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CHAPTER VII 

CONDITIONAL LOGISTIC REGRESSION 
FOR MATCHED SETS 

One of the methods for estimating the relative risk parameters P in the stratified 
logistic regression model was conditioning (5 6.3). We supposed that for a given 
stratum composed of nl cases and no controls we knew the unordered values xl, . .., x, 
of the exposures for the n = n1 + no subjects, but did not know which values were asso- 
ciated with the cases and which with the controls. The conditional probability of the 
observed data was calculated (6.15) to be a product of terms of the form 

where I ranged over the choices of nl integers from among the set {1,2, . .., n). 

With a single binary exposure variable x, coded x = 1 for exposed and x = 0 for un- 
exposed, knowing the unordered x's meant knowing the total number exposed in the 
stratum, and thus knowing all the marginal totals in the corresponding 2 x 2 table. The 
complete data were then determined by the number of exposed cases. In these circum- 
stances the conditional probability (7.1) is proportional to the hypergeometric distribu- 
tion (4.2), used as a starting point for exact statistical inference about the odds ratio 
in a 2 x 2 table. 

The conditional likelihood offers important conceptual advantages as a basis for 
statistical analysis of the results of a case-control study. First, it depends only on the 
relative risk parameters of interest and thus allows for construction of exact tests and 
estimates such as were described in Chapters 4 and 5 for selected problems. Second, 
precisely the same (conditional) likelihood is obtained whether we regard the data as 
arising from either (i) a prospective study of n individuals with a given set of exposures 
xl, . . ., x,, the conditioning event being the observed number n, of cases arising in the 
sample; or (ii) a case-control study involving nl cases and n, controls, the conditioning 
event being the n observed exposure histories. The observation that these two condi- 
tional likelihoods agree, which was made in 5 4.2 for the 2 x 2 table, confirms the 
fundamental point that identical methods of analysis are used whether the data have 
been gathered according to prospective or retrospective sampling plans. 

Unfortunately, whenever the strata contain sizeable numbers of both cases and 



LOGISTIC REGRESSION FOR MATCHED SETS 249 

controls, the calculations required for the conditional analysis are extremely costly if 
not actually impossible even using large computers. Since the analysis based on the 
unconditional likelihood (6.12) yields essentially equivalent results, it would seem to be 
the method of choice in such circumstances. The conditional approach is best restricted 
to matched. case-control designs, or to similar situations involving very fine stratification, 
where its use is in fact essential in order to avoid biased estimates of relative risk. We 
begin this chapter with an illustration of the magnitude of the bias which arises from 
analysing matched data with the unconditional model. Next, the conditional model is 
examined for several of the special problems considered in Chapters 4 and 5; many 
of the estimates and test statistics discussed earlier for these problems are shown to 
result from application of the general model. Finally, we explore the full potential of the 
conditional model for the multivariate analysis of matched data, largely by means of 
example, and discuss some of the issues which arise in its implementation. 

7.1 Bias arising from .the unconditional analysis of matched data 

Use of the unconditional regression model (6.12) for estimation of relative risks 
entails explicit estimation of the a stratum parameters in addition to the P coefficients 
of primary interest. For matched or finely stratified data, the number of a parameters 
may be of the same order of magnitude as the number of observations and much greater 
than the number of P7s. In such situations, involving a large number of nuisance para- 
meters, it is well known that the usual techniques of likelihood inference can yield 
seriously biased estimates (Cox & Hinkley, 1974, p. 292). This phenomenon is perhaps 
best illustrated for the case of 1-1 pair matching with a single binary exposure variable x. 

Returning to the general set-up of 5 6.2, suppose that each of the I strata consists 
of a matched case-control pair and that each subject has been classified as exposed 
(x = 1) or unexposed (x = 0). The outcome for each pair may be represented in the 
form of a 2 x 2 table, of which there are four possible configurations, as shown in (5.1). 
The model to be fitted is of the form 

where #? = log is the logarithm of the relative risk, assumed constant across matched 
sets. 

According to a well-known theory developed for logistic or log-linear models (Fien- 
berg, 1977), unconditional maximum likelihood estimates (MLEs) for the parameters 
a and #? are found by fitting frequencies to all cells in the 2 x 2 x K dimensional con- 
figuration such that (i) the fitted frequencies satisfy the model and (ii) their totals 
agree with the observed totals for each of the two dimensional marginal tables. For 
the noo concordant pairs in which neither case nor control is exposed, and the nll 
concordant pairs in which both are exposed, the zeros in the margin require that the 
fitted frequencies be exactly as observed. Such tables provide no information about the 
relative risk since, whatever the value of p ,  the nuisance parameter ai may be chosen 
so that fitted and observed frequencies are identical (ai = 0 for tables of the first :type 
and ai = 4 for tables of the latter to give probability I/, of being a case or control). 



250 BRESLOW & DAY 

The remaining nlo + no, discordant pairs have the same marginal configuration, and 
for these the fitted frequencies are of the form 

Exposure + - 

Case 

Control 

where 

and 

which can be expressed as 

The additional constraint satisfied by the fitted frequencies is that the total number of 
exposed cases, nlo+nll, must equal the total of the fitted values, namely 
(nlo + nol)p + nll. This implies ,A = nlo/(nlo + nol) and thus that the unconditional 
MLE of the relative risk is 

the square of the ratio of discordant pairs (Andersen, 1973, p. 69). 
The estimate based on the more appropriate conditional model has already been 

presented in 3 5.2. There we noted that the distribution of nl0 given the total nlo+ nol 
of discordant pairs was binomial with parameter n = vI(1 +v). It followed that the 
conditional MLE was the simple ratio of discordant pairs 

Thus the unconditional analysis of matched pair data results in an estimate of the odds 
ratio which is the square of the correct, conditional one: a relative risk of 2 will tend 
to be estimated as 4 by this approach, and that of '1, by I/,. 

While the disparity between conditional and unconditional analyses is particularly 
dramatic for matched pairs, it persists even with other types of fine stratification. Pike, 
Hill and Smith (1979) have investigated by numerical means the extent of the bias 
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in unconditional estimates obtained from a large number of strata, each having a fixed 
number of cases and controls. Except for matched pairs, the bias depends slightly on 
the proportion of the control population which is exposed, as well as on the true odds 
ratio. Table 7.1 presents an extension of their results. For sets having 2 cases and 2 
controls each, a true odds ratio of 2 tends to be estimated in the range from 2.51 to 
2.53, depending upon whether the exposure probability for controls is 0.1 or 0.3. Even 
with 10 cases and 10 controls per set, an asymptotic bias of approximately 4% remains 
for estimating a true odds ratio of q = 2, and of about 15% for estimating I@ = 10. 

These calculations demonstrate the need for considerable caution in fitting uncondi- 
tional logistic regression equations containing many strata or other nuisance parameters 
to limited sets of data. There are basically two choices: one should either use individual 
case-control matching in the design and the conditional likelihood for analysis; or else 
the stratum sizes for an unconditional analysis should be kept relatively large, whether 
the strata are formed at the design stage or post hoc. 

7.2 Multivariate analysis for matched 1 : M designs: general methodology 

One design which occurs often in practice, and for which the conditional likelihood 
(7.1) takes a particularly simple form, is where each case is individually matched to 
one or several controls. The number of controls per case may either be a fixed number, 
M, say, or else may be allowed to vary from set to set. We considered such designs in 
5 5.3 and 5 5.4 for estimation of the relative risk associated with a single binary ex- 
posure variable. 

