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CHAPTER 6 

UNCONDITIONAL LOGISTIC REGRESSION 
FOR LARGE STRATA 

The elementary techniques described above for stratified analysis of case-control 
studies, and in particular the Mantel-Haenszel combined relative risk estimate and 
test statistic, have served epidemiologists well for over two decades. Most of the cal- 
culations are simple enough for an investigator to carry out himself, although this often 
means devoting considerable time to routine chores. Some of the boredom may be 
alleviated through the use of modern programmable calculators, for which the methods 
are ideally suited. By working closely with his data, examining them in tabular form, 
calculating relative risks separately for each stratum, and so on, the researcher can 
spot trends or inconsistencies he might not otherwise have noticed. Errors in the data 
may be discovered in this way, and new hypotheses generated. 

Nevertheless there are certain limitations inherent in the elementary techniques 
that must be recognized. If many potentially confounding factors must be controlled 
simultaneously, a stratified analysis will ultimately break down. Individual strata simply 
become so large in number and small in size that many of them contain only cases or 
only controls. This means that substantial amounts of data are effectively lost from the 
analysis. There are similar limits on the number of categories into which continuous 
risk factors can be broken down for calculation of separate estimates of relative risk. 
It is desirable to leave them as continuous variables for purposes of interpolation and 
extrapolation. The inconsistencies arising from the selection of different levels of a 
variable to serve as baseline have already been noted, and while often relatively minor, 
these can be irritating. Limitations are likewise imposed on the extent to which one 
can analyse the joint effects of several risk factors. Perhaps even more important are 
the deficiencies in the elementary methods for evaluating interactions among risk and 
nuisance variables. The usual tests are notoriously lacking in statistical power against 
patterns of interaction which one might well expect to observe in practice. Other than 
calculating a separate estimate for each stratum, no provision is made for incorporating 
such interactions into the estimates of relative risk. 

Access to high-speed computing machinery and appropriate statistical software 
removes these limitations and opens up new possibilities for the statistical analysis of 
case-control data. By entering a few simple commands into a computer terminal, the 
investigator can carry out a range of exploratory analyses which could take days or 
weeks to perform by hand, even with a programmable calculator. He has a great deal 
of flexibility in choosing how variables are treated in the analysis, how they are cate- 
gorized, or how they are transformed. The possibilities for multivariate analysis are 
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virtually limitless. Such methods should, of course, be used in conjunction with tabular 
presentation of the basic data. Liberal use of charts and graphs to represent the results 
of the analyses is also recommended. 

The basic tool which allows the scope of case-control study analysis to be thus 
broadened is the linear logistic regression model. Here we introduce the logistic model 
as a method for multivariate analysis of prospective or cohort studies, which reflects 
the historical fact that the model was specifically designed for, and first used with, such 
investigations. Its equal suitability for use in case-control investigations follows as a 
logical consequence. We replicate the stratified analyses of Chapter 4 using the 
modelling approach, and then extend these analyses by the inclusion of additional 
variables so as to illustrate the full power and potential of the method. 

Unfortunately the level of statistical sophistication demanded from the reader for 
full appreciation of the modelling approach is more advanced than it has been in the 
past. While we have attempted to make the discussion as intelligible as possible for the 
non-specialist, familiarity with certain aspects of statistical theory, especially linear 
models and likelihood inference, will undoubtedly facilitate complete understanding. 

6.1 Introduction to the logistic model 

Whether using the follow-up or case-control approach to study design, cancer epi- 
demiologists typically collect data on a number of variables which may influence disease 
risk. Each combination of different levels of these variables defines a category for 
which an estimate of the probability of disease development is to be made. For example, 
we way want to determine the risk of lung cancer for a man aged 55 years who has 
worked 30 years as a telephone linesman and smoked 20 cigarettes per day since his 
late teens. 

If a large enough population were available for study, and if we had unlimited time 
and money, an obvious approach to this problem would be to collect sufficient numbers 
of subjects in each category in order to make a precise estimate of risk for each category 
separately. Of course in the case-control situation these risk estimates would not be 
absolute, but instead would be relative to that for a designated baseline category. 
With such a vast amount of data there would be no need to borrow information from 
neighbouring categories, i.e., those having identical levels for some of the risk variables 
and similar levels for the remainder, in order to get stable estimates of risk. 

Epidemiological studies of cancer, however, rarely even come close to this ideal. 
Often the greatest limitation is simply the number of cases available for study within a 
reasonable time period. While this number may be perfectly adequate for assessing 
the relative risks associated with a few discrete levels of a single risk factor, it is usually 
insufficient to provide separate estimates for the large number of categories generated 
by combining even a few more or less continuous factors. Thus we are faced with the 
problem of having to make smoothed estimates which do utilize information from 
surrounding categories in order to estimate the risks in each one. 

Such smoothing is carried out in terms of a model, which relates disease risk to the 
various combinations of factor levels which define each risk category via a mathematical 
formula. The model gives us a simplified, quantitative description of the main features 
of the relationship between the several risk factors and the probability of disease 
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development. It enables us to predict the risk even for categories in which scant infor- 
mation is available. Important features for the model to have are that it provide mean- 
ingful results, describe the observed data well and, within these constraints, be as 
simple as possible. In view of the discussion in Chapter 2, therefore, the parameters of 
any proposed model should be readily interpretable in terms of relative risk. The 
model should also allow relative risks corresponding to two or more distinct factors 
to be represented as the product of individual relative risks, at least as a first approxi- 
mation. 

A model which satisfies these requirements, indeed which has in part been developed 
specifically to meet them, is the linear logistic model. It derives its name from the fact 
that the logit transform of the disease probability in each risk category is expressed as a 
linear function of regression variables whose values correspond to the levels of exposure 
to the risk factors. In symbols, if P denotes the disease risk, the logit transform y is 
defined by 

y = logit P = log - 
(1:P)' 

or, conversely, expressing P in terms of y, 

Since P/(1-P) denotes the disease odds, another name for logit is log odds. Cox (1970) 
develops the theory of logistic regression in some detail. 

The simplest example of logistic regression is provided by the ubiquitous 2 x 2 table 
considered in 5 2.8 and 5 4.2. Suppose that there is but a single factor and two risk 
categories, exposed and unexposed, and let PI and Po denote the associated disease 
probabilities. According to the discussion in 5 2.8 the key parameter, which is both 
estimable from case-control studies and interpretable as a relative risk, is the odds ratio 

Its logarithm, i.e., the log relative risk, may be expressed 

p = log II, = logit PI - logit Po 

as the diflerence between two logits. Let us define a single binary regression variable 
x by x = 1 for exposed and x = 0 for unexposed. If we write P(x) for the disease prob- 
ability associated with an exposure x, and r(x) = P(x)Qo/PoQ(x) for the relative 
risk (odds ratio relative to x = 0), we have 

log r(x) = px 

where a = logit Po. There is a perfect correspondence between the two parameters a 
andp in the mod'el and the two disease risks such that 
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and 

The formulation (6.3) focuses on the key parameter, P, and suggests how to extend 
the model for more complex problems. 

A more interesting situation arises when there are two risk factors A and B, each at 
an exposed (+) and unexposed (-) level ( 5  2.6). The combined levels of exposure 
yield four risk categories with associated disease probabilities Pij: 

Factor B 
Factor A + - 

Taking Po, as the baseline disease risk, there are three relative risks to be estimated, 
corresponding to the t h ~ e e  odds ratios 

and 

Here rA, rB and rAB are relative risks for single and joint exposures, relative to no 
exposure, as defined in 5 2.6. 

We are particularly interested in testing the multiplicative hypothesis TAB = rArB 
under which the relative risk for exposure to A is independent of the levels of B or, 
equivalently, the relative risk for B is independent of exposure to A. Expressed in 
terms of the odds ratios this becomes 

lyll = lyl0ly01. (6.5) 

If the-hypothesis appears to fit the observed data, we should be able to summarize the 
risks for the three exposure categories relative to the baseline category in two numbers, 
viz the estimated relative risks for factors A and B individually. Otherwise a separate 
estimate for each of the three exposure categories will be required. We considered in 
5 4.4 some ad hoc tests for the multiplicative hypothesis and suggested that the Mantel- 
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Haenszel formula be used to estimate the individual relative risks if the hypothesis were 
accepted. 

Estimates and tests of the multiplicative hypothesis are simply obtained in terms of 
a logistic regression model for the disease probabilities (6.4). Define the binary regres- 
sion variable xl = 1 or 0 according to whether a person is exposed to Factor A or not, and 
similarly let x2 indicate the levels of exposure to Factor B. Variables such as xl and 
x2, which take on 0-1 values only, are sometimes called dummy or indicator variables 
since they serve to identify different levels, of exposure rather than expressing it in 
quantitative terms. Note that the product xlx2 equals 1 only for the double exposure 
category. Let us define P(xl,x2) as the disease probability, and r(xl,x2) as the 
relative risk (odds ratio) relative to the unexposed category xl = x2 = 0. Then we can 
re-express the relative risks, or equivalently the probabilities, using the model 

Since there are four parameters a,Pl,P2 and y to describe the four probabilities Pij, we 
say that the model is completely saturated. It imposes n o  constraints whatsoever on the 
relationships between the four probabilities or the corresponding odds ratios. Thus we 
may solve equation (6.6) explicitly for the four parameters, obtaining 

as the logit transform of the baseline disease probability, 

and 

as the log relative risks for individual exposures, and 

as the interaction parameter. It is clear from (6.7) that exp(y) represents the multi- 
plicative factor by which the relative risk for the double exposure category differs from 
the product of relative risks for the individual exposures. If y > 0, a positive inter- 
action, the risk accompanying the combined exposure is greater than predicted by the 
individual effects; if y < 0, a negative interaction, the combined risk is less. Testing 
the multiplicative hypothesis (6.5) is equivalent to testing that the interaction param- 
eter y in the logistic model is equal to 0. 

If the hypothesis y = 0 is accepted by our test criterion, we would consider fitting to 
the data the reduced three parameter model 
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which re-expresses the multiplicative hypothesis in logit terms. This model does impose 
constraints on the four disease probabilities Pij. For example, since 

v 11 P I =  logvlo = log- 
v01 

now represents the log relative risk for A whether or not exposure to B occurs, it would 
be estimated by combining information from the 2 x 2 tables 

Cases 

Controls 

Factor B + 
Factor A 

Factor B - 
Factor A 

Odds ratio ~ I I / ~ ~ O I  v 10 

Likewise the estimate of 

4'11 P z  = log V0l = log 

would combine information from both the tables 

Factor A + 
Factor B 

Factor A - 
Factor B 

Cases 

Controls 

Odds ratio 

The difference between the interpretation of PI in (6.6) and the same parameter 
in (6.8) illustrates that the meaning of the regression coefficients in a model depends 
on what other variables are included. In the saturated model PI represents the log 
relative risk for A at level 0 of B only, whereas in (6.8) it represents the log relative 
risk for A at both levels of B. Testing the hypothesis PI = 0 in (6.8) is equivalent to 
testing the hypothesis that Factor A has no effect on risk, against the alternative hypo- 
thesis that there is an effect, but one which does not depend on B. It makes little. sense 
to test pl = 0 in (6.6), or more generally to test for main effects being zero in the 
presence of interactions involving the same factors. Models which contain interaction 
terms without the corresponding main effects correspond to hypotheses of no practical 
interest (Nelder, 1977). 

The regression approach is easily generalized to incorporate the effects of more than 
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two risk factors, or risk factors at more than two levels. Suppose that Factor B occurred 
at three levels, say 0 = low, 1 = medium and 2 = high. There would then be six disease 
probabilities 

Factor A 

Exposed 

Unexposed 

and five odds ratios 

Factor B 

High Medium Low 

Pij QOO 
Vij = 

POO Qij ' 

where all risks are expressed relative to Poo as baseline. In order to identify the three 
levels of Factor B, two indicator variables x2 and x3 are required in place of the single 
x2 used earlier. These are coded as follows: 

Factor B 

High Medium Low 

More generally, for a factor with K levels, K-1 indicator variables will be needed to 
describe its effects. With xl defining exposure to A as before, the saturated model with 
six parameters is written 

where the values of the x's are determined from the factor levels i and j. Now the 
multiplicative hypothesis 

corresponds to setting both interaction parameters y12 and yl3 to zero, in which case 
the coefficients p2 and p3 represent the log relative risks for levels 1 and 2 of Factor B 
as compared with level 0. 

If instead there are three factors A, B and C each at two levels, the disease prob- 
abilities may be denoted 
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Factor A 

+ 

- 

Factor C + 
Factor B 

Factor C - 
Factor B 

+ - 

Here there are seven odds ratios vijk = QOoo to be estimated. The fully saturated 
POOO Qijk 

model may be written 

where xl, x2 and x3 are indicator variables which identify exposures to factors A, B 
and C, respectively. The last parameter d123 denotes the second order interaction 
involving all three variables. It has several equivalent representations in terms of the 
odds ratios or disease probabilities. One of these, for example, is 

v111 4'110 
6 123 = log - log 

v101v011 v1oovo10 

= logit Pill - logit PIOl - logit Poll + logit Pool 

- {logit Pllo - logit Ploo - logit Polo + logit Pooo), 

viz the difference between the AB interaction at level 1 of Factor C and that same 
interaction at level 0 of Factor C. Other representations would be the difference be- 
tween the AC interactions at the two levels of B, or the difference between the BC 
interactions at the two levels of A. 

