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CHAPTER I11 

GENERAL CONSIDERATIONS FOR THE ANALYSIS 
OF CASE-CONTROL STUDIES 

In previous chapters we have introduced disease incidence as the basic measure of 
disease risk in a population. As a measure of the increased risk for a population ex- 
posed to some factor when compared with an otherwise similar population not so exposed, 
we have proposed the use of the proportionate increase in incidence which corresponds 
to the relative risk. We have described the properties of this measure, and its behaviour 
in cancer epidemiology, in order to demonstrate its advantages over an alternative 
measure of disease association, the excess risk. We have explored the logical basis for 
estimation of the relative risk from the results of a case-control study, from which the 
actual incidence rates cannot be estimated. Estimation of relative risks follows from inter- 
preting the case-control study as the result of sampling from a large, probably fictive, 
cohort study from which incidence rates can hypothetically be estimated. In succeeding 
chapters we shall develop the statistical theory and methodology required for the an- 
alysis of case-control data. In this chapter, we shall concern ourselves with the types of 
conclusion that we want to draw from the data, and the steps which must be taken to 
ensure that these conclusions are valid. Strategies for approaching the data, the handling 
of different types of variables, the examination of joint association of several variables, 
and how the design of a study is reflected in the analysis will all be discussed. 

3.1 Bias, confounding and causality 

The purpose of an analysis of a case-control study is to identify those factors under 
study which are associated with risk for the disease. In an analysis, the basic questions 
to consider are the degree of association between risk for disease and the factors under 
study, the extent to which the observed associations may result from bias, confounding 
and/or chance, and the extent to which they may be described as causal. The concepts 
of bias and confounding are most easily understood in the context of cohort studies, 
and how case-control studies relate to them. Confounding is intimately connected to 
the concept of causality. In a cohort study, if some exposure E is associated with disease 
status, then the incidence of the disease varies among the strata defined by different 
levels of E. If these differences in incidence are caused (partially) by some other factor 
C, then we say that C has (partially) confounded the association between E and disease. 
If C is not causally related to disease, then the differences in incidence cannot be caused 
by C, thus C does not confound the disease/exposure association. Often the observed 
extraneous variables will only be surrogates for the factor causally related to disease, 
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age and socioeconomic status being obvious examples, but we should normally consider 
these surrogates also as confounding variables. Confounding in a case-control study has 
the same basis as in a cohort study. It arises from the association in the causal network 
in the underlying study population and cannot normally be removed by appropriate 
study design alone. An essential part of the analysis is an examination of possible con- 
founding effects and how they may be controlled. Succeeding chapters consider this 
problem in detail. 

Bias in a case-control study, by contrast, arises from the differences in design be- 
tween case-control and cohort studies. In a cohort study, information is obtained on 
exposures before disease status is determined, and all cases of disease arising in a given 
time period should be ascertained. Information on exposure from cases and controls 
is therefore comparable, and unbiased estimates of the incidence rates in the different 
subpopulations can be constructed. In case-control studies, however, information on 
exposure is normally obtained after disease status is established, and the cases and 
controls represent samples from the total. Biased estimates of incidence ratios will 
result if the selection processes leading to inclusion of cases and controls in the study 
are different (selection bias) or if exposure information is not obtained in a comparable 
manner from the two groups, for example because of differences in response to a 
questionnaire (recall bias). Bias is thus a consequence of the study design, and the 
design should be directed towards eliminating it. The effects of bias are often difficult 
to control in the analysis, although they will sometimes resemble confounding effects 
and can be treated accordingly (see 5 3.8). 

To summarize, confounding reflects the causal association between variables in the 
population under study, and will manifest itself similarly in both cohort and case-control 
studies. Bias, by contrast, is not a property of the underlying population and should 
not arise in cohort studies. It results from inadequacies in the design of case-control 
studies, either in the selection of cases or controls or from the manner in which the data 
are acquired. 

It is not helpful to introduce the concepts of necessity or sufficiency into the discus- 
sion of causality in cancer epidemiology. Apart from occasional extremes of occupational 
exposure, constellations of factors have not been identified whose presence inevitably 
produces a cancer, or, conversely, in whose absence a tumour will inevitably not appear. 
Thus, we shall use the word "cause" in a probabilistic sense. By saying that a factor is a 
cause of a disease, we mean simply that an increase in risk results from the presence of 
that factor. From this viewpoint a disease can have many causes, some of which may 
operate synergistically. It is sometimes helpful to think in terms of a multistage model, 
and to consider a cause as a factor which directly increases one or more of the rates of 
transition from one stage to the next (Peto, 1977; Whittemore, 1977a). One factor 
may need the presence of another to be effective, in which case one should strictly 
speak of the joint occurrence as being a cause. 

The most one can hope to show, even with several studies, is that an apparent as- 
sociation cannot be explained either by design bias or by confounding effects of other 
known risk factors. There are, nevertheless, several aspects of the data, even from a 
single study, which would make one suspect that an association is causal, which we shall 
now discuss (Cornfield et al., 1959; Report of the Surgeon General, 1964; Hill, 1965). 
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3.2 Criteria for assessing causality 

Dose response 

One would expect the strength of a genuine association to increase both with in- 
creasing level of exposure and with increasing duration of exposure. Demonstration of 
a dose response is an important indication of causality, while the lack of a dose response 
argues against causality. 

In Chapter 2, we saw several examples of a dose response. Table 2.8 shows a smooth 
increase in risk for oral cancer with increasing consumption of both alcohol and tobacco, 
and Table 2.7 displays the increasing risk for breast cancer with increasing age at birth 
of first child. The latter example is not exactly one of a dose response since the dose is 
not defined, but the hypothesis that later age at first birth increases the risk of develop- 
ing breast cancer is given strong support by the smooth trend. 

The opposite situation is illustrated by the association between coffee drinking and 
cancer of the lower urinary tract. Table 3.1 is taken from a study by Simon, Yen and 
Cole (1975). Three previous studies (Cole, 197 1; Fraumeni, Scotto & Dunham, 1971 ; 
Bross & Tidings, 1973) had also shown a weak association between lower ur-inary tract 
cancer and coffee drinking, but with no dose response. The authors of the 1975 paper 
concluded that, taking the four studies together, the association was probably not causal. 
The three arguments they advanced were: (1) the absence of association in some 
groups, (2) the general weakness of the association, and (3) the consistent absence of 
a dose response; the last point was considered the most telling. 

A clear example of risk increasing with duration of exposure is given by studies relat- 
ing use of oestrogens to palliate menopausal symptoms with an increased risk for endo- 
metrial cancer (see Table 5.1). 

Table 3,1 Association between coffee drinking and tumours of 
the lower urinary tracta 

Cups of coffeelday Cases Controls Relative risk 

" Data taken from Simon, Yen and Cole (1975) 

Specificity of risk to disease subgroups 

Demonstration that an association is confined to specific subcategories of disease can 
be persuasive evidence of causality, as indicated by the following examples. 

In earlier days, when the role of cigarette smoking in the induction of lung cancer 
was still being established, a persuasive aspect of the data was the finding that when a 
non-smoker developed lung cancer, it was often the relatively rare adenocarcinoma 
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Table 3.2 Histological types of lung cancer found in Singapore 
Chinese females, 1 968-73, as related to smoking historya 

Histological type Number % smokers 

Epidermoid carcinoma 
Small-cell carcinoma 
Adenocarcinoma 
Large-cell carcinoma 
Other types 
Controls 

"Adapted from MacLennan et al. (1977) 

(Doll, 1969). This feature of the disease is shown in data from Singapore in Table 
3.2 (MacLennan et al., 1977). 

As a second example, the association between benzene exposure and leukaemia is 
restricted to particular cell types, i.e., acute non-lymphocytic (Infante, Rivisky & Wago- 
ner, 1977; Aksoy, Erdern & Din~ol,  1974). The specificity of the association is perhaps 
the major reason for regarding it as causal. 

The tendency for several types of cancer to aggregate in families is often difficult to 
interpret since family members share in part both their environment and their genes. 
Relative risks for first degree relatives are typically of the order of two- to threefold. 
The greatly increased familial risk for bilateral breast cancer especially among pre- 
menopausal women (Anderson, 1974) reduces the chance that the association is a 
reflection of either environmental confounding factors or bias in case ascertainment, 
and 'enhances one's belief in a genetic interpretation. 

Specificity of risk to exposure subcategories 

Belief in the causality of an association is also enhanced if one can demonstrate that 
the disease/exposure association is stronger either for different types of exposures, or 
for different categories of individuals. A dose response, with higher risk among the 
more heavily exposed, is an obvious example. ~nteractions can also provide insight into 
disease mechanisms. As an example, one can cite the risk for breast cancer following 
exposure to ionizing radiation: a greater risk was observed for women under age 20 at 
irradiation than for women irradiated at over 30 years of age (Boice & Monson, 1977; 
McGregor et al., 1977). Subsequent studies showed that risk was in fact greatly elevated 
among girls irradiated either in the two years preceding menarche or during their first 
pregnancy (Boice & Stone, 1978); breast tissue is proliferating rapidly at both these 
periods of a woman's life. 

