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CHAPTER V 

CLASSICAL METHODS OF ANALYSIS OF MATCHED DATA 

As a technique for the control of confounding, stratification may be introduced either 
at the design stage of a study or during the analysis of results. An advantage of using 
it in design, keeping a constant ratio of controls to cases in each stratum, is that one 
avoids the inefficiencies resulting from having some strata with a gross imbalance of 
cases and controls. In the Ille-et-Vilaine study, for example, the 115 controls ascertained 
between 25 and 34 years of age are effectively lost from the analysis, or make only a 
minimal contribution to it, because there is only a single case with which to compare 
them (Table 4.1). Of course such gains in efficiency are only achieved if the analysis 
takes proper account of the stratification, which must be done in general anyway in 
order to avoid biased estimates of the relative risk (§ 3.4). 

The ultimate form of a stratified design occurs when each case is individually matched 
to a set of controls, usually one or two but sometimes more, chosen to have similar 
values for certain of the important confounding variables. Some choices of control 
population intrinsically imply a matched design and analysis, as with neighbourhood or 
familial controls. If the exposure levels of the risk factor to be analysed are dichotomous 
or polytomous, the tests and estimates developed in the last chapter may be employed 
directly by considering each matched pair or set to be a separate stratum. Of course 
those "asymptotic" techniques which lead to trouble with sparse data should be 
avoided, while some of the "exact" procedures which were not considered feasible with 
general strata are quite tractable and useful with matched data. In this chapter we take 
advantage of the special structure imposed by the matching, so as to express many of the 
previously discussed tests and estimates in simple and succinct form. 

5.1 Los Angeles retirement community study of endometrial cancer 

An example which we shall use to illustrate the. methods for matched data analysis 
is the study of the effect of exogenous oestrogens on the risk of endometrial cancer 
reported by Mack et al. (1976). These investigators identified 63 cases of endometrial 
cancer occurring in a retirement community near Los Angeles, California (USA) from 
1971 to 1975. Each case was matched to four control women who were alive and living 
in the community at the time the case was diagnosed, who were born within one year 
of the case, who had the same marital status and who had entered the community at 
approximately the same time. In addition, controls were chosen from among women 
who had not had a hysterectomy prior to the time the case was diagnosed, and who 
were therefore still at risk for the disease. 
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Information on the history of use of several specific types of medicines, including 
oestrogens, anti-hypertensives, sedatives and tranquilizers, was abstracted from the medi- 
cal record of each case and control. Other abstracted data relate to pregnancy history, 
mention of certain diseases, and obesity. Table 5.1 summarize? the distribution of 
cases and controls according to some of the key variables. Note the almost perfect 
balance of the age distribution of cases and controls, a consequence of the matching. 

The analysis of these data is aimed at studying the risk associated with the use of 
oestrogens as well as with a history of gall bladder disease, and how these risks may be 
modified by the other factors shown in Table 5.1. When illustrating methods which 
involve matching a single control to a single case, the first of the four selected controls 
is used. A listing of the complete set of data is presented in Appendix 111. 

Table 5.1 Characteristics of cases and controls in Los Angeles study of endometrial cancer 

Variable Level Cases Controls RR" 

Age (years) 

Mean 
S.D. " 

Gall-bladder disease Yes 
N 0 

Hypertension Yes 
No 

Obesity Yes 
No 
Unk 

Other drugs 
(non-oestrogen) 

Oestrogens (any) 

Yes 
No 

Yes 
No 

Conjugated 
oestrogen: amount 
(mglday) 

None 
0.1-0.299 
0.3-0.625 
0.626+ 
Unk 

Conjugated 
oestrogen: duration 
(months) 

None 
1-1 1 

12-47 
48-95 
96 + 
Unk 

a Relative risks calculated from unmatched data; RR = 1.0 identifies baseline category 
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5.2 Matched pairs: dichotomous exposure 

The simplest example of matched data occurs when there is 1 : 1 pair matching of 
cases with controls and a single binary exposure. This is a special case of the situation 
considered in 5 4.4, wherein each stratum consists of one case-control pair. The possible 
outcomes are represented by four 2 x 2 tables: 

Exposure 
+ - + - + - + - Total 

Case 

Control 

Total 2 0 1 1 1 1 0 2 2  

Number of 
such tables: n11 

The most suitable statistical model for making inferences about the odds ratio with 
matched or very finely stratified data is to determine the conditional probability of the 
number of exposed cases in each stratum, assuming that the marginal totals of that 
stratum are fixed (5 4.2). For tables in which there are zero marginal totals, i.e., for 
the extreme tables in which either both or neither the case or control are exposed to the 
risk factor, this conditional distribution assigns a probability of' one to the observed 
outcome and hence contributes no information about the odds ratio. The statistical 
analysis uses just the discordant pairs, in which only the case or only the control is 
exposed. Denoting by pl = 1-ql and po = 1-qo the exposure probabilities for case and 
control, respectively, the probability of observing a case-control pair with the case only 
exposed is plqo while that of observing a pair where only the control is exposed is 
qlpo. Hence the conditional probability of observing a pair of the former variety, 
given that it is discordant, is 

a function of the odds ratio v .  This is a special case of the general formula (4.2) in 
which a = nl = no = ml = = 1. It follows that the conditional probability of observ- 
ing nlo pairs with the case exposed and control not, conditional on there being 
nlo+ nol discordant pairs total, is given by the binomial formula with probability 
parameter n 