The advantage of expressing the disease probabilities in an equation such as (6.9) 
is that the higher order interactions generally turn out to be negligible. This permits 
the relative risks for all the cells in the complete cross-classification to be estimated 
using a smaller number of parameters which represent .the main multiplicative effects 
of the important risk factors plus occasional lower order interactions. By reducing the 
number of independent parameters which must be estimated from the data, we achieve 
the smoothing which was noted earlier to be one of the primary goals of the analysis. 
If high-order interactions are found to be present, this alerts us to the fact that risk 
depends in a complicated way on the constellation of risk factors, and mav not easily 
be summarized in a few measures. 

Example: As an example of the interpretation of a three-factor regression model, suppose that in (6.9) 
the three main effects are present along with the two-factor AC interaction. Assume further that the 
values of the parameters are given by 
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and 

Then we can reconstruct the seven odds ratios for the three-dimensional cross-classification as the entries 
in the tables 

Factor C + 
Factor B 

Factor C - 
Factor B 

Factor A + - + - 

The relative risk of A is twice as great for those exposed to C as for those not so exposed, and vice versa. 
Otherwise the risks combine in a perfectly multiplicative fashion. 

Further details concerning the fitting and interpretation of logistic and log linear 
models of the type introduced in this section are given in the elementary text by 
Fienberg (1977). More comprehensive accounts are given by Bishop, Fienberg and 
Holland (1975), Haberman (1974) and Cox (1970). Vitaliano (1978) conducts an 
analysis of a case-control study of skin cancer as related to sunlight exposure, using 
a logistic regression model with four factors, one at four levels and the remainder at 
two. 

6.2 General definition of the logistic model 

So far the logistic model has been used solely as a means of relating disease prob- 
abilities to one or  more categorical risk factors whose levels are represented by indicator 
variables. More generally the model relates a dichotomous outcome variable y which, 
in our context, denotes whether (y = 1) or not (y = 0) the individual develops the 
disease during the study period, to a series of K regression variables = (xl, ..., xK) 
via the equation 

or, equivalently, 
K 

logit pr(y = 11 x) = a + k= EPkxk.  I 

This formulation implies that the relative risk for individuals having two different sets 
x* and x of risk variables is 
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Thus a represents the log odds of disease risk for a person with a standard (x = 0) 
set of regression variables, while exp(P,) is the fraction by which this risk is increased 
(or decreased) for every unit change in x,. A large number of possible relationships 
may be represented in this form by including among the x's indicator variables and 
continuous measurements, transformations of such measurements, and cross-product 
or interaction variables. 

As we saw in the last chapter, one important means of controlling the effects of 
nuisance or confounding variables is by stratification of the study population on the 
basis of combinations of levels of these variables. When conducting similar analyses in 
the context of logistic regression, it is convenient to generalize the model further so as 
to isolate the stratum effects, which are often of little intrinsic interest, from the effects 
of the risk factors under study. With Pi(x) denoting the disease probability in-stratum 
i for an individual with risk variables x, we may write 

If .none of the regression variables are interaction terms involving the factors used for 
stratification, a consequence of (6.12) is that the relative risks associated with the risk 
factors under study are constant over strata. By including such interaction terms among 
the x's, one may model changes .in the relative risk which accompany changes in the 
stratification variables. The fact that the parameters of the logistic model are so easily 
interpretable in terms of relative risk is, as we have said, one of the main reasons for 
using the model. 

The earliest applications of this model were in prospective studies of coronary heart 
disease in which x represented such risk factors as age, blood pressure, serum cholesterol 
and cigarette consumption (Cornfield, 1962; Truett, Cornfield & Kannel, 1967). In 
these investigations the authors used linear discriminant analysis to estimate the param- 
eters, an approach which is strictly valid only if the x's have multivariate normal 
distributions among both diseased and non-diseased (see 5 6.3). The generality of the 
method was enhanced considerably by the introduction of maximum likelihood estima- 
tion procedures (Walker & Duncan, 1967; Day & Kerridge, 1967; Cox, 1970). These 
are now available in several computer packages, including the General Linear Inter- 
active Modelling system (GLIM) distributed by the Royal Statistical Society (Baker & 
Nelder, 1978). 

We noted in 5 2.8 that for a long st.udy it is appropriate to partition the time axis 
into several intervals and use these .as one of the criteria for forming strata. In the 
present context this means that the quantity Pi(x) refers more specifically to the 
conditional probability of developing disease during the time interval specified by the 
ith stratum, given that the subject was disease-free at its start. For follow-up or cohort 
studies, if we are to use conventional computer programmes for logistic regression with 
conditional probabilities, separate data records must be read into the computer for 
each stratum in which an individual appears. Thomson (1977) discusses in some detail 
the problems of estimation in this situation. 

A limiting form of the logistic model for conditional probabilities, obtained by allow- 
ing the time intervals used for stratification to become infinitesimally small, is known 
as the proportional hazards model (Cox, 1972). Here the ratio of incidence rates for 
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individuals with exposures x* and x is given exactly by the right-hand side of equation 
(6.11). This approach has the conceptual advantage of eliminating the odds ratio 
approximation altogether, and thus obviates the rare disease assumptipn. The model 
has a history of successful use in .the statistical analysis of survival studies, and it is 
becoming increasingly clear that many of the analytic techniques developed for use 
in that field can also be applied in epidemiology (Breslow, 1975, 1978). Prentice and 
Breslow (1978) present a detailed mathematical treatment of the role of the propor- 
tional hazards model in the analysis of case-control study data. Methodological tech- 
niques stemming from the model are identical to those presented in Chapter 7 on 
matched data. 

6.3 Adaptation of the logistic model to case-control studies1 

According to the logistic model as just defined, the exposures x are regarded as 
fixed quantities while the response variable y is random. This fits precisely the cohort 
study situation because it is not known in advance whether or not, or when, a given 
individual will develop the disease. With the case-control approach, QII the other hand, 
subjects are selected on the basis of their disease status. It is their history of risk factor 
exposures, as determined by retrospective interview or other means, which should 
properly be regarded as the random outcome. Thus an important question, addressed 
in this section, is: how can the logistic model for disease probabilities, which has such 
a simple and desirable interpretation vis-a-vis relative risk, be adapted for use with a 
sample of cases and controls? 

If there is but a single binary risk factor with study subjects classified simply as ex- 
posed versus unexposed, the answer to this is perfectly clear. Recall first of all our 
demonstration in 5 2.8 that the odds ratio q of disease probabilities for exposed versus 
unexposed is identical to the odds ratio of exposure probabilities for diseased versus 
disease-free. When drawing inferences about on the basis of data in 2 x  2 tables 
(4.1), it makes absolutely no difference whether the marginal totals ml and mo cor- 
responding to the two exposure categories are fixed, as in a cohort study, or whether 
the margins nl and no of diseased and disease-free are fixed, as in a case-control study. 
The estimates, tests and confidence intervals for q derived in 5 4.1 and 5 4.2 in no 
way depend on how the data in the tables are obtained. Hence we have already de- 
monstrated for 2 x 2 tables that inferences about relative risk are made by applying to 
case-control data precisely the same set of calculations as would be applied to cohort 
data from the same population. 

This identity of inferential procedures, whether sampling is carried out according to a 
cohort or case-control design, is in fact a fundamental property of the general logistic 
model. We illustrate this feature with a simple calculation involving conditional prob- 
abilities (Mantel, 1973; Seigel & Greenhouse, 1973) which lends a good deal of plau- 
sibility to the deeper mathematical results discussed afterwards. It suffices to consider 
the model (6.10) for disease probabilities in a single population, as results for the 

'This section, which is particularly abstract, deals with the logical basis for the application of logistic 
regression to case-control data. Readers interested only in practical applications can go directly to 5 6.5. 
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stratified situation are quite analogous. Suppose the indicator variable z denotes whether 
(z = 1) or not (z = 0) someone is sampled, and let us define 

to be the probability that a diseased person is included in the study as a case and 

to be the probability of including a disease-free person in the study as a control. 
Typically x1 is near unity, i.e., most potential cases are sampled for the study, while 
xo has a lower order of magnitude. 

Consider now the conditional probability that a person is diseased, given that he has 
risk variables x and that he was sampled for the case-control study. Using Bayes' 
Theorem (Armitage, 1975) we compute pr(y = 1 1 z = 1,x) 

where a* = u +log ( J Z ~ / X ~ ) .  In other words, the disease probabilities for those in the 
sample continue to be given by the logistic model with precisely the same ps, albeit a 
different value for a. This observation alone would suffice to justify the application of 
(6.10) to case-control data provided we could also assume that the probabilities of 
inclusion in the study were independent for different individuals. However, unless a 
separate decision was made on whether or not to include each potential case or control 
in the sample, this will not be true. In most studies some slight dependencies are 
introduced because the total numbers of cases and controls are fixed in advance by 
design. Hence a somewhat more complicated theory is required. 

One assumption made implicitly in the course of this derivation deserves further 
emphasis. This is that the sampling probabilities depend only on disease status and not 
on the exposures. In symbols, pr(z = 1 1 y,x) = pr(z = 1 1 y) = n, for y = 1 and 0. 
With a stratified design and analysis these sampling fractions may vary from stratum 
to stratum, but again should not depend on the values of the risk variables. An illustra- 
tion of the magnitude of the bias which may accompany violations of this assumption 
was made earlier in 5 2.8. 

Since case-control studies typically involve separate samples of fixed size from the 
diseased and disease-free populations, the independent probabilities are those of risk 
variables given disease status. If the sample contains nl cases and no controls, the 
likelihood of the data is a product of nl terms of the form pr(x1 y = 1) and no of the 
form pr(x1 y = 0). Using basic rules of conditional probability, each of these can be 
expressed 
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as the product of the conditional probabilities of disease given exposure, specified by 
the logistic model, times the ratio of unconditional probabilities for exposure and 
disease. 

How one approaches the estimation of the relative risk parameters P from (6.13) 
depends to a large extent on assumptions made about the mechanism generating the 
data, i.e., about the joint probability distribution for x and y. The key issue is whether the 
x variables themselves, without knowledge of the associated y's, contain any informa- 
tion about the parameters of interest. Such a condition would be expressed mathe- 
matically through dependence of the marginal distribution pr(x) on & as well as on 
other parameters, in which case better estimates of P could in principle be obtained by 
using the entire likelihood (6.13) rather than by using only the portion of that likelihood 
specified by (6.10). 

An example in which the x's do contain information on their own about the relative 
risk was alluded to in tj 6.2. In early applications of logistic regression to cohort studies, 
the regression variables were assumed to have multivariate normal distributions in 
each disease category (Truett, Cornfield & Karrel, 1967). If such distributions are 
centred around expected values of g1 for diseased individuals and p0 for controls, 
and have a common covariance matrix 1, then the corresponding r e l a h e  risk param- 
eters can be computed to be 

Estimation of from the full likelihood (6.13) thus entails calculation of the sample 
means x1 and xo of the regression variables among cases and controls, of the pooled 
covariance matrix Sg, and substitution of these quantities in place of bl, uo and 1 ,  
respectively. While this procedure yields the most efficient estimates of f.3 - provided 
the assumptions of multivariate normality hold, severe bias can result if they do not 
(Halperin, Blackwelder & Verter, 1971; Efron, 1975; Press & Wilson, 1978). It is there- 
fore not recommended for estimation of relative risks, although it may be useful in the 
early exploratory phases of an analysis to help determine which risk factors contribute 
significantly to the multivariate equation. 

In most practical situations, the x variables are distinctly non-normal. Indeed, many 
if not all of them will be discrete and limited to a few possible values. It is therefore 
prudent to make as few assumptions as possible about their distribution. This can be 
accomplished by allowing pr(x) in (6.13) to remain completely arbitrary, or else to 
assume that it depends on a (rather large) set of parameters which are functionally 
independent of &. Then, following general principles of statistical inference, one could 
either try to estimate and pr(x) jointly using (6.13); or else one could try to eliminate 
the pr(x) term by deriving an appropriate conditional likelihood (Cox & Hinkley, 
1974). 

If we decide on the first course, namely joint estimation, a rather remarkable thing 
happens. Providing pr(x) is assumed to remain completely arbitrary, the joint maximum 
likelihood estimate turns out to be identical to that based only on the portion of the 
likelhood which is specified by the linear logistic model. Furthermore, the standard 
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errors and covariances for generated from partial and full likelihoods also agree. 
This fact was first noted by Anderson (1972) for the case in which x was a discrete 
variable, and established for the general situation by Prentice and Pyke (1979). 

Another approach to the likelihood (6.13) is to eliminate the nuisance parameters 
through consideration of an appropriate conditional distribution. Suppose that a case- 
control study of n=n, +no  subjects yields the exposure vectors x,, ..., x,, but it is not 
specified which of them pertain to the cases and which to the controls. The conditional 
probability that the first n, x's in fact go with the cases, as observed, and the remainder 
with the controls may be written 

where the sum in the denominator is over all the (:,) ways of dividing the numbers 

from 1 to n into one group {I,, .. ., I,,) of size n, and its complement {I,,,~, . . ., 1 , ) .  

Using (6.10) and (6.13) it can be calculated that (6.14) reduces to 

where xjk denotes the value of the kth regression variable for the jth subject and the 
sum in the denominator is again over all possible choices of n, subjects out of n 
(Prentice & Breslow, 1978; Breslow et al., 1978). This likelihood depends only on the 
p parameters of interest. However, when n, and no are large, the number of s u m m a ~ d s  
rn the denominator is so' great as to rule out its use in practice. Fortunately, as these 
quantities increase, the conditional maximum likelihood estimate and the standard 
errors based on (6.15) are almost certain to be numerically close to those obtained 
by applying the unconditional likelihood (6.10) (Efron, 1975; Farewell, 1979). 