In Figure 3.1, we show the risk for lung cancer among males associated with smok- 
ing varying numbers of filter and non-filter cigarettes. There is a considerably lower 
risk associated with the use of filter cigarettes, indicating the importance of tars as the 
carcinogenic constituent of the smoke, since volatile components were not significantly 
reduced by filters in use at that time (Wynder & Stellman, 1979). 
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Fig. 3.1 Relative risk for cancer of the lung according to the number of nonfilter (NF) 
or filter (F) cigarettes smoked per day. Number of cases and controls shown 
above each bar. From Wynder.and Stellman (1979). 

Non F NF F NF F NF F NF F NF 
smoker 1-10 11-20 21-30 31-40 41 + 

No. of cigarettes smoked per day 

Strength of association 

Demonstration of a dose response and of variation in risk according to particular 
exposure or disease subcategories have in common the identification of subgroups at 
higher risk. In general terms, the closer the association, the more likely one is to con- 
sider the association causal. One reason follows directly from a property of the relative 
risk described in 5 2.7. If an observed association is not causal, but simply the reflection 
of a causal association between some other factor and disease, .then this latter factor 
must be more strongly related to disease (in terms of relative risk) than is the former 
factor. The higher the risk, the less one would consider that other factors were likely 
to be responsible. One also has the possibility in all case-control studies that patient 
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selection or choice of the control group may introduce bias. Bias becomes less tenable 
as an explanation of an observed association the stronger the association becomes. An 
example of this is found in the original report on the role of diethylstilboestrol ad- 
ministered to mothers during pregnancy in the development of vaginal adenocarcino- 
mas in the daughters (Herbst, Ulfelder & Poskanzer, 1971). The study was based on 8 
cases each with 4 matched controls; 7 out of the 8 cases had been exposed in utero to 
diethylstilboestrol, in contrast to none of the 32 controls. The magnitude of this as- 
sociation persuades one of its causal nature, even though recall of drug treatment some 
20 years previously is a potential source of serious bias. 

Temporal relation of risk to exposure 

For most epithelial tumours, one expects a latent period of at least 15 years. Typical- 
ly, when exposure is continuous, there is little risk until some 10-15 years after ex- 
posure starts, the relative risk then increasing to reach a plateau after 30 years or more 
(Whittemore, 1977b). For radiation-induced leukaemia this risk increases more quickly 
(Smith & Doll, 1978), and among recipients of organ transplants the risk for some lym- 
phomas can increase strongly within a year (Hoover & Fraumeni, 1973). Although in 
principle both cohort and case-control studies should demonstrate the same evolution 
of relative risk, in practice the temporal evolution of risk following exposure has played 
a greater role in assessing causality in cohort studies. The reason lies in the nature of 
the observations. In cohort studies, it is precisely the increase in risk in the years after 
exposure starts that one observes. Referring back to the discussion of lung cancer risk 
among smokers in Chapter 2, a prospective study leads to a description of evolution of 
risk as shown in Figure 2.9 and Table 2.6, whereas a case-control study gives only the 
relative risk shown in Table 2.6, with most cases probably over age 50. The evolution 
of risk over time, clear from the changes in the absolute risk in Figure 2.9, is less distinct 
when considering only the relative risk. 

More attention to this aspect of case-control study data may well prove beneficial. 

Lack of alternative explanations 

In the data being analysed, association between exposures of interest and disease 
must be shown not to be the effect of some further factor which is itself causally as- 
sociated with both disease and the exposure. Treatment of potential confounding vari- 
ables is discussed at length in 5 3.4. 

Spurious associations can also arise from biased selection of cases or controls, or 
from biased acquisition of information from either group. Questions of bias are usually 
more difficult to resolve by considerations internal to the actual data than are problems 
of confounding. However, if several control groups have been chosen (see 5 3.7) or if 
the data were acquired in a manner in which disease status could not have intervened, 
the extent to which bias might provide an explanation of the observations is usually 
reduced. 
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Considerations external to the study 

Magnitude and specificity of risk, dose response and the inability to find alternative 
explanations are criteria which can be satisfied at least partially by adequate treatment 
of the data from a single study, and analyses should be aimed in this direction. Compari- 
son can also be made with the trends in the general population, both in terms of the 
exposure under study and the tumour experience. The early case-control studies of 
lung cancer were instigated by the parallel increase in cigarette smoking and incidence 
of the disease. In the paper by Jick et al. (1979) on endometrial cancer, figures are 
given showing the rise and fall of oestrogen use in the general population and the cor- 
responding rise and fall in the incidence of the disease, together with data showing the 
high risk among long-term users and the great reduction in risk for individuals who 
stop taking oestrogens. Arguments offering explanations other than causality for these 
results would have to be unusually tortuous. 

It is rare, however, for a single study to provide convincing evidence of causality. 
Other studies performed in different populations and using different methodologies are 
normally required. Demonstration of a reduction in risk after exposure has terminated 
is further persuasive evidence, although the absence of a reduction is no indication of 
lack of causality, as asbestos exposure exemplifies (Seidman, Lilis & Selikoff, 1977). 
Biological plausibility or the demonstration of carcinogenicity in the laboratory provide 
additional evidence. 

General acceptance of the causal nature of an association normally would result only 
if these more general criteria were satisfied, with several corroborating studies and 
demonstrations of plausible biological pathways. Nevertheless, even if the results of 
a single study seldom furnish conclusive evidence of causality, the aim of the analysis 
should be to extract the fullest evidence for or  against causality that the study can 
provide. 

3.3 Initial treatment of the data 

The first step in any analysis will be a description of the distribution among cases 
and among controls of the different variables included in the study. This description 
should include the correlations, or some other measure of association, between the ex- 
posure variables of interest. Such correlations are best computed separately for cases 
and controls. One would also expect to see a description of the cases and controls in 
terms of age, sex, and such factors as race, country of birth, hospital attended and 
method of diagnosis, which although not the object of the study, provide the setting for 
the interpretation of the later results. It must not be overlooked that the results refer to 
the sample studied, and generalization from these results usually depends on non- 
statistical arguments. 

Information on exposures which are considered of importance for the cancer site 
under investigation will usually consist of more than a single measure. For cigarette 
smoking, for example, one would normally obtain information not only on the daily 
consumption of cigarettes, but also the age at which smoking started, and stopped if 
the individual no longer smokes. One may be tempted to proceed directly to a compos- 
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ite measure, such as cumulative exposure; such a procedure, however, may obscure 
important features of the disease/exposure association. 

For continuing smokers, with data on cigarette consumption obtained retrospectively, 
one might expect lung cancer incidence to be proportional to the fourth power of dura- 
tion of smoking, but related linearly to the average daily consumption of cigarettes 
(Doll, 1971). A man aged 60 who has smoked 20 cigarettes a day since age 40  will 
have one eighth the risk of a man of the same age who has smoked 10  cigarettes a day 
since age 20. The total cigarette consumption is the same in the two cases, but the dif- 
ference in risk is eightfold. Similar differences will be seen if one considers ex-smokers. 
Twenty years after stopping smoking, the lung cancer risk is approximately 1 0 %  that of 
a man of the same age who had continued to smoke at the same daily level (Doll & 
Peto. 1976). Thus, if one man starts smoking at age 20 and smokes 10 cigarettes a 
day, and a second man smokes 20 cigarettes a day between ages 20 and 40 and then 
stops, by age 60 the latter will have (20/10) x 1 0 %  = 20% of the risk of the former. 
Total cigarette consumption is the same. 

These examples illustrate the danger of condensing the different types of informa- 
tion on exposure into a single measure at the start of the analysis. Each facet of exposure 
should be examined separately, and only combined, if at all, at a later stage in the an- 
alysis. 

The preliminary analyses associating the factors under study with disease risk will 
treat each factor separately. For dichotomous variables, a simple two-way table relat- 
ing exposure to disease can be constructed. The frequency of the exposure among the 
controls together with an estimate of the relative risk, with corresponding confidence 
intervals, gives a complete summary of the data. 

For qualitative or, as they are sometimes called, categorical variables, which can 
take one of a discrete set of values, direct calculation of relative risk is again straight- 
forward. A specific level would be selected as a baseline or  reference level, and risks 
would be calculated for the other levels relative to this baseline. Choice of the baseline 
level depends on whether the levels are ordered, such as parity or birth order, o r  un- 
ordered, as in the case of genetic phenotypes. In the latter situation, a good choice of 
baseline is the level which occurs most frequently. The choice is particularly important 
when using the estimation procedures which combine information from a series of 
2 x 2 tables, since the estimates of relative risk between pairs of levels can vary depend- 
ing on which one was selected as baseline (see § 4.5). 

For ordered categorical variables, one would often choose either the highest or the 
lowest level, with infrequently occurring extreme levels perhaps being grouped with 
the next less extreme. 