While we will derive all statistical procedures for making inferences about I) directly 
from this distribution, many can also be viewed as specializations of the general methods 
developed in 5 4.4 for stratified samples. 
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Test of the null hypothesis 

When + = 1, i.e., there is no association, the probabilities of the two different kinds 
of discordance are equal. Hence for small samples, say either nlo or no, smaller than 
ten, the null hypothesis Ho: 11, = 1 may be tested by calculating the exact tail proba- 
bilities of the binomial distribution with probability x = Otherwise we use the 
continuity corrected version of the chi-square statistic based on the standardized value 

which is a special case of (4.23). Known as McNemar's (1947) test for the equality 
of proportions in matched samples, it is often expressed 

Estimating the odds ratio 

Since the maximum likelihood estimate (MLE) of the binomial parameter x is 
simply the observed proportion of discordant pairs in which the case is exposed, it 
follows that the MLE of 11, is 

i.e., the ratio of the two types of discordant pairs. This is essentially the only instance 
when the conditional MLE (4.25) discussed for stratified data can readily be cal- 
culated. It is interesting that I) is also the Mantel-Haenszel (M-H) estimate (4.26) 
applied to matched pair data. 

Confidence limits 

Exact 100(1-a)% confidence intervals for the binomial parameter x in (5.2) may 
be determined from the charts of Pearson and Hartley (1966). Alternatively, they 
may be computed from the tail probabilities of the binomial distribution, using the 
formulae 

and 

Here F,~2(v1,v2) denotes the upper 100(a/2) percentile of the F distribution with 
v, and v2 degrees of freedom, in terms of which the cumulative binomial distribution 
may be expressed (Pearson & Hartley, 1966). 
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Approximate confidence limits for x are based on the normal approximation to the 
binomial tail probabilities. These are computed from the quadratic equations 

and 

where is .the upper 100a/2 percentage point of the normal distribution. 
Once limits for x are found, whether from (5.7) or (5.8), they are converted into 

limits for + by using the inverse transformation 

Alternatively, substituting for x, and xu in (5.8), one can write the equations some- 
what more simply as 

and solve directly for $ 1 ,  and vu. 

Adjustment for confounding variables 

One problem which occurs frequently in practice is that of adjusting for the con- 
founding effects of a variable on which cases and controls have not been matched. In a 
study of the effects of a particular occupational exposure on lung cancer, for example, 
cases and controls may be matched on age and calendar year of diagnosis but not on 
smoking history. It would have been standard procedure in the past to adjust for the 
smoking effects by restricting the analysis to those case-control sets which were homo- 
geneous for smoking according to some prescribed definition. Depending upon the 
stringency of the criteria for "same smoking history", this procedure could well result 
in the loss of a major portion of the data from analysis and is therefore wasteful. A 
much more satisfactory technique for control of confounding in a matched analysis is to 
model the effects of the confounding variables in a multivariate equation which also 
includes the exposures of interest (see 5 7.2). 

Testing for heterogeneity of the relative risk 

It is important to note that the modifying effect of a variable is not altered by its 
use for case-control matching. Interaction effects can be estimated just as well from 
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matched as from unmatched data. For example, if both the incidence of the disease and 
the prevalence of a confounding variable vary throughout the region of study, one 
might well choose controls matched for place of residence. It would be appropriate and 
prudent to investigate if the relative risk associated with the exposure of interest was the 
same throughout the region. Partitioning the matched case-control pairs into subgroups 
on the basis of the variable of interest, in this case place of residence, enables separate 
relative risk estimates to be calculated for each subgroup and compared. 

This approach could also be used to study,the interaction effects of variables besides 
those used for matching. But, it then entails the same loss of information noted to 
occur when controlling for the confounding effects of such variables, since the analysis 
must be restricted to matched sets which are homogeneous for the additional variable(s). 

With 1 : 1 pair matching the easiest way to test for the homogeneity of the odds 
ratios ly in several subgroups is in terms of the associated probabilities x defined by 
(5.2). With H separate subgroups, one simply arranges the frequencies of discordant 
pairs in a 2 x H table 

Subgroup 
1 2 ... H 

and carries out the appropriate test for independence or trend (see 5 4.5). More 
advanced and flexible techniques for modelling interaction effects are presented in 
Chapter 7. 