In summary, unless the marginal distribution of the risk variables in the sample is 
assumed to contain some information about the relative risk, methods of estimation 
based on the joint exposure likelihood yield essentially the same numerical results as 
do those based on the disease probability model. This justifies the application to case- 
control data of precisely the same analytic techniques used with cohort studies. 

6.4 Likelihood inference: an outline' 

We have now introduced the logistic regression model as a natural generalization of 
the odds ratio approach to relative risk estimation, and argued that it may be directly 

'This  section also treats material which is quite technical and is not required for appreciation of the 
applications of the methods. The  reader who lacks formal mathematical o r  statistical training is advised to 
skim through it o n  a first reading, and then refer back to the section while working through the examples. 
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applied to case-control study data with disease status (case versus control) treated as 
the "dependent" or response variable. Subsequent sections of this chapter will illus- 
trate its application to several problems of varying complexity. With one exception, 
the illustrative analyses may all be carried out using standard computer programmes 
for the fitting of linear logistic models by maximum likelihood. 

Input to GLIM or other standard programmes is in the form of a rectangular data 
array, consisting of a list of values on a fixed number of variables for each subject in the 
study, with different subjects on different rows. The variables are typically in the order 
(y,xl, . .., xK), where y equals 1 or 0 according to whether the subject is a case or 
control, while the x's represent various discrete and/or continuous regression variables 
to be related to y. Output usually consists of estimates of the regression coefficients 
for each variable, a variance/covariance matrix for the estimated coefficients, and one 
or more test statistics which measure the goodness of fit of the model to the observed 
data. It is not necessary to have a detailed understanding of the arithmetical operations 
linking the inputs to the outputs in order to be able to use the programme. Researchers 
in many fields have long used similar programmes for ordinary (least squares) fitting 
of multiple regression equations, with considerable success. Nevertheless, some apprecia- 
tion of the fundamental concepts involved can help to dispel the uneasiness which 
accompanies what otherwise might seem a rather "black box" approach to data 
analysis. In this section we outline briefly the key features of likelihood inference in the 
hopes that it may lay the logical foundation for the interpretation of the outputs. More 
detailed expositions of this material can be found in the books by Cox (1970), Haber- 
man (1974), Bishop, Fienberg and Holland (1975) and Fienberg (1977). 

Statistical inference starts with an expression for the probability, or likelihood, of the 
observed data. This depends on a number of unknown parameters which represent 
quantitative features of the population from which the data are sampled. In our situa- 
tion the likelihood is composed of a product of terms of the form (6.10), one for each 
subject. The a's and P's are the unknown parameters, inte;est being focused on the 
P's because of their ready interpretation vis-ci-vis relative risk. 

Estimates of the parameters are selected to be those values which maximize the likeli- 
hood or rather, and what is equivalent, those which maximize its logarithm. The param- 
eters thus estimated, which are often denoted a and p, are inserted back into the 
individual likelihoods (6.10) to calculate the fitted or predicted probability P of being 
a case for each study subject. If we subtract twice the maximized log likelihood from 
zero, which is the absolute maximum achieved as all the'fitted values P approach the 
observed y's, and sum up over all individuals in the sample, we obtain the expression 

G = -= {ylog P + (l-y)log(l-~)} 

for the log likelihood statistic1. Although G as given here does not have any well 
defined distribution itself, differences between G statistics for different models may be 
interpreted as chi-squares (see below). 

Other important statistics in likelihood analysis are defined in terms of the first and 
second derivatives of the log likelihood function. The vector of its first partial derivatives 

'The statistic (6.16) is called the deviance in GLIM. 



LOGISTIC REGRESSION FOR LARGE STRATA 207 

is known as the efficient score, S = S(a,P), while the negative of the matrix of second 
partial derivatives is the information matrix, denoted I = I(a,P). The variance/ 
covariance matrix of the estimated parameters is obtained from the inverted informa- 
tion matrix, evaluated at the maximum likelihood estimate (MLE): 

Covariance matrix for (6,)) = I-'(& ,)). (6.17) 

Another specification of the MLE is as the value a , p  for which the efficient score is 
zero. 

Likelihood inference typically proceeds by fitting a nested hierarchy of models, each 
one containing the last. For example, we might start with the model 

(1) logit pr(y ( x) = a 

which specifies that the disease probabilities do not depend on the regression variables, 
i.e., that the log relative risk for different x's is zero. This would be elaborated in a 
second model 

for which the log relative risk associated with risk factor x1 is allowed to  be non-zero. 
A further generalization is then to 

in which the coefficients for two more variables, one of which might for instance be an - 

interaction involving xl, are also allowed to be non-zero. 
At each stage we obtain the MLEs of the coefficients in the model, together with 

their estimated variances and covariances. We also carry out a test for the significance 
of the additional parameters, which is logically equivalent to testing whether the current 
model fits better than the last one. Three tests are available. The likelihood ratio test 
is simply the difference of the maximized log likelihood statistics (6.16) for the two 
models. If GI, G2 and G3 denote the values of these statistics for models 1, 2 and 3, 
respectively, then necessarily G3 5 G2 5 GI. Each hypothesis is less restrictive than 
the last and its fitted probabilities P will therefore generally be closer to the observed 
y's. GI-G2 tests the hypothesis P1 = 0, i.e., the significance of x1 as a risk factor, 
while G2-G3 evaluates the additional contributions of x, and x3 after the effect of 
x1 is accounted for. 

The score statistic for testing the significance of the additional parameters is based 
on the efficient score evaluated at the MLE for the previous model, appropriately 
augmented with zeros. For example, the score test of ~ o d e l  2 against Model 1 is given 
by 

S2 = S(&,O)T I-l(&,O) S(&,O) (6.18) 

where S and I are calculated for Model 2 whereas 6 is the MLE for Model 1. Similarly 
the score test of the hypothesis P2 = P3 = 0 in Model 3 is 

A third test for the significance of the additional parameters in a model is simply to 
compare their estimated values against 0, using their standard errors as a reference. 
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Thus to test P1 = 0 in Model 2 we would calculate the standardized regression coeffi- 
cient 

where var(8,) was the appropriate diagonal term in the inverse information matrix 
for Model 2. A test statistic analogous to the previous two is based on the square of 
this value 

n 2 

Similarly, the test of P2 = P3 = 0 in Model 3 is given by the statistic 

where is the estimated variance/covariance matrix for (P2,B3) in Model 3. 
In large samples all three of these statistics are known to give approximately equal 

numerical results under the null hypothesis, and to have distributions which are chi- 
square with degrees of freedom equal to the number of additional parameters (Rao, 
1965). In other words, if Model 1 holds we should have approximately 

Similarly, all three statistics for the hypothesis p2 = P3 = 0 in Model 3 should yield 
similar numerical results, and will have approximate x,2 distributions, if Model 2 ade- 
quately summarizes the data. The first and third statistics are most easily calculated 
from the output of standard programmes such as GLIM. The score statistic, while not 
routinely calculated by standard programmes, is mentioned here for two reasons. First, 
in simple situations it is identical with the elementary test statistics presented in Chap- 
ter 4, and thus provides a link between the two approaches (Day & Byar, 1979). Second, 
the nominal chi-square distribution is known to approximate that of the score statistic 
more closely in small samples, so that its use is less likely to lead to erroneous conclu- 
sions of statistical significance (Lininger et al., 1979). 

Two other statistics should be mentioned which are useful for evaluating goodness of 
fit with grouped data. These arise when there are a limited number of distinct risk 
categories, i.e., when the number of x values is sufficiently small compared with the size 
of the study population that quite a few individuals within each stratum have the same 
x. In this case, rather than consider each data record on its own for the analysis, it 
makes sense to group together those records within each stratum which have the same 
set of exposures. Suppose that N denotes the total number of individuals in a particular 
group, of whom nl are cases and no are controls. Since the exposures are identical, the 
estimated probabilities P will apply equally to everyone in the group. NP may there- 
fore be interpreted as the expected or fitted number of cases, while ~ ( 1 - p )  is the 
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expected number of controls. An appropriate version of the likelihood ratio statistic 
for this situation is 

G = 2 C[nl1og(nl/NP) + nolog{no/N(l-P)}] (6.20) 

where the sum is over all the distinct groups or risk categories. Another measure of 
goodness of fit of model to data is the ubiquitous chi-square statistic 

Unless the data are quite "thin", so that the fitted values of cases or controls for many 
groups are less than five, these two expressions should yield reasonably close numerical 
answers when the model holds. 

The formulae (6.20) and (6.21) may be expressed in more familiar terms, as func- 
tions of the observed ( 0 )  and expected (E) numbers in each cell, provided we remember 
that the cases and controls in each group constitute separate cells and thus make 
separate contributions. The likelihood ratio statistic becomes 

while the chi-square measure is 

Provided the number of groups is small in relation to the total number of cases, each 
of the statistics G and 6 have asymptotic chi-square distributions under the null hypo- 
thesis. Degrees of freedom are equal to the number of groups less the number of 
parameters in the logistic model. While they provide us with an overall evaluation of 
how well the model conforms to the data, these tests may be rather insensitive to 
particular types of departure from the model. Better tests are obtained by constructing 
a more general model, with a limited number of additional parameters which express 
the nature of the departure, and then testing between'the two models as outlined 
earlier. 

It should be emphasized that the methods discussed in this section, and illustrated in 
the remainder of the chapter, are based on unconditional likelihoods (6.10) and (6.12) 
and involve explicit estimation of the a nuisance parameters as well as of the P's. For 
some. of the simpler problems, e.g., the combination of results from 2 x 2 tables, infer- 
ence may be carried out also in terms of conditional likelihoods which depend only on 
the parameters of interest. If the number of nuisance parameters is large, and the data 
thin, this approach avoids some well known problems of bias (see 5 7.1). It also 
enables exact inferences to be made (5 4.2). Since many of the procedures in Chapter 4 
and all of those in Chapters 5 and 7 are based on such conditional likelihoods, the 
methods discussed there would be expected to yield more accurate results for finely 
stratified or matched data than those presented in this chapter. However, the exact 
conditional procedures are too burdensome computationally for many of the problems 
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which confront us. Thus, while we may lose some accuracy with the logistic regression 
approach, what we gain in return is a coherent methodology capable of handling a wide 
variety of problems in a uniform manner. 

6.5 Combining results from 2 x 2 tables 

As our first worked example using the logistic model, we return to the problem of 
combining information about the relative risk from a series of 2 x 2 tables. In this case 
there is a single exposure variable x, coded x = 1 for exposed and x = 0 for unexposed. 
The model (6.12) for the probabilities Pi(x) of disease in the ith of I strata becomes 

which expresses the idea that the relative risks in each stratum are given by the constant * = = X P ( ~ ) *  
Simultaneous estimation of the ai and ,Ll parameters as outlined in the last section 

leads to the estimate $?J = exp(?) identified in § 4.4 as the unconditional or asymptotic 
maximum likelihood estimate (MLE). This has the property that the sum of the fitted 
values of exposed cases over all I strata is equal to the sum of the observed values. 
More precisely, suppose the data are laid out as in (4.21). Denote the fitted values by 

and for the remaining cells by subtraction, ti = mIi - $, di = moi - bi. Agreement of the 
observed and marginal totals means Eli = Pai7 Pbi = Pbi7 and so on. Since the squared 
deviations of observed and fitted values for the four cells in each stratum agree, i.e., 
(ai-Q2 = (bi-bi)2 = (ci -ti)2 = (di-di)27 it follows that the chi-square statistic 
(6.23) for testing goodness of fit of the model may be written 

where we have used the variance formula (4.13). This chi-square agrees precisely with 
the goodness of fit statistic (4.30) derived earlier, except that we now use MLE for the 
parameters. 

Example: To illustrate these calculations we reanalyse the grouped data from the Ille-et-Vilaine study 
of oesophageal cancer summarized in Table 4.1. Here the six strata are defined as ten-year age groups 
from 25-34 through 75+ years, while average alcohol consumption is treated as a binary risk factor 
with 0-79 g/day (up to one litre of wine) representing "unexposed" and anything over this amount 
"exposed". The data would be rearranged for computer entry as shown in Table 6.1, where 12 risk 
categories or groups are defined by the six strata and two levels of exposure. Within each of these the 
total N of cases + controls is regarded as the denominator of an observed disease proportion, while'the 
number of cases is the numerator. The numerical results should be compared closely with those already 
obtained in 8 4.4. 
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Table 6.1 Data from Table 4.5 reorganized for entry into a com- 
puter programme for linear logistic regression 

Age Exposure Cases Total 
stratum (x=l  for 80+ glday) (cases + controls) 

Results of fitting several versions of the model to these data are summarized in Table 6.2. In the first 
version, with six parameters, the disease probabilities may vary with each age group but not with exposure 
(/? = 0). Considering the huge goodness of fit statistics, this assumption is clearly not tenable (p<0.00001). 
When a single relative risk parameter (/3) is introduced the fit improves considerably. However, the chi- 
square (6 = 9.32, p = 0.15) and log likelihood (G = 11.04, p = 0.05) statistics give somewhat different 
answers as to whether the differences in relative risk between strata are significantly different. Both are 
sufficiently large to alert us to the possibility of systematic variations in the relative risk for different age 
groups, which should be investigated further. 

