence rate for ith area at age t 
logarithm of relative risk of stomach cancer for country i versus country 1 
slope in fit of straight line to log-log plot of age-incidence data 
relative risk of stomach cancer for country i versus country 1 
relative risk of exposure to level i of one risk factor and level j of 
another, with reference to the non-exposed 
proportion of population exposed to risk factor 
proportion of non-exposed population which remains disease-free 
proportion of exposed population which remains disease-free 
PIQo/(QIPo); odds ratio of disease probabilities for exposed versus 
non-exposed groups 
probability of exposure among diseased 
probability of exposure among disease-free 
population attributable risk 
proportion of first population exposed to level k of a risk factor 
proportion of second population exposed to level k of a risk factor 
crude ratio of incidence rates between two populations 
incidence rate for non-exposed in population 1 
incidence rate for non-exposed in population 2 
ratio of incidence rates for non-exposed, population 2 to population 1 
(multiplicative) confounding factor 
relative attributable risk 
attributable risk for population 1 
attributable risk for population 2 