Example: We begin the illustrative analysis of the Los Angeles endometrial cancer study by confining 
attention to the first of the four controls and considering exposure as "ever having taken any oestrogen". 
This yields the following distribution of the 63 case-control pairs: 

Control 
Exposed Non-exposed 

Exposed 

Case 
Non-exposed 

Hence the ML estimate of the relative risk is 29/3 = 9.67 and the statistic (5.4) for testing the null 
hypothesis is 

corresponding to a significance level of p = 0.000005. 
Ninety-five percent confidence limits based on the exact binomial distribution (5.7) are. 

and 

,7~ = 
29 

= 0.75 corresponding to y g L  = 3.0 
29 + 4(2.42) 

30(4.96) 
JTU = = 0.97 corresponding to y v u  = 49.6 

3 + 30(4.96) 
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where 2.42 = F.,,, (8,58) and 4.96 = F.,,, (60,6). Limits based on the normal approximation are found 
as solutions to the equations (5.10) 

29-3y~,-'/,(l + yl,) = 1.96 
and 

29-3ylu+'/2(l+ylu) = -1.96 , 

the solutions being ylL = 2.8 and y t u  = 39.7, respectively. 
Similar calculations may be made for the effect of a history of gall-bladder disease on endometrial 

cancer incidence. Here the overall matched pair data are 

Control 
+ - 

+ 
Case 

- 

Dividing the pairs according to the age of the case (and hence also the control) we find 

+ 
Case 

- 

Under 7 0  years 

Control 
+ - 

7 0  years and older 

Control 
' + - 

where the two p-values were obtained from the tail probabilities of the binomial distribution with x = '/, 
in view of the small numbers. To test for the homogeneity of the two relative risks in the different age 
groups we form the 2 x 2 table 

A g e  
1 7 0  2 7 0  

for which the usual (corrected) chi-square is x Z  = 0.59, p = 0.44. Thus there is no evidence for a modi- 
fying effect of age on the relative risk for gall-bladder disease. 

If we try to evaluate hypertensive disease as a confounding or modifying factor in a similar fashion, we 
find there is a severe loss of data because of the restriction to case-control pairs which are homogeneous 
for hypertension: 

Hypertensive positive Hypertensive negative 
Control Control 

+ - + - 

+ 
Case 

- 
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Only 32 of the original 63 pairs are available to estimate the relative risk associated with gall bladder 
disease while controlling for hypertension, and the number of discordant pairs actually used in the estima- 
tion is reduced from 18 to 8. As a measure of relative risk adjusted for hypertension we thus calculate 

R R  = 7/1 = 7.0 

and for an adjusted test of the null hypothesis 

There is clearly almost no information left about how hypertension may modify the effect of a history of 
gall-bladder disease on cancer risk. Since only one discordant pair remains among those for which cast: 
and control are both positive for hypertension, the only possible estimates of relative risk in this category 
are RR = 0 and RR = m. In Chapter 7 we will see how the modelling approach, which assumes a certain 
structure for the joint effects of the two risk factors in each matched set, allows us to use more of the 
data to obtain adjusted estimates and tests for interaction between the two factors. 

5.3 1 : M matching: dichotomous exposures 

One-to-one pair matching provides the most cost-effective design when cases and 
controls are equally "scarce". However when control subjects are more readily obtained 
than cases, which is often the case with rare forms of cancer, it may make sense to 
select two, three or even more controls matched to each case. According to the results 
of Ury (1975) (see also Breslow and Patton, 1979), the theoretical efficiency of a 
1 :M case-control ratio for estimating a relative risk of about one, relative to having 
complete information on the control population (M = a), is M/(M+ I). Thus one 
control per case is 50% efficient, while four per case is 80% efficient. It is clear that 
increasing the .number of controls beyond about 5-10 brings rapidly diminishing 
returns, unless one is attempting to estimate accurately an extreme relative risk. 

Just as for one-to-one pair matching, we can consider each case and the correspond- 
ing controls as constituting an individual stratum. With M matched controls per case, 
there are 2(M+ 1) possible outcomes depending upon whether or not the case is 
exposed and upon the number of exposed controls. Each outcome corresponds to a 
2 x 2 table. 

Case + 

Control - 

Total M + 1  0 

+ - 

Case + 

Control - 

Exposure 
+ - + - Total 

Exposure (5.11). 
+ - + - 

Total M 1 M-1 2 0 M+1 M + 1  
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The first and last tables have no alternative configuration, given the marginals, and 
hence contain no information with regard to v .  The 2M remaining tables may be 
paired into sets of two, each having the same marginal total of exposed. For example, 
assuming M 2 3, the table with both the case and two controls positive is paired with 
the table with three controls positive and the case negative. More ge'nerally, we pair 
together the two tables 

1 1 
(5.12) 

M M 
and 

m M-m+l M + l  m M-m+l M + l  

for m = 1,2, ..., M. If, as usual, pl.denotes the probability that the case is exposed and 
po the probability that a control is exposed, the probabilities of the two alternative 
outcomes in (5.12) may be written 

respectively. Therefore the conditional probability of the outcome shown on the left, 
given the marginal totals, is 

pr(case exposed I m exposed among case + controls) = mlC' 
mv + M-m+ 1 

. (5.13) 

This illustrates once again the fact that consideration of the conditional distribution 
given the marginals eliminates the nuisance parameters and leaves the probabilities 
expressed solely in terms of the odds ratio v .  