Inferences about the relative risk are made in terms of the estimate f i  = 1.670 and its standard error 
0.190'. We compute $ = exp(1.670) = 5.31 as the point estimate of relative risk. Ninety-five percent 
confidence limits for/? are given by/?, = 1.670-1.96 x 0.190 = 1.30 andPU = 1.670 + 1.96 x 0.190 = 2.04. 
These correspond to bounds of y l ,  = exp(pL) = 3.66 and yiu = exp(/?,) = 7.71 on the relative risk, 
which compare well with those derived in § 4.4 using two other methods. 

The third model shown in Table 6.2 was fitted to see whether there was a systematic trend in relative 
risk with age. This took the form 

where now /? represents the log relative risk for a "typical" age (i = 3.5), while y represents the linear 
trend in this depending on the age group indicator i. The lack of a significant improvement in the goodness 
of fit statistics, and the small value of 7 as compared with its standard error, tell us that there is little evidence 
for such a trend. 

More information about the sources of departure from model assumptions can be obtained from an 
examination of the residuals, the differences between the observed and fitted numbers of disease cases 
in each category (Table 6.3). As an illustration of their calculation, the fitted values for the 35-44 age 
category are found from (6.24) and the estimated coefficients in Table 6.2 to be 

and 

' The standard error of an estimate is the square root of its estimated variance. 



Table 6.2 Results of fitting several versions of the linear logistic model (6.3) to the data in Table 6.1 

Model, No, of D F Goodness-of-fit Regression coefficients 
para- statistics Age strata (years) Log relative risk and interactions 

% 
rn 

meters Log likeli- Chi- Alcohol Alcohol x age V) 

hood square 25-34 35-44 45-54 5544 65-74 75+ f l +  S.E. 3 + S.E. 
G 6 61 6 2  f i3 h4 65 66 

6 z 
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Table 6.3 Residuals from fitting model 2 of Table 6.2 to data in Table 6.1 

Age stratum Exposure Numbers of cases Variance Standardized 
(Years) Observed Expected residual 

Total 200 200.00 

We easily verify that the sum of the fitted numbers of exposed cases over the six strata, 0.33 +4.10+ 
24.50+40.13 +23.74+ 3.20, equals the sum of the observed number, namely 96. This confirms the 
property of the maximum likelihood estimate mentioned earlier. 

Variances for the 0-E residuals are calculated as NPQ, where N is the denominator (total of cases and 
controls), P is the estimated disease probability and Q = 1 - P. Dividing each residual by its standard 
error gives us the standardized residuals, which when squared and summed produce the 6 goodness of fit 
statistic. The greatest contribution to this comes from the last two age groups. For the 65-74 year-olds 
the deficit of 19 exposed cases compared with 23.74 expected indicates a relative risk smaller than that of the 
other groups; while for the 75+ group the excess of 5 observed to 3.20 expected implies a larger than 
average relative risk. The contribution from the youngest age group can be largely discounted because 
only one case appears. Since there does not seem to be any obvious pattern to the residuals, we feel 
comfortable in attributing the observed departures from the fitted model to chance phenomena. 

6.6 Qualitative analysis of grouped data from Ille-et-Vilaine 

In 5 4.6 we applied classic Mantel-Haenszel methodology to study the joint effects 
of two risk factors, alcohol and tobacco, on the relative risk of oesophageal cancer in 
Ille-et-Vilaine. Both factors were partitioned into four levels, yielding 16 risk categories 
in all. Our first approach was to compute separate estimates of the age-adjusted relative 
risk for each such category, assigning the value 1.0 to the low alcohol, low tobacco cell. 
Later we estimated relative risks for each alcohol level, simultaneously adjusting for 
age and tobacco, and each tobacco level, simultaneously adjusting for alcohol and age. 
This was a cumbersome procedure which required that we construct and summarize 
several different series of 24 2 x 2 tables. The relative risks obtained for each alcohol 
and tobacco level were multiplied together to estimate the joint effect of these two 
variables. However, there was no very satisfactory way of testing the validity of the 
multiplicative hypothesis, and the relative risks obtained in this fashion lacked the 
desirable property of consistency. 

In this section we demonstrate that a comprehensive and integrated analysis, which 
parallels the Mantel-Haenszel approach, may be carried out quite simply using the 
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logistic model with stratification (6.12). The starting point is the grouping of the 200 
cases and 775 controls into 4 x 4 x 6 = 96 cells, each of which represents a combina- 
tion of the categories of alcohol, tobacco and age. According to the principles outlined 
in 5 6.3, the observations in each cell are trea+.ed in the statistical analysis as indepen- 
dent binomial observations, with cases representing the numerator and cases + controls 
the denominator. Appendix I lists the 96 binomial observations so formed. In fact, 
since 8 of the cells were devoid of cases and controls there are effectively only 88 
observations and it is this figure that one uses to determine degrees of freedom. 

As only the qualitative or categorical aspects of the data are to be considered here, 
the regression variables x appearing in the model are indicator variables which take the 
value 1 or 0 according to whether the cell (observation) in question corresponds to a 
given level or combination of levels of the various study factors. Even the parameter ai 
in (6.12) can be regarded as the coefficient of an indicator variable which takes the 
value 1 for the ith stratum and 0 otherwise. Sophisticated programmes such as GLIM 
will automatically construct such indicators for all factors specified by the user as being 
categorical. 

Table 6.4 shows explicitly the values of the regression variables so constructed. Since 
they depend only on alcohol and tobacco it suffices to show their values for the first 
age group only. The first three variables define the main effects of each alcohol category 
on risk, while the next three define the main effects of tobacco. Thus, x2 = 1 for the 
third alcohol group and 0 otherwise, while = 1 for the fourth tobacco group and 0 
otherwise. Cells having 0 values for all six of these variables correspond to the lowest 
consumption levels of both factors and are assigned a baseline relative risk of unity. 

Variables x7 to x15 define the totality of qualitative interactions between alcohol and 
tobacco. They are obtained by multiplying together the dummy variables representing 
the main effects: 

Inclusion of all six main effect and all nine interaction variables in the equation imposes 
no constraints on how the relative risks vary over the l(j alcohol/tobacco cells. The 
15 parameters in the model yield 15 estimated relative risks, with the value 1.0 being 
assigned to the baseline category. Thus the log relative risk for the third alcohol and 
fourth tobacco group is estimated as 8, +b6 +BIZ, i.e., as a contribution from the alcohol 
level plus one from the tobacco level plus the interaction. One obvious drawback to 
this method of parameterizing the interactions is that it does not lead to the ready 
identification of quantitative patterns which may be of particular interest. Alternative 
parameterizations are considered in the next section. 

Table 6.5 summarizes the results of fitting several regression models using qualitative 
regression variables, By subtracting the goodness-of-fit (G) measures for Models 2 
and 3 from that for Model 1 we obtain X: statistics of 141.0 and 36.6, respectively, for 
testing the significance of alcohol and tobacco, ignoring the effects of the other variable. 
Both factors have an enormous influence on risk. Subtracting the G's for Model 4 from 
those for Models 2 and 3 yields X: statistics of 128.0 and 23.6. These determine the 
significance of alcohol and tobacco while adjusting for the effects of the other variable. 
The adjusted chi-squares are a little smaller than the unadjusted ones, reflecting the 
slight correlation between alcohol and tobacco consumption. However, their magnitude 
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Table 6.4 Values of qualitative risk variables for the first 16 of 96 grouped data records: Ille-et- 
Vilaine study of oesophageal cancer 

Obser- Levels of Alcohol main Tobacco main Alcohol x tobacco interaction 
vation age alc tob x ,  x, x3 X4 X~ X6 x 7  XB x 9  XIO X~~ X~~ X13 X14 X~~ 

Table 6.5 Summary of goodness of fit of several logistic regression models: grouped data from the 
Ille-et-Vilaine study of oesophageal cancer 

- - - - - - - - - 

Model Regression No. of OF Goodness of fit Hypothesis tested and/or interpretation 
variables includeda parameters G 

- - - - - - 

6 82 246.9 No effect of alcohol or 
tobacco 

2 Age 9 79 105.9 Effect of alcohol only, 
Alcohol ( 1 3 )  adjusted for age 

3 Age 9 79 21 0.3 Effect of tobacco only, 
Tobacco (4-6) adjusted for age 

- -- -- - 

4 Age 12 76 82.3 Main effects for alcohol and 
Alcohol ( 1 3 )  tobacco (multiplicative hypo- 
Tobacco (4-6) thesis), adjusted for age 

a Numbers in parentheses correspond to variable numbers shown in Table 6.4 

indicates that both variables have strong independent effects which are not explained 
by the contribution of the other. 

The estimated regression coefficients for Model 2, when exponentiated, yield esti- 
mates of the risk for each alcohol level relative to baseline (0-39 g/day) which are 
adjusted for age but not for tobacco. Thus, exp@,) = exp(1.43) = 4.2 is the relative 
risk for the 40-79 g/day group, while for the higher levels of consumption the figures 
are exp(),) = 7.4 and exp@,) = 39.7. These may be contrasted with the correspond- 
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Fig. 6.1 Log relative risk of oesophageal cancer according to four levels of alcohol con- 
sumption 

Average alcohol consumption (glday) 
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ing figures of 4.3, 8.0 and 28.6 obtained by the Mantel-Haenszel (M-H) method 
(Table 4.4). There is reasonably good agreement except for the highest exposure category, 
where there were few cases and controls in some strata. For this category the conditional 
maximum likelihood estimate (5 4.4) was 34.9, midway between the M-H estimate 
and unconditional MLE. The latter estimate is probably a bit exaggerated here 
because of the thin data (5 7.1). 

One disadvantage of the elementary methods was that the relative risks obtained 
upon varying the choice of baseline category were not consistent. For example, the 
direct M-H estimate of the risk for the fourth alcohol level relative to the second is 
8.7 rather than 28.6/4.3 = 6.7. Use of the logistic modelling approach avoids such 

Fig. 6.2 Log relative risk of oesophageal cancer according to four levels of tobacco 
consumption 

Average tobacco consumption (g/day) 
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discrepancies. Estimates of the log relative risks between any two categories are always 
obtained as the differences in the regression coefficients for those categories (with the 
proviso that the coefficient for the baseline category is O), and such differences are not 
affected by the choice of the baseline category. Thus exp(), -8,) = 9.4 represents the 
risk of level four relative to level two regardless of how the indicator variables repre- 
senting the alcohol effects are coded. 

Model 4 is the first reasonably satisfactory one in the sense that the goodness of fit 
chi-square is not significantly higher than its degrees of freedom 01;6 = 82.34, 
p = 0.48). The fitted regression coefficients are: for alcohol 8, = 1.44, 8, = 1.98 and 
8, = 3.60; and for tobacco fi4 = 0.44, B5 = 0.51 and 8, = 1.64 (6.11). These show a 
reasonably smooth linear increase with increasing levels of consumption (Figures 6.1 and 
6.2). Taking exponentials, we find estimates of relative risk for each alcohol and tobacco 
category relative to baseline which, according to the model, combine multiplicatively 
to yield the results for joint exposures to the two factors shown in Table 6.6. In view 
of the rather weak correlation between alcohol and tobacco consumption (Q = 0.15, 
see Table 4.22), it is not surprising that the alcohol relative risks obtained after adjust- 
ment for age and tobacco are only slightly smaller than those obtained after adjustment 
for age alone. Further evidence for the goodness of fit of the multiplicative model is 
presented in Table 6.7. Its entries, obtained by summing observed and fitted values 
over the six age categories, show consistently good agreement throughout the range of 
both risk factors. The greatest discrepancy is in the baseline category, with nine cases 
of disease against 13.7 expected. While not statistically significant, the slight lack of fit 

Table 6.6 Age-adjusted relative risks for each alcohol/tobacco 
category according to multiplicative model: Ille-et-Vilaine oe- 
sophageal cancer study 

Alcohol Tobacco (glday) 
(g lda~ )  0-9 1&19 20-29 30+ 

Table 6.7 Observed and expected (age-adjusted) numbers of cases for each alcohol/ 
tobacco category according to multiplicative model: Ille-et-Vilaine oesophageal cancer 
study 

Alcohol Tobacco (glday) 
(glday) &9 1&19 2&29 30+ 

0 E 0 E 0 E 0 E 
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for this category indicates that the relative risk for the other levels of exposure might 
possibly be even greater than that suggested by the model. 

One drawback to the choice of grouping intervals used in this analysis is that in 
neither case does the lowest level correspond to zero consumption. To some extent the 
choice was dictated by necessity in that no diseased individuals abstained completely 
from both alcohol and tobacco, and even among controls there were very few who did 
not consume some alcohol. However there were a substantial number of non-smokers 
in the population. Thus a similar analysis was carried out using five levels of consump- 
tion for each variable: 0-24, 2 5 4 9 ,  50-74, 75-99 and 100+ g/day for alcohol and 
0, 1-4, 5-14, 15-29 and 30+ g/day for tobacco. Results shown in Tables 6.8 and 6.9 
and in Figures 6.3 and 6.4 confirm the multiplicative relationship and the linear effect 
of alcohol on the log relative risk. The trend with tobacco, on the other hand, is con- 
siderably changed in appearance. Even a small amount appears to increase the risk 
substantially and there are contra-indications to the linearity of the relationship. 
Figures 6.3 and 6.4 also show for comparison relative risks estimated from the quanti- 
tative regression models discussed in the next two sections. 