By choosing an extreme level as baseline, one expects to see a smooth increase (or 
decrease) away from unity in the relative risk associated with increasing (or decreasing) 
level of the factor, if the factor plays a role in disease development. In the early stages 
of an analysis, it is usually bad practice to  group the different levels of a categorical 
variable before one has looked at  the relevant risks associated with each level. The risks 
of overlooking important features of the data more than outweigh the theoretical 
distortion of subsequent significance levels. 

Quantitative variables are those measured on some continuous scale, where the num- 
ber of possible levels is limited only by the accuracy of the recording system. Variables 
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of this type can be treated in two ways. They can be converted into ordered categorical 
variables by division of the scale of measurement, or they can be treated as continuous 
variables by postulating a specific mathematical relationship between the relative risk 
and the value of the variables. In preliminary analyses the former approach would 
usually be employed, since it provides a broad, assumption-free description of the change 
of risk with the changing level of the factor. The choice of mathematical relationship 
used in later analysis would then be guided by earlier results. 

In deciding on the grouping of continuous variables, the prime. objective should be 
to display the full range of risk associated with the variable, and also to determine the 
extent to which a dose response can be demonstrated. With these ends in view, the 
following guidelines are often of value: 
1. A pure non-exposed category should be the baseline level if the numbers appear 

adequate (e.g., more than five to ten individuals in both case and control groups). 
Thus, to examine the effect of smoking, where consumption might be measured in 
grams of tobacco smoked per day, a clearer picture of risk is obtained by comparing 
different smoking categories to non-smokers than by pooling light smokers with 
non-smokers (Tables 6.6 and 6.8). 

2. A simple dichotomy may conceal more information that it reveals. The thirtyfold 
range in risk for lung cancer between non-smokers and heavy cigarette smokers is 
greatly obscured if smoking history is dichotomized into, say, one group composed of 
non-smokers and smokers of less than ten cigarettes a day as opposed to another 
group of smokers of ten or more cigarettes a day. 

3. Use of more than five or six exposure levels will only rarely give added insight to 
the data. The trends of risk with exposure as defined by a grouping into five levels 
are usually sufficient. Three levels, in fact, are often adequate, particularly when the 
data are too few to demonstrate a smooth increase of risk with increasing dose (Cox, 
1957; Billewicz, 1965). 

Example: Table 3.3 shows relative risks for breast cancer associated with age at first birth among a cohort 
o f  31 000 Icelandic women who had visited a cervical cancer screening programme at least once by 1974 
(Tulinius et  al., 1978). The lowest risk group, women who gave birth before 20 years of age, is taken as the 
baseline level. The alternative analysis based on a dichotomy at 25 years is presented for comparison. 
Even as a preliminary analysis, the greater range of risk, together with the smooth trend, makes the finer 
categorization of age at first birth considerably more informative. 

Table 3.3 Relative risk of breast cancer associated with age 
at first birth, after adjusting for year of birth, among 31 000 
Icelandic womena 

Age at first birth Relative risk 

30-34 
35+ 
Nulliparous 
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Once the general form of the relationship between exposure level and risk has been 
ascertained, the change of risk can be modelled in terms of a mathematical relationship. 
The advantages of using mathematical models for expressing the change in risk over 
a range of exposure levels are economy in the number of parameters required, and a 
smoothing of the random fluctuations in the observed data. The advantages, in fact, 
are those that generally result from using a regression equation to summarize a set of 
points. This topic is discussed further in 5 3.6 and in detail in Chapters 6 and 7. 

Further analyses will investigate in a series of stages the combined action of factors 
of interest. First, we may wish to consider individual factors separately and to examine 
how the other variables modify their effect. This modification may consist of a general 
confounding effect, in which the association between the different exposures distorts 
the underlying disease exposure associations, or  of interaction when -the exposure risk 
may be heterogeneous over the different values of the other variables. Second, we may 
want to examine the joint effect of several exposures simultaneously. 

We shall start by consideration of confounding effects. 

3.4 Confounding 

Confounding is the distortion of a disease/exposure association brought about by the 
association of other factors with both disease and exposure, the latter associations 
with the disease being causal. These factors are called confounding factors. One can 
envisage two simple types of situation. First, we might have a confounding factor that 
has two levels, in which disease and exposure were distributed as follows: 

Level 1 High risk for disease 
High prevalence of exposure 

Confounder 
Level 2 Low risk for disease 

Low prevalence of exposure 

As an example, the disease could be lung cancer, the exposure some occupation 
primarily of blue-collar workers, and the confounder cigarette smoking. At least in the 
United States, cigarette smoking is considerably more frequent among blue-collar 
workers than among managers o r  professional workers. 

One can see in this situation that ignoring the confounder will make the association 
between exposure and disease risk more positive than it would otherwise be. High risk 
for disease and high prevalence of exposure go together, as do low risk for disease and 
low prevalence of exposure. 

A second type of situation that might arise would be: 

i 
Level 1 High risk for disease 

Low prevalence of exposure 
Confounder 

Level 2 Low risk for disease 
High prevalence of exposure 

One might take as an example a study relating breast cancer to use of oestrogens for 
menopausal symptoms, the confounder being age at menopause. Early menopause 
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decreases breast cancer risk, but leads to greater use of replacement oestrogens (Casa- 
grande et al., 1976). Here ignoring the confounding variable will make the association 
between the disease and exposure appear less positive than it should be. 

We shall begin our discussion of confounding by a treatment of the statistical concepts, 
the occasions on which confounding is likely to occur, and to what degree, and the 
steps that can be taken both in design and analysis to remove the effect of confounding 
on observed associations. However, confounding cannot be discussed solely in statistical 
terms. Occasions arise in which the association of one factor with disease appears at 
least partially to be explained by a second factor (associated both with disease and with 
the first factor), but where the two factors are essentially measuring the same thing, or 
where the second factor is a consequence of the first. Under these circumstances, it 
would be inappropriate to consider the second factor as confounding the association of 
the first factor with disease. This problem is related to that of overmatching, which we 
shall consider after we have discussed the statistical aspects of confounding. 

Statistical aspects of confounding: dichotomous variables 

We shall start by considering two dichotomous variables, one of which we shall regard 
as the exposure of interest (E), the other a potential confounding variable (C). 

Suppose we had obtained, when cross-tabulating disease status against exposure E, 
the following result based on pooling the data over levels of the confounder (C): 

Exposure E 

Case 

Control 

As we saw in Chapter 2, the risk ratio associated with exposure to E is well approxi- 
mated by the odds ratio in the above table. 

where the p subscript means that qp is calculated from the pooled data. 
If, now, we consider that the association between E and disease may be partly a 

reflection of the association of C with both E and disease, than we should be concerned 
with the association between E and disease for fixed values of C. That is, we shall be 
interested in the tabulation of disease status against E obtained after stratifying the 
study population by variable C, as follows: 
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Case 

Control 

Factor C+ 
Exposure E 

+ - 

Factor C- 
Exposure E 

+ - 

mil mo1 N1 m12 m02 N2 

Odds ratio = v Odds ratio = v2 

It is clear that the association between E and disease within each of these two 2 x 2 
tables is independent of C since within each table C is the same for all individuals. 

We shall assume in this section that v1 = v2, i.e., that the association between E and 
disease is the same in the two strata, and call the common value q .  In 5 3.5, we shall 
examine situations where this assumption does not hold. Throughout this section, we 
are considering the odds ratios as population values rather than sample values, so that 
the equality q1 = v2 refers to the underlying population. 

The odds ratio q represents the association between E and disease after removing 
the confounding effect of C. Confounding occurs if, and only if, both the following 
conditions hold: 
1. C and E are associated in the control group (which, from the assumption = v2, 

means also in the case group). 
2. Factor C is associated with disease after stratification by E. 

Factor C is said to confound the association between E and disease status if, and 
only if, vp # v ,  that is, if stratifying by C alters the association between E and disease. 

These conditions are sometimes loosely expressed by saying that C is related both 
to exposure and to disease. It should be stressed that the association of C with E must 
be considered separately for diseased and disease-free persons, and that the association 
between C and disease must be considered separately among those exposed to E and 
those not exposed to E. 

A distinction is usefully made between confounding effects which create a spurious 
association and confounding effects which mask a real association. With the former, the 
crude odds ratio vp will be further from unity than the post-stratification odds ratio v. 
This situation is called positive confounding. In the latter situation, the crude odds 
ratio v, will be closer to unity than the post-stratification odds ratio v. This effect is 
called negative confounding. Situations may even arise in which the crude odds ratio 
is on the opposite side of unity from the post-stratification odds ratio, but they are 
infrequent. 

Confounding, as we have just seen, depends on the association of the confounding 
variable both with disease and with the exposure, and we can express quantitatively 
the degree of confounding in terms of the strength of these two associations. In § 2.9, we 
discussed attributable risk, and the extent to which differences in risk between two 
populations could be explained by some factor. The situation here is directly analogous; 
we are considering the degree to which the difference in risk between those exposed to 
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E and those not exposed to E can be explained by factor C. Equation (2.16) is then 
directly applicable, and we have: 

where vc is the odds ratio associating C with disease after stratification by E, p, is the 
proportion of controls among those exposed to E who are also exposed to C, and p2 is 
the proportion of controls among those not exposed to E who are exposed to C (see 
Schlesselmann, 1978, for example). When either vc = 1 or p, = p2, then qp = q and 
there is no confounding effect, giving algebraic expression to the two conditions stated 
earlier in this section. Expression 3.1 generalizes the result of Cornfield given in § 2.7. 

