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CHAPTER 2 

RATES AND RATE STANDARDIZATION 

Analysis of data from a cohort study involves estimation of the rates of cancer and 
other diseases of interest which occur among cohort members during the study period. 
Cancer occurrence is most appropriately measured in terms of incidence rates, for 
example, as the number of newly diagnosed cases per 100000 person-years of 
observation time. For a variety of practical reasons, however, most of the important 
cohort studies discussed in the preceding chapter used death from disease rather than 
its diagnosis as their principal endpoint. From the point of view of formal statistical 
analysis, it makes little difference what endpoint is selected, and we refer almost 
exclusively to 'deaths', 'mortality' and 'survival7, leaving it to the reader to make the 
necessary substitution of terminology (e.g., 'cases7, 'morbidity' and 'disease-free 
survival7) as required for incidence data. However, since death is often preceded by a 
period of ill health, and the health status of the subject may influence his exposure to 
the agents under investigation, mortality data are subject to particular problems of 
interpretation, as discussed in 81.5~.  Lagging of exposure variables is one means of 
partially accounting for modification of exposures during the interval between first 
appearance of disease symptoms and death. 

Cancer rates vary widely according to sex, age, calendar time and a number of other 
demographic variables. We begin the chapter with a description of procedures used to 
estimate age- and time-specific disease rates from cohort data. The rates may also be 
specific for sex and race. Methods of estimation of incidence rates using cancer registry 
material were also discussed in Chapter 2 of Volume 1, which the reader may wish to 
consult for further elaboration of the concepts of rate and risk and a discussion of 
alternative methods available for their determination. 

Analysis of cohort data typically involves a comparison of the rates observed in the 
study group with rates for the general population. This is a useful way of identifying 
diseases which occur at especially high or low frequency in the cohort, so that they may 
be studied further in relation to particular exposures. Since the age distribution of the 
cohort will generally be different from that of the population as a whole, and may also 
be evolving with time, such comparisons are best made on an age-time-specific basis. 
Thus, the second topic considered in this chapter is the combination of age-time- 
specific cohort rates so as to facilitate their comparison with standard or general 
population rates. Direct and indirect standardizations are presented as the two basic 
methods of summarizing a set of component rates. The corresponding comparative 
measures, known as the comparative mortality figure (CMF) and the standardized 
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mortality ratio (SMR), are introduced and discussed in terms of the advantages and 
disadvantages they offer. We develop methods for evaluating the statistical significance 
of the observed differences in age-time-specific rates between study and standard 
populations, and for putting confidence intervals around the comparative measures. 

A final section briefly describes some analogous procedures for age adjustment of 
proportional incidence and mortality measures that are used to evaluate disease 
frequencies when person-years denominators are not available. 

2.1 Calculation of age- and calendar period-specific rates 

The basic feature of cohort studies that distinguishes them from cross-sectional, 
case-control or other types of investigation is that, at least in principle, each subject is 
kept under continuous surveillance for a defined interval of time. If the study endpoint 
is death, we assume that each subject is 'at risk' of death during the entire interval 
from his entry into the study until his exit. This means that the study period should 
contain no interval during which the subject is known to be alive as a condition of 
cohort membership. If the cohort is defined to consist of all workers with at least five 
years of employment in a certain factory, therefore, the first five years of their 
employment history would be excluded from the observation period. A second critical 
assumption is that any death that actually occurs during the study period will be 
recorded. For cohorts defined on the basis of past records, this implies that adequate 
mechanisms exist for tracing individuals from their date of entry into the study until 
death or until the study's closing date. If no record exists of someone's whereabouts 
after a certain point in time, he should generally be considered as having left the study 
at that point. Obvious problems of selection bias exist if such losses are at all frequent, 
since the causes of and ages at death for 'lost-to-follow-up' subjects may well differ 
from those for persons who are successfully traced. 

The basic method used to estimate age-time-specific mortality rates is to determine 
for each individual the amount of observation time contributed to a given age x 
calendar period category and to sum up those contributions for all cohort members so 
as to obtain the total number of person-years of observation in that category. These 
person-years form the denominators of rates the numerators of which are simply the 
numbers of deaths due to a given disease, likewise classified by age and calendar year 
of death. The process is illustrated in Figure 2.1, which shows schematically the course 
of one worker who was entered on study (point A) at age 43.71 in year 1956.03 and left 
11.12 years later (F). He contributed observation time to five separate cells, boundary 
crossings being made at points B through E. The duration of time spent in each cell is 
easily determined, as shown in Table 2.1. In some applications, particularly when the 
observation period is relatively short, the calendar-year axis is ignored and the rates 
are determined by age interval alone. Computer programs for performing the 
calculations have been developed by Hill (1972), Monson (1974), Waxweiler et al. 
(1983), Gilbert and Buchanan (1984) and Coleman et al. (1986), among others. 