The full results of such a matched study may be summarized in the table: 

Number of controls positive 
0 1 2 . . . M 

Positive 
Case 

Negative 

where the entry n,,,, for example, is the number of matched sets in which the case and 
exactly two of the controls are exposed. The diagonal lines in (5.14) indicate the 
pairing of frequencies according to (5.12), i.e., nl,, with no,,, while-the totals T,,, = 
nl,,l + no,, are the number of matehed sets with exactly m subjects exposed. The 
conditional probability of the entire set of data may be written as a product of binomial 
distributions with probabilities (5.13) and is proportional to 
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mv Jllml ( M-m+l 
mv+M-m+1 

(5.15) 
mv+M-m+ 1 

Conditional means and variances of the basic frequencies are 

and 

respectively. 

Estimation 

The conditional MLE i.e., the value $ which maximizes (5.15), is obtained as the 
solution of the equation 

equating the total observed and expected numbers of exposed cases (see 4.25)'. 
While its solution in general requires iterative numerical calculations, a closed form 
expression for the case M = 2 is available (Miettinen, 1970). A more simply computed 
estimate is given by the robust formula (4.26) of Mantel and Haenszel, which in this 
case reduces to 

Test of null hypothesis 

As usual this is obtained by comparing the total number of exposed cases with its 
expectation under the null hypothesis. When rl, = 1 the means and variances (5.16) 
reduce to Tmm/(M+ 1) and Tmm(M-m+ l)/(M+ I)', respectively. Hence the 
continuity corrected test statistic may be written 

' Note that the number n,., of  sets with the case and all the controls exposed contributes equally to both 
observed and expected values and is hence ignored. 
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This is a special case of the summary chi-square formula (4.23), which has been 
derived both by Miettinen (1970) and Pike and Morrow (1970). 

Confidence limits 

Approximate confidence limits for ly analogous to those of (4.27) are obtained from 
the chi-square statistic for testing hypotheses of the form H:q=qo.  This is similar to 
(5.19) but with means and variances valid for arbitrary q. The equations for upper 
and lower lOO(1-a) % limits may thus be written 

and 

where E and Var are as defined in (5.16). Numerical methods are required to solve 
these equations. 

Somewhat easier to calculate are the limits for log q proposed by Miettinen (1970) and 
based on the large sample properties of the conditional probability (5.15). According to 
the general theory outlined in the following chapter ( 5  6.4), the approximate variance 
of log $3 is 

Substituting either the MLE or M-H estimate of q in (5.21) to yield an estimated 
variance, approximate confidence limits are thus 

Alternatively, the test-based procedure (4.20) may be used to approximate the vari- 
ance, and thus the confidence limits, using only the point estimate andchi-square test 
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statistic. This is subject to the usual problem of underestimating the variance when I# 
departs markedly from unity. 

Homogeneity of the relative risk 

Suppose that the matched sets have been divided into H subgroups, and that separate 
estimates of the odds ratio are obtained for each one. In order not to lose too much 
data from analysis, due to non-homogeneity of cases and controls, such subgroups are 
most usefully formed on the basis of variables already used for matching. The approach 
we shall continue to use for evaluating the statistical significance of the heterogeneity 
of the different estimates is to compare the observed number of exposed cases within 
each subgroup to that expected under the hypothesis that the same relative risk applies 
to all of them. Thus the statistic is a special case of that suggested in (4.32), with each 
matched set forming a stratum, except that the exact conditional means and variances 
(5.16) are used in place of the asymptotic ones. 

More formally let us denote by II,,,,~ the number of matched sets with the case and 
m out of M controls exposed in the hth group, by no,,,, the number of matched sets 
where the case is unexposed, and set Tm,h = nl,,+l,h + no,,,,,. Then the statistic for 
heterogeneity may be written 

where $ is an overall estimate of the odds ratio (MLE or M-H) based on the combined 
data from all H subgroups. This statistic should be referred to tables of chi-square on 
H-1 degrees of freedom. 

If the subgroups correspond to levels xl, ..., x~ of some quantitative variable, a 
single degree of freedom chi-square test for a trend in the odds ratios is obtained as 

M 
where the Varh = PVar(nl, , l ,hI~m,h;~) are the variances for each subgroup shown 

m = l  

in the denominator of (5.23). Note the similarity in form between this statistic and 
its analog (4.31) for stratified data. When the x's are equally spaced A units apart, 
then a continuity correction of A/2 should be applied to the numerator before squaring. 