The ratio qp/q (= w, say) is a measure of the degree of confounding and has been 
referred to as the confounding risk ratio (Miettinen, 1972). Table 3.4 gives the value 
of the confounding risk ratio for various degrees of association between C and disease, 
and for different values of p, and pZ. It is of interest to note that the confounding risk 
ratio is considerably less extreme than the association of either C with disease or C 
with exposure E. Confounding factors have to be strongly associated with both disease 
and exposure to generate spurious risk ratios greater than, say, two (see, for example, 
Bross, 1967). One should stress that the aim of the analysis is not to estimate the con- 

Table 3.4 Confounding risk ratios associated with varying relative risk (yl,), frequency of occur- 
rence of the confounding variable among controls exposed to E (p,) and not exposed to E (p,) 

Value of p, 

0.1 
0.3 
0.5 
0.8 

Value of p2 

0.1 
0.3 
0.5 
0.8 

Value of p2 

0.1 
0.3 
0.5 
0.8 

(Itc = 2 
Value of p, 
0.1 0.3 0.5 

(Ifc = 5 
Value of p, 
0.1 0.3 

( I 1 ,  = 10 
Value of p, 
0.1 0.3 0.5 0.8 
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founding risk ratio, but to remove the confounding effects. The purpose of Table 3.4 is 
simply to indicate how large these effects may be. 

From- (3. I), we see that q,/q, the confounding risk ratio, is greater than unity if, 
and only if, either (a) C is positively associated with both E and with disease (q,> 1 
and p1>p2) or (b) C' is negatively associated with both E and with disease (qc< 1 
and pl<p2). Consequently, if the signs of E and C are arranged to make both E and 
C positively associated with disease, then negative confounding will only occur if the 
association between E and C is negative. This result is of some value as it provides a 
mechanism for drawing one's attention to the concealed associations that may result 
hom negative confounding. (Strictly speaking, E and C should be made positively 
associated with disease after stratification by the other variable; however, in practice, 
the pre- and post-stratification risk ratios will usually be on the. same side of unity). 

More general confounding variables 

In the previous section we have considered, for a simple dichotomous confounding 
variable, one of the two major approaches to the treatment of confounding variables, 
the approach via stratification. The extension of this approach to variables taking 
several levels, or to situations where there are more than two categorical factors under 
consideration simultaneously, introduces no new conceptual problems. For a polytomous 
variable which is suspected of being a confounder, one simply stratifies individuals into 
groups according to the level this variable takes. When several categorical variables are 
all considered to be potentially confounding, one stratifies simultaneously by them all. 
For example, if Factor C, takes three levels (I, 11, 111) and Factor C2 four levels (1, 
2, 3, 4), and both are thought to confound the association of Factor E (which we shall 
take to be dichotomous) with disease, then the data have to be grouped into 12 strata, 
and the 2 x 2 tables relating Factor E to disease constructed for each as follows: 

Factor C2 

Factor C ,  1 2 3 4 
Exposure E Exposure E Exposure E Exposure E 
+ + - + - + - 

I Case 

Control 

I 1  Case 

Control 

I l l  Case 

Control 
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The confounding effects of C1 and C2 have been eliminated, and we can estimate the 
independent association of E with disease. Methods for constructing summary estimates 
of the relative risk associated with E, and summary significance tests, are given in the 
next chapter. Continuous variables can be incorporated into this approach by dividing 
up the scale of measurement and treating them as ordered categorical variables. 

When the confounding variables take more than two levels, the criteria we discussed 
for assessing when a dichotomous variable might confound an exposure/disease as- 
sociation need to be slightly relaxed. For dichotomous variables, a factor confounds an 
association if, and only if, it is associated both with disease and exposure. The "only if" 
part of this criterion holds for all potentially confounding variables, but with polytomous 
factors we can construct examples in which a factor is related both to disease and to ex- 
posure, but does not confound the disease-exposure association (Whittemore, 1978). 

There also needs to be some modification of criteria for assessing confounding when 
more than one confounding variable is present. In the following example, from Fisher 
and Patil (1974), we have two confounding variables, C1 and C2. Neither one alone 
confounds the association of E with disease, but the two jointly do confound the associa- 
tion. Stratifying by each of the two possible confounders, in turn, we have: 

Stratification by C1 Stratification by C2 

No stratifi- Factor Cl+ Factor Cl- Factor C2+ Factor C2- 
cation 

Exposure E Exposure E Exposure E Exposure E Exposure E 
+ - + - + - + - + - 

Case 

Control 

Odds ratio 2.2 2.2 2.2 2.2 

But, when we stratify by both confounders jointly we have: 

Joint stratification by C1 and C2 

Case 

Control 

Odds ratio 

Factor Factor Factor Factor 
C, + C2+ C, + C2- C1-C2+ C1-C2- 

Exposure E Exposure E Exposure E Exposure E 
+ - + - + - + - 
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The crude association between E and disease, unaffected by stratification by either 
C1 or C2 alone, disappears upon stratification by both confounders simultaneously. 
One has to distinguish between the individual confounding effects that variables may 
have, and the joint confounding effects when variables are considered together. 

In the latter case, when considering a set of potential confounders, we can see that 
there is a joint effect only if the joint distribution of the confounding variables varies 
with E conditional on disease status, and varies with disease status conditional on E. 
The corresponding "if" part of this statement need not apply for a set of confounders, 
in analogous fashion for a single polytomous variable. 

Such situations, however, can be regarded as exceptional, and are mentioned mainly 
for logical completeness. Normal epidemiological practice is to treat any factor related 
to disease and exposure as a potential confounder, and there would be few occasions 
on which one would investigate whether the criteria for joint confounding held (Miet- 
tinen, 1974). 

Degree of stratification 

With several confounding variables, or a single confounder with many values, there 
is the problem of how fine to make the stratification. If the data are divided into an 
excessive number of cells, information will be lost; but, if the stratification is too coarse 
then its object will not be achieved and some confounding will remain. Guidelines can 
be provided by considering the confounding risk ratio resulting from different levels of 
stratification. Suppose we have a confounding factor C which can take K levels, and 
after stratification by E the K levels have associated relative risks r1 = 1, r2, .. ., rK 
(level 1 is baseline). We suppose that these levels occur with frequencies pll, . .., pIK, 
respectively, among ,the controls exposed to the factor of interest E, and frequencies pzl, 
.. . , P ~ K  among controls not exposed to E. As an extension of (3.1) following from 
(2.16), the confounding risk ratio, which we shall write as w, is the ratio of the odds 
ratio vp associated with E before stratification by C to the odds ratio I$ after stratifica- 
tion by C, and is given by: 

Now suppose the K levels of C are grouped into a smaller number of levels, say J. 
Since the plk and p2, are not the same, the risk among one set of pooled levels relative 
to the risk among the lowest set of pooled levels may differ between those exposed to 
E and those not exposed to E. Thus, pooling levels of C may have generated an inter- 
action between C and E. This effect, however, will usually be small, and we shall con- 
sider the relative risks in those not exposed to E as summarizing the relative risks in the 
pooled levels of C. The frequency of occurrence of the J pooled levels of C we shall 
denote by p*lj among those exposed to E and by p*2j among those not exposed to E, 
j = 1, .. ., J. The relative risk in the jth pooled level (among those not exposed to E) 
we shall write as r*j, j = 1, . . . , J, with r*j = 1. The confounding risk ratio for the pooled 
levels of C, w*, say, is then given by: 
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Comparison of w* with w enables one to assess the extent to which the grouped 
levels of C remove the full confounding effect. The ratio wlw* is a measure of the resid- 
ual confounding effect. 

The relationship between w* and w can be examined more closely. The K levels of C 
have been classed into J groups. Within each group of levels, if the risk ratios and the 
ratios (plk/pZk) are not identical, there will be a residual confounding effect and a 
corresponding residual confounding risk ratio, which for the jth group we will write 
as w * ~  (j  = 1, . . . , J). 

We can then express the overall confounding risk ratio w in terms of the w * ~  as: 

which gives, from (3.3) 

The overall measure of residual confounding (wlw*) is the weighted average over the 
J groups of the residual confounding risk ratio within each of the grouped levels of C. 
Computation of the different w * ~  will identify those groups for which finer stratification 
may be necessary. 

As an example, we might consider a study of lung cancer in which interest was focus- 
ed on an exposure E, other than smoking, and cigarette smoking is to be treated as a 
confounder. Table 3.5 gives the confounding risk ratio for various possible groupings 
of cigarette consumption. Data from Doll and Peto (1978) are used for the risk ratios, 
and the distribution of cigarette consumption among British doctors is used as the distri- 
bution among those not exposed to E, i.e., as the values of pzk. The smoking distribution 
plk represents a heavy smoking population, an industrially exposed group, for example. 