Sometimes the exact dates of birth and of entry and exit from study, which are 
needed to draw Figure 2.1, will not be available. Then, approximate numbers of 
person-years may be calculated as shown in the right-hand column of Table 2.1, using 
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Fig. 2.1 Schema showing the follow-up of one person in a cohort study 

'"I 

1950 

Calendar year of follow-up 

Table 2.1 Calculation of exact and approximate age- and year-specific 
person-years at risk 

-- -- 

Pointa Coordinates (year, age) Quinquinquennium Person-years 

Year Age Exact Approximate 

Total 11.12 11.00 

a See Figure 2.1 
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the three integer variables, age at entry, year of entry and year of exit. The 
approximation is based on the notion that a person aged 43 in 1956 will be 44 in 1957, 
45 in 1958 and 54 in 1967. He  contributes 0.5 years of observation time to the calendar 
year of entry (1956), 0.5 years to the year of exit (1967), and a full 1.0 year to each 
intervening year. There would be a single 0.25-year contribution for someone who 
enters and leaves the study in the same calendar year. The discrepancies between the 
exact and approximate figures tend to be averaged out when cumulated over 
individuals, so that the approximate method is sufficiently accurate for most practical 
purposes. 

Cause-specific national death rates are typically published by five-year intervals of 
age and calendar year (Case & Pearson, 1957; Grove & Hetzel, 1968). Such 
'quinquinquennia' are widely used in cancer epidemiology, and our example of the 
calculation of age- and calendar period-specific rates illustrates this standard break- 
down. Analogous methods may be used if the ageltime intervals are longer or shorter 
than five years. 

Example 2.1 
Appendix IE describes in some detail the design and execution of the Lee and Fraumeni (1969) study of 

Montana copper smelter workers, in which 8047 male subjects were entered into study on 1 January 1938 if 
they had worked for at least one year and were still employed on that date, or  at the end of their first year of 
employment for those hired later. Table 2.2 shows the number of person-years in each quinquinquennium as 
determined by both exact and approximate methods for 8014 workers on whom full data were available. 
(Records had been lost for 33 of the original cohort.) These data include the follow-up through 1977 for 
workers who were still alive and under observation on 31 December 1963, the closing date of the original 
study (Lubin et al., 1981). 

The approximate method of calculation, based on integral ages and years, was modified to account for the 
fact that the 2517 men who entered the study at the beginning of 1938 were eligible for a full year's 
observation, whereas those who entered the study later were, on average, observed for only half of the first 
year. Likewise, nine months of observation during 1977 was counted for those still alive and being followed 
at the study's end (30 September 1977). Except for a few discrepancies along the boundaries of the table, this 
adjustment assures that the agreement between exact and approximate calculations is quite good. 

Table 2.3 presents the numbers and rates of deaths from all causes classified by age and calendar period.. 
The rates are based on sufficiently large numbers for most cells that they display a reasonable -degree of 
numerical stability. For many specific causes of death, however, the numbers are smaller and a display of 
the age-period-specific rates in such a detailed manner is not helpful. 

2.2 Summarizing a set of rates 

Large tables of rates confront the investigator with a bewildering array of detail that 
is difficult to assimilate and utilize effectively. Even if attention is focused on a 
particular calendar period or column in Table 2.3, consideration of the rates in 
five-year age categories requires one to look at up to 18 separate numbers. There is a 
clear need for one or two summary measures that are easy to interpret yet retain most 
of the essential information in the age-specific data. 

This section describes the calculation and interpretation of a commonly used 
summary measure, the directly standardized rate. We mention at the outset, however, 
that important information may be lost through use of this and other traditional 
approaches to data analysis. The remainder of the monograph emphasizes alternative 
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Table 2.2 Exact and approximatea person-years of observation in the Montana cohort, by 
age and calendar year 

Age Jange Calendar period 
(years) 

1938- 1940- 
1939 1944 

10-14 0.0 1.2 
0.0 1.5 

1 5-1 9 42.6 208.1 
68.0 164.0 

20-24 645.4 2157.6 
679.0 2301.8 

25-29 690.3 2587.0 
682.5 2647.5 

30-34 689.4 2378.9 
693.0 2354.3 

35-39 607.9 2196.9 
598.5 2186.5 

40-44 482.1 1829.2 
471.0 1784.5 

45-49 451.4 1431.8 
450.0 1426.5 

50-54 470.0 1230.1 
465.0 1226.0 

55-59 424.5 1209.1 
408.5 1206.0 

60-64 308.4 889.9 
315.0 855.8 

65-69 248.4 667.2 
231.0 659.0 

70-74 147.2 425.6 
137.5 399.0 

75-79 49.2 215.3 
45.5 194.0 

' 80-84 14.6 69.0 
11 .O 63.5 

85+ 1.4 13.5 
1 .o 10.0 

Totals 

1.2 
1.5 

871.9 
744.8 

8 688.6 
8 812.8 

14 332.0 
14 496.5 
18 729.9 
18 877.5 
22 168.6 
22 291.8 
24 546.9 
24 665.3 
24 581.9 
24 681.5 
22 593.8 
22 663.3 
19 199.0 
19 170.5 
14 557.9 
14412.3 
10 152.1 
9 974.0 
6 429.1 
6 256.5 
3 303.8 
3 162.0 
1 330.1 
1 241.5 

469.6 
41 9.5 

Totals 5 272.7 17 51 0.5 23 236.3 28 233.4 30 644.7 28 000.3 25 024.5 22 175.7 11 858.2 191 956.3 
5 256.5 17 479.8 23 266.8 28 192.5 30 622.0 28 000.0 25 01 6.0 22 187.5 11 850.0 191 871 .O 

a Exact entries listed above approximate ones for each cell 

methods of analysis that we believe are preferable for analytical epidemiology, namely 
the fitting of statistical models to the age- and period-specific rates in such a way that 
their essential structure is highlighted and purely 'random' fluctuations are identified as 
such. 