It would be tempting to try to subdivide the alcohol and tobacco variables further, 
say into ten levels each. However even with five levels per variable there are already 
5 x 5 x 6 = 150 groups, and with ten levels there would be 600. The larger the number 
of parameters in the model, the less information there is available for estimating each 
one; this is reflected in increased standard errors. Further subdivision would lead one 
to anticipate increasingly erratic behaviour in the estimates, such as the apparent 
decrease in risk between the 5-14 and 15-29 g/day tobacco categories (Figure 6.4). 

Table 6.8 Estimated relative risks for each alcohol/tobacco category accord- 
ing to the multiplicative model: Ille-et-Vilaine oesophageal cancer study 

Alcohol Tobacco (glday) 
@/day) 0 1 4  5-1 4 15-29 30 + 

Table6.9 Observed and expected (age-adjusted) numbers of cases for each alcohol/tobacco 
category according to the multiplicative model: Ille-et-Vilaine oesophageal cancer study 

Alcohol Tobacco (glday) 
(glday) 0 1 4  5-14 1 5 2 9  30+ 

0 E 0 E 0 E 0 E 0 E 
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6.3 Log relative risk of oesophageal cancer according to five levels of alcohol con- 
sumption 

50 100 

Average alcohol consumption (glday) 
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Fig. 6.4 Log relative risk of oesophageal cancer according to five levels of tobacco con- 
sumption 

10 20 30 - 

Average tobacco consumption (g/day) 

6.7 Quantitative analysis of grouped data 

An important feature of the Ille-et-Vilaine data which was ignored in the preceding 
section is that different levels of the two risk factors have a prescribed order. It is pos- 
sible to assign to each of them a quantitative value of exposure, for example the mid- 
point of the respective interval, or the average over the sample of the values of the 
underlying continuous variable within that interval. Natural values to assign to the four 
levels of alcohol are 20, 60, 100 and 150 g/day (Figure 6.1), which are interval mid- 
points except that 150 represents the approximate median of the values in the last 
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open-ended interval above 120 glday. Similarly, for tobacco, natural values are 5, 15, 
25 and 40 glday (Figure 6.2). Even the stratification variable is quantitative, with 
equally-spaced intervals centred about 30, 40, 50, 60, 70 and 80 years of age. 

Quantitative aspects of the data may be accounted for in the analysis by using con- 
tinuous regression variables in place of the categorical ones. There are several advantages 
in this approach. First, the data can often be adequately summarized by a smaller 
number of parameters, which facilitates interpretation. Tests for the significance of 
individual regression coefficients are single degree of freedom tests for trend which, as 
we have repeatedly emphasized, are generally more powerful than tests directed against 
global alternatives to the null hypothesis. This feature is especially important in 
exploring possible interactions, since chi-square statistics based on qualitative inter- 
action variables tend to have rather large numbers of degrees of freedom. Quantitative 
interaction variables, obtained as the product of the quantitative variables representing 
the main effects of the corresponding factors, enable us to identify particular patterns 
of departure from the basic linear model. 

Suppose for the moment that a single risk factor has been divided into K levels 
corresponding to values XI, .. ., x~ of a quantitative variable. Cases and controls may 
be classified into one of IK cells on the basis of stratum (i) and risk factor (k). A 
partial selection of logistic regression models which would be appropriate to fit to the 
disease probabilities Pi(xk) may be outlined as follows: 

Model equation No. of Goodness- Interpretation/Description 
logit Pi(xk) = independent of-fit statistic 

parameters G 

i I GI Relative risk of unity in all strata: no 
effect of risk factor 

ai+plxk I +  1 G2 Linear increase in log-relative risk with 
exposure, same slope for each stratum 

ai +@ixk +@2~: 1 + 2  G3 Quadratic effect of exposure on log- 
relative risk 

ai +pix, 21 G4 Linear effect of exposure, but slope 
varies depending on stratum 

ai+pk I + K - 1  G5 Individual relative risk for each exposure 
level 

ai +pk+~ik  IK G6 = o NO constraints at all: separate relative 
risks in each stratum 

pk = yik = 0 by convention for k = 1 and all i .  

By comparing the statistics corresponding to different models one may test several 
2 hypotheses. For example GI-G,, a x,, statistic, provides an unstructured (quali- 

tative) test for the effects of the risk factor like those considered in the last section. 
Its value would not be changed by a re-ordering of the exposure categories. G I G 2 ,  
which has but a single degree of freedom, yields a much more specific test for linear 
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trend in log relative risk with increasing exposure. A global test of departures from the 
linear' model is provided by Gz-G5, on K-2 degrees of freedom, while Gz-G3 is 
a X: statistic specifically designed to test for curvature in the regression line. Finally, 
Gz-Gq is a xi-' statistic testing the parallelism of the regression lines in the I strata. 
Lack of parallelism means that the relative risks for different exposure levels vary from 
one stratum to another, i.e., that there are interactions between stratification variables 
and risk factors. Notice that the goodness-of-fit statistic for model 6 is 0. Since the 
number of independent parameters equals the number of observations, there is perfect 
agreement between model and data in this case. 

A similar but somewhat more elaborate set of models was fitted to the 96 grouped 
data records from Ille-et-Vilaine, treating fhe two risk factors alternately as qualitative 
and quantitative variables at four levels'each. The values assigned to each level are as 
indicated. above, namely 20, 60, 100 and 150 g/day for alcohol and 5, 15, 25 and 
40 g/day for tobacco. In fact these x values were not used in the regression analyses 
in their original form, since this would have led to computational problems, especially 
with the square terms. Instead, alcohol consumption was expressed in units of 100 g/day, 
with values 0.2, 0.6, 1.0 and 1.5, while tobacco was expressed in units of 10 g/day. It 
is sometimes helpful to go even further and to standardize all regression variables, i.e., 
scale and centre them so that they have approximate mean values of zero and variances 
of unity, before proceeding with the numerical analyses. 

Table 6.10 summarizes the results. In identifying the various models we have used 
the following shorthand: ALCGRP and TOBGRP denote the qualitative effects of 
alcohol and tobacco, each representing three indicator regression variables; ALC 
and TOB are single variables which represent the quantitative effects. All models 
contain the six stratum parameters ai which express the qualitative effects of age. 
Model 1 is identical with Model 4 of Table 6.5, both alcohol and tobacco consumption 
being treated as qualitative factors which combine multiplicatively. 

Comparing Models 1 and 2 there is some slight evidence that the increase in log 
relative risk with alcohol may not be purely linear (y; = 5.07, p = 0.08); however, since 
the specific test for curvature obtained by comparing Models 2 and 3 is not at all signi- 
ficant (y: = 0.11, p = 0.95), we feel reasonably confident in attributing these devia- 
tions from a straight line relationship to chance. Linearity of the trend with tobacco, 
at least as based on the grouping into four levels, seems quite adequate; compare 
Model 4 with Models 1 and 5. Thus, Model 6, containing just one term for each of 
alcohol and tobacco, fits the data nearly as well as a model with four more parameters 
representing the non-linear effects of the two risk variables. From the regression coef- 
ficients' for Model 6, bALc = 2.55 and b,, = 0.409, we estimate that the risk of 
oesophageal cancer increases by a factor of exp(0.255) = 1.29 for every additional 
10 grams of alcohol consumed per day, and by exp(0.409) = 1.51 for each additional 
10 grams of tobacco. 

Model 7 contains a quantitative term representing the linear x linear interaction of 
alcohol and tobacco. A significant value for its coefficient would have indicated a trend 
in the slope of the alcohol relationship with increasing consumption of tobacco, or 

' Remember that for these calculations alcohol was expressed in units of 100 g/day and tobacco in 10- 
gram units. 
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Table 6.10 Results of fitting various logistic models with qualitative and quantitative regression 
variables to grouped data from the Ille-et-Vilaine study of oesophageal cancer 

Model Parameters fitted (in addition to DF Goodness Hypothesis testedlinterpretation , 
stratum or age effects) of fit 

G 
- - - - - - - - - 

1 ALCGRP + TOBGRP 76 82.34 Multiplicative model with qualitative risk 
variables 

2 TOBGRP + ALC 78 87.41 Linear effect of alcohol 
- - - - 

3 TOBGRP + ALC + ALCZ 77 87.01 Linear + quadratic effects of alcohol 

4 ALCGRP + TOB 78 84.53 Linear effects of tobacco 

5 ALCGRP + TOB+ TOB2 77 83.73 Linear + quadratic effects of tobacco 

6 ALC + TO6 80 89.02 Linear effects of alcohol and tobacco 

7 ALC + TOB + ALC x TOB 79 88.05 Linear x linear alcohol/tobacco interaction 

8 ALCGRP + TOBGRP 75 81.37 Linear x linear alcohol/tobacco interaction 
+ ALC x TOB in qualitative model 

9 ALCGRP + TOBGRP 75 80.08 Linear increase i'n slope of alcohol 
+ ALC x AGE effect with age 

10 ALCGRP + TOBGRP 75 82.33 Linear increase in slope of tobacco 
+ TOB x AGE effect with age 

KEY: ALCGRP = indicator variables for alcohol levels 
TOBGRP = indicator variables for tobacco levels 
AGE = quantitative age variable 
ALC = quantitative alcohol variable 
TOB = quantitative tobacco variable 

equivalently a trend in the tobacco relationship with alcohol. However, there is no 
evidence for such a trend &: = 0.97, p = 0.32). Model 8 illustrates that quantitative 
interaction terms may be used even when the model expresses the main effects quali- 
tatively. Subtracting G8 from GI leads to a nearly identical test for the quantitative 
alcoholx tobacco interaction &: = 0.97, p = 0.32). Quantitative interaction variables 
may be quite valuable in giving some specificity to the search for interactions even if 
one does not want to assume a particular form for the main effects. 

The last two models search for similar quantitative interactions with the stratification 
variable. A negative regression coefficient for the ALCx AGE term in Model 9 
indicates a tendency for the alcohol relative risk to diminish with advancing age. How- 
ever, it is not. a significant trend &; = 2.28, p = 0.13). There is no indication at all of a 
systematic change in the tobacco effect with age. Thus our previous conclusions based 
on the qualitative analysis of interactions are in this example further supported by the 
quantitative approach. 
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6.8 Regression adjustment for confounders 

Stratification, whether in the context of M-H methodology or logistic regression, has 
traditionally been used to control the confounding effects of nuisance factors. Typically, 
we define a separate stratum for each combination of levels of the nuisance factors, 
assigning to each one a parameter in the model. If there are several such factors, or if 
they occur at very many levels, the total number of strata can become quite large. For 
example, with three stratifying factors at 3, 4 and 5 levels, respectively, the total number 
of a parameters in (6.2) is 3 x 4 x 5 = 60. Since the available data usually place severe 
limitations on the number of strata which may be incorporated in the analysis, alter- 
native methods for the control of confounding must be considered. 

From the discussion in 5 6.1 it is clear that the practice of stratification is tantamount 
to saturating the effects of the nuisance factors with parameters. Not only the main 
effects, but also all the first and higher order interaction terms are represented. This 
practice is unnecessary, however, unless we have good reason to believe that such 
higher order interactions are present. An obvious alternative to stratification for the 
control of confounding variables is to incorporate their effects directly into the model. 
This allows us much more flexibility in deciding which of the higher order interaction 
terms to retain and which to discard. The approach may be especially efficacious with 
continuous nuisance factors whose effects can be adequately summarized in a few 
quantitative regression variables. 

This does not mean, however, that risk and nuisance variables are treated sym- 
metrically in the analysis. For risk factors our goal is to identify the most important 
ones and quantify their influence in a precise and meaningful way. This implies that 
we economize on the number of parameters used to represent them and that we retain 
in the multivariate risk equation only those which have reasonably significant effects. 

For nuisance factors, on the other hand, the effects on disease have presumably 
already been conceded, or in any event are not the specific concern of the study. They 
are included only to ensure that the estimates of relative risk are free from possible 
confounding effects, and no specific meaning is to be attached to their coefficients. 
Hence, known confounding variables should be included in the equation regardless 
of statistical significance if such inclusion changes the estimated coefficients of the 
risk variables by any appreciable degree (5 3.4). 

We illustrate the regression adjustment for confounding effects with the grouped data 
from llle-et-Vilaine, specifically the age adjustment of estimates in the qualitative 
multiplicative model (Model 4, Table 6.5). Table 6.1 1 compares the previous estimates, 
obtained using stratification in six age groups, to estimates for which quantitative 
adjustments were made by introducing polynomial expressions in age group into the 
equation. Let i denote the age stratum, j the alcohol group, and k the tobacco group. 
The left-hand column presents the unadjusted estimates, based on an equation of the form 

where age does not appear at all. The next column shows the changes in .the alcohol 
and tobacco coefficients upon introduction of a single linear term in age 
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logit Pijk = a. + a l i  + pj(alc) + pk(tob). 

The third column shows the effect of adding a quadratic age term a2i2, and so on. 
Comparing G's for the extreme left- and right-hand columns of Table 6.1 1 it is clear 

that age has an enormous influence on risk (y,2 = 126.5). Nevertheless, the differences 
between these two columns in the relative risk estimates for alcohol and tobacco are 
rather minor, which implies that the confounding effects of age are quite weak. The 
explanation for this phenomenon has been given in 5 3.3. While age is strongly related 
to risk, it has only a weak correlation with the level of exposure to alcohol and tobacco 
(Table 4.2) and hence would not be expected to be a strong confounder. 