Suppose that the ith of I matched sets contains Mi controls in addition to the case. 
Denote by xi0 = (xiol, . . ., xiOK) the K-vector of exposures for the case in this set and 
by xij = (xijl, . . ., xijK) the exposure vector for the jth control (j = 1, . . ., Mi). In 
other words, xijk represents the value of the kth exposure variable for the case (j = 0) 
or jth control in the ith matched set. We may then write the conditional likelihood in 
the form (Liddell, McDonald & Thomas, 1977; Breslow et al., 1978): 

It follows from this expression that if any of the x's are matching variables, taking the 
same value for each member of a matched set, their contribution to the likelihood is 
zero and the corresponding /3 cannot be estimated. This is a reminder that matched 
designs preclude the analysis of relative risk associated with the matching variables. 
However by defining some x's to be interaction or cross-product terms involving both 
risk factors and matching variables, we may model how relative risk changes from one 
matched set to the next. 



Table 7.1 Asymptotic mean values of unconditional maximum likelihood estimates of the odds ratio from matched sets consisting of n, 
cases and no control$ 

True odds ratio No. of controls Proportion of controls positive 
W per set (no) po = 0.1 po = 0.3 

No. of cases per set (n,) No. of cases per set (n,) No. of cases per set (n,) 
1 2 4 10 1 2 4 10 1 2 4 10 
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If there is but a single matched control per case, the conditional likelihood simpli- 
fies even further to 

1 4 

This may be recognized as the unconditional likelihood for the logistic regression model 
where the sampling unit is .the pair and the regression variables are the differences in 
exposures for case versus control. The constant (a) term is assumed to be equal to 
0 and each pair corresponds to a positive outcome (y = 1). This correspondence permits 
GLIM or other widely available computer programmes for unconditional logistic regres- 
sion to be used to fit the conditional model to matched pair data (Holford, White & 
Kelsey, 1978). 

While not yet incorporated into any of the familiar statistical packages, computer 
programmes are available to perform the conditional analysis for both matched (Ap- 
pendix IV) and more generally stratified designs (Appendix V), using the likelihoods 
(7.2) and (7.1), respectively (Smith et al., 1981). These programmes calculate 
the following: (i) the (conditional) MLEs of the relative risk parameters; (ii) minus 
twice the maximized logarithm of the conditional likelihood, used as a measure of good- 
ness of fit; (iii) the (conditional) information matrix, or negative of the matrix of 
second partial derivatives of the log likelihood, evaluated at the MLE; and (iv) the 
score statistic for testing the significance of each new set of variables added in a series 
of hierarchical models. These quantities are used to make inferences about the relative 
risk just as described in 5 6.4 for the unconditional model. For example, the difference 
between goodness-of-fit (G) measures for a sequence of hierarchical models, in which 
each succeeding model represents a generalization of the preceding one, may be used 
to test the significance of the additional estimated parameters. This difference has an 
asymptotic chi-square distribution, with degrees of freedom equal to the number of 
additional variables incorporated in the regression equation, provided of course that 
the p coefficients of these variables are truly zero. Similarly, asymptotic variances and 
wvariances of the parameter estimates in any particular model are obtained from the 
inverse information matrix printed out by the programme. 

Now that the technology exists for conditional logistic modelling, all the types of 
multivariate analysis of stratified samples which were discussed in Chapter 6 can also 
be carried out with matched case-control data. In the next few sections we introduce 
these techniques by re-analysing the data already considered in Chapter 5. This will 
serve to indicate where the model yields results identical with the "classical" tech- 
niques, and where it goes beyond them. Later sections will extend the applications to 
exploit fully the potential of the model. 

7.3 Matched pairs with dic.hotomous and polytomous exposures: applications 

Our first application of the general conditional model is to analyse in this framework 
the matched pair data already considered at the end of 5 5.2. There we used the 63 
pairs consisting of the case and the first control in each matched set from the Los 
Angeles study of endometrial cancer (Mack et al., 1976). The analysis was directed 
towards obtaining an overall relative risk for oestrogens, detecting a possible inter- 
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action with age for the risk associated with gall-bladder disease, and examining the 
joint effects of gall-bladder disease and hypertension. Further analysis of these same 
matched pairs was carried out in 5 5.5 to investigate the relative risks attached to dif- 
ferent dose levels of conjugated oestrogens. 

In order to carry out parallel analyses in the context of the logistic model, we defined 
a number of regression variables as shown in Table 7.2. The first four of these (EST, 
GALL, HYP, AGEGP) are dichotomous indicators for history of oestrogen use, gall- 
bladder disease, hypertension, and age, respectively. AGE is .a continuous variable, 
given in years. In cases where the ages of case and control differed, although this was 
never by more than a year or two, AGE and AGEGP were defined as the age of the 
case. Hence they represent perfect matching variables which are constant within 
each matched set. The three binary variables, DOSI, DOS2 and DOS3, represent the 
four dose levels of conjugated oestrogen and thus should always appear in any equation 
as a group or not at all. The last variable, DOS, represents the coded dose levels of 
this same factor, and is used to test specifically for a trend in risk with increasing dose. 

Table 7.3 shows the results of a number of regression analyses of the variables defined 
in Table 7.2. The statistic G for the model with no parameters, i.e., all p's assumed 
equal to zero, evaluates the goodness of fit to the data of the null hypothesis that none 
of the regression variables affects risk. Part A of the table considers the relative risk 
associated with a history (yes or no) of exposure to any oestrogen, as indicated by the 
binary variable EST. The estimated relative risk is $ = exp@) = exp(2.269) = 9.67, 
which is precisely the value found in 5 5.2 as the ratio 29/3 of discordant pairs. This 

Table 7.2 Definition of regression variables used in the matched pairs analysis 

Variable Code 

EST 

GALL 

HYP 

AGEGP 

AGE 

DOS 1 

DOS 2 

DOS 3 

DOS 

No 
History of any oestrogen use Yes 

0 
1 No History of gall-bladder disease Yes 

No 
Yes History of hypertension 

0 Age 55-69 years 
1 Age 70-83 years 

Age in years (55-83) 

1 0.1-0.299 mglday conjugated oestrogens 
0 otherwise 

1 0.3-0.625 mglday conjugated oestrogens 
0 otherwise 

1 0.626+ mglday conjugated oestrogens 
0 otherwise 

0 None 
1 0.1-0.299 mglday 
2 0.3-0.625 mglday ) conjugated oestrogen 
3 0.626+ mglday 
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Table 7.3 Results of fitting the conditional logistic regression model to matched pairs consisting of 
the case and first matched control: Los Angeles study of endometrial cancer 

No. of Goodness of fit Score testa Regression coefficients f standard error for each variable in equation 
parameters (G) 

A. Any oestrogens 

EST 
2.269 f 0.606 

B. Gall-bladder disease and age 

GALL GALL x AGEGP 
3.56 0.956 f 0.526 
1.68 1.946 f 1.069 -1.540 k 1.249 
0.3Sb 1.052 k 0.566 

C. HypertensionIGall-bladder disease 

GALL HYP 
0.81 0.325 + 0.364 
3.61 0.970 f 0.531 0.348 + 0.364 
2.01 1.51 7 k 0.699 0.627 f 0.435 

D. Gall-bladder disease1Hypertension 

GALL HYP 
1 83.65 3.56 0.956 f. 0.526 
2 82.79 0.86 0.970 k 0.531 0.348 f 0.377 
3 80.84 2.01 1.51 7 f 0.699 0.627 f 0.435 

E. Dose levels of conjugated oestrogen 

F. Coded dose of conjugated oestrogen 

DOS DOS x AGE 
1 65.50 14.71 0.690 k 0.202 
2 65.50 0.00 0.693 f 0.282 -0.001 f 0.403 

GALL x (AGE-70) 

GALL x HYP 

GALL x HYP 

-1.548f 1.125 

"Score statistic comparing each model with the preceding model in each set, unless otherwise indicated. The first model in each 
set is compared with the model in which all p's are 0. 

After fitting one parameter model with GALL only 

reflects .the fact that the conditional likelihood (7.2) is identical (up to a constant of 
proportionality) to that used earlier as a basis of inference (5.3), so that the two 
analyses are entirely equivalent. Likewise, the score statistic for the test of the null 
hypothesis, Ho: 11, = 1, is identical with the uncorrected (for continuity) value of the x2  
defined in (5.4), namely 
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This illustrates the point that many of the elementary tests are in fact score tests based 
on the model (Day & Byar, 1979). The corrected chi-square value is of course the 
more accurate and preferred one, but it has not been incorporated in the computer 
programme written for the general regression analysis, since it is not applicable in other 
situations. 