( a )  The directly standardized rate 

Direct standardization appears to have been motivated originally by the idea of 
determining the crude disease rate that would be observed in the cohort if its age 
distribution were the same as that of the standard population. The directly standard- 
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Table 2.3 Number of deaths and death rates (per 1000 person-years)a from all 
causes in the Montana cohort, by age and calendar year 

Age range Calendar period Totals 
(years) 

Totals 34 236 282 386 489 550 519 569 339 3404 
6.4 13.5 12.1 13.7 16.0 19.6 20.7 25.7 28.6 17.7 

Standardized rates (1950 US population aged 40-79 years): 
12.8 26.5 26.0 27.9 29.5 23.4 25.0 24.4 22.4 

a Numbers of deaths are listed above the corresponding rate 

ized rate is obtained by applying the age-specific cohort rates to the standard age 
distribution. More formally, denote by dj the number of deaths in the jth of J age 
groups, by nj the person-years denominator, and by ij = d,/n, the corresponding rate. 
In statistical parlance xj is known as an estimate (hence the ^) of the 'true' but 
unknown rate 4 that would be observed if an infinite amount of data were available. If, 
in addition, q denotes the number (or proportion) of individuals in the standard 
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population in the jth age group, the directly standardized rate is written 
J 

as a weighted sum (or average) of the age-specific rates. A denotes the corresponding 
'true' quantity. 

Table 2.4 shows several idealized populations used for direct standardization of 
cancer incidence rates (Waterhouse et al., 1976). Since the weights sum to 100 000, the 
corresponding directly standardized rates calculated from (2.1) will have units of cases 
per 100 000 person-years. The African population is considerably younger than the 
European. The world population, which occupies an intermediate position, has long 
been used by Segi (1960) and associates to standardize cancer mortality data collected 
by the World Health Organization. 

Table 2.5 shows the actual age distributions for 1 000 000 persons in the USA for the 
years 1950 and 1970. Note the effect of the post-war 'baby boom' on the two age 
structures. These figures are often used to standardize the mortality rates of US 
cohorts. 

In order to promote comparability between series, we recommend that a published 
set of weights such as those shown in Table 2.4 or 2.5 be used for direct 
standardization, rather than an ad-hoc set constructed by the investigator. When world 

Table 2.4 Standard populations used for the computa- 
tion of age-standardized and truncated standardized 
incidence ratesa 

Age range African World European Truncated 
(years) 

0- 
1-4 
5-9 
10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 
80-84 
85 and over 

Total 100 000 100 000 100 000 31 000 

a From Waterhouse et a/. (1976) 
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Table 2.5 Standard million popu- 
lation" of the USA in 1950 and 
1970 

Age range Standard million population 
(years) 

1950 1970 

Total 1 000 000 1 000 000 

a From US Bureau of Censuses (1972) 

weights are used, one speaks of a rate that is 'standardized to the world population'. 
Alternatively, if the weights correspond to an actual age distribution, one would speak 
of a rate 'standardized to the population of the USA in 1950', for example, or  of one 
standardized to 'the population of England and Wales in 1970'. 

Example 2.2 
The crude death rates shown in the penultimate row of Table 2.3 steadily increase as a consequence of the 

general ageing of the cohort over time. In order to summarize the age-specific rates for different calendar 
periods, we calculated directly standardized rates for each one, using the 1950 US population (Table 2.5) as 
the standard. However, only rates for ages 40-79 were included in the calculation since the other age groups 
lacked data for one or more calendar periods. This necessity of discarding relevant data is one of the 
disadvantages of direct standardization. The standardized rates first rise and decline, as is true for most of 
their age-specific components. The initial rise is probably due to the 'healthy worker' selection bias (see 
31.5~) which would apply to a large number of workers in the first calendar period, since everyone followed 
from the beginning of 1938 was still employed at that time. The eventual fall in the age-specific or 
age-standardized rates conforms to the pattern observed in the general population. 