Example continued: To illustrate these methods we repeat the analyses carried out at the end of the last 
section, but this time we use all four controls for each case rather than just a single one. Considering as 
the exposure variable whether or not the subject ever used oestrogen, the basic data (5.14) are 
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Exposed 

Case 

Unexposed 

Number of controls exposed 
0 1 2 3 4 Total 11 56 

7 

7 18' 17 16 

The total number of exposed cases in the paired sets is 3 + 17 + 16 + 15 = 51. According to (5.17), we 
find the MLE by equating this figure to its expected value, 

The solution I) = 7.95, obtained by numerical means, is almost identical to that calculated from the 
unmatched data (Table 5.1). It may be compared with the M-H estimate, determined from (5.18) as 

The chi-square statistic (5.19) for testing H, is 

which is of course highly significant (p < 0.000001). 
To obtain approximate 95% confidence limits for y2 we solve the equations (5.20) 

and 

this requiring numerical methods, and obtain yl, = 3.3 and yl, = 19.9. It is considerably easier to cal- 
culate the variance of log I) using (5.20), 

where we have inserted the MLE I$ = 7.95. Consequently approximate 95% limits on log yp are 
log(7.95) + 1 . 9 6 m ,  or 1.249-2.899, corresponding to limits on yl of 3.5-18.1. Finally, the test-based 
procedure centred about the MLE gives 

+ 1 . 9 6 l W 6 )  
ylL,ylU = 7.95- 
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or  limits of 3.8-16.4, which are somewhat narrower than the others as is typical of this approximate 
method, where the uncorrectedX2 of 31.16 has been used, rather than the corrected value of 29.57. 

Table 5.2 illustrates the procedures for evaluating the statistical significance of differences in the relative 
risk obtained from three different age strata. The data shown in column (1) sum to the pooled data from 
all three strata just analysed. We begin by calculating the means and variances of the frequencies nl,,-l 
in each stratum, under the hypothesis that the relative risk is constant across strata. Inserting the MLE 
gl = 7.95 in (5.16), for example, we have 

and so on for the remaining entries in columns (5) and (7). The subtotals shown in columns (6) and 
(8) are the means and variances of the number of exposed cases in each stratum, excluding of course the 
contributions n , ~  from matched sets in which the case and all controls are exposed. These quantities are 
inserted in (5.23) to obtain the test statistic, with two degrees of freedom 

Hence, there is no evidence (p = 0.68) of heterogeneity, the variations between the stratum-specific 
relative risk estimates shown in columns (2) and (3) being attributable to the small numbers in each 
table. 

For the sake of completeness we compute also the single degree of freedom chi-square (5.24) for a 
trend in relative risk with age, although we know already that its value cannot exceed the 0.76 just obtained 
for the overall comparison. Assigning "doses" of x, = 0, x2 = 1 and x, = 2 to the three age strata, we 
have 

where a continuity correction of is applied to the numerator in view of the fact that the x's are spaced 
one unit apart. 

5.4 Dichotomous exposure: variable number of controls 

Although the study design stipulates that a fixed number of controls be matched to 
each case, in practice it may not always be possible to locate the full complement of 
controls. Even for sets in which all controls are available, some may lack information 
regarding certain of the risk factors. If the original design calls for 1 :4 matching, for 
example, one may end up with most of the matched sets having data on 1 case and 4 
controls, while a lesser number have 3, 2 or 1 controls. Of course, sets in which data 
are available only for the case, or only for the controls, provide no information about 
the relative risk in a matched analysis and hence need not be considered. 

One approach to the analysis of matched sets containing a variable number of controls 
is simply to discard all those which do not contain the full number specified by design. 
Clearly this is a waste of important information and would be considered only if the 
number of sets to be discarded represented a small fraction of the total. A slight infor- 
mation loss might then be tolerated in order not to increase the computational burden. 

Fortunately, the extra computation required is not that great. All of the tests and 
estimates considered in the previous section may be broken down into component 
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parts consisting of sums or linear combinations of the observed frequencies (5.14), 
their means and their variances. The corresponding statistic may be generalized for use 
with a variable number of controls simply by computing each component part separately 
for the matched sets having a specified case-control ratio, and then reassembling the 
parts. 

Arranging the data as in Table 5.3, let n,,,,, denote the number of matched sets 
containing M controls of which m are exposed and the case is (i = 1) or is not (i = 0) 
exposed. Let Tm,M = n l , m - ~ , ~ + n o , m , ~  denote the number of such sets having a total 
of m exposed. The M-H estimateof relative risk may then be written 

where Zdenotes summation over the data in the sub-tables formed for each case- 
M 

control ratio. The MLE is found as before by equating the observed and expected 
numbers of exposed cases, as in (5.17), except that there will be a separate contribu- 
tion to the left and right hand sides of the equation for each value of M: 

Similarly, the statistic (5.19) for testing the null hypothesis may be written in terms of 
separate contributions to the observed and expected values, as well as the variance, 
from each sub-table: 

Corresponding adjustments are made to the equations (5.20) and (5.21) used to find 
confidence intervals, as well as to the. statistics (5.23) and (5.24) used to test the 
heterogeneity of the odds ratio in different strata. 