Inclusion of a single linear term in age group results in an enormous improvement 
in overall fit and brings the estimated coefficients quite close to those obtained via 
stratification. Fitting both linear and quadratic terms yields results which are virtually 
identical to those obtained with higher degrees of adjustment. These comparisons, which 
are typical of our experience with quantitative nuisance factors, indicate that effective 
control of confounding is often obtainable by inclusion of a few polynomial terms in 
the regression equation, thus obviating the need for stratification. The regression 
method of adjustment should generally work well unless disease incidence o r  the 
exposure to other risk factors depends in a complicated, non-linear way on the nuisance 
variables. 

Table 6.11 Estimate of log relative risk for each alcohol and tobacco category according to the 
degree of adjustment for age: Ille-et-Vilaine oesophageal cancer study 

Risk category Type of analysis 
Unadjusted Polynomial adjustment for age group Stratification in 

Linear Quadratic Cubic Quartic six age groups 

Tobacco 
(glday) 
0-9 0.0 0.0 0.0 0.0 0.0 0.0 
10-19 0.39 0.46 0.44 0.43 0.43 0.44 
20-29 0.43 0.55 0.51 0.50 0.50 0.51 
30+ 0.99 1.52 1.63 1.63 1.64 1.64 

Alcohol 
(glday) 
0-39 0.0 0.0 0.0 0.0 0.0 0.0 
40-79 1.23 1.53 1.44 1.44 1.44 1.44 
80-1 19 2.00 2.17 1.99 2.00 1.99 1.98 
120+ 3.1 8 3.60 3.57 3.58 3.59 3.60 

Goodness-of-fit 
statistic G 208.8 101.9 84.6 84.0 83.8 82.3 

Degrees of 
freedom 8 1 80 79 78 77 76 
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6.9 Analysis of continuous data 

The full power of the regression approach to case-control studies is obtained when 
continuous risk variables are analysed in the original form in which they were recorded, 
rather than by grouping into intervals whose endpoints are ofien arbitrarily chosen. 
This permits the incorporation of many more variables than would be possible using 
grouped data, their joint effects being summarized by a relatively small number of 
parameters. Of course such an increase in power and flexibility is not without associated 
costs. Perhaps the most serious are potential errors in the estimated relative risks 
arising from a rnis-specification of the model. Careful exploration of the adequacy of 
the postulated relationships is essential to avoid over-interpretation of the data. 
Transformations and interaction terms should be used where required to improve the fit. 

Another cost associated with the use of continuous risk variables is monetary. Since 
individual data records for each subject must be processed repeatedly during the 
iterative fitting process, large amounts of computer time can be required to analyse a 
comprehensive series of models. With the llle-et-Vilaine study, for example, only 88 
data records were required for the grouped data analyses of 5 6.6 and 6.7. All 975 
records, one for each subject, were needed for the continuous analysis, and computer 
costs for fitting equivalent models were 5-10 times higher. Of course additional informa- 
tion is contained in the original, continuous data which is undoubtedly worth the price 
of extraction, especially when one considers that costs of data processing and analysis 
are only a small part of the total cost of any study. 

In the first series of continuous models fitted to the llle-et-Vilaine data we used 
quantitative variables representing alcohol and tobacco consumption as well as various 
transformations of these. "Alcohol" (ALC) was a true continuous variable in that 
it took on 163 separate values between 0 and 268 g/day (inclusive) among the 975 
study subjects. 'Tobacco" (TOB), on the other hand, had been recorded as a discrete 
variable with nine levels. For the analyses reported here quantitative values were 
assigned to each such level, as they had been earlier for the grouped data analyses: 

Coding of quantitative tobacco variable 

Level Interval Assigned value 
W a y )  (x) 

As an alternative to using ALC and TOB as linear terms in the model, transforma- 
tions of each of these were considered. A particularly appropriate transformation for 
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variables which represent dose rates of continuous exposures is the log transform. 
Postulating a log-linear relation of the form log RR(x) = a +P log(x) means that risk 
itself is proportional to a power of dose, xp, a relationship known to occur frequently 
from both human and animal studies (see 5 6.11). Since both ALC and TOB took on 
0 values it was necessary to "start" the logs by adding 1 to each before transforming 
it, in order to avoid infinities. Note that with either the original (ALC and TOB) or 
the transformed [LOG(ALC+ 1) and LOG(TOB+ I)] variables, non-consumers of 
both tobacco and alcohol are automatically assigned relative risks of 1.0. This is be- 
cause the values of all risk variables are 0 for individuals consuming no alcohol and 
no tobacco. 

Table 6.12 presents the results. The first model, which includes linear terms for each 
of alcohol and tobacco, may be compared with Model 6, Table 6.10, of the grouped 
data analysis. Agreement between the two sets of coefficients is remarkably good: 
the log relative risk is estimated to increase by 0.255 (grouped) or 0.260 (continuous) 
for every additional 10 grams of alcohol, while for 10 grams of tobacco the correspond- 
ing .figures are 0.409 and 0.405. 

In contrast to the situation with grouped data, the goodness-of-fit statistics shown 
in the fourth column of Table 6.12 should not be interpreted as chi-squares with the 
indicated degrees of freedom. Because the number of cases in each "group" is 0 or 1 
according to whether the record refers to a case or control, a direct comparison of 
observed and expected numbers is not helpful in determining the adequacy of the 
model. Instead the differences between the measures for nested models evaluate their 
relative goodness of fit, as explained in 5 6.4. 

Table 6.12 Logistic regression analysis of continuous risk variables: Ille-et-Vilaine oesophageal 
cancer study 

Model No. of DF Goodness Regression coefficients for each risk variable 
param- of fit (standardized coefficients in par en these^)^ 
etersa G ALC TOB LOG LOG ALC2 TOB' LOG2 

(ALCi1) (TOBi1)  (TOBi1) 

"Includes the six age terms ai in addition to the alcohol and tobacco parameters shown 

Both ALC and TOB are expressed in units of g/day. 
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For Model 2 of Table 6.12, the effect of alcohol consumption is expressed on a 
logarithmic rather than an arithmetic scale. In view of the marked decrease in the log 
likelihood, the log scale is clearly not appropriate for alcohol. On the other hand, the 
fit is substantially improved when the effect of tobacco is expressed in this way 
(Model 3). Addition of square terms in ALC (Model 6 ) o r  LOG(TOB+l) (Model 7) 
do not result in a statistically significant improvement over the model containing these 
two variables alone (G3 - G6 = 0.4, p = 0.5; G2 -G7 = 2.1, p = 0.15). It is of 
interest to note that not even use of both linear and quadratic terms in TOB (Model 5) 
achieves the goodness of fit produced by expressing this variable on a log scale. 

Taking ALC and LOG(TOB+l) as the basic risk variables, tests were made for 
interaction effects between these two factors, as well as between each of them and age. 
Addition of an ALCxLOG(TOB+I) interaction term to the model reduced the 
goodness-of-fit statistic very little, to 682.6 &: = 0.6, p = 0.4). Likewise, no inter- 
actions of alcohol with age &: = 1.1, p = 0.3) nor of tobacco with age &: = 0.2, 
p = 0.7) were apparent. Thus the quantitative regression analysis of the continuous 
data confirms the lack of interaction effects noted previously in our analysis of the 
grouped data. 

In summary, the changes in risk of oesophageal cancer associated with increased 
alcohol and tobacco consumption are well represented by a model in which the effects 
of the two factors combine multiplicatively. The proportional increase in risk accompany- 
ing additional quantities of alcohol and tobacco, expressed in units of g/day, is estimated 
to be 

(TOB+ 1)0-54exp(0.025 x ALC). 

Standard errors of the regression coefficients, 0.0026 for alcohol and 0.058 for tobacco, 
may be used to put approximate confidence limits about the estimates. Dividing the 
standard errors into the coefficients themselves yields the standardized values (Table 
6.12), which may be referred to tables of the normal distribution to test for the signi- 
ficance of individual terms in the regression equation. Clearly both alcohol and tobacco 
have highly significant independent effects, as has already been established using other 
methods. 

A plot of the estimated linear increase in log relative risk with alcohol (Figure 6.3) 
shows excellent agreement with the results of the qualitative analyses. Similar plots for 
tobacco are shown in Figure 6.4. Here the situation at first appears somewhat para- 
doxical. The estimated relative risks from the qualitative analysis lie entirely above 
those based on the log transform, which in turn lie above those derived from the linear 
model. The explanation for this apparently bizarre phenomenon is not hard to find. 
It is due to the arbitrary selection of 0 as a baseline value for tobacco, which constrains 
all three curves to pass through the origin of the graph. Any other value for tobacco 
could just as well have been chosen as baseline and assigned a 0 log relative risk, in 
which case the curves would all be displaced so as to pass through 0 at that point. In 
other words the origin of the scale of log-relative risk is completely arbitrary and it is 
only the shapes of the curves which have any meaning. To compare and contrast these 
shapes better, Figure 6.5 shows the same three curves except that the linear curve has 
been displaced upwards 0.96 units and the log curve up 0.48 units. The superior fit 
of the model using the log term is evident from this graph. 
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Fig. 6.5 Log relative risk of oesophageal cancer according to five levels of tobacco con- 
sumption: not constrained to pass through origin 

10 20 30 

Average tobacco consumption (g/day) 

We conclude this section with an illustration of the ability of the logistic regression 
model to investigate the simultaneous effects of a large number of continuous risk 
variables. In order to estimate the average daily amount of alcohol consumed by each 
study subject, interviewers posed separate questions regarding the pattern and frequency 
of use of wine, beer, cider, aperitifs and digestives. The last two categories included 
distilled beverage such a s  whisky (an aperitif) and brandy (a digestive). Separate 
variables representing the average daily consumption of alcohol in each form were 
available in the computer file. These had been obtained from the reported amounts 
drunk by consideration of the usual alcoholic content: 8 % by weight for wine; 3 % for 
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beer and so on. Table 6.13 shows the distribution of each of the five beverage variables 
separately for cases and controls. Note that the sums of their mean values equal the 
means for alcohol (Table 4.1), as they should since ALC is obtained as the total of 
the component variables. The contributions from wine and cider are of roughly equal 
importance and those for beer and digestives, while lesser, are certainly not negligible. 
However, since so few people in this population report that they consume more than a 
few grams per day of aperitifs, we are already aware that it may be impossible to 
evaluate aperitifs as a separate risk factor. 

Correlations among the five beverage variables, and of these with age and tobacco, 
are presented in Table 6.14 for the control population. The lack of strong correlations 
with age and tobacco inform us that these two variables are unlikely to confound the 
beverage effects to any appreciable degree. Even among the beverage variables the 
correlations are relatively weak, the strongest being between cider and digestives 
(Q = 0.31). Evidently cider drinkers tend to consume less wine, beer and aperitifs, but 
more digestives, than non-cider drinkers. 

The rationale for using the summary alcohol variable in the statistical analysis, as 
done earlier, is the belief that the alcohol content of the beverages is responsible for 
the apparent association with oesophageal cancer and not some other characteristic 
such as impurities. In order to evaluate this hypothesis we fitted a series of models in 
which five separate beverage variables were used in place of total alcohol. The results 

Table 6.13 Distribution of average daily amounts of alcohol consumption by type of beverage, for 
cases and controls: Ille-et-Vilaine study of oesophageal cancer 

Average Type of beverage 
daily Beer Cider Wine Aperitif Digestive 
amount Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls 

(9) 

Mean 9.1 5.7 30.7 15.5 34.3 17.8 1.1 1.1 9.7 4.3 
SD 22.7 13.7 37.4 21.6 37.1 21.2 2.6 2.0 15.1 8.9 

Table 6.14 Correlations between alcoholic beverage variables, tobacco and age in control popula- 
tion: Ille-et-Vilaine study of oesophageal cancer 

Age Tobacco Beer Cider Wine Aperitif Digestive 

Beer -0.18 0.20 1 .OO 
Cider 0.08 -0.10 -0.16 1 .OO 
Wine -0.04 0.16 0.07 -0.27 1 .OO 
Aperitif -0.09 0.1 5 0.09 -0.1 1 0.21 1 .OO 
Digestive 0.1 3 0.04 -0.03 0.31 -0.02 0.06 1 .OO 
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Table 6.15 Logistic regression analysis of continuous beverage variables: Ille-et-Vilaine oesophageal 
cancer study 

Model No. of DF Goodness Regression coefficients for each risk variable 
para- of fit (standardized coefficients in parentheses) 
metersa G LOG ALC Beer Cider Wine Aperitif Digestive 

(TOB+1) 

a Includes six age parameters in addition to those shown 

are shown in Table 6.15, of which the first line is simply a repeat of Model 3, Table 6.12 
Model 2 shows that beer, cider and wine each have highly significant independent 
effects on the risk of oesophageal cancer. It is remarkable how close all three coeffi- 
cients are to the 0.0252 estimated for total alcohol, which lends support to the idea 
that alcohol per se is responsible for the effect. On the other hand, the coefficients for 
the two distilled beverage categories are not significantly different from zero, and that 
for aperitifs is even negative. 