Provided that the same standard age distribution is used in their construction, 
comparison of directly standardized rates between different groups is thought to 
eliminate the differences that are observed in the crude rates solely by virtue of one 
group having a different age structure from another. However, as the graphs of 
zross-sectional age-incidence curves in Figure 2.2 make clear, such comparisons may 
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Fig. 2.2 Relationship between incidence of cancer of the stomach and age in four 
areas: A ,  Iceland; x , Miyagi, Japan; 0, Connecticut, USA; @, Johannes- 
burg & Kampala (African). From Doll and Cook (1967) 

35 40 45 50 55 60 65 70 75 80 8590 
Age (years; log scale] 

obscure important differences in the age-specific patterns. The apparent decline in 
stomach cancer incidence in older Japanese, in contrast to the rising age-incidence 
curve in Iceland, even among the elderly, means that the relative positions of the two 
countries as expressed in the age-standardized rate will depend to a large extent on the 
choice of the standard. If the standard population is heavily weighted towards the 
elderly, Iceland will have a relatively higher age standardized rate, while the reverse 
will be true if the standard population is younger. Doll and Cook (1967), from whose 
work the figure is taken, give several more examples of how the choice of the standard 
population affects the rank ordering of countries in terms of age-standardized incidence 
rates of specific cancers. 

When incidence rates for cancers of epithelial tissues are plotted against age on a 
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log-log scale, they are often remarkably close to straight lines, with slopes of 4 or 5. 
Doll (1971) and others have interpreted this basic feature of incidence data as support 
for the concept that such cancers are produced by a series of cellular events. If there is 
curvature in the log-log plot, as in Figure 2.2, it is generally in the downward direction 
(Cook et al., 1969). Sometimes this is due to a 'birth cohort effect', i.e., a general 
increase in rates for successive generations due presumably to the introduction of new 
agents into the personal or ambient environment. In this case, the curves flatten out or 
otherwise assume similar shapes when arranged to present age-specific data for 
successive generations of individuals born in the same time interval (birth cohorts) 
rather than for separate calendar periods. In other situations, possibly including the 
data shown in Figure 2.2, the curvature may represent the failure to diagnose 
completely incident cases among the elderly. Largely for this reason, Doll and Cook 
(1967) suggested that the calculation of summary rates for epithelial tumours be 
restricted to people aged 35-64, and introduced for this purpose the truncated 
population shown in the fourth column of Table 2.4. They argued that the directly 
standardized rate based on this population was a good measure of the average level of 
incidence or mortality, that the ratio of rates for the 60-64 versus the 35-39-year age 
groups measured the steepness of the increase with age, and that the two measures 
taken together provided a basic summary of the age-specific data. 

( 6 )  The cumulative rate 

Cumulative rates are defined by equation (2.1) if one takes for q the length of the 
jth age interval rather than the standard age proportion (see $2.3 of Volume 1). 
Essentially the same measure was introduced by Yule (1934), except that he calculated 
an average of the age-specific rates rather than their sum, and termed the result the 
'equivalent average death rate'. Since the nonzero weights of the truncated population 
are almost constant across the five-year age groups, a rate that is standardized in this 
fashion will be very nearly proportional to the cumulative rate between 35 and 64 
years. 

The cumulative rate has several advantages as a method of reporting cancer 
incidence and mortality data (Day, 1976). First it dispenses with the rather arbitrary 
selection of the standard population, yet has the desired feature of summarizing the 
age-spectific data. Second, cumulative rates for different age ranges are additive. Thus, 
for example, the cumulative rate between 0 and 64 years is the sum of the cumulative 
rates for 0-34 and 35-64 years. Finally, the cumulative rate is easily converted into the 
cumulative risk by means of the formula P = 1 - exp(-A). This is the actuarial 
probability of disease development or death from the cause of interest, in the absence 
of other causes of death, for someone who is at risk throughout the designated age 
range. Since 1 - exp (-A) is approximately equal to A for small A, moreover, the 
cumulative rate can be roughly interpreted as the cumulative risk (actuarial probabil- 
ity), provided that it is small, say less than 10%. See Table 2.6. 

Example 2.3 
Table 2.7 compares cumulative incidence rates between 0 and 74 years to directly standardized rates based 

on two different standard populations (Day, 1976). It illustrates clearly that, while cancer is a 'rare' disease 
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Table 2.6 Conversion of cumulative rates (100A) into the corresponding cumulative 
risks (100(1 - e-?) 

lO0A 0.1 0.5 1 .O 5.0 7.0 10.00 15.00 20.00 30.00 
100(1 - ePA) 0.1 0.499 0.995 4.88 6.76 9.52 13.93 18.13 25.92 

Table 2.7 Cumulative incidence rates, 0-74 years (percent), compared with rates standardized to the 
world populationa, and to the truncated ratea, per 100 000 per annurn 

Population Rate Cancer site 

Stomach Lung Breast Cervix Leukaemia Prostate All sitesb 
uteri 

Male Male Female Female Male Male Male Female 

Cali, Cumulative (%) 7.34 2.14 3.08 8.35 0.38 2.71 29.1 1 29.78 
Colombia World population 57.5 17.5 27.3 75.6 5.2 

Truncated 87.7 29.0 62.6 183.6 5.6 
23'2 (25.25) (25.75) 
2.15 

Alameda Cumulative (%) 2.69 5.85 4.15 3.18 1.05 7.54 30.80 20.81 
County, World population 24.4 43.8 38.6 30.5 8.3 
black Truncated 33.0 88.9 75.0 75.4 8.9 