This example has some interesting features. One can see that the grouping 0, 1-9, 
10-19, 20-29, 30-40 leaves an inappreciable residual confounding effect and that the 
grouping 0, 1-19, 20-40 leaves a residual confounding risk ratio of 1.16 at most. A 
considerable residual confounding effect remains if non-smokers are grouped even 
with those smoking 1-4 cigarettes a day, underlining the importance of keeping an 
unexposed group, as stressed in § 3.3. This residual effect makes only a minor contribu- 
tion to the total confounding effect, as most weight is attached to the heavy smokers 
(see equation 3.4), but if one is interested in light smokers, this effect is obviously 
important. 
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Table 3.5 Residual confounding effects after various degrees of stratification by cigarette consump- 
tion 

a Data adapted from Doll and Peto (1978) 

When stratifying by several confounding variables simultaneously, the joint con- 
founding risk ratio will often be more extreme than either one singly. In fact, if the 
confounding variables are mutually independent, the joint confounding risk ratio will 
be the product of the individual confounding risk ratios. If the levels of the different 
confounding variables are grouped, then the overall residual confounding risk ratio is 
the product of the individual residual risk ratios. For example, suppose we had two 
independent confounding variables like that in Table 3.5. The joint confounding risk 
ratio would be (1.93)' = 3.72. If both variables are grouped as in column 11, the in- 
dividual residual confounding risk ratibs are 1.93/1.68 = 1.15, whereas the joint residual 
confounding risk ratio is (1.15)' = 1.32. Thus for the same level of stratification, the 
residual confounding effect tends to  increase with the number of confounding variables. 
An increasing penalty is paid if one yields to the temptation to  coarsen the stratifica- 
tion as the confounding variables increase in number. The control of confounding by 
stratification clearly runs into trouble as the number of confounding variables increases, 
unless one has very large samples. What is required is a method, after a relatively fine 
stratification of each variable, of combining different strata into roughly homogeneous 
groups. Various ad hoc methods have been proposed, such as the sweep and smear 
technique (Bunker et  al., 1969) o r  the confounder score index (Miettinen, 1976), but 
these methods can give incorrect answers (Scott, 1978; Pike, Anderson & Day, 1979), 
and the unified approach via logistic regression is recommended (see Chapters 6 and 7). 

Effect of study design on confounding effects 

Average 
daily 
cigarette 
consumption 

0 
1 -4  
5-9 
1 0-1 4 
15-1  9 
20-24 
25-29 
3 0 3 4  
35-40 

Grouping, with residual confounding risk ratio within each group 

An extreme but not unusual example of positive confounding would be data such 
as the following: 

Confounding risk ratio = 1.93 

plia 

YO 

38 
3 
8 

10 
10 
15 
7 
5 
4 

Risk 
ratioa 

1 
5.6 
3.2 
9.4 

11.3 
23.2 
24.9 
38.2 
50.7 

pli 

YO 

10 

7 

12 
15 
15 

15 

I 

1 .O 

) 0.97 

} 1.01 ' '.O1 

) 1.02 

1.91 

V 

\ 

l -o 

' 

1.41 

II 111 IV  VI 

) 1.57 

) 1.16 

1.61 

1 .O 

' 1-05 

1 1.16 

1.68 

VII 

1 1'31 

1.34 

1.44 

) 1.39 

} 1.01 

1.01 

1.02 

1.86 

} 1.39 

' 

1.28 

r. 

1.51 
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Case 

Control 

Odds ratio 

Factor C+ 
Exposure E 
+ - 

Factor C- 
Exposure E 
+ - 

Pooled levels of C 
Exposure E 
+ - 

From these tables it can be seen that the cell entries when C is positive differ 
markedly from the cell entries when C is negative. This lack of balance has- two con- 
sequences. First, the unequal ratio of cases to controls and the unequal proportion of 
those exposed to E, in the two post-stratification tables, lead to strong positive con- 
founding. Second, as a reflection of the confounding the minimum cell entries in the 
two tables obtained after stratification are both much smaller (both equal to one, in 
fact) than half the minimum cell entry in the pooled table (equal to 19). Thus one 
can expect the estimate of the odds ratio to be considerably less precise than an estimate 
obtained from more balanced tables. Both effects can be mitigated by equalizing the 
ratio of cases to controls in those exposed and those not exposed to a confounder C, 
in which case we say the design is balanced for Factor C. The results could be repre- 
sented as follows: 

Case 

Control 

Factor C+ 
Exposure E 
+ - 

Factor C- Pooled levels of C 
Exposure E Exposure E 
+ - + - 

Odds ratio II, II, 

Balancing or even equalizing cases and controls in each stratum does not eliminate 
confounding, as the following example illustrates: 

Case 

Control 

Odds ratio 

Factor C+ 
Exposure E 
+ - 

Factor C- 
Exposure E 
+ - 

Pooled levels of C 
Exposure E 
+ - 
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However, using expression (3.1) and the balance in the design one can show that 
the odds ratio in the pooled table, p,, lies between unity and p ,  that is we have: 

Thus, in contrast to the unbalanced situation, where the confounding effects can be 
either positive or negative and where the pooled odds ratio can be the opposite side of 
unity from the within-stratum odds ratio, with a balanced design the expected pooled 
odds ratio is both on the same side of and closer to unity than the expected within- 
stratum odds ratio. An unstratified analysis will bias the odds ratio towards unity, 
unless the confounding and exposure variables are (conditional on disease status) 
independent, but not change the side of unity on which the odds ratio lies. 

Obviously the odds ratio of C with disease bears no relation to the true association. 
If a factor has been balanced, the data so generated give no information on-the asso- 
ciation of that factor with disease. Interaction can still be estimated, however, as is 
discussed in 5 3.5. 

Balance, as described above, where the control series is chosen to ensure equal 
frequency of cases and controls in different strata, is sometimes referred to as frequency 
matching. On other occasions, where for each case a set of controls is chosen to have 
the same, or nearly the same, values of prescribed covariates, we speak of individual 
matching. In later chapters matching refers specifically to individual matching. 

Incorporation of matching factors in the analysis 

The purpose of matching, as we have just seen, is to control confounding and increase 
the lnformation per observation in the post-stratification analysis. Most studies, and 
certainly those of cancer, would match for age and sex, since both could confound the 
effect of most other factors. A large number of studies match on additional variables, 
often to the point where each case may be associated with a set of controls in an 
individual stratum. One purpose of this matching, as we have mentioned, is to improve 
the precision of the estimates of the relevant relative risks obtained from a stratified 
analysis. Some matching factors, such as place of residence or membership of a sibship, 
represent a complex of factors. Then, the purpose of the matching is to eliminate the 
confounding effect of a range of only vaguely specified variables, since the matching 
provides a stratification by these variables which would otherwise be difficult to per- 
form because of their indeterminate nature. In these circumstances, matching can be 
an important way of eliminating bias in the risk estimate. The result given for a 
dichotomous matching variable can be extended without difficulty to any complexity 
of matching variables. The expected odds ratio resulting from an analysis incorporating 
the matching is always more extreme than the expected odds ratio obtained ignoring 
the matching (Seigel & Greenhouse, 1973). 

Now, the purpose of matching implies that the matching factors must a priori be 
considered as ones for which stratification would be necessary, that is, as confounding 
variables. It would follow that variables which have been used for matching in the 
design should be incorporated in the analysis as confounding variables. Until recently, 
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there were limitations on the type of analysis that could be done which fully incorporated 
the matching. However, the analytical methods now available do not suffer from these 
limitations. 

The extent to which the analysis should incorporate the matching variables will 
depend on how the variables are used for matching. If matching is performed only on 
age and sex then a stratified analysis rather than one which retains individual matching 
may be more appropriate. Individual matching in the analysis is only necessary if 
matching in the design was genuinely at  the individual level. However, preservation of 
individual matching, even if artificial, can sometimes have computational advantages 
and often means little loss of information (see 5 7.6). 

Overmatching 

It might be inferred from our discussion that the post-stratification analysis is always 
the one of interest, that if we can find a variable which appears to alter the association 
between disease and the exposure then we should treat that variable as a confounder, 
but this approach ignores the biological meaning of the variables in question and 
their position in the sequence of events which leads to disease. 