Kodlin and McCarthy (1978) note that the M-H estimate (5.25) and summary 
chi-square (5.27) may each be represented in terms of weighted sums of the basic 
data appearing in Table 5.3. Appropriate coefficients for weighting each entry are 
shown in Table 5.4, of which the five parts correspond, respectively, to the numerator 
and denominator of the M-H estimate, the observed and expected numbers of exposed 
cases (excluding sets where the case and all controls are exposed), and the variance 
of the number of exposed cases. For example, using Part A of the table the numerator 
of the M-H statistic would be calculated as 
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Table 5.3 Data layout for a matched study involving variable number of controls 

Case : control Exposure of case Number of controls exposed 
ratio 0 1 2 ... M 

Example continued: To illustrate the procedure to be followed with variable numbers of controls per 
case we selected another risk variable, dose of conjugated oestrogen, for which several subjects had missing 
values (Table 5.1). Four matched sets in which the case had a. missing value were excluded from this 
analysis. The 59 remaining sets could be divided into two categories, 55 having 4 controls and 4 having 
3 controls. Thus, defining "exposed" to be anything above a zero dose of conjugated oestrogen, the 
results were summarized: 

Case: control Exposure 
ratio for case 

Number of controls exposed 
0 1 2 3 4 Total 
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Table 5.4 Coefficients used for weighted sums in calculation of the M-H  estimate and summary 
chi-square from matched sets with variable numbers of controlsa 

Case : control ratio Case exposure Number of controls exposed 
0 1 2 3 ... 

A. Numerator of M-H estimate 

. . . 

B. Denominator of M-H estimate 
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Case : control ratio Case exposure Number of controls exposed 
0 1 2 3 . . . M 

C. O b s e r v e d  number o f  e x p o s e d  c a s e s  

+ 

D. E x p e c t e d  number o f  e x p o s e d  c a s e s  (H,) 
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Case : control ratio Case exposure Number of controls exposed 
0 1 2 3 . . . M 

E. Variance of numbers of exposed cases (H,) 

- 

a When parts of the data are not shown, the corresponding coefficients are zero. 

Accordingly, the M-H estimate, calculated from (5.25), is 

while the equation (5.26) to be solved for the MLE is 

yielding @ = 5.53. To test the null hypothesis we first find the mean value 

and the variance 
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= 11.82, 

from which the test statistic (5.27) is 

Ninety-five percent confidence limits for log yt based on (5.21) are found by calculating the variance 
with separate contributions for M = 3 and M = 4: 

where we have inserted the MLE for yt .  Consequently the confidence limits are 

5.5 Multiple exposure levels: single control 

Restriction of a risk variable to two levels may waste important information about 
the effects of the full range of exposures actually experienced ( 5  4.5). More detailed 
results are obtained if the case and control in each matched pair are classified instead 
into one of several 'exposure categories. The data are usefully summarized as in 
Table 5.5, where the entry nk, denotes the number of pairs in which the case is exposed 
at level k and the control at level h of K possible levels. The marginal totals nk. and 
n., represent, respectively, the total number of cases and total number of controls 
which are exposed at level k. This situation has been studied in some detail by Pike, 
Casagrande and Smith (1 975). 

Table 5.5 Representation of data from a matched pair study with K exposure 
categories 

Exposure level 
for case 

Exposure level for control 

1 2 ... K Total 

Total n.1 n.2 n . ~  n. . 
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Following the general principles of conditional inference outlined in 3 4.2 and 5 4.3, 
we approach the analysis of such data by considering the probability of the outcome in 
each matched pair conditional on the combined set of exposures for case and control. 
Pairs in which both members are exposed to the same level are uninformative about 
the relative risk since for them the conditional probability of the observed outcome is 
unity. Hence the statistical analysis does not utilize the diagonal entries nkk in Table 5.5. 
The off-diagonal entries in the table may be grouped into sets of two representing all 
pairs having a particular combination of different exposures. Thus, for k#h, Nkh = 
nkh+nhk represents the number of matched pairs in which the exposures are at levels k 
and h, without specifying which is associated with the case and which with the control.. 
If vkh denotes the relative risk of disease for level k versus that for level h, 'then the 
conditional distribution of nkh given Nkh is binominal (cf. 5.3): 

The (conditional) distribution of the entire set of data consists of the product of 
K(K-1)/2 such binomials, one for each of the entries nkh above the diagonal (k<h) 
in Table 5.5. 

Estimation of relative risk 

As noted in 5 4.5 for the combination of multiple exposure level data across s e v e ~ l  
strata, the summary estimates of relative risk for different pairs of exposure levels may 
not display the consistency expected of them. The same phenomenon occurs with 
matched pairs. Here the odds ratio relating levels k and h of exposure may be calculated 
from the pairs showing exposure to these two levels only (cf. 5.6) as the ratio 

According to their interpretation as ratios of incidence rates for level k versus level h, 
assumed to be constant across the matching factors, the estimated odds ratios ought to 
satisfy, within the bounds of sampling error, the consistency relationship 

where vk = ylkl and y+, = yhl denote the odds ratios for levels k and h relative to level 1 
(baseline). To the extent that the individual estimates qfi do not satisfy this condition, 
at least within the limits of random variation, the assumption of constant relative risks 
across the factors used for matching is called into question. 