65'3 (26.51 ) (1 8.78) 
55.6 

Birmingham, Cumulative (%) 3.13 9.73 5.58 1.39 0.52 1.85 30.1 1 21.96 
UK World population 25.2 73.3 51.1 13.6 5.3 

Truncated 35.9 133.5 114.1 34.2 6.2 
8.4 (26.00) (1 9.50) 

10.9 

Japan, Cumulative (%) 11.97 2.16 1.06 2.28 0.36 0.35 24.22 16.30 
Miyagi World population 95.3 15.6 11.0 20.6 4.4 
Prefecture Truncated 164.1 22.6 27.5 52.8 4.7 

3'2 (21.51) (15.04) 
2.0 

a From Doll et a/. (1970) 
bThe figures given in parentheses are the exact cumulative probabilities = 1 - exp (-L) to compare with the cumulative incidence 

A. See text and Table 2.6 

when considered in terms of annual incidence, the total actuarial risk over a normal lifetime may be 
substantial. Japanese males, for example, have a cumulative actuarial risk for stomach cancer of 12%. Since 
the cumulative lifetime risk of many of the common cancers seen in laboratory animals is of the same order 
of magnitude (e.g., 5-40%), it is clear that expressing cancer incidence in such terms offers the possibility of 
more immediate extrapolation between epidemiology and laboratory investigations than does use of annual 
incidence rates (Peto, R. 1977). 

( c )  Standard error of the cumulative or directly standardized rate 

When death rates are computed from national vital statistics, or incidence rates are 
determined from cancer registries that cover large populations, questions of statistical 
or sampling stability are generally of minor importance. Errors inherent in the process 
of data collection, in the coding of cause of death or cancer type, or in the estimation 
of the population denominators are usually of much greater magnitude and concern. 
Rates calculated for study cohorts of limited size, however, may be based on a 
relatively small number of cases. Then, a simple formula for the standard error is 
useful as a measure of the statistical precision with which the rate is determined. 
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The formula given here stems from the elementary statistical model for the sampling 
distribution of a rate that is developed in some detail in 54.2. For the moment it 
suffices to know that the sampling variability of the rate numerator is approximately 
Var (d j )  = njhj, which may be estimated by di itself, and that the person-years 
denominators ni may be regarded as fixed constants. Thus, the standard error of the 
age-specific rate xi, i.e., the square root of the estimated variance, is ~ / n j l  

In order to determine the variance or standard error of the summary rate A = C ?xi, 
we need to know the covariances between the observed numbers of deaths in the 
different age intervals. The covariances are zero if the observations are statistically 
independent. This is true when the rates are estimated from cross-sectional data, for 
then different individuals are at risk in different age intervals. In cohort studies, 
however, the same person may contribute observation time to several contiguous age 
groups. Then, the di are not statistically independent, since the death of an individual 
in one interval precludes his dying in the next. Nevertheless, the discussion in 54.2 
suggests that even in this case the dj may be regarded as being independent for 
purposes of making large-sample statistical inferences. Chiang (1961) argues that the di 
are uncorrelated (see also Keyfitz, 1966). It follows that the standard error is 

Inspection of equation (2.2) emphasizes another potential weakness of direct 
standardization, namely that the a-priori weights y take no account of the precision 
with which the component rates are estimated. The data for a single age interval may 
make a major contribution to the sampling error if the corresponding rate is based on a 
small denominator yet is given a large weight. 

Example 2.4 
We illustrate the calculation of cumulative rates and their standard errors by applying equations (2.1) and 

(2.2) to data from the Montana cohort. Table 2.8 shows the number of respiratory cancer deaths that 
occurred among the smelter workers at ages 40-79 in four calendar periods. The population denominators 
differ slightly from the corresponding entries in Table 2.2, since they were calculated according to another 
approximate method that is described in 03.1. Note that the 40-79-year age range accounts for 
2761288 = 96.5% of the total deaths from this cancer. Since the age intervals are of equal length of ten years 
each, the formula for the standard error may be simplified to 

Cumulative respiratory cancer mortality rates between ages 40-79 are 8.40, 14.07, 13.81 and 14.41% for 
the four calendar periods. These may be compared with cumulative rates of 2.19, 4.21, 6.58 and 8.92% for 
the US white male population for the periods 1940-1949, 1950-1959, 1960-1969 and 1970-1975 (Appendix 
111). Thus the Montana cohort has substantially higher rates in the early decades, but the effect is attenuated 
somewhat by the passage of time. Part of the explanation for the decline in both relative and excess risk is 
that the later calendar years contain more person-years of observation from workers first employed after 
1925, when the smelting process was changed and airborne exposures were presumably reduced (Lee- 
Feldstein, 1983). 