A diagrammatic representation of (positive) confounding might be as follows: 

C Confounding 

In many situations, however, such a figure does not correspond to the true state of 
affairs. Two such situations merit particular attention. The first is when an apparent 
confounding variable in fact results from the exposure it appears to confound. We 
could represent this occurrence diagrammatically as 

E-C-D Overmatching 

where C is part of the overall pathway 

Chronic cough, smoking, and lung cancer can be cited as an example. One would 
expect the pattern of cigarette smoking among those with chronic cough to be closer 
to the smoking pattern of lung cancer cases than to that of the general population. The 
result of stratifying by the presence of chronic cough before diagnosis of lung cancer 
might almost eliminate the lung cancer-smoking association. The real association be- 
tween smoking and lung cancer is obscured by the intervention of an intermediate 
stage in the disease process. A similar example is given by cancer of the endometrium, 
use of oestrogens and uterine bleeding. If use of oestrogens by postmenopausal women 
induces uterine bleeding, itself associated with endometrial cancer, then one might 
expect stratification by a previous history of uterine bleeding to reduce the association 
between endometrial cancer and oestrogens. If history of chronic cough or a history of 
uterine bleeding were used as stratifying factors in the respective analyses, or  as a 
matching factor in the design, then one would call the resulting reductions in the 
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strength of the disease/exposure association examples of overmatching. In both these 
examples, the overmatching consists of using as a confounding factor a variable whose 
presence is caused by the exposure. 

A second way in which overmatching may occur is when both the exposure and the 
confounder represent the same underlying cause of the disease. We might represent 
such a situation as: 

Composite variable 

C and E now represent different aspects of the same composite factor causally related 
to disease. For example, C and E might both be aspects of dietary fibre, or alternative 
measures of socioeconomic status. From the diagram it is clear that both should have 
equal status as associates of disease. One might, somewhat arbitrarily, decide to take 
one of the two, or even attempt to form a composite variable using regression methods. 
It would clearly be inappropriate to consider one as confounding the effect of the 
other, or to consider the association of one with disease after stratification by the other. 

In both the above situations, overmatching will lead to biased estimates of the relative 
risk of interest. 

A third way in which overmatching may occur is through excessive stratification. The 
standard errors of post-stratification estimates of relative risk tend to be larger than 
the standard errors of pre-stratification estimates (see 5 7.0). Stratification by factors 
which are not genuine confounding variables will therefore increase the variability of 
the estimates without eliminating any bias, and can be regarded as a type of over- 
matching. It is commonly seen when data are stratified by a variable known to be 
associated with exposure but not in itself independently related to disease. It does not 
give rise to bias. If one recalls the section of Chapter 1 relating to overmatching in the 
design of a study, one can see close parallels between the different manifestations of 
overmatching in the design and the analysis of a study. 

We may represent diagrammatically the situation in which a variable is related to 
exposure but not to disease as: 

No confounding 

C is not a genuine confounding variable. Simply by chance, however, substantial 
confounding may appear to occur, as the result of random sampling. This eventuality 
will arise more often the more strongly E and C are associated. It may be difficult to 
decide whether such an event has occurred, and this will normally require consideration 
of how C and disease could, logically or  biologically, be related. If several studies 
have been performed, such confounding may appear as an inconsistency in the results, 
with different factors appearing to have confounding effects in different studies. Good 
evidence may be available from previous studies that C is not causally related to disease, 
in which case it should not be incorporated as a confounder. If, nevertheless, it appears 
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to have a strong confounding effect, the design of the study should be carefully exam- 
ined to ensure that it is not acting as a surrogate for some other potential confounder, 
and in particular that it is not acting through selection bias (see 3 3.7). 

Note that the situation 
0 

AL 
E-D 

may lead to genuine confounding when the variables are measured with error. Con- 
sider as an example: 

Case 

Control 

Factor C+ 
Exposure E 
+ - 

Factor C- 
Exposure E 
+ - 

Pooled levels of C 
Exposure E 
+ - 

Odds ratio 100 100 100 

Suppose now that E is misclassified 10% of the time, yielding a variable which we 
shall denote by E*. The tables become, approximately: 

Case 

Control 

Factor C+ 
Exposure E* 
+ - 

Factor C- 
Exposure E* 
+ - 

'I, 
Pooled levels of C 

Exposure E* 
+ - 

odds ratio 9 9 22.9 

The post-stratification odds ratio relating E* to disease is much less than that relating 
E to disease but in addition a confounding effect has arisen, with a confounding risk 
ratio of 22.919 = 2.54. The odds ratio relating C to disease, after stratification by E*, 
is 9 rather than 1. The reason is clear: both E* and C are correlates of E, and both are 
related to disease only through E. Only if E is exactly known does knowledge of C 
contribute nothing extra to assessment of disease risk. 

It is clear from our discussion of confounding that it is not an issue which can be 
settled on statistical grounds. One has to consider the nature of the variables concerned, 
and of their relationships with each other and with disease. 

Variables to be included as confounding variables 

We have considered the conditions under which an observed association may be the 
result of a confounding effect, and when overmatching might occur, and have discussed 
the criteria for deciding which factors to incorporate in the analysis as confounding 
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factors when confronting the data from a particular study. Normally there will be two 
basic aims: first, to remove from the disease/exposure associations of interest all the 
confounding effects present in the study data set, whether positive or negative; second, 
to ensure that genuine associations are not reduced by overmatching. 

To satisfy the first aim, questions of statistical significance are irrelevant. Given that 
a confounding factor has to be associated both with disease and with exposure, 
one might contemplate testing whether both associations are significant in the available 
data. If their association were not significant, then one might discard the factor as a 
potential confounder.  h his approach is incorrect (Dales & Ury, 1978), and it can lead 
to substantial confounding effects remaining in the association, as the following example 
shows: 

Stratification by potential confounder 

Case 

Control 

Factor C+ 
Exposure E 
+ - 

Factor C- 
Exposure E 
+ - 

Pooled levels of C 
Exposure E 
+ - 

odds ratio 1 1 1.73 (j2 = 3.91) 

The association between E and C, after cross-classification by disease status, does 
not achieve significance at the 5 % level: x2 = 1.63 using the Mantel-Haenszel x2 given 
by equation (4.23). Thus, in the data C and E are not significantly associated, but an 
appreciable and statistically significant (at least in the formal sense) association be- 
tween E and disease exists before stratification by C, which vanishes upon stratification. 

With this example in mind, and recalling the initial discussion of overmatching, we 
can propose three criteria for treating a variable as a confounding variable in the 
analysis. 
1. If a variable C is known from other studies to be related to disease, and if this 

association is not subsidiary to a possible exposure/disease association, then C 
should be treated as a confounding variable. The significance of the association 
between C and disease in the data at hand is of no relevance. Irrespective of 
the association between E and C in the general population, if there is an association 
between E and C in the study sample then part of the association between E and 
disease in the study sample will be a reflection of the causal association between C 
and disease. The contribution of C to the E-disease association must be elimi- 
nated before proceeding to further considerations of a possible causal role for E 
in disease development. Age and sex will almost always be confounding variables, 
and should be treated as such. 

2. If a variable C is related to disease, but this association is subsidiary to the associa- 
tion between E and disease, by which we mean that either C is caused by E or forms 
a part of the chain of events by which disease develops from E, then C should not 
be considered as a confounder of the disease/exposure association. 



1 08 BRESLOW & DAY 

3. If a factor is thought important enough to be incorporated in the design of the 
study as a matching or balancing factor, then it should be treated as a confounding 
variable in the analysis. 
In the situation when E and C are known to be related, and if in the data C is also. 

related to disease, then there will be an apparent confounding effect. In this situation, 
unlike the previous one, it is less clear what the interpretation should be in terms of 
causality. Incorporating C as a confounding variable implies that one is giving the 
C-disease association precedence over the E-disease association, which one would not 
always want to do, as for example when C and E are different measures of the same 
composite factor. The possibility must be considered that selection bias has operated 
with respect to C in the choice of either cases or controls or in the manner of acquiring 
information. Control of this bias may be possible by treating it as if it were a confound- 
ing effect. This is discussed in § 3.7. 

3.5 Interaction and effect modification 

In our discussion of the joint effect of different factors, and specifically in the context 
of confounding, we have assumed that the odds ratio associating one factor to disease 
is unaltered by variation in the value of other factors. This simple assumption can only 
be an approximation, although as we saw in Chapter 2, on many occasions the approxi- 
mation is fairly close. On other occasions, appreciable variations in the odds ratio were 
noted, and these variations themselves were of biological importance. 

If the odds ratios associating factor A and disease vary with the level of a second 
factor B, then it is common epidemiological parlance to describe B as an effect modifier. 
The term is not a particularly happy one, however. A departure from a multiplicative 
model might arise, for example, if two factors operated in the same way at the cellular 
level and their joint effect were additive, which would make little sense biologically to 
describe as effect modification. We prefer to use the term 'interaction', in keeping witht 
usual statistical terminology. 

The main reasons for studying interactions are first because they may modify the 
definition of high risk groups, and second because they may provide insight into disease 
mechanisms. Interaction implies that in certain subgroups the relative risk associated 
with exposure is higher than in the rest of the population. Both the specificity of risk 
for these subgroups, and the fact that the level of exposure-associated risk will be 
higher than the general risk in the population would tend to increase one's belief in 
the causal nature of the association, as was discussed earlier in the chapter. The aim 
should not be to eliminate interactions by suitable transformations, but rather to under- 
stand their nature; this point is well made by Rothman (1974). 