In order to ensure that the estimated relative risks do display such consistency it is 
necessary to build the relationship into a model for the observed data. The model will 
contain K-1 parameters vZ ,  . . ., vK whose ratios are assumed to represent the relative 
risks for each pair of levels as in (5.29). It is an example of the general conditional 
model for matched data which will be discussed at greater length in Chapter 7. MLEs 
for the parameters in the model are found from the usual set of formulae equating 
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observed and expected values of the numbers of cases exposed to each level. There 
are K-1 equations in K-1 unknowns, namely1 

for k = 2, . . ., K. Solution requires numerical methods. Variances for the estimates are 
also available, but discussion of their derivation and computation is perhaps best left 
until presentation of the general model ( 5  7.3). Approximate confidence limits for the 
parameters Vk  may be based on these variances. 

Test of the null hypothesis 

A test of the hypothesis Ho :V2 = v3 = . . . = vK = 1 that there is no effect of exposure 
on risk is obtained by comparing the observed numbers of cases exposed at each level 
to that expected, standardizing by the corresponding variance-covariance matrix. Since 
all the probabilities Vk/(Vk+Vh) in (5.30) are equal to '/, under Ho, the means, vari- 
ances and covariances of the marginal totals shown in Table 5.5 are readily calculated 
to be 

and 

E(nk.) = '/2 (nk*+n.k) 
Var(nk.) = '14 (nk.+n.k)-'/, n,k 

Cov(nk.,nh.) = -'14 Nkh, for h # k., 

respectively. Only the first K-1 of these are used to form the test statistic, defined by 

where 0 and E denote the K-1 dimensional vectors of observed and expected values 
of the nk., while V is the corresponding (K-1) x (K-1) dimensional covariance matrix. 
This has a nominal xi-, distribution under the null hypothesis. First proposed by 
Stuart (1955), it is a special case of the general summary chi-square (4.41) used for 
testing homogeneity with stratified data (Mantel & Byar, 1978). 

If dose levels xl, ..., XK are assigned to the K exposure levels, a test for a linear 
trend in the (log) relative risks vk with increasing dose may be based on the statistic2 

To make a continuity correction the absolute value of the numerator term inside the 
brackets is reduced by half of the difference between adjacent doses, provided these 

'Here 2 means summation over the indices h which are not equal to a fixed k, i.e., Z n3,, = 
h:h#k h :  h#3 

n3' + n3z + n34 + . . . 
Here and below ZZ denotes summation over all K(K-1)/2pairs of indices (k, h) with k<h. 

k< h 
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are equally spaced. This statistic, a special case of (4.43), should be referred to tables 
of chi-square with one degree of freedom. 

Testing for consistency of the odds ratio 

In order to test for consistency in the estimated odds ratios, which as explained 
earlier ( 5  4.5) is a consequence of our usual assumptions about the constancy of the 
relative risk, we compare the frequencies observed in Table 5.5 with those expected 
under the hypothesis (5.29) using the usual chi-square formula. More specifically, 
the test statistic is defined by 

k t h  

= 22 @kh$ h-nhk$ k)2 
k t h  Nkh$ k$ h 

7 

where the $3, are the ML estimates obtained from (5.30). 
This statistic should be referred to tables of chi-square with K(K-1)/2-(K-1) 

= (K-l)(K-2)/2 degrees of freedom. A significant result would lead one to reject 
the hypothesis of consistency and to search for matching variables which modified the 
relative risks. However, this test is not likely to be as sensitive to such interactions as 
the more direct methods based on the modelling approach. 

Example continued: We have already remarked that for 4 of 63 cases from the Los Angeles endometrial 
cancer study the dose level of conjugated oestrogen was unknown. However, this variable was known for 
the first matched control in all sets. Using four levels of exposure, (1) none, (2) 0.1-0.299 mg, (3) 
0.3-0.625 mg and (4) 0.626+ mg, the data for the 59 matched pairs are presented in Table 5.6. 

To estimate the relative. risk parameters q2, q3, q4, for levels 2, 3 and 4 versus level 1, assuming 
consistency, we set up the equations (5.30): 

Table 5.6 Average doses of conjugated oestrogen used by cases and matched controls: 
Los Angeles endometrial cancer study 

Average dose Average dose for control (mg) 
for case (mg) 

0 0.1-0.299 0.3-0.625 0.626+ Total 

0 12 

0.1-0.299 16 

0.3-0.625 15 

0.626+ 16 

Total 36 9 10 4 59 
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Their solution, obtained by numerical methods, is I), = 4.59, q3 = 3.55 and q4 = 8.33. These values may 
be inserted in (5.34) to test the assumption of consistency, yielding 

which when referred to tables of chi-square with (4-1)(4-2)/2 = 3 degrees of freedom gives p = 0.93. 
In other words, the observed data satisfy the consistency hypothesis extremely well. 