Two other statistics are available for testing the null hypothesis. These are the differ- 
ences in goodness-of-fit measures, 87.34-62.89 = 24.45, and the square of the stan- 
dardized regression coefficient, (2.269/0.606)2 = 13.99, each of which also has a 
nominal X; distribution under the null hypothesis. Although the three values are some- 
what disparate with these data, they all indicate a highly significant effect. The test 
based on the corrected score statistic is preferred when available, as this comes closest 
to the corresponding exact test. 

Asymptotic 95% confidence limits for 11, are calculated as exp(2.269 + 1.96 x 0.606) = 
(2.9, 31.7), the upper limit being noticeably smaller than that based on the exact 
conditional (binomial) distribution (VU = 49.6) or the normal approximation to it 
(vu = 39.7) which were calculated in 5 5.2. 

Part B of Table 7.3 presents the relative risk estimate for gall-bladder disease and 
its relationship to age. Just as for EST, the estimate of relative risk associated with 
GALL, exp(0.956) = 2.6 = 13/5, and the (uncorrected) score statistic, 3.56 = 
(13-5)2/18, must agree with the values found earlier. There is better concordance 
between the three available tests of the null hypothesis in this (less extreme) case: 
87.34-83.65 = 3.69 for the test based on G, and (0.956/0.526)2 = 3.30 for that 
based on the standardized coefficient, are the other two values besides the score test. 

For the second model in Part B the coefficient of GALL represents the log relative 
risk for those under 70 years of age, exp(1.946) = 7.0 = 7/1, while the sum of the 
coefficients for GALL and GALLx AGEGP gives the log relative risk for those 70 
and over, exp(1.946-1.540) = 1.50 = 6/4. These are the same results as found before. 
Similarly, the score statistic for the additional parameter GALL x AGEGP, which tests 
the equality of the relative risk estimates in the two age groups, is identical to the 
uncorrected chi-square test for equality of the proportions 7/8 and 6/10, namely 

In 5 5.2 we reported the corrected value of this chi-square as x2 = 0.59. 
The third line of Part B of the table introduces an interaction term with the continu- 

ous matching variable AGE. Here the coefficient of GALL gives the estimated relative 
risk for someone aged 70, exp(1.052) = 2.86, while the relative risk for other ages is 
determined from exp(1.052-0.066(AGE-70)). In other words, the RR is estimated 
to decline by a factor exp(4.066) = 0.936 for each year of age above 70 and increase 
by a factor exp(0.066) = 1.068 for each year below. However this tendency has no 
statistical significance; all three of the available tests for homogeneity give a chi-square 
of about 0.35 (p = 0.56). Such continuous variable modelling is of course not avail- 
able with the elementary techniques. 

Part C of Table 7.3 illustrates the increased analytical power which is available using 
regression methods. In order to estimate and test the relative risk of gall-bladder 
disease, while controlling for hypertension, we start with an equation containing the 
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single variable HYP. When we add to this a second term for gall-bladder disease 
(line 2, part C), the model then specifies that the relative risks associated with these 
two variables are multiplicative, and moreover that their joint effect is multiplicative 
with those of the matching variables. The relative risk for GALL, adjusted for the 
multiplicative effects of hypertension, is estimated as $3 = exp(0.970) = 2.65, scarcely 
different from the unadjusted value. Likewise the null hypothesis that ly = 1 is tested 
by x2 = 3.61 (uncorrected), which is also rather close to the unadjusted value. By way 
of contrast, the adjusted estimate of RR for GALL obtained in § 5.2, where we re- 
stricted attention to the eight case-control pairs which were homogeneous for HYP 
and heterogeneous for GALL, gives the relatively unstable value of $3 = 711. The 
difference is explained by the fact that the model uses all the case-control pairs which 
are discordant for at least one of GALL and HYP (see Table 7.4) to estimate the 
main effects of both variables. The five pairs which are discordant for both variables, 
not used in the elementary analysis, now contribute to the estimate of the coefficient 
of GALL. 

In case the reader is left with the impression that something has been gained for 
nothing by this procedure, we hasten to point out that the elementary estimate is 
strictly valid under a weaker set of assumptions than that based on the model. In 
Chapter 5 we effectively assumed only that the relative risk of GALL was constant with 
respect to HYP and the matching variables. The modelling procedure supposes in 
addition that HYP combines multiplicativelv with the matching variables; it could lead 
to biased estimates of the coefficient of G ~ L  if interactions were present. Of course, 
in some situations, such interactions involving the matching and other confounding 
variables might also be modelled and addcd to the equation as a means of further 
adjustment. For example, if we suspected that not only the main effects of HYP but 
also the interaction between HYP and AGE were confounding the estimate of the 
GALL coefficient, we would fit the equation with terms for GALL, HYP and 
HYPx AGE. Fortunately, the higher order interactions which might necessitate such 
a procedure are rarely present in epidemiological studies (Miettinen, 1974). 

Further insight into the assumptions which underlie the model is given by considera- 
tion of line 3 of Part C, Table 7.3. Here the addition of the interaction term 
GALLx HYP allows us to estimate the relative risk of each possible combination of 
exposures to these two risk factors, relative to those who are exposed to neither. Thus 
I),, = exp(1.517) = 4.56 is the estimated RR for those with gall-bladder disease only, 
go, = exp(0.627) = 1.87 for those with hypertension only, and qll = exp(1.517+ 
0.627-1.548) = 1.81 for those having a positive history of both diseases. In summary, 
the relative risks are given by this bizarre-looking table: 

Gall-bladder disease 

Hypertension 

+ 
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However the interaction effect is not significant, as indicated by the score statistic 
comparing lines 2 and 3 of Table 7.3, Part C. 

In effect what we have now done is to create out of GALL and HYP a joint risk 
variable with four exposure categories: (-, -), (-, +), (+, -), and (+, +). The 
estimation problem is as described in § 5.5 for matched-pair studies with a polytomous 
risk variable. Table 7.4 presents the distribution of the 63 matched pairs according to 
the joint response of case and control, following the format of Table 5.5. We readily 
verify that the maximum likelihood equations (5.30) for data of this type, namely 

are solved by the estimates just derived using the general computer programme. 
The analysis shown in Part D of Table 7.3 is identical with that in Part C except for 

the order of entry of the variables into the equation. If our interest is in the effects of 
GALL after adjustment for HYP, we would follow the sequence shown in Part D. In 
this example, the estimated coefficients and standard errors are not much affected by 
the presence of the other variable in the equation, which means that they are not 
confounded to any appreciable degree. 

Another example of the analysis of matched-pair data with a polytomous exposure 
variable was presented at the end of § 5.5. There we estimated the relative risks of 
endometrial cancer for each of three increasing dose levels of conjugated oestrogens, 
using the no-dose category as baseline. In order to carry out an essentially identical 
analysis in the present framework, we first define the three indicator variables DOS1, 
DOS2 and DOS3, whose P coefficients represent the log odds ratios for each of the 

Table 7.4 Histories of gall-bladder and hypertensive disease for cases and matched 
controls: Los Angeles study of endometrial cancer 

Exposures of cases Exposures of controls 

Gall bladder Hypertension 

+ + 

Total 

Total 
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dose levels shows in Table 7.2 relative to baseline. The conditional logistic regression 
model (7.3) in this case is merely a restatement of the model (5.29), in which the 
odds ratios corresponding to each category of exposure are assumed to be constant 
over the matching variables. By definition they satisfy the consistency relationship 
discussed earlier in 5 5.5. 