One should note that using a variable as a matching factor in the design, so that its 
individual effect on risk cannot be studied, does not alter the interactive effects that 
the factor may have with other exposures. A simple example will illustrate the point. 
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Factor B+ 
Factor A 

+ - 

Factor B- 
Factor A 

+ - 

Case 

Control 

Odds ratio 1 4 

Suppose now that the ratio of controls to cases were the same for each level of B. 
The results would then be, for example: 

Case 

Control 

Factor B+ 
Factor A 

+ - 

Factor B- 
Factor A 

+ - 

Odds ratio 1 4 

Thus, the two odds ratios relating factor A to disease for the two levels of B are un- 
altered, but the odds ratio relating B to disease is greatly modified. Matching does not 
alter interaction effects between variables used for matching and those not so used. 

Analysis of interaction effects 

The first step is to investigate if appreciable interactions are present. In the simplest 
situation, one may just wish to test whether the relative risks in two groups, defined 
perhaps by age or some other dichotomized variable, are the same; the type of test 
proposed in Chapter 4 would be appropriate. In more complex situations, two ap- 
proaches are possible. First, the observed distribution of the exposure variables among 
the cases and controls can be compared with the distribution under the multiplicative 
model (see 5 2.6). Patterns in the departures of observed from expected may indicate 
the superiority of an alternative model for the joint action. With two or three variables 
which can be stratified into a few categories each, the presentation is simple, as shown 
in Table 3.6 for data relating oral cancer risk to use of tobacco and alcohol (from Wyn- 
der, Bross & Feldman, 1957; see also Rothman, 1976). The expected values, obtained 
using unconditional maximum likelihood methods (Chapter 6, particularly 5 6.6) enable 
one to examine the adequacy of the overall fit of the multiplicative model. In Table 3.6, 
the fit is good. A feature of Table 3.6 is that apparently substantial differences in the 
odds ratios can arise from fairly small differences between observed and expected 
numbers of cases and controls in a cell. The cell corresponding to < 1 units of alcohol/ 
day and 34+ cigarettedday is an example. 
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Table 3.6 Risk for oral cancer associated with alcohol and tobaccoa 

A. Observed and expected number of cases in each smoking and drinking category, with the 
observed number of controls 

Alcohol (average Tobacco(cigarettes/day) 
consumption in 
unitslday) 5 1  5 1 6-20 

B. Observed and expected relative risks in each smoking and drinking category 

Obs. Obs. Exp. 
Cont. Cases Cases 

31 16 18.84 
8 7 6.07 
8 20 18.47 
2 10 9.62 

Alcohol (average Tobacco (cigaretteslday) 
consumption in 
unitslday) 5 1  5 16-20 2 1 3 4  34 + 

Obs. Obs. Exp. 
Cont. Cases Cases 

19 25 22.54 
18 19 19.10 
16 40 42.14 
5 30 30.22 

a From Wynder. Bross and Feldman (1957) 

Obs. Exp. 

1 .OO 1 .OO 
1.70 1 .OO 
4.85 2.85 
9.70 6.03 

If significant or appreciable interaction terms are present, one would then attempt 
to understand the nature of their effect. First, examination of the discrepancies between 
the observed numbers and those expected under the no-interaction model may indicate 
that the interaction corresponds to unsystematic but excessive variation. It is a com- 
mon feature of epidemiological data to show variation slightly higher than that theo- 
retically expected on the basis of random sampling considerations. Since the excess 
variation probably arises from minor unpredictable irregularities in data collection, one 
would suspect that it is due mainly to chance, augmented perhaps by variation of 
extraneous factors. 

A second interpretation of the departures from a multiplicative model may be that 
the variables interact in a different way. An obvious alternative would be to try to fit 
an additive model for the relative risks. The data on occupational exposure, cigarette 
smoking and bladder cancer from Boston (Cole, 1973) suggest a better fit for an 
additive model, as do data on use of oestrogens at the menopause, obesity and risk for 
endometrial cancer (Mack et al., 1976). 

A third interpretation is that specific groups, as defined by the interactive factors, 
are at higher risk due either to greater susceptibility or to greater exposure. An example 
of greater susceptibility with age at exposure is provided by the variation in risk for 
breast cancer due to irradiation (Boice & Stone, 1978). An example of differences in 
exposure is given by the risk for cancer of the lung and nasal sinuses among nickel 
refinery workers in South Wales (Doll, Mathews & Morgan, 1977). The risk appears 

Obs. Obs. Exp. 
Cont. Cases Cases 

13 12 13.67 
5 5 5.51 
5 24 22.54 
4 35 34.28 

Obs. Obs. Exp. 
. Cont. Cases Cases 

3 13 10.96 
5 10 10.32 
4 19 19.84 
4 40 40.88 

0 bs. Exp. 
2.55 1.57 
2.05 1.57 
4.85 4.47 

11.64 9.47 

0 bs. Exp. 
1.79 1.80 
1.94 1.80 
9.31 5.1 0 

16.98 10.85 

0 bs. Exp. 
8.41 3.24 
3.88 3.24 
9.21 9.23 

19.37 19.53 
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confined to those first employed before 1930. Changes in the operation of the refinery 
at that time could, quite plausibly, have removed the carcinogenic agents, and the 
change in risk assists in identifying what those agents may have been. 

3.6 Modelling risk 

The use of stratification and cross-tabulation to investigate the joint effect on risk 
of two variables, in terms of how the two factors mutually confound each other and 
interact, is reasonably straightforward. However, even with two variables, as the number 
of values each variable can take increases, the control of confounding by means of 
stratification can lead to substantial losses of information, and tests for interaction will 
lack power. As the complexity of the problem increases, the approach via stratification 
becomes not only unwieldy but increasingly wasteful of information. The different 
effects associated with different levels of a variable will not normally be unrelated, and 
can be expected to change smoothly. For example, for a quantitative variable, risk will 
usually vary in a manner which can be described by a simple family of curves. It would 
be rare to need more than second degree terms, after perhaps some initial transforma- 
tion of the scale. 

Similarly, interactive effects between several variables will not normally vary in a 
structureless way, and general experience has been that most situations are well de- 
scribed by some simple structure of the interactions. These considerations lead to the 
use of regression methods, in which the risk associated with each variable is expressed 
as some explicit function, and interaction effects are described in terms of the specific 
parameters of interest. Chapters 6 and 7 are devoted to the development of these 
methods, which will not be further discussed here except to outline briefly their advan- 
tages. These can be summarized as follows: 
1. One can study the joint effect of several exposures simultaneously. The stratifica- 

tion approach we considered earlier places the emphasis on one specific exposure. 
Study of the combined risk associated with several exposures is an important com- 
plement of the single exposure analysis. 

2. When the number of levels of the confounding variables increases, one can remove 
their effect as fully as by fine stratification but with less loss of information. 

3. One can test for specific interaction effects of interest with the considerable increase 
in power this provides. One also obtains a parametric description of the interaction. 

4. The risk associated with different levels of a quantitative variable can be expressed 
in simple and descriptive terms. 

In studies where controls are individually matched to cases, these advantages are 
accentuated, as Chapters 5 and 7 make apparent. But regression methods should not 
replace analyses based on cross-tabulation, rather they should complement and extend 
them, as we illustrate in Chapter 6. 

3.7 Comparisons between more than two groups 

So far, we have considered methods of analysis appropriate for comparisons between 
one case group and one control group. Situations occur, however, when comparisons 
among more than two groups are required. One may want to test whether the relative 
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risk for some factor is the same over different subcategories of disease, for example, 
different histological types of lung cancer or different subsites of the oesophagus or the 
large bowel. Or one may want to test whether the results obtained using different 
control groups can be taken as equivalent, or whether observed differences are easily 
explained as chance phenomena. The approach most commonly taken is an informal 
one, in which one calls attention to appreciable differences in risk when comparisons 
are made between different pairs of groups, but one does not attempt a formal test of 
significance. 

The methods presented in Chapters 6 and 7 can be extended to the comparison 
of more than two groups. In particular, if the study design incorporated individual 
matching, then a dummy variable, indicating disease subcategory could be introduced 
and interaction examined between this dummy variable and the exposure of interest. 
However, investigating heterogeneity of disease subcategory or of type of control group 
by introducing interaction terms is only appropriate if, for each stratum, every individual 
belongs to one disease subcategory or one control group. If within a stratum more 
than two groups are represented, then the underlying probability structure needs exten- 
sion. One cannot simply write 

One has to generalize this expression to 

Zpr(case, disease category i) + Zpr(contro1, type j) = 1 
I I 

Mantel (1966) and Prentice and Breslow (1978) have indicated how a generalized 
logistic function, appropriate to this situation, can be formed and how the various 
estimation and hypothesis-testing procedures can be derived. The only difficulty in 
practical use is that the number of parameters can become unwieldy. 

One would anticipate that the generalized logistic model will be used more in the 
future than it has been in the past, at least in the context of epidemiological studies. 
But, in this monograph we will not consider its development any further, since computer 
programmes are not readily available to put the techniques in operation, and no impor- 
tant matter of principle is involved. Extensions of the regression models of Chapters 6 
and 7 are conceptually simple, and with some labour could be made operational. 