Before jumping to the conclusion that the aperitifs and digestives have a lesser effect, 
or even no effect in proportion to their alcohol content, we should consider the data 
presented in Table 6.13. Since fewer people in the population consume large amounts 
of aperitifs or digestives there is less information available for evaluating their role, a fact 
which is reflected in higher standard errors for their coefficients in comparison with the 
other variables. The upper 95 % confidence intervals for the log relative risks are 0.02 16 
for aperitifs and 0.0288 for digestives, and the latter at least is quite consistent with the 
range of values for beer, cider and wine. To test formally the hypothesis that the 
coefficients for all five beverage variables are equal we have merely to compare the 
goodness-of-fit statistics for Models 1 and 2. Since Model 1 uses the sum of the beverage 
variables as a single regression variable (ALC), it constrains the coefficients to be 
equal and is consequently contained in Model 2. The value of the test statistic is GI-G2 
= 8.9 which, when referred to tables of xi, gives p = 0.06, a result bordering on statis- 
tical significance. 
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To go one step further we can partition the value into single degree of freedom 
components by considering two intermediate models: lA, in which the coefficients for 
beer, cider and wine only were assumed equal; and lB, in which all coefficients were 
assumed equal except for aperitifs. These yield goodness-of-fit statistics of GIA = 
678.9 and GIB = 675.3. Hence we may write G1 - G2 = (GI - GIA) + (GIA - GIB) + 
(GI,-G2), i.e., 8.9 = 4.3 + 3.6 + 1.0, partitioning the statistic into two x:'s 
and one ~ 2 .  The first, GI-GIA, tests whether aperitifs have an effect different from 
the average of the remaining beverages (p = 0.04); the second, GIA - GIB, whether 
digestives differ from the remaining three (p = 0.06); and the last, GIB-G2, tests for 
differences among the coefficients of beer, cider and wine (p = 0.60). But, since the 
particular partitioning was suggested by the data rather than from a priori considera- 
tions, we are faced with a multiple comparisons dilemma and should discount the observed 
p values. 

In the last analysis the situation is somewhat ambiguous. While digestives appear to 
have lesser effects than the other variables, and aperitifs no effect at all, we cannot rule 
out at conventional levels of statistical significance the possibility that all beverages 
contribute to the risk in proportion to their alcohol content. 

6.10 Interpretation of regression coefficients 

The preceding example considered a model with 12 independent parameters, each 
of which had a reasonably clear and straightforward interpretation. Six of the para- 
meters, the a's attached to the six'age strata, were included only to account for possible 
confounding effects of age. Since age effects were not of special interest, their estimates 
were not even presented in Table 6.15. However, the controls were obtained as a 
reasonably random sample of the adult male population so that differences between 
the a's could be interpreted in terms of log relative risks for the corresponding age 
groups. (From the a coefficients in Table 6.2, for example, it appears that risk does 
not change much with age beyond 55 years.) On the other hand, had the sample been 
stratified by design on the basis of age, no meaning at all could be attached to the a 
parameters since the effects of age on risk would then be completely confounded with 
the sampling fractions for different ages (§ 6.3). 

While there is generally little interest in the actual values taken on by the a estimates, 
apart from knowing that the variables they represent have been "accounted for", this 
is hardly true for the B's. These we have repeatedly interpreted as indicating the change 
in risk associated with changes in the corresponding regression variables. It is a little 
disconcerting, therefore, to realize that the estimated regression coefficients may change 
drastically according to what other variables are included in the model. Such changes 
are to be anticipated whenever there is collinearity among the regression variables, 
meaning simply that their,values tend to be correlated in the sampled data. Mosteller 
and Tukey (1977) provide a good discussion of this problem, which is fundamental to 
all regression models. Here we consider a few of the main issues, mostly by means of 
example. 

In the Ille-et-Vilaine data there was a remarkable lack of collinearity among age and 
the levels of consumption of tobacco and total alcohol (Table 4.2). Consequently the 
estimated relative risks associated with each of these factors were little affected by 
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which others were accounted for in the equation. For example, the (age-adjusted) 
relative risks for the four alcohol categories were 1.0, 4.2, 7.4 and 39.7 without inclu- 
sion of tobacco in the analysis, and 1.0,4.2, 7.2 and 36.6 with such inc,lusion (Table 6.6). 

A better illustration of the effects of collinearity is provided by the analyses of the 
contributions of individual alcoholic beverages (Table 6.15). We note first that neither 
the coefficients nor the standard errors of beer, cider and wine are much affected by 
the presence or absence of aperitif or digestive in the equation (Models 2 4 ) ,  provided 
all three of .the alcoholic beverages with significant effects are included. One would 
anticipate such a result if either (1) there was no correlation between the beverage 
variables, or (2) aperitif and digestive had no effect on risk beyond that explained by 
such a correlation (§ 3.4). However, when any one of beer, cider or wine is used as the 
only alcohol variable (Models 5-7), its coefficient and degree of statistical significance 
are noticeably reduced. This reflects the fact that cider is negatively correlated with 
both wine (Q = -0.27) and beer (Q = -0.16). Since an individual consuming a large 
amount of cider tends to consume less than the average amount of'the other beverages, 
his apparent cancer risk relative to someone who drinks no cider is reduced unless the 
effects of these other beverage variables are accounted for by inclusion in the equation. 

A different type of change occurs when digestive is used as the only alcohol variable 
(Model 9). Here the coefficient increases markedly from its value when all alcoholic 
beverage variables are included, and attains an apparently high level of statistical 
significance. The explanation now is the positive correlation of digestive with cider 
(Q = 0.31), such that when cider is not included in the equation, digestive serves, at least 
partially, as a proxy for its effects. After accounting for the effects of cider the coeffi- 
cient for digestive falls to a non-significant level. On the other hand, since the correla- 
tions of digestive with beer and wine are essentially zero (Table 6.14), one would not 
expect the digestive coefficient to be much altered by the presence of these latter two 
variables. 

Collinearity is bound to arise when both a variable and its square are included in the 
same equation. Compare, for example, Model 3 with Model 7 in Table 6.12. Introduc- 
tion of the square term in LOG(T0B + 1) results in an almost doubling of the coeffi- 
cient for the linear term, from 0.539 to 0.965. At the same time the standardized value 
decreases, from 9.33 to 3.05, indicating a roughly sixfold increase in the standard error. 
This is true in spite of the fact that the coefficient of the added variable, L O G 2 ( ~ O ~ +  I) ,  
is not statistically significant at all. Indeed, if we were to evaluate the significance of 
the tobacco effect only on the basis of the standardized coefficients in the quadratic 
model, we would be sorely misled. The significance of the trend in risk with increased 
tobacco consumption is well expressed by the single linear term in Model 3; and the 
large standard errors for LOG(TOB+ 1) and LOG"TOB+ 1) in Model 7 tell us not 
that these variables are unimportant, but rather that there are many different sets of 
coefficients for them which express more or less equally well the relationship found in 
the data. This example illustrates that there is little point in trying to interpret individual 
coefficients and standard errors in a polynomial regression. A plot of the fitted relation- 
ship over the range of the regression variables conveys a much more accurate impres- 
sion of what the equation means. 

A similar type of artificial association can arise between one variable representing 
the main effects of a factor and others representing its interactions, at least if care is not 
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taken in how these interactions are coded. For example, in order to investigate the 
interaction between age and alcohol we added to Model 3 of Table 6.12 a variable 
ALC x AGEGRP, where AGEGRP took on the values 1 to 6 of the age group. Al- 
though this improved the goodness of fit only slightly, from G = 683.2 to G = 682.1, 
and the interaction terms had a non-significant regression coefficient, its inclusion in 
the equation markedly affected the coefficient of ALC. The estimated regression 
equation (ignoring age effects) changed from 

0.0252 ALC + 0.539 LOG(TOB+ 1) 
(9.66) (9.33) 

0.0348ALC + 0.536LOG(TOB+ 1) - 0.00246ALC x AGEGRP, 
(3.5 8) (5.76) (-1.04) 

and by comparing the standardized coefficients (shown in parentheses), we see that 
the standard error of ALC increased from 0.00261 to 0.00972. Again the explanation 
is the high degree of collinearity between ALC and ALCx AGEGRP, which can be 
substantially reduced by subtracting from AGEGRP its modal value of 4 before multi- 
plying. This leads to an equation 

which represents exactly the same relationship as the previous one. However, because 
the main effect and interaction variables have been coded to reduce the correlation 
between them, the changes in the coefficient and standard error of the main effect 
variable are much reduced. Routine coding of interaction or cross-product variables 
by subtracting mean or modal values from their component parts before multiplying is 
recommended to avoid the anomalies provoked by such artificial collinearity. 

A less artificial example of high correlation between two regression variables occurs 
when both are measuring the same fundamental quantity in a somewhat imperfect way. 
In attempting to relate arsenic exposure to cancer risk, for example, we might determine 
the arsenic concentration of both fingernails and hair of cases and controls, and use 
each as an indicator of chronic exposure. If these two measures turned out to be highly 
correlated, as they would if both were good indicators of long-term exposure, it would 
make little sense to attempt to evaluate their separate effects on risk by including them 
both in the regression equation. Instead we would take an average or composite of the 
two values as a single measure of arsenic exposure, and use this along with variables 
representing other risk factors. 

Of course in some problems the collinearity between regression variables will reflect 
a real association between the corresponding risk factors in the population. While regres- 
sion analysis is the most powerful tool available for separating out the independent 
associations with risk, unambiguous answers are simply not possible when collinearity 
is high. In some cases a judgement as to which is the proper variable, or which risk 
factor is more likely to play a causal role, will dictate which variables to leave in the 
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equation. If such a judgement cannot be made, one must simply admit that precise 
identification of the factor responsible for the effect is impossible. To quote from 
Mosteller and Tukey (1977): "We must be prepared for one variable to serve as a 
proxy for another and worry about the possible consequences, in particular, whether the 
proxy's coefficient siphons off some of the coefficient we would like to have on the 
proper variable, or whether a variable serves well only because it is a proxy. In either 
case, interpretation of the regression coefficient requires very considerable care." 
Much of the discussion in 5 3.4 on whether or not one should adjust for apparent con- 
founding variables is relevant here. 

6.11 Transforming continuous risk variables 

One of the more perplexing issues facing the analyst who uses quantitative regres- 
sion methods is the choice of appropriate scales on which to express continuous risk 
variables. He must decide between original measurements, as recorded by machine or 
interviewer, and such transforms as logs, square roots, reciprocals, or any number of 
other possibilities. Since the object is to achieve a near-linear relationship between the 
quantitative regression variable and log risk, it usually helps to make some plots of 
relative risks for grouped data as we did in Figures 6.1 to 6.4. If the data are sufficiently 
extensive, so that a regular pattern emerges, one can at least rule out some of the 
possible choices on the grounds of lack of fit. For example it was fairly clear from both 
graphical and quantitative analysis of the Ille-et-Vilaine data that the effects of alcohol 
were best expressed on the original linear scale, while for tobacco a log transform was 
required. 

However epidemiological data are rarely sufficient to enable fine distinctions to be 
made between rather similar functional forms for the dose-response relationship on 
statistical grounds alone. Accurate measurements of human exposure to potential risk 
factors are not often available. Hence recourse is made to animal experimentation for 
elucidating fundamental aspects of the carcinogenic process. Such experiments allow 
one to control fairly strictly the amounts of carcinogen administered to homogenous 
subgroups of animals, and data derived from them are more amenable to precise quanti- 
tative analysis than are data from observational studies of human populations. 

Example: One animal model which has been used to suggest relationships for human epithelial tumours 
is that of skin-painting experiments in mice. In an experiment reported by Lee and O'Neill (1971), mice 
were randomly assigned to  four dosage groups each containing 300 animals. Starting at about three weeks 
of age, benzo[alpyrene (BP) was painted on  their shaved backs in the following dosages: 

Group 1 6 p g  BP/week 
Group 2 1 2 p g  BP/week 
Group 3 24 p g  BP/week 
Group 4 4 8 p g  BPlweek 

The animals were examined regularly, and the week of tumour occurrence was taken to be the first week 
that a skin tumour was observed. Age-specific incidence rates of skin tumours were estimated for each 
dosage group according to  the methods of § 2.1. The  number of animals developing a skin tumour for the 
first time during any one week was divided by the number still alive and free of skin tumours a t  the middle 
of that week. Since few new tumours would arise in any given week, these age-specific estimates tended 
t o  be highly unstable. Consequently, the four dosage groups were compared in terms of the age-specific 
cumulative incidence rates (5 2.3). 
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Figure 6.6 shows log-log plots of cumulative incidence against week. These are well described by four 
parallel straight lines, with distances between the lines for successive dosages roughly equal. In fact the 
cumulative incidence A(t;  x) of skin tumours which occur by week t, among animals receiving BP at  dose 
x, is well described by the equation 

log A(t;x) = -17.6 + 1.78 log(x) + 2.95 log(t-18), 

A (t;x) = C~' .~ ' ( t - l  8)2.95, 

where C is a constant. It follows that the ratios of cumulative incidence rates for successive dosage groups 
A(t;2x) +- A(t;x) and hence the ratios of the age-specific rates A(t;2x) +- A(t;x), are equal to  21.78 = 3.41. 
Thus, within the range of dosage and ages of animals considered in this experiment, the effect of BP on 
incidence can be  described very simply: a doubling of dose will lead to an approximate 3.4-fold increase 
in the age-specific skin tumour incidence rates. 

The  same investigators have shown in later work (Peto e t  al., 1975) that the relevant time variable is 
in fact not the age of the animal, but rather the duration of exposure to BP. They also point out  that, 
since the powers of  dose x and time t in the fitted formula for cumulative incidence are roughly 2 and 3,  

Fig. 6.6 Estimated cumulative incidence rates of skin tumours occurring among female 
albino mice given weekly paintings of benzo[a]pyrene at four dosages, with 
parallel regression lines fitted by maximum likelihood (from Lee & O'Neill, 
1971) 

2 3 4 
log, (t-18) 
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respectively, the data are consistent with a multi-stage theory for the origin of cancer wherein two of the 
three stages are affected by the carcinogen (Peto, 1977). Recent data for cigarette smoking and lung 
cancer in the British doctor study likewise suggest that incidence is proportional to the square of the 
dose rate (Doll & Peto, 1978). 