Part E of Table 7.3 presents the results. Regression coefficients for the three dose 
variables do indeed correspond to the odds ratios already estimated: exp(1.524) = 
4.59 for the 0.1-0.299 mglday dose level; exp(1.266) = 3.55 for 0.3-0.625 mglday; 
and exp(2.120) = 8.33 for over 0.625 mglday. Likewise the score statistic for testing 
the null hypothesis is identical with the statistic (5.32) derived earlier, taking .the 
value 16.96 for these data. The only important additional quantities available from 
the computer fit of the model are the standard errors of the parameter estimates, which 
enable us to put approximate confidence limits on the estimated relative risks. For 
example, exp(1.524+ 1 . 9 6 ~  0.618) = (1.37, 15.4) are the 95% limits for the 
0.1-0.299 mglday category. 

In order to test for a trend in risk with increasing dose we use the single, coded dose 
variable DOS. Estimated relative risks for the three dose levels are then exp(0.690) = 
1.99, exp(2 x 0.690) = 3.98 and exp(3 x 0.690) = 7.94, respectively. Comparing the 
G statistics for the two dose-response models yields 65.50-62.98 = 2.52, nominally a 
chi-square with two degrees of freedom, for testing the extent to which the linear trend 
adequately explains the variation in risk between dose levels. The observed departure 
from trend is not statistically significant (p = 0.28). On the other hand, the trend itself 
is highly significant (p<0.0001) as demonstrated by the value 14.71 for the score 
statistic. This too is identical to the trend statistic derived earlier (5.33), except that 
the continuity correction is not used by the computer programme. Note that there is 
not the slightest hint of interaction between dose and age (line 2, part F, Table 7.3). 

In summary, analyses of matched-pair data via the conditional logistic model yield 
results identical to those of the "classical" procedures presented earlier for binary 
and polytomous risk factors. This is hardly surprising, as the previously discussed 
methods were themselves based on conditional likelihoods worked out in detail for 
each separate problem. Never.theless it is an important fact since it shows that the 
very general methodology developed here is well integrated with the techniques used 
in the past. Even more important, of course, are extensions to problems involving 
multiple andlor continuous risk variables which we next consider in the more general 
context of 1 : M matching. 

7.4 1: M matching with single and multiple exposure variables: applications 

While the regression variables defined in Table 7.2 have so far in this Chapter been 
used exclusively with the matched-pair data, their coefficients can in fact be better 
estimated by taking account of the full complement of controls selected for each case. 
Table 7.5 presents the results of several analyses, based on the conditional likelihood 
(7.2), which used all the available data. Since no information was available regarding 
the dose andlor duration of conjugated oestrogen use by certain of the women, .their 
data records were excluded from the analysis when fitting equations containing these 
variables. While a missing value for the case leads to exclusion of the entire matched 
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Table 7.5 Results of fitting several conditional logistic regression models to the matched sets con- 
sisting of one case and four controls: Los Angeles study of endometrial cancer 

No. of Goodness of fit Score test Regression coefficients + standard error for each variable in the equation 
parameters G 

A. Oestrogen use and age level 
(based on all 63 matched sets, 31 5 observations) 

EST EST x AGE1 

B. Oestrogen use and coded age level 
(based on all 63 matched sets, 315 observations) 

EST EST x AGE3 
31.16 2.074 + 0.421 
0.39 1.664 +- 0.750 0.385 f 0.616 

C. Conjugated oestrogen use and age 
(based on 59 matched sets, 291 observations) 

CEST CEST x AG El  

EST x AG E2 

0.780 k 1.1 54 

CEST x AGE2 

set, a missing value in a control record might simply mean that the number of controls 
in that set was reduced by one. 

In order to estimate the overall relative risk associated with a history of exposure 
to any oestrogen, we employed the general purpose computer programme with the single 
binary variable EST (Part A, Table 7.5). This yields $3 = exp(2.074) = 7.95, which 
is of course the same value as found in 5 5.3 by solving the equation (5.17) for condi- 
tional maximum likelihood estimation. The standard error 0.421 = V W ,  given by 
formula (5.21), has already been used to place an approximate 95% confidence 
interval of exp(2.074 + 1.96 x 0.421) = (3.5, 18.1) about the point estimate. Like- 
wise the score test statistic is identical to the summary chi-square defined in (5.19), 
but calculated without the continuity correction so as to give (1 10-13)2/302 = 31.16 
in place of the corrected value 29.57 found earlier. 

Continuing the lines of the analysis shown in Table 5.2, we investigated a possible 
difference in the relative risk for EST in the three age groups 55-64, 65-74 and 75+ 
by adding to the regression equation interaction terms involving EST and age. In order 
to account for the breakdown of age into three groups, two binary indicator variables 
were defined: AGE1 = 1 for 65-74 years, and 0 otherwise; and AGE2 = 1 for 75+ 
years, 0 otherwise. Thus, from line 2, Part A, Table 7.5, exp(1.431) = 4.18 is the 
estimated relative risk for women aged 55-64 years, exp(1.431+ 0.847) = 9.76 for 
those 65-74 years, and exp(1.431+0.780) = 9.12 for the 75+ year olds, these results 
agreeing with those shown in Table 5.2. While there is an apparent increase in the 
relative risk for the women aged 65 or more years, the score test of 0.76 shows that 
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the differences are not statistically significant (p = 0.68). Note that this value agrees 
with that calculated earlier from the explicit formula (5.23) for the score test of inter- 
action. 

A single degree of freedom test for a trend in relative risk with increasing age is 
obtained by fitting a single interaction term as shown in Part B of Table 7.5. Coding 
AGE3 to be 0, 1 or 2 according to the subject's age group, the resulting score test for 
interaction is the uncorrected version of the statistic (5.24), taking the value 0.39. 
The corrected value calculated earlier was 0.09. Estimated relative risks for the three 
age categories are in this case exp(1.664) = 5.28, exp(1.664 + 0.385) = 7.76 and 
exp(1.664+2x 0.385) = 11.40, respectively. However since there is no evidence 
that the apparent trend is real, such estimates would not normally be reported. 

The flexibility of the regression approach is particularly evident when dealing with 
matched sets containing a variable number of controls. Part C of Table 7.5 presents 

Table 7.6 Matched univariate analysis of Los Angeles study of endometrial cancer: all cases and 
controls used except as noted 

Variable Levels RR XI a DF P 

Gall-bladder 
disease 

Hypertension 

Yes 
N 0 

Yes 
N 0 

Obesity Yes 
No 
Unk 

Obesity Yes 
No/Unk 

Other drugs 
(non-oestrogen) 

Yes 
No 

Yes 
N 0 

Any oestrogens 

Conjugated oestrogensb: 
dose in mg/day 

None 
0.1-0.299 
0.3-0.625 

0.625+ 
Trendc 

Conjugated oestrogensd: 
duration in months 

None 
1-1 1 
12-47 
48-95 
96 + 
Trende 

"Uncorrected score test 
Based on 59 sets. 291 observations 
' Regression on coded dose levels: 0 = none; 1 = 0.14.299 mgtday; 2 = 0.34.625 mgtday; 3 = 0.625+ mgtday 

Based on 57 sets, 277 observations 
'Regression on coded duration: 0 = none; 1 = 1-1 1 months; . . .; 4 = 96+ months 
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the regression analysis of the data considered in § 5.4 on use of conjugated oestrogens. 
Of 59 matched sets for whom the case history of conjugated oestrogen use was known, 
55 had the full complement of 4 controls while for each of the 4 others, one control 
was lacking information. Running the computer programme with a single binary 
variable CEST representing the history of use of conjugated oestrogens, we easily 
replicate the results already obtained: $3 = exp(l.710) = 5.53 for the estimate of 
relative risk and x2 = 27.57 for the uncorrected chi-square test of the null hypothesis. 
It is also easy to test for constancy of the relative risk over the three age groups by 
addition of the interaction variables CESTx AGE1 and CESTX AGE2 to the equa- 
tion. The score test for this addition, which is the generalization of (5.24) discussed in 
5 5.4, yields the value X$ = 0.89 (p = 0.64). We did not report this result earlier be- 
cause of the labour involved in the hand calculation. ' 

Thus far in this section we have used the general methods for matched data analysis 
primarily in order to replicate the results already reported in Chapter 5 for particular 
elementary problems. The emphasis has been on demonstrating the concordance be- 
tween the quantities in the computerized regression analysis, and those calculated 
earlier from grouped data. In the remainder of the section we carry out a full-scale 
multivariate analysis of the Los Angeles data much as one would do in actual practice. 