In order to carry out the global test of the null hypothesis we calculate the means 

variances 

and covariances 

according to (5.31). The test statistic (5.32) is then 

which is highly significant (p = 0.001) as shown by reference to tables of chi-square with three degrees of 
freedom. Assigning dose levels of x1 = 1, x, = 2, x3 - 3 and x4 = 4 to the four exposure levels, we next cal- 
culqte the test for trend using (5.33). This is 

an even more significant result (p = 0.0001) which indicates that most of the variation in risk among 
the four exposure levels is accounted for by the linear increase. The contribution of 16.96-14.43 = 2.53 
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from the remaining two degrees of freedom is not statistically significant. Note that we have used the 
continuity correction of '/, in the numerator of this statistic, as is appropriate since the assigned x's are 
spaced one unit apart. 

5.6 More complex situations 

One lesson learned from the preceding sections is that the types of matched data 
which can be analysed easily &ing elementary methods are extremely limited. While 
.the calculations are reasonably tractable in the case of a single dichotomous risk vari- 
able, with both single or mu.ltiple controls, estimation of a consistent set of relative 
risks for polytomous exposures requires solution of a system of non-linear equations 
even for matched pairs. More complicated still are the situations involving multiple 
controls together with a single exposure variable at multiple levels, or multiple exposure 
variables with any combination of controls. The control of confounding, or evaluation 
of effect modification, by variables not used for matching may require that we discard 
from analysis much of the relevant data. 

Certain of the limitations imposed by the elementary methods can be overcome using 
multivariate analysis. Just as we noted earlier for stratified samples, multivariate analysis 
of matched data is carried out in the context of an explicit mathematical model relating 
each individual's exposures to his risk for disease. Such modelling is especially valuable 
in dealing with quantitative variables as it permits their effect on risk to be summarized 
by a few parameters. Chapter 6 introduces for this purpose the linear logistic regression 
model, showing that its structure is well suited for determining the multiplicative 
effects of one or more risk factors on disease rates. Chapter 7 extends the model for 
use with matched or finely stratified samples. Since all the tests and estimates considered 
in this chapter occur as special cases of those derived from the general model, the 
general-purpose computer programmes (Appendix IV) which are available to fit the 
multivariate model can be used (and in fact were used) to solve the equations for 
maximum likelihood estimation which occur in those particular problems considered 
above. 
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LIST OF SYMBOLS - CHAPTER 5 (in order of appearance) 

number of matched pairs with both case and control exposed 
number of matched pairs with case exposed and control not 
number of matched pairs with control exposed and case not 
number of matched pairs with neither case nor control exposed 
probability of exposure for case 
probability of non-exposure for case 
probability of exposure for control 
probability of non-exposure for control 
odds ratio 
probability that in a discordant matched pair it is the case who is 
exposed rather than the control 
expectation of a quantity ( ) 
variance of a quantity ( ) 
binomial coefficient; number of ways of drawing samples of n1 objects 
from a total of nl + n2 
absolute value of a number x 
lower confidence limit for n 
upper confidence limit for n 
lower confidence limit for II, 
upper confidence limit for v 
upper 100a/2 percentile of the standard normal distribution 
probability of an event ( ) 
probability of one event conditional on another 
number of controls in each matched set 
number of matched sets with case exposed and m controls exposed 
number of matched sets with case not exposed and m controls exposed 
number of matched sets with m exposed among case + controls 
(additional subscripts are added to distinguish various groups) 
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expectation of a quantity conditional on the values of another 
variance of a quantity conditional on the values of another 
subscript indicating the hth of H groups of matched sets; e.g., nl,m,h 
is the number of matched sets with the case and m controls exposed in 
the hth group 
subscript indicating the number of controls in matched set data having 
a variable number of controls per case; e.g., n,,,,, is the number of 
sets in which the case and m of M controls are exposed 
a statistic whose (asymptotic) distribution under the null hypothesis is 
that of chi-square on v degrees of freedom (when v is not specified it 
is meant to be 1)  
number of levels of a polytomous risk factor 
number of matched pairs where the case is exposed at level k of a 
polytomous variable and the control at level h 
number of matched pairs in which one member is at level k and the 
other at level h (k # h) 
sum of nkh over h; number of matched pairs where the case is exposed 
at level k 
sum of nhk over h; number of matched pairs where the control is 
exposed at level k 
odds ratio expressing relative risk for exposure to level k versus level 
h of a polytomous variable 
odds ratio expressing relative risk of disease for a person exposed to 
level k of a polytomous factor, using level 1 as baseline ( v l  = 1) 
denotes an estimate, e.g., $3, is an estimate of the odds ratio "4, 
K-1 dimensional vector of numbers of matched pairs in which the 
case is exposed to one of the first K-1 levels of a polytomous factor; 
0 = (k.7 n2.7 . . - 7  n~- l . )  
K-1 vector of expectations E = E ( 0 )  = [E(nl.), E(n2.), . . ., E(n,,,.)] 
K-1 x K-1 variance-covariance matrix of which the (k,h) element is 
Cov(nk.,nh.) = -1/4Nkh for k # h or Var(nk.) = '/4(nk. + nak)-'/,nkk for 
k=h (see equation 5.3) 