3.8 Considerations affecting interpretation of the analysis 

The interpretation of a study will depend not only on the numerical results of various 
analyses, but also on more general considerations of how the study was conducted, the 
nature of the factors under investigation and the consistency with other studies done 
in the same field. We conclude this chapter by a brief discussion of some of these 
aspects. 

Bias 

Bias is a property of the design of a study and was discussed in Chapter 1. Various 
features can be incorporated in the design which permit at least partial assessment of 
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the extent of possible bias; these features are selection of different types of control 
groups, different series of cases, or  different ways of obtaining similar information. 

One can include in the study, for example, cases of cancers at different sites, to 
demonstrate whether the observed effects are specific for the site of interest. An 
example of this procedure is given by Cook-Mozaffari et al. (1979) in a study of 
oesophageal cancer in Iran. Frequent practice is to use both a hospital and a population 
series of controls. If recall and selection bias are present then they should be different 
in the two groups, and the divergence between the results should indicate the extent 
of the biasing effect. 

The effects of design bias can sometimes be controlled in the analysis in the same 
way as one controls for confounding. Thus suppose that, whether by selection bias or 
differential recall, the relative representation of some factor in the case and control 
groups is different from the relative representation in the study population, and that 
this factor is related to the exposure of interest. Then, even if the factor does not 
confound the exposure/disease association in the underlying population, an apparent 
confounding effect will be seen in the data at hand which can be controlled in the 
same way as other confounding effects. Care must be taken to ensure that overmatching 
does not result. Stratification or adjustment by a factor leads to an increase in the 
variance of the estimates of parameters of interest and routine adjustment by factors 
for which there is no reason to suspect bias will lead to a loss of information. 

More generally, the effects of bias will often be the creation of apparent confounding 
effects, but little information may be available on the specific variable involved. As in 
5 3.4, one can assess the strength of association that must exist between these hidden 
confounding variables and both disease risk and the exposure of interest for the ob- 
served association to be due to bias. Biases have to be strong to generate relative risks 
greater than twofold. 

Missing data 

Sufficient control should normally be exercised over the conduct of a study to ensure 
that few, if any, of the data that one intended to collect are missing. Sometimes, how- 
ever, source documents such as hospital records may be lost or  otherwise missing, or 
respondents may be unable to supply the information required or be unwilling to 
answer certain questions. The essential point when faced with missing data is to be 
aware that the occurrence is usually not a random event. The probability that data are 
missing will be associated with the exposures one is studying, or  with disease status or 
both. If information on some variable is unavailable for any more than a small per- 
centage of individuals, then inferences about that variable will be of doubtful value. 

Common practice is to eliminate from analyses including a certain variable all 
individuals for whom information on that variable is missing. In a matched pair design, 
the individual matched to an eliminated individual will also be eliminated. Since the 
individuals eliminated will often form a selected group, their elimination can lead to a 
biased estimate of relative risk. An attempt can be made to estimate the degree of 
bias involved. One approach is to replace missing values by the two extreme values, 
thus bracketing the true results. An alternative, for categorical variables, is to create 
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an additional category for missing data. The relative risk for this category will give an 
indication of the degree of bias. 

If one can be sure that no bias relates to the absence of data, for example, the acci- 
dental loss of biological samples, then one might consider using some of the powerful 
techniques that have recently been developed for data missing at random (Demster, 
Laird & Rubin, 1977). These techniques have the advantage that an individual's entire 
record is not discarded just because a single datum is missing. 

Errors of classification 

Errors in classifying disease status and in measuring the exposure variables may 
both be appreciable. For the former, it has long been realized that a certain proportion 
of the controls may be at an early stage of disease and should have been diagnosed as 
cases. Under most circumstances, one might expect this proportion and hence the 
effect to be small, but when the disease under study is particularly common, the effect 
may become appreciable. The consequence is the same as when misdiagnosed cases are 
included in the disease group. Both errors lead to underestimates of the relative risk. 

Errors of measurement in the exposure variables have been considered by several 
authors (Bross, 1954; Newell, 1963; Goldberg, 1975; Barron, 1977). Here the effect 
is also to reduce the apparent risk, unless the errors are linked in some unusual manner 
to confounding variables. For a dichotomous exposure variable, with a probability @ 
of misclassifying an exposed case or control and a probability 6 of misclassifying a non- 
exposed person, we have: 

True odds ratio I# = pl(l-po)/po(l-p,) 
but 

Observed odds ratio = 
(PI + 6/d) ((1-po) + @/dl 
(PO + 6/d) ((1-p1) + @/d) 

where pl is the true probability of exposure among cases, po the exposure probability 
for controls, and d = 1 - @ - 6. 

For example, if po = 0.3 and p, = 0.1, with the true relative risk = 3.9, then misclas- 
sification rates of 10% (@ = 6 = 0.1) will reduce the relative risk to 2.4, and misclassi- 
fication of 20% reduces the relative risk to 1.7. It should be remembered that some- 
times one is not measuring precisely the factor of interest, and that for this reason 
assessments of the importance of a factor may be too modest. Dietary items would be 
clear examples; current epidemiological methods are certainly inadequate for estimating 
retrospectively the intake of dietary fibre or animal fat. Demonstration of an effect for 
either of these items in a case-control study would be virtually all one could expect, 
and estimates of relative risk, or attributable risk, are likely to be serious understate- 
ments of the real effect. As another example, weak associations (i.e., relative risks of 
1.5 or 2) between HLA antigens and disease, particularly locus A or B antigens, are 
often interpreted as indicating the existence of genes at other loci of the HLA region 
which are strongly associated with disease. 
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The problem of multiple comparisons 

The results of studies are often presented as if the only variables included in the study 
were those which a posteriori showed association with disease. One has to distinguish 
between factors which are clearly part of the main hypothesis motivating fhe study, and 
those which were included in the study for less obvious reasons. Disease associations 
demonstrated for the former can be interpreted without consideration of multiple com- 
parisons, but for the latter one or two factors out of a hundred in the study are expected 
to be significant at the 1 % level (this issue is well discussed in the paper by Mantel and 
Haenszel, 1959). The area where this consideration is most explicitly acknowledged 
is in the study of genetic polymorphisms and disease, perhaps because non-confirmatory 
repeat studies are relatively easy to perform. In studies of HLA antigens, for example, 
it is now required practice to correct nominal significance levels obtained from the 
2 x 2 tables for each antigen by the number of antigens tested (i-e., comparisons). This 
correction may in fact be over-conservative, especially if interest is mainly directed at 
the more common antigens, but correction procedures based on, say, a full Bayesian 
analysis would probably be too complex. A test of association not requiring correction 
for the number of antigens, based on the multivariate estimates of gene frequencies, 
has been proposed in this context (Rogentine et al., 1972). 

In other areas, when a study has investigated many factors, a few of which achieve 
nominal significance in the analysis, the interpretation must be cautious, and further 
studies would be needed to confirm the association. A good example is given by the 
first report of an association between use of reserpine and risk for breast cancer (Boston 
Collaborative Drug Surveillance Program, 1974). This study emanated from the Boston 
Drug Surveillance Program,-and the reported association was one out of several hundred 
possible comparisons (i.e., perhaps 20 tumour sites and 10 or 15 different drugs). As 
the result on its own was thus uninterpretable, publication was delayed until two further 
studies had been performed (Armstrong, Stevens & Doll, 1974; Heinonen et al., 1974). 

It must always be recognized that no study can be regarded in isolation; the results 
of each must be viewed in the light of all other relevant information. 
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nl Number of cases 
no Number of controls 
ml Number exposed 
mo Number non-exposed 
N Total number 
tpp = ad/bc Pooled odds ratio relating E and disease 
a 1 Number of exposed cases at 1st level of C 
a2 Number of exposed cases at 2nd level of C 
(similarly for b, c, d, nl, no, m,, mo, N) 

aldl - V ~ = b , c , -  odds ratio relating E and disease at level 1, factor C 

a2d2 - odds ratio relating E and disease at level 2, factor C t p 2 = = -  

' P C  

P 1 

P2 
w = $lp/lp 

r k 

Plk 
P2k 
r*j 
p*lj 

common value of 99, and v2 ,  assuming they are equal; within stratum 
odds ratio 
odds ratio relating C and disease after stratification by E 
proportion of exposed controls who are at level I (+ )  of C 
proportion of non-exposed controls who are at level l ( + )  of C 
confounding risk ratio 
relative risk associated with level k of a confounder C 
proportion of exposed controls who are at  level k of factor C 
proportion of non-exposed controls who are at level k of factor C 
relative risk associated with jth combination of levels of a confounder C 
proportion of exposed controls having the jth combination of levels of 
factor C 
proportion of non-exposed controls having the jth combination of levels 
of factor C 
confounding risk ratio when K levels of factor C are grouped into J 
combinations (see equation 3.3) 
ratio of controls to cases in a balanced design 
probability that an exposed case or control is mistakenly classified as 
non-exposed 
probability that a non-exposed case or  control is mistakenly classified 
as exposed 
exposure probability for cases 
exposure probability for controls 