As an initial step in this process, Table 7.6, which summarizes and extends the results 
obtained so far, presents relative risk estimates and tests of their statistical significance 
for each risk variable individually. Comparing the entries there with those in Table 5.1 
we see that there is little to choose between the matched and unmatched analyses for 
this particular example (see § 7.6, however). The rather large number of "unknown" 
responses for obe,sity indicated lack of information on this item in the medical record. 
Grouping these with the negatives led to only a slight decrease in the goodness of fit 
0112 = 0.75, p = 0.39) and to a slight increase in the relative risk associated with a 
positive history. We therefore decided to use the dichotomy positive versus negative/ 
unknown in the subsequent multivariate analyses. This meant that the final analyses 
used the five binary variables GALL-bladder disease, Hypertension, OBesity, NON- 
oestrogen drugs and any oESTrogen, none of which had missing values. There were 
also two polytomous variables representing DOSe and DURation of conjugated 
oestrogen, both of which had missing values. 

Table 7.7 presents the results for a series of multivariate analy s involving the five 
binary risk factors and several of their two-factor interactions. X" ode1 2 contains just 
the main effects of each variable. Their P coefficients have been exponentiated for 
presentation so as to facilitate their interpretation in terms of relative risk. In fact the 
estimates of RR for gall-bladder disease and oestrogen use do not changemuch from 
the univariate analysis (Table 7.6), while those for the other three variables are all 
somewhat smaller. The coefficient for hypertension becomes slightly negative, while those 
for obesity and non-oestrogen drugs are reduced to non-significant levels. The reduction 
for non-oestrogen drugs is particularly striking, and inspection of the original data 
indicates this is due to a high degree of confounding with oestrogen use: for the controls, 
only 16 or 21.1 % of 76 who did not take non-oestrogen drugs had a history of oestrogen 
use, versus 111 or 63.1 % of 176 who did take non-oestrogen drugs (Table 7.8). 

Models 3-5 explore the consequences of dropping from the equation those variables 
which do not have significant main effects. The confounding between other drugs and 



Table 7.7 Matched multivariate analysis o f  five binary risk factors and their interactions: Los Angeles study of endometrial cancer 

Model No. of Goodness Score Relative risks (exponentiated regression coefficients) for each variable in the equation 
parameters of fit testa Standardized regression coefficients in parentheses 

G GALL HYP OB NON EST GALLx EST OBx EST NONxEST GALL x OB GALLxNON 

a Score test with respect to preceding model, unless otherwise noted 
Score test for all variables in  model (with respect to Model 1) 
Score test versus Model 4 
Score test versus Model 5 
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Table 7.8 Joint distribution of cases and controls according to selected risk factors: Los Angeles 
study of endometrial cancer 

Cases 

Controls 

- - - 

A. Gall-bladder disease and oestrogens 

Gall-bladder disease 
negative 

Oestrogen- Oestrogen+ 

Relative risks 

Unmatched 1 .o 15.1 
Matcheda 1 .o 14.9 

Cases 

Controls 

Gall-bladder disease 
positive 

Oestrogen- Oestrogen+ 

B. Oestrogen and non-oestrogen drug use 

Other drugs 
negative 

Oestrogen- Oestrogen+ 

Relative risks 

Unmatched 1 .o 22.5 
Matchedb 1 .o 54.6 

Other drugs 
positive 

Oestrogen- Oestrogen+ 

Totals 

Totals 

"From Model 7, Table 7.7. 
From Model 12. Table 7.7 (hence adjusted for gall-bladder disease) 

oestrogen is evident from the fact that the coefficient for the latter depends most notice- 
ably on whether or not the former is present. Subtracting the goodness-of-fit statistics 
between Models 6 and 2 yields X; = 4.00 (p = 0.26) for testing the joint contribution 
of hypertension, obesity and non-oestrogen drug use to the equation. 

The contrast between Models 7 and 6 shows that there is a strong and statistically 
significant (p = 0.03) negative interaction between the two variables that have sub- 
stantial main effects on risk, namely gall-bladder disease and oestrogens. The basic data 
contributing to this negative interaction are shown in Part A of Table 7.8, together with 
relative risks estimated via the model, e.g., RR = 14.9 x 18.1 x 0.128 = 34.5 for the 
double exposure category. The interaction effect itself is perhaps best illustrated by 
contrasting the RR of 14.9 for oestrogens among those who had no history of gall- 
bladder disease with the RR of 34.5/18.1 = 1.9 among those with such a history. 

Similar negative interactions are evident in Models 10 and 12 for obesity with oestro- 
gens, and other drugs with oestrogens, respectively. From the unmatched data, shown 
in Part B of Table 7.8, we see that the instability in the regression coefficients for 
Model 12 stems from the fact that only a single case falls in the joint "non-exposed" 
category. While they are statistically significant only in the case of gall-bladder disease, 
the data suggest that there are negative interactions of oestrogen use with the other 
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factors which are possibly linked to endometrial cancer. Given that a woman is already 
at elevated risk from her history of gall-bladder disease, obesity, or non-oestrogen drug 
use, the further increase in risk from use of oestrogens is not nearly as important as 
when she is not exposed to other risk factors. This same observation, that oestrogen 
use interacts negatively with traditional risk factors for endometrial cancer, such as 
hypertension and obesity, has been made in other case-control studies (Smith et al., 
1975). It suggests that the effects of oestrogen use are more likely to combine additively 
rather than multiplicatively with those of other factors. Another interesting feature 
of the relationship, which could not be investigated in the Los Angeles study, is that 
the excess risk is much smaller among ex-users compared with continuing users of 
oestrogen (Jick et al., 1979). 

So far our analysis has accounted only for the fact of oestrogen use and not of dose 
or duration. Unfortunately, information about one or both of these items was lacking 
for nine cancer cases, leading to the exclusion of the corresponding matched sets from 
the analysis, and for one control in each of seven of the remaining 54 sets. Moreover, 
the drug tended to be administered at one of a few standard doses, which precluded 
analysis of this variable as a true continuous variable. Instead both dose and duration 
were treated as ordered categorical variables, and arbitrary scale values were assigned 
to the increasing levels for regression analysis of trends (see Tables 7.2 and 7.6). 

A series of analyses which investigate the effect of dose and/or duration of con- 
jugated oestrogen exposure on risk is presented in Table 7.9. In part A of the table we 
first fit the main effect for oestrogen exposure followed by a single variable DOS re- 
presenting the trend in risk with coded dose level. Since women with EST = 1 but 
DOS = 0 use oestrogens but not the conjugated variety, the coefficient of EST deter- 
mines the relative risk for women taking only non-conjugated oestrogens, exp(1.451) 
= 4.3. Estimated relative risks for the three dose levels of conjugated oestrogen are 
exp(1.451+ 0.402) = 6.4, exp(1.451+ 2 x 0.402) = 9.5 and exp(1.451+ 3 x 0.402) 
= 14.3, respectively. The third model is a generalization of the second in that the 
effects of the individual dose levels are allowed to vary independently rather than 
being determined by the trend. While the estimated relative risks for dose levels 1 
and 2 are rather similar, there is no strong evidence for a deviation from the 
fitted trend (y$ = 2.41, p = 0.30). As shown in Model 4, there is a significant trend 
with duration, even after accounting for the dose effects. 