US mortality rates for respiratory cancer are higher than those of the three western states near the smelter, 
namely Montana, Idaho and Wyoming. Use of standard rates from these states alone therefore increases the 
discrepancy between the respiratory cancer rates for the cohort and those for the surrounding general 
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Table 2.8 Respiratory cancer deaths (d), person-years at risk (n, in 
thousands), and death rates ( R  per 1000 person-years) in the Montana 
cohort. Calculation of the  cumulative rate and its standard error 

Age range 
(years) 

Calendar period Totals 

Totals d 
n 
i 

Cumulative rate (%) 
Standard error (%) 

population. Regional rather than national death rates generally make a more appropriate standard, but they 
are often not available for the entire time period of interest or are based on such small populations as to be 
unstable. 

Our next example confirms the basic point that age standardization techniques as 
discussed in this section can obscure important features of the data and should be used 
cautiously in analytical work. 

Fig. 2.3 Thyroid cancer incidence rates, 1935-1975, for Connecticut, USA, age- 
adjusted to the 1950 US population: 0, females; ., males; X, both sexes. 
From Mendelsohn-Pottern et al. (1980) 

1935- 1944 1935-1954 1955-1964 1965- 19.15 

Year of diagnosis 
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Example 2.5 
Figure 2.3 shows age-adjusted incidence rates for thyroid cancer from the Connecticut Tumor Registry by 

sex and ten-year calendar period from 1935-1975 (Mendelsohn-Pottern et al., 1980).. They were calculated 
by direct standardization relative to the 1950 US population (Table 2.5). While they show a smoothly rising 
ir~cidence over the 40-year period, they miss an important feature of the data for females. When the 
age-specific rates are plotted for each of the four periods (Figure 2.4), a clear bimodal age-incidence curve 
emerges for females after 1954, with a first peak between 25 and 44 years of age and a steady increase in 
rates from age 65 on. The first peak was less pronounced in males. It was discovered to be due to increases in 
rates for papillary and follicular carcinomas and was interpreted as probably due to increased childhood 
exposure to therapeutic radiation. 

2.3 Comparative measures of incidence and mortality 

A major goal of standardization, besides combining a set of age-/stratum-specific 
rates into a synoptic figure, is to provide a quantitative measure of the difference in 
rates between the study cohort and a standard population or other comparison group 
that is free from the effects of age or other confounding variables. Rather than taking 
the ratio or difference of the crude mortality rates for cohort versus standard as a 
measure of effect, one first divides the comparison groups into a number of strata that 
are reasonably homogeneous with respect to the confounding variables. The stratum- 
specific rates for both groups are calculated and their differences or ratios are 
summarized in a single comparative figure. Since ratios of age-specific cancer incidence 
rates are typically more nearly constant than are the rate differences (see 82.5 of 
Volume I) ,  a summary ratio is generally the more appropriate measure. However, 
caution must be exercised if, as in the last example, there are substantial variations 
between the comparison groups in the age-specific ratios. In such circumstances the 
investigator is better advised to choose some other measure of effect (such as a rate 
difference) that does remain constant, or else to model the variations in rate ratios or 

. ' rate differences as a function of age and other stratification variables, rather than 
attempting to summarize them in a single number. 

The choice of variables to be used as a basis for stratification or other statistical 
adjustment procedure raises several complicated issues (see 83.4 of Volume 1). One 
generally wants to adjust for variables that are causally related to disease, and the 
differential distribution of which among the comparison groups could therefore result 
in apparent differences in incidence or mortality that are secondary to the causal 
effects. This implies that some prior understanding or hypotheses about the causal 
nature of the disease process necessarily enters into the selection of stratification 
variables. Questions of the statistical significance, in the data under study, of their 
association with either the disease or the exposures are secondary if not irrelevant. Age 
is the paradigm case of a confounding variable since it is usually regarded as an 
independent cause, or at least as a surrogate for the accumulation of independent 
causes, of many cancers and other diseases. 

(a) The comparative mortality figure (CMF) 

A simple summary of the incidence or mortality rate ratios between the cohort and 
standard population that accounts for the possible confounding effects of age or other 
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Fig. 2.4 Age-specific thyroid cancer incidence rates, 1935-1975, for Connecticut, 
USA: . . ., 1965-1975; --, 1955-1964; ----, 1945-1954; 9 

1935-1944. From Mendelsohn-Pottern et al. (1980) 
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variables is obtained by dividing the directly standardized rate for the cohort by the 
standard population rate. Thus if hj* denotes the standard -death rate in stratum j, and 
w, is the standard weight, the comparative mortality figure (CMF) i s  defined by 

Cf=, y d j l n j  
CMF = * c;=, yh, 

The ratio of CMFs calculated for two different cohorts using the same standard rates 
and weights is simply the ratio of the two directly standardized rates. 

When we introduced the concept of direct standardization, the standard weights w, 
were chosen to be equal to the person-years denominators n; of the standard rates. 
With these weights one may write 

C w,djln. C n;dj/nj  
CMF = I - - 

C w,d;/n; D* ' 

where d; and n; denote standard deaths and person-years in stratum j and D* = C d; 
represents the total standard deaths. The second expression is easier for computation. 
An interpretation of the CMF in this case is as the ratio of the number of deaths that 
would be expected in the cohort if it had the same age structure as the standard 
population, using the stratum-specific cohort rates to calculate the expectation, divided 
by the number of deaths in the standard population. This version of the CMF may also 
be recognized as a weighted average of age-specific cohort to standard rate ratios 
rj = xj/k;, 

c;=, ujq 
CMF = c;=, uj ' 

where now the weights uj  = nTv  = d; are equal to the number of deaths in each age 
group in the standard population. 