If the linear logistic model were to be used to represent the data in the above ex- 
periment, this would take the form 

for the probability that an animal treated with x units of BP who is still at risk at age 
ti develops a skin tumour within that week. The ai parameters in turn could be modelled 
ai = a + y log(ti) as a linear function of log age. There is no problem here with the 
fact that .the logarithm of a zero dose is - and thus the estimated probability of 
tumour development 0, since skin tumours do not appear spontaneously on the backs 
of mice without treatment. For other studies, especially with humans, one could sub- 
stitute a dose metameter of the form z = log(x+ xo), where x was the measured dose 
while xo represented a small background dose which was presumably responsible for 
any spontaneous cases. Although in principle it is possible to estimate xo from the data 
by maximum likelihood, this is rarely done. Special programmes would be required for 
such estimation since xo does not enter the regression equation in the same linear 
fashion as the other parameters. Furthermore, since different combinations of xo and 
/? can give virtually identical fits to the data, the standard errors and covariances for the 
jointly estimated parameters tend to be large. Hence the best practice may simply be to 
assign xo some small value on the basis of a priori considerations. With the Ille-et- 
Vilaine tobacco data, we set xo = 1 and noticed that the resulting curve seemed to fit 
the observed data reasonably well (Figure 6.5). 

6.12 Studies of interaction in a series of 2 x 2 tables 

One of the principal advantages of using the logistic regression model is that it 
encourages quantitative description of how the changes in risk associated with one 
factor are modified by the interaction effects of other risk or nuisance variables. Since 
the Ille-et-Vilaine data are notably lacking in such interactions, they cannot be used 
to illustrate this important feature of statistical modelling. Hence in this section we 
analyse another set of published data, which happen to be in the form of a series of 
2 x 2 tables, for which strong interaction effects are present. 

Presence of interaction effects in a. series of 2 x 2 tables means that the odds ratios 
depend systematically on the variables used for strata formation. Such dependence 
may have important implications for the nature of the disease process. The data we 
shall consider are those of Stewart and Kneale (1970) who hypothesized that the 
distribution of age at diagnosis for childhood cancers caused by obstetric X-rays was 
more concentrated or "peaked" than the age distribution of idiopathic childhood 
cancers. If this were so the risk ratio for irradiated versus non-irradiated children would 
also show a peak when plotted against age. The effect would presumably occur because 
the time of exposure for the radiogenic cases is limited to the period of gestation, while 
for other cancers it could vary over a broader age span. 
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Such variations are detected by the addition of interaction terms to the logistic 
model. In 5 6.5 we considered a model in which the log relative risk was assumed to 
change linearly over the six age strata. More generally one might define several dif- 
ferent regression variables, including tra.nsformations and cross-product terms, from 
factors such as age and time which are used to define strata. Let us denote by zil the 
value of the lth variable for the ith stratum (i = 1, .. ., I; 1 = 1, ..., L). Then the inter- 
action model may be written 

where as usual Pi(x) denotes the disease probability in the ith stratum for an exposed 
(x = 1) or unexposed (x = 0) individual. A consequence of this formulation is that the 
log relative risk for the ith stratum is expressed 

pi(1 )Qi(o) L log 7# = log 
pi(o)Qi(l) 

= P + I= 2 1 ~lzil 

as a linear function of the regression variables z, with the "constant" term P denoting 
the baseline log relative risk for the group having covariate values z = 0. It is best to 
code the covariates in such a way that z = 0 corresponds to some "typical" individual. 

Summary data from the Oxford Childhood Cancer Survey and associated studies 
reported by Kneale (1971) are presented in Appendix 11. Cases were ascertained as 
all children under ten years of age in England and Wales who died of cancer (leukaemia 
or solid tumours) during the period 1954-65. For each of these a neighbourhood 
control of the same age was selected who was alive and well at the time the case died. 
Only "traced" pairs, for whom both case and control mothers could be found and 
interviewed, were analysed. The published data ignore the exact pairing but do preserve 
the stratification by age and year of birth. 

Exposure in this example is simply a question of whether or  not the study subjects 
received in utero irradiation, as reported by the mother. The stratification variables 
were age at death, from 0 to 9 years, and year of birth, from 1944 to 1964. Because of 
the limited period of case ascertainment, not all 210 possible combinations of these 
factors appear. For example, among childhood cancer patients born in 1944, only those 
who died at age 9 are represented. A total of 120 such strata were available. 

In order to estimate the overall relative risk of obstetric radiation, and to determine 
whether, and if so how, it varied with age and year, we fitted several versions of the 
model (6.25). Five different regression variables were used: zl = year of birth, coded 
zl = -10 for 1944, . . ., z1 = 10 for 1964; z, = z: -22; z, = age at death, coded -9 for 
age 0, -7 for age 1, . .., 9 for age 9; ~q = z i  -33; and z, = z, x z,. Different subsets 
of these were entered into the regression equation so as to detect particular kinds of 
trends and patterns in the relative risk. 

Results of the analysis are shown in Table 6.16. Degrees of freedom (DF) for each 
model were obtained in the usual manner by subtracting the number of parameters, 
in this case the 120 a's plus additional P and y terms, from the number of binomial 
observations, namely 240. The first model, which includes only the a's, assumes that 
the relative risk is unity in each stratum. In view of the large goodness-of-fit statistics, 
this supposition is clearly untenable. The second model specifies a constant relative 



Table 6.16 Results of fitting several logistic regression models with interactions: Oxford study of obstetric radiation and childhood cancera 
- 

Mo- No. of DF Goodness-of-fit Regression coefficients 2 S.E. 
del para- statistics Log RR Interactions with 

meters G 6 YRb YR2 - 22' AGEd AGEZ - 33' YR x AGE 

'From Breslow (1976); data from Kneale (1971) 
YR is coded as follows: 1944 = -10, 1945 = -9, . . ., 1963 = 9. 1964 = 10. 
Constants-subtracted from square of AGE and YR so that variables sum to zero over tables 

dAGE is coded as follows: 9 years = 9, 8 years = 7,7 years = 5, . . ., 1 year = -7,0 year = -9. 
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risk for obstetric radiation, estimated as $ = exp(0.5102) = 1.67. Since the chi-square 
statistics for it are close to their mean values (DF), they might be taken as evidence 
of a good fit. However the introduction of a linear interaction term in year of birth 
(Model 3) results in a significant improvement (G2 - G3 = 124.29 - 1 16.96 = 7.3, 
p = 0.007). Hence there is reasonably strong evidence for a decrease in relative risk 
with year of birth. Additional improvement in fit occurs when a quadratic term in year 
is added to the model, which would indicate a degree of curvature in the regression 
line. However it is of lesser statistical significance (G3 - G4 = 5.39, p = 0.02). Figure 6.7 
shows age-adjusted estimates of the log-relative risk for each year, together with linear 
and quadratic regression lines as fitted by Models 3 and 4. This illustrates graphically 
the nature of the decline in the radiation effect over time. 

Absolutely no improvements in fit accompanied the addition to the model of either 
linear or quadratic terms in age: compare Models 3 versus 5 and 4 versus 6. The 
quadratic term would be expected to be particularly sensitive to a peak in relative risk 
as a function of age. The lack of evidence for any such peak argues against the hypo- 
thesis that the age distributions for radiogenic and idiopathic cancers are different. 
Improvements in radiological technology probably account for the declining effect with 
year of birth (Bithel & Stewart, 1975). 

Fig. 6.7 Age-adjusted estimates of log relative risk (odds ratio) for obstetric radiation 
each with approximate 80 percent confidence limits and both linear and 
quadratic regression lines (from Breslow, 1976; data from Kneale, 1971) 

Year of birth 
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Table 6.17 Comparison of the log relative risk and its interaction with year of birth, depending on 
the degree of polynomial adjustment for age and year: Oxford study of obstetric radiation and child- 
hood cancera 

Degree of No. of D F Goodness of fit Estimates of log-relative risk and interaction 
polynomial parameters 6 f l ?  S.E. p, 2 S.E. 
in age and year 

a From Breslow and Powers (1978); data from Kneale (1971) 
From Model 3, Table 6.16 

As shown in 3 6.8, an alternative to a stratified analysis is simply to model the effects 
of the nuisance factors on disease incidence, replacing the ai  in the logistic model by 
quantitative terms. In order to compare the results from such an analysis with those just 
obtained, we considered analogs of Model 3 in which the log-relative risk was assumed 
to decline linearly with year of birth. Polynomials of increasing degree in age and year 
were used to give different degrees of adjustment for the confounding effects of these 
factors. Thus the models fitted were of the form 

a o  + px + ylxzil (unadjusted) 

logit Pi(x) = a. + alzil + a3zi3 + px + ylxzil (linear) 
6 

a. + Talzil + px + ylxzil (quadratic) 

and so on, using third, fourth and fifth degree polynomials. The results in Table 6.17 
show that increasing the degree of polynomial adjustment leads to better agreement 
with results of the stratified analysis (Breslow & Powers, 1978). It is somewhat sur- 
prising that there is so little improvement in the fit, and so little change in the estimated 
relative risks, as more terms of age and year are included. A partial explanation is, of 
course, that the sample was deliberately stratified to ensure that the numbers of cases 
and controls in each age/year stratum were equal. Thus one might not expect these 
two factors to contribute significantly to a model designed to discriminate cases from 
controls. However, as discussed in 5 3.4, this identity of the marginal distributions of 
age and year for cases and controls is not sufficient to justify ignoring these factors in 
the analysis. In general, variables used for stratification or matching in the design stage 
must also be accounted for in the analysis in order to obtain unbiased estimates of the 
relative risk. An example which better illustrates this point is presented in 5 7.6. If 
strata are formed at the time of analysis, rather than by design, there will be imbalances 
in the numbers of cases and controls within strata, and the differences between the 
stratified and unadjusted analyses will be more obvious than they are in Table 6.17. 
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Qij 
Wij 

disease probability for exposed 
disease probability for unexposed 
disease probability for exposure to an amount x 
relative risk of disease associated with exposure to an amount x 
log odds for disease among unexposed 
disease probability associated with exposure to level i of factor A and 
level j of factor B 
1 -P, 
odds ratio associated with exposure to level i of factor A and level j of 
factor B (Woo = 1) 
relative risk of exposure to factor A 
relative risk of exposure to factor B 
relative risk of exposure to both factor A and factor B 
log odds ratio associated with exposure to factor A 
log odds ratio associated with exposure to factor B 
(multiplicative) interaction parameter; log of the ratio of the relative 
risk for combined exposure divided by the product of relative risks for 
individual exposures 
disease probability associated with exposure to an amount xl of factor A 
and x2 of factor B 
coefficient of variable xk in logistic regression equation; log relative risk 
associated with unit increase in xk 
coefficient of cross product variable xkxl in logistic regression equation; 
interaction parameter 
disease probability associated with exposure to levels i of A, j of B and 
k o f C  
1 -Pijk 
relative risk associated with exposures to levels i of A, j of B and k of C 
coefficient of variable xixjxk in logistic regression equation; second order 
interaction parameter 
probability of one event given the occurrence of another 
subscript indicating one of I strata 
vector of risk variables associated with an individual 
disease probability associated with a vector x of risk variables in the ith 
stratum of the population 
binary response variable; y = 1 for diseased, y = 0 for disease-free 
sampling fraction for cases; probability that a diseased person is included 
in the study as a case 
sampling fraction for controls; probability that a disease-free person is 
included in the study as a control 
indicator sampling variable: z = 1 for inclusion in the study, z = 0 other- 
wise 
covariance matrix for the distribution of risk variables, assumed common 
for cases and controls 
expected values of risk variables among cases 
expected values of risk variables among controls 
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- 

XI sample mean of risk variables x among cases 
- 
xo sample mean of risk variables x among controls 

s; covariance matrix of risk variables pooled from separate samples of 
cases and controls 

1 denotes a partition of the integers from 1 to n into two groups, one of 
size nl and the other of size no = n-nl; e.g., if nl = 2 and no = 3 a 
possible partition is 1, = 3,1, = 4, 1, = 1, = 2,1, = 5 or 1 = (3,4,1,2,5) 

Xj vector of risk variables for jth study subject 
G goodness-of-fit statistic based on the log likelihood 
S efficient score; vector first of first derivatives of the log likelihood function 
I information matrix; matrix of negatives of second partial derivatives of 

the log likelihood function 
Z standardized regression coefficient (equivalent normal deviate) 
(3 chi-square goodness-of-fit statistic for grouped data, based on differences 

between observed and expected values 
(N.B. Subscripts on the above quantities G, G, S, I, and Z denote their values under 
different models) 
0 observed number of cases (or controls) in a particular cell with grouped 

data 
E expected number of cases (or controls) in a cell, predicted by fitted model 
Q correlation coefficient between two variables 
A (t;x) cumulative incidence of skin tumours by week t amonghnimals continu- 

ously exposed to BP at a dose rate x 
1 (t;x) age-specific incidence of skin tumours at week t among animals continu- 

ously exposed to BP at a dose rate x 
L number of regression variables (covariates) associated with each of a 

series of 2 x 2 tables 
1 lth of L covariates associated with a series of 2 x 2 tables 
Zil value of the lth covariate for the ith of a series of 2 x 2 tables ,. when placed over another symbol this indicates an estimate of a popula- 

tion parameter calculated from the sampled data; or  a fitted cell fre- 
quency predicted from a model; e.g., B is an estimate of @ 