Part B of the table considers in a similar way the effect of duration of exposure. Here 
there is a smooth progression in risk, and the fit of the linear trend in coded duration 
level seems quite adequate 012 = 1.11, p = 0.78). The trend in dose continues to be 
significant even after adjustment for duration (Model 3, Part B). 

In Part C of the table we simultaneously fit separate effects for both dose and dura- 
tion. Since the sums of both DOSl + DOS2 + DOS3 and DUR1 + DUR2 + DUR3 + 
DUR4 equal the variable CEST defined above, it was necessary to drop one of these 
indicator variables from the equation in order to avoid linear dependence among the 
variables and to obtain unique estimates of all coefficients; this explains the absence of 
DOSl from the list of variables. Comparing Model 2 with Model 1 shows that the 
effects of dose and duration are reasonably multiplicative; addition of the linear 
interaction term results in only a slight improvement in goodness of fit(yi = 0.59, 
p = 0.44). In Models 3-6 we consider the effects of some of the other risk factors after 



Table 7.9 Multivariate analysis of effects of dose and duration of conjugated oestrogens: Los Angeles study of endometrial cancer 

- 
Model NO. of Goodness Score Regression coefficients for each variable in the equation (standardized coefficients in parentheses) a 

para- of fit testb m 
meters G 

(I, 

6 
A. Effect of dose z 

Po 
EST DOS DOS1 DOS2 DOS3 DUR 

1 1 139.86 27.22 2.088 
(4.60) 

2 2 135.63 4.19 1.451 0.402 
(2.59) (2.01) 

3 4 133.20 2.41 1.856 0.029 0.023 1.141 
(2.74) (0.05) (0.04) (1.80) 

4 5 128.32 4.82 1.987 -1 .I01 -1.116 4.013 0.420 
(2.86) (-1.33) (-1.32) (-0.02) (2.1 5) 

B. Effect of duration 

EST DUR DUR1 DUR2 DUR3 DUR4 DOS 
1 . 2  134.84 4.91" 1.431 0.309 

(2.58) (2.1 7) 
2 5 133.76 1.1 1 1.868 -0.418 0.122 0.596 0.899 

(2.73) (-0.58) (0.1 9) (0.88) (1.43) 
3 6 129.52 4.22 1.946 -1.655 4 .876  4 .586  4 .296  0.578 

(2.83) (-1.70) (-1.08) (-0.65) (4.34) (2.01) 



Table 7.9 (contd) 

C. Dose, duration and other variables 

EST DOS2 DURx GALL 
DOS 

GALLx EST NON OB 

Based on 54 matched sets, 263 observations having known values for both dose and duration of conjugated oestrogen use 
Score test relative to preceding model in each Part, unless otherwise indicated 
Relative to Model 1, Part A 

*Relative to Model 2, Part A 
' Relative to Model 1, Part B 
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more complete adjustment for oestrogen than was possible using the binary variable 
EST alone. The coefficients for these variables should be contrasted with those shown 
in Table 7.7. Gall-bladder disease continues to stand out as an important, independent 
risk factor with an estimated relative risk of exp(1.498) = 4.5 compared with the 
3.6 found earlier (Model 6, Table 7.7). The interaction of gall-bladder disease with 
oestrogen use is no longer statistically significant when the dose and duration variables 
are included in the equation. While the coefficient for non-oestrogen drugs is little 
changed, obesity is now estimated to carry a relative risk of exp(1.059) = 2.9, which 
is significantly different from 1 at the p = 0.02 level. Part of these differences, of 
course, may result because slightly different data sets were used. 

In conclusion, we can simply reiterate a point which is well illustrated by the pre- 
ceding example: all the techniques of multivariate analysis which were once restricted 
to unmatched studies are now available for use with matched data as well. 

7.5 Combining sets of 2 x 2 tables 

Besides individual case-control matching, another situation in which the calculations 
based on .the exact conditional likelihood may be quite feasible is when information is 
combined from a set of 2 x 2 tables. We noted earlier that the conditional likelihood 
in this case took the form of a product of non-central hypergeometric distributions 
(see 5 4.4 for notation): 

As usual, the summations in the denominator range over all possible values u which 
are consistent with the observed marginals in the ith table, namely max(0, nli-moil 
( u s  min(mli, nli). Calculation of exact tail probabilities (4.6, 4.7) and confidence 
intervals (4.8, 4.9) based on this distribution requires that all possible sets of tables 
which are compatible with the given marginals are evaluated. Their number is 

i.e., the product of the number of possible tables at each level, which can rapidly be- 
come prohibitively large (Thomas, 1975). On the other hand, evaluation of the log- 
likelihood function and its first and second derivatives requires calculations which 
increase only in proportion to the sum 

of the number of possible tables at each level. Hence a conditional likelihood analysis, 
similar to those already developed in this chapter for matched designs, is often possible 
for problems involving sets of 2 x 2 tables, even where the completely exact analysis 
would be unfeasible. Only if the entries in some of the tables are very large will problems 
be encountered in the evaluation of the binomial coefficients appearing in (7.4). 
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Usually cases and controls will have been grouped into strata (tables) on the basis 
of covariables which are thought either to confound or to modify the effect of exposure 
on disease. Suppose that a vector zi of such covariables is associated with the ith table. 
Then there are several hypotheses about the odds ratios vi  which are of interest: 

H3: No restrictions on vi .  

In Chapter 4 we concentrated on the estimation of v under HI, tests of the null 
hypothesis Ho, and tests for constancy in the relative risk (HI) against global alter- 
natives (H3). We have remarked on several occasions that these latter may be in- 
sensitive to particular patterns of interaction and that a preferred strategy is to model 
specific variations in the relative risk associated with the covariables using Hz. In 
5 6.12 several such models were fitted to the Oxford Childhood Survey data using 
unconditional logistic regression in which a separate a parameter was estimated for 
each stratum. As we saw in § 7.2, however, it is possible seriously to overestimate the 
relative risk with this procedure if the data are thin. Hence it will often be preferable 
to use instead the conditional likelihood, which may be written 

A listing of a computer programme for fitting models of the form H2 to sets of 
2 x 2 tables using the conditional likelihood is given in Appendix VI. This programme 
may be used as an alternative to that of 'Thomas (1975) for finding the exact MLE 
of the relative risk in HI, provided of course that exact tests and confidence intervals 
are not also desired. Zelen (1971) develops exact tests -for the constancy of the odds 
ratio against alternatives of the form H2 with a single covariable, and also against the 
global alternative H3. We presented in (4.31) the score statistic based on (7.5) for 
testing H1 against H2 with a single covariable. 

If the data in each table are truly extensive it may be burdensome to evaluate the 
binomial coefficients in (7.5). In this case an asymptotic procedure is available. Rather 
than use the exact conditional means and variances of the table entries ai under hypo- 
thesized values for the odds ratios vi ,  which are required by the iterative likelihood 
fitting procedure, one can use instead the asymptotic means and variances defined by 
(4.11) and (4.13). This substitution yields likefihood equations and an information 
matrix which are identical to those obtained by applying a two-stage maximization 
procedure to the unconditional likelihood function whereby one first solves the equa- 
tions for the a coefficients in terms of and y (Richards, 1961). The estimates and 7 
so obtained, as well as their standard errors ajld covariances, are thus identical to those 
obtained using unconditional logistic regression (Breslow, 1976). The advantage is 
that the unconditional model is fitted without explicit estimation of all the nuisance 
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parameters. This is a serious consideration if there are many tables, since the required 
number of parameters may exhaust the capacity of the available computer. Nevertheless, 
no matter how they are calculated, the unconditional estimates may be subject to bias 
in such circumstances and the conditional analysis is preferred whenever it is compu- 
tationally feasible. 