A major disadvantage of the CMF is its instability when the component rates are 
based on small numbers of deaths. This is easily illustrated by means of a hypothetical 
example. 

Example 2.6 
Table 2.9, adapted from Mosteller and Tukey (1977, p. 237), presents fictitious data involving three age 

strata. The CMF is determined from equation (2.4) as 

CMF = 
150 000(10/10 000) + 70 000(9/3000) + 210(1/1) 

460 
= 1.24. 

However, if the single cohort member in the 85+ age stratum were to survive instead of die, the same 
calculation gives 

CMF = 
150 000(10/10 000) + 70 000(9/3000) + 210(0/1) 

460 
= 0.78. 

Thus, a change in only one of the 46 deaths has made a large difference in the comparative analysis. 
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Table 2.9 Fictitious data used to illustrate the instability 
of the CMFa 

Age stratum Cohort Standard population 
(years) 

Deaths Person-years Deaths Person-years 
(dl ( n )  (dl (n)  

65-84 9 3 000 290 70 000 
85+ 1 1 30 21 0 
Totals 20 13001 460 220210 

a Adapted from Mosteller and Tukey (1977) 

( b )  Standard error of the CMF 

Instead of examining its sensitivity to individual deaths, a more systematic way of 
measuring the statistical precision of the CMF is to calculate its standard error (SE). 
We assume that the standard population is very large relative to the cohort, so that 
sampling errors in the standard rates may be ignored. Then, the standard error of the 
CMF is obtained directly from the standard error of its numerator. From equations 
(2.2) and (2.3) we have 

Corrections to this equation are needed if the standard population is constructed as a 
pool of several cohorts that includes the one for which the CMF is being determined 
(Yule, 1934). 

If the standard error is not regarded simply as a measure of statistical precision, but 
is to be used to construct test statistics or confidence intervals, it is preferable to make 
a transformation to the log scale. This helps to correct the skewness in the statistical 
distribution of the CMF itself and thus improves the normal approximation to the 
distribution of test statistics based on it. The standard error of the transformed CMF is 

2 2 112 SE(CMF) (C:=, w,d,ln,) 
SE(1og CMF) = - - 

CMF qd,ln, 

A test of the null hypothesis CMF = 1 could be effected by referring log CMFISE 
(log CMF) to tables of .the normal distribution, but, in practice, such tests are better 
carried out directly in terms of the age-specific rates, as described in the next chapter. 

Similar considerations apply to a comparison of the CMFs for two different cohorts, 
or equivalently to a comparison of the corresponding directly standardized rates. The 
standard error of the log ratio log (CMF2/CMFl) = log CMF, - log CMF, is given by 
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( c )  The standardized mortality ratio ( S M R )  

The standardized mortality ratio (SMR) has been in service at least since 1786 
(Keiding, 1987). It was used by W.H. Farr in the 1855 annual report of the Registrar 
General of Great Britain to compare mortality in different occupational groups 
(Benjamin, 1968). It is also defined as a weighted average of the age-specific rate ratios 
(equation 2.5), where the weights w j  = n,v are the expected number of deaths for the 
cohort in the jth age group, rather than the number of standard deaths as used for the 
CMF. Thus, the SMR compares the observed number of deaths in the cohort with an 
expected number obtained by applying the standard rates to the cohort age structure. 
In symbols, 

C;=, d, - D 
SMR = 

C;=, njhf E*' 

where D = C dj  denotes the total observed number of deaths and E * is the expected 
number. 

In typical applications, the SMR is used to compare mortality from each of several 
causes of death in the cohort as a whole to that in the general population. Table 2.16, 
for example, shows the SMRs for four causes of death for the Montana smelter 
workers. Diseases identified as occurring in excess may then be studied in greater detail 
in relation to specific exposures. Of course, there is no guarantee that this process will 
identify those diseases or causes of death that are most closely associated with the 
exposures. Cause-specific rates for unexposed cohort members may be less than those 
in the general population, whereas rates for exposed members are higher, and the two 
effects may cancel each other out when averaged over the entire cohort. Nevertheless, 
use of the SMR as a device for screening a number of different causes of death seems 
firmly established. Other techniques to detect cancer sites or causes of death that are 
related to exposure, but without reference to an external standard population, are 
considered in Chapter 3. 

One advantage of the SMR over the CMF is that age-specific numbers of deaths d, 
are not required for its calculation. It suffices to know only the total D. This sometimes 
permits application of the SMR to published data for which the CMF could not be 
used. Details on numbers of deaths by cause, subgroup and age are often omitted from 
official publications for reasons of economy, whereas the subtotals by cause and 
subgroup and the person-years by subgroup and age are given. However, caution is 
required in such circumstances, because if the detailed data are missing there is no way 
of evaluating the hypothesis of constant rate ratios that is needed to justify fully the use 
of these summary measures (see below and also $4.6). 