To illustrate the use of the conditional likelihood with a set of 2 x 2 tables we found 
new estimates of the parameters /3 and yl, representing the log relative risk of obstetric 
radiation and its linear decrease with calendar time, which we estimated earlier from the 
Oxford Childhood Cancer Survey Data using unconditional logistic regression (6.12). 
We recall that several estimates for these parameters were made depending on the 
degree of polynomial ad.justment for the stratifying variables age and calendar year. 
In fact, for the last line in Table 6.17 where the confounding effects of age and year 
were completely saturated, we avoided explicit estimation of separate a parameters for 
each of the 120 2 x 2 tables by using the technique just discussed. 

The parameter estimates and standard errors calculated directly from the conditional 
likelihood (7.5) were 

B = 0.5165k0.0564 
and 

PI = -0.0385 + 0.0144 . 

It is of considerable theoretical interest that these quantities are closer to those ob- 
tained from the unconditional fifth degree polynomial model than to those obtained 
with the saturated model (see last two lines, Table 6.17). This suggests that the con- 
founding effects of age and year are suitably accounted for by the polynomial regres- 
sion, and that inclusion of additional nuisance parameters in the equation serves only 
to increase bias of the type considered in fj 7.1. However, because of the exceptionally 
large sample (over 5 000 cases and controls) the inflation of the relative risk estimates 
due to the excess of nuisance parameters was not terribly serious. 

7.6 Effect of ignoring the matching 

Prior to the advent of methods for the multivariate analysis of case-control studies, 
in particular those based on the conditional likelihood (7.2), it was common practice 
to ignore the matching in the analysis. In simple problems one often found that taking 
explicit account of the matched pairs or sets did not seriously alter the estimate of 
relative risk. With the Los Angeles study of endometrial cancer, for example, there 
were only slight differences between the unmatched (Table 7.5) and matched (Table 
7.6) estimates fdr each risk variable considered individually. However, the agreement 
is not always as good, and there has been considerable confusion regarding the con- 
ditions under which incorporation of the matching in the analysis is necessary. 

A sufficient and widely-quoted condition for the 'poolability' of data across matched 
sets or strata is that the stratification variables are either: (i) conditionally independent 
of disease status given the risk factors; or (ii) conditionally independent of the risk 
factors given disease status. If either of these conditions is satisfied, both pooled and 
matched analyses provide (asymptotically) unbiased estimates of the relative risk for 
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a dichotomous exposure (Bishop, Fienberg & Holland, 1975). [Whittemore (1978) has 
shown that, contrary to popular belief, both types of analyses may sometimes yield 
equivalent results even if conditions (i) and (ii) are both violated.] In matched 
studies condition (i) is more relevant since the matching variables are guaranteed to 
be uncorrelated with disease in the sample as a whole. Of course this does not ensure 
that they have the same distributions among cases and controls conditionally, within 
categories defined by the risk factors. Therefore an unmatched analysis may give 
biased results. 

One result of using an unmatched analysis with data collected in a matched design, 
however, is that the direction of the bias tends towards conservatism. Relative risk 
estimates from the pooled data tend on average to be closer to unity than those cal- 
culated from the matched sets. This phenomenon was noted in 5 3.4 when pooling data 
from two 2 x 2 tables, where the ratio of cases to controls in each table was constant. 
Seigel and Greenhouse (1973) show that the same thing happens if matched pairs are 
formed at random from among the cases and controls within each of. two strata, and 
the data are then pooled for analysis. Armitage (1975) gives a slightly more general 
formulation. He supposes that there are I matched sets with exposure probabilities 
pli = 1-qli for the cases and poi = 1-qoi for the controls, and that the odds ratio 
p. = pliqoi/(poiqli) is constant across all sets. It follows that the estimate of relative 
risk calculated as the cross-products ratio from the 2 x 2 table formed by pooling all 
the data tends towards the value 

where 6, = poiIq0i. For v >  1 the bias term multiplying in (7.6) is less than one, 
unless the exposure probabilities poi are constant across sets (in which case there is no 
bias). Similarly, for p < 1, the bias term exceeds unity. Thus, failure to account for the 
matching in the analysis can (and often does) result in conservatively biased estimates 
of the relative risk. 

A related question is to consider the cost, in terms of a loss of efficiency in the 
analysis, of using a matched analysis when in fact the matching was unnecessary to 
avoid bias. Suppose that the exposure probabilities poi in the above model are all 
equal to the constant po, so that both matched and unmatched analyses tend to estimate 
correctly the true odds ratio v .  According to (4.18), the large sample variance of the 
pooled estimate of log t/~ is 

Standard calculations show that the large sample variance of the estimate of log I,LJ 

based on the matched pairs in this situation is 
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Consequently, using the ratio of variances to measure the relative precision of the two 
estimates, the efficiency of the matched pairs analysis when pairing at random is 

eff = P191+ Poclo 
P19o+Po91 ' 

When q = 1, i.e., pl = po, the matched pairs estimate is thus seen to be fully efficient. 
Otherwise eff < 1, reflecting the loss in information due to the random pairing. Never- 
theless Figure 7.1 shows that the loss, which tends to be worse for intermediate values 

Fig. 7.1 Loss in efficiency with a matched-pair design of using a matched statistical 
analysis, when the matching was unnecessary to avoid bias. Different curves 
correspond to different proportions exposed in the control population. 
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of po, is not terribly important unless the odds ratios being estimated are rather 
extreme. Pike, Hill and Smith (1979) reach similar conclusions on the basis of studies 
of the power of the chi-square test of the null hypothesis computed from the matched 
versus unmatched data. 

While no additional theoretical studies have yet been made, it is likely that these 
same general conclusions regarding the bias and efficiency of matched versus un- 
matched analyses apply also to the estimation of multiple relative risk functions. Two 
numerical examples will serve to illustrate the basic points. The first contrasts the 
fitting of both conditional and unconditional logistic regression analyses to data from 
an IARC sponsored study of oesophageal cancer occurring among Singapore Chinese 
(de Jong et al., 1974). The analysis was based on 80 male cases and on 320 matched 
controls whose ages were within five years of the corresponding case. Two controls for 
each case were drawn from the same hospital ward as the case, while two others were 
selected from an orthopaedic unit. However, as there were no important differences 
in exposure histories between the two control groups, they were not separated in the 
analysis. 

Table 7.10 Coefficients (+ standard errors) of variables in the multiple relative risk 
function, estimated using linear logistic regression analyses appropriate for both 
matched and unmatched samples. IARC study of oesophageal cancer among Singapore 
Chinesea 

Variables in equationb Matched analysis 
Coefficient + S.E. 

Unmatched analysis 
Coefficient f S.E. 

A. Interaction term excluded 

xo Constant 
x, Dialect 1.2570 f 0.3273 
x2 Samsu 0.5064 k 0.2936 
x3 Cigarettes 0.01 22 + 0.0099 
x4 Beverage temperature 0.7846 + 0.1 640 
Goodness-of-fit statistic (G) 197.43 

6 .  Interaction term included 

xo Constant 
x, Dialect 1.2559 + 0.3280 
x2 Samsu 0.5072 + 0.2941 
x3 Cigarettes 0.01 23 f 0.0099 
x, Beverage temperature 0.7872 + 0.1726 
x, = x4 x (age-60) --0.0009 t 0.01 79 
Goodness-of-fit statistic (G) 197.43 

" de Jong et al. (1 974) 
Coding of risk variables: 

XI = Hokkienrreochew x, = No. of cigaretteslday average 
0 Cantoneselother 

X2 = 1 Drinkers (Samsu) x., = No. of beverages (W) drunk "burning hot" 
0 Abstainers 
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Information was obtained regarding diet, alcohol and tobacco usage, and on various 
social factors including dialect group, which indicates the patient's ancestral origin 
within China. Only four variables are considered here: dialect group, cigarettes, 
samsu (a distilled liquor made from a mixture of grains) and beverage temperature 
(the number of beverages among tea, coffee and barley wine that the patient reported 
drinking at "burning hot" temperatures). The coding of these variables has been 
simplified from that used in the original analysis, and an interaction term between 
beverage temperature and age (a matching variable) was introduced to see if the log 
relative risk for beverage temperature changed linearly with age. 

Table 7.10 presents the estimated regression coefficients and standard errors obtained 
by fitting the unconditional logistic model with a single stratum parameter a to the 
pooled data. Shown for comparison are the same quantities estimated from the condi- 
tional likelihood. With the exception of that for dialect group, the standard errors of 
the matched analysis are slightly larger than those for the unmatched. Small changes are 
evident in the regression coefficients themselves, so that this is evidently a situation 
in which the matching variables either have little relationship to the exposures con- 
ditional on disease status or else have little relationship* to disease status conditional 
on exposure. As a partial confirmation of the latter interpretation, Table 7.11 shows 
that cases and controls have roughly equivalent average ages even within the levels of 
each risk factor. This analysis is incomplete, since it involves only averages and ignores 
possible higher order interactions of age with risk factor combinations. Nevertheless, 
it is consistent with the notion that the matching variables are conditionally independent 
of disease status given the exposures, and thus that the requirements for 'poolability'of 
matched data are satisfied. 

Table 7.11 Average ages f standard errors for cases and controls within levels of each risk factor: 
IARC study of oesophageal cancer among Singapore Chinesea 

Risk factor Level Cases Controls Totals 
n Mean + S.E. n Mean f S.E. n Mean f S.E. 

Dialect group 

Samsu 

Cigarettes 

Beverage 
temperature 

(no. "burning 
hot") 

Totals 

HokkienITeochew 
Cantoneselother 

Drinkers 
Abstainers 

None 
1-10 per day 
1 1-20 per day 
21 + per day 

0 
1 
2 
3 

All 

a de Jong et al. (1974) 



Table 7.12 Coefficients (f standard errors) of variables in the multiple relative risk function, using a variety of analyses: Iran/lARC 
case-control study of oesophageal cancer in the Caspian littoral of Irana 

6 
0 
G 

Type of analysis g 
Variables in equation Stratified into a 

rn 
0 

Fully matched 7 Regions, 4 Regions, 4 Regions 4 Age groups Unmatched a 
4 Age groups 4 Age groups rn 

cn 
cn 

Social class -1 .I25 k 0.254 -0.808 + 0.21 2 -0.782 f 0.206 -0.745 + 0.201 -0.684 a 0.1 80 -0.682 + 0.1 79 0 z 
Ownership of garden -0.81 5 k 0.250 -0.614 f 0.222 -0.602 f 0.21 9 -0.592 + 0.21 8 -0.326 + 0.1 91 -0.307 + 0.1 90 
Consumption of raw z 

green vegetables -0.552 f 0.220 -0.459 + 0.203 -0.439 k 0.1 99 -0.432 k 0.1 98 -0.429 k 0.1 88 -0.440 + 0.1 87 a 

Consumption of D Z 
cucumbers -0.640 + 0.217 -0.539 k 0.1 96 -0.548 k 0.1 92 -0.562 + 0.1 92 -0.466 _+ 0.1 82 -0.449 f 0.1 81 -I 

Goodness-of-fit (G) 375.38b 776.54 777.60 780.80 787.04 789.56 ? 
rn 
0 

a Cook-Mozaffari et al. (1979) 
Based on the conditional model and hence not comparable to the others cn 

1 cn 
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In general one must anticipate that the degree to which the matching variables are 
incorporated in the analysis will affect the estimates of relative risk. An example which 
better illustrates this phenomenon is provided by the joint Iran/IARC study of oesoph- 
ageal cancer on the Caspian littoral (Cook-Mozaffari et al., 1979). In that part of the 
world both cancer incidence and many environmental variables show marked geo- 
graphical variation. Cases and controls were therefore individually matched according 
to village of residence, as well as for age. Just as in the preceding example, the data 
were analysed using both the conditional fully matched analysis based on (7.2) and 
the unconditional analysis based on (6.10) in which the entire sample was considered 
as a single stratum. Intermediate between these two extremes, additional analyses were 
performed which incorporated various levels of stratification by age and by geographical 
area, the latter grouping the villages into regions with roughly homogeneous incidence. 

Table 7.12 presents the results for males for four risk variables which appeared to 
be the best indicators of socioeconomic and dietary status. Substantial bias of the regres- 
sion coefficients towards the origin, indicating a lesser effect on risk, is evident with 
the coarsely stratified and unmatched analyses. This confirms the theoretical results 
regarding the direction of the bias which were noted above to hold for the univariate 
situation. While the standard errors of the estimates increase as greater account is 
taken of the matching, the changes are not great and seem a small price to pay for 
avoiding bias. 

In summary, both theoretical and numerical studies confirm that the pooling of 
matched or stratified samples for analysis will result in relative risk estimates which 
are conservatively biased in comparison with those which would be obtained using the 
appropriate matched analysis. In some situations, where the matching was not essential 
to avoid bias, the pooled and matched estimates may scarcely differ at all. Even then, 
however, the additional information gained from the pooled data, as reflected in the 
variances of the estimates, is not great. Consequently, now that appropriate and flexible 
methods are available for doing so, the matching should be accounted for in the analysis 
whenever it has been incorporated in the design. 

While the availability of methods for multivariate analysis of matched samples cer- 
tainly makes such designs more attractive, it does not follow that they should always 
be used. Close pair matching may result in a number of cases being lost from the study 
for want of an appropriate match. It may also impose severe administrative costs which 
could be avoided with a less restrictive design. Increasing use is being made of "popula- 
tion controls" obtained as an age-stratified random sample of the population from 
which the cases were diagnosed. Many epidemiologists believe that this is the best way 
to avoid the selection bias inherent in other choices of the control population. The 
confounding effects of other factors which are causally related to disease may be 
accounted for by post-hoc stratification of the sample, or by modelling them in the 
analysis. Such designs and analyses accomplish many of the aims intended by the use 
of matching, and constitute a practical alternative which may be preferred in many 
situations. 
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LIST OF SYMBOLS - CHAPTER 7 (in order of appearance) 

log relative risk associated with unit change in kth risk variable 
vector of risk variables for jth study subject; xj = (xi,, . . ., xjk) 
number of cases 
number of controls 
total number of study subjects 
denotes a partition of the integers from 1 to n into two groups, one of 
size n, and the other of size no = n-n,; e.g., if nl'= 2 and no = 3 a pos- 
sible partition is 1, = 3, l2 = 4, l3 = 1, L = 2, l5 = 5 or 1 = (3,4,1,2,5) 
logit of &sease probability for an individual with a standard (x = 0) set 
of risk variables in the ith stratum 
disease probability in the ith stratum for an individual with value x for 
the risk variable 
odds- ratio 
log relative risk (binary exposure) 
number of matched pairs with neither case nor control exposed 
number of matched pairs with case unexposed and control exposed 
number of matched pairs with case exposed and control unexposed 
number of matched pairs with both case and control exposed 
in discordant matched pairs with a binary exposure variable, denotes the 
fitted number of exposed cases under the unconditional model 
conditional probability that in a discordant matched pair it is thecase 
which is exposed 
number of controls per case (fixed) 
number of controls per case in the ith matched set 
number of matched sets 
value of kth exposure variable (k = 1, .. ., K) for case (j = 0) or j" 
control (j = 1, . . ., Mi) in the ith matched set 
(xijl, . . ., xijK) exposure vector for jth subject in ith set 
goodness-of-fit statistic based on the (conditional) log likelihood 
number of exposed cases in ith of I 2 x 2 tables 
number of cases in ith table 
number of controls in i" table 
(expected) odds ratio associated with ith of I 2 x 2 tables 
value of lth wvafiable for ith 2 x 2 table 
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Zi vector of covariable values for ith table 

Y vector of interaction parameters in logistic model for a series of 2 x 2 
tables 

Pli exposure probability for cases in the ith stratum 
qli l-p~i 
Po i exposure probability for controls in the it" stratum 
qoi l-poi 
6i poi/qoi 