The SMR is also the preferred measure when analysing cross-sectional data 
according to birth cohort rather than calendar period. The reason is that the age 
intervals for which data are available differ for different generations, a feature that 
precludes calculation of comparable CMFs. Beral (1974) and Beral et al. (1978) have 
provided us with two particularly innovative examples that illustrate this type of 
application. 
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Example 2.7 
Figure 2.5 shows SMRs for ovarian cancers calculated for successive generations of women from 

age-specific mortality rates. Data were available for women aged 30-74 years for the period 1931 to 1973 in 
the USA and for the same ages between 1931 and 1975 in the UK. Age-specific rates for the pooled calendar 
periods were used as a standard, and the SMRs consequently tend to cluster about 100. When the SMRs are 
plotted against average completed family size for the same generations, there is a near perfect negative 
correlation that suggests a possible protective effect of pregiiancy or childbearing (Fig. 2.6). 

In a similar analysis, Figure 2.7 shows plots of SMRs for cervical cancer in England and Wales by 
generation together with the rates of gonorrheal disease that prevailed at age 20 in those same generations. 
The similarity in the shapes of the two curves is striking. 

Another advantage of the SMR, when viewed as a weighted average of the ratios of 
age-specific rates for cohort and standard population, is that the weights q = n i v  
minimize the variance of the weighted average. Assuming that the true rate ratios are 
constant, the SMR is thus the minimum variance estimate of the common rate ratio. In 
practical terms, this means that it tends to be less sensitive to numerical instabilities in 
one or two of the age-specific rates, a property that is easy to demonstrate by returning 
to an earlier example. 

Example 2.6 (contd) 
The expected numbers of deaths for the cohort in Table 2.9 is 

and thus the SMR is 20121.9 = 0.91, indicating a slightly lower death rate among the cohort members as 
opposed to the general population. If the single exposed person in the 85+ age group had died instead of 
lived, we would have SMR = 19121.90 = 0.87, a minor change compared to that observed earlier with the 
CMF. 

Another means of demonstrating the greater numerical stability of the SMR is to 

Fig. 2.5 Age-standardized mortality ratios for ovarian cancer in England and Wales 
(a) and the USA (0) for generations of women born at five-year intervals 
between 1861 and 1931. From Beral et al. (1978) 

r , l , l l , , , , , , , , l  

1861 1871 1881 lWl 1901 191 1 1921 1931 

Year of birth 
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Fig. 2.6 Age-standardized mortality ratios for ovarian cancer plotted against the 
average completed family size (number of children) for different generations 
of women in England and Wales (a) and the USA (0). The mid-year of 
birth of each generation is shown in parentheses. From Beral et al. (1978) 

Average number of children 

examine its standard error. Under the previous assumption that the numbers of deaths 
dj in the different (age) strata are uncorrelated, whereas sampling errors associated 
with the standard population are negligible, we calculate 

or, more appropriately 

- SE(1og SMR) = SE(SMR)/SMR = 1/D 'I2. (2-9) 

Since the standard error of the SMR depends only on fluctuations in the total number 
rather than in the age-specific numbers of deaths, it is generally smaller than that of the 
CMF. As already noted, under the hypothesis of constant age-specific rate ratios, the 
SMR weights the ratios optimally, in inverse proportion to their statistical precision, 
whereas with the CMF the weights associated with unstable ratios may be much larger. 
The SMR is thus more appropriate when the sample is small and questions of statistical 
significance are at issue; we examine methods of making statistical inferences about this 
measure in more detail than we did for the CMF. 
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Fig. 2.7 Standardized mortality ratios (SMR) from cervical cancer by birth cohort 
among women born between 1902 and 1947 in England and Wales and 
incidence of gonorrhoea among women in England and Wales, 1925-1972. 
From Beral (1974) 
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(d) Testing the signijicance of the observed SMR 

The first question of interest relating to the SMR is simply whether the observed 
cause-specific mortality in the study cohort can be explained adequately by the 
standard rates and the play of chance. Conventional approaches (Monson, 1980) use 
the simple continuity corrected chi-square statistic 

= ( ID - E* I - 1/2)2 
E* 

in order to test whether the observed number of deaths is significantly different from 
the number expected. This statistic is derived from the usual assumption that, under 
the null hypothesis, the observed number of deaths D is approximately Poisson 
distributed with mean and variance both equal to E* (Armitage, 1971, section 4.3). It 
is referred to tables of chi-square with one degree of freedom, or else its (signed) 
square root x is treated as an equivalent normal deviate. The 112 correction in the 
numerator is intended to improve the correspondence between the percentiles of the 
discrete Poisson distribution and the continuous normal one (see 94.3 of Volume 1). 

When the number of deaths is small, the Poisson distribution is rather skewed, and 
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the normal approximation implicit in the use of (2.10) will be inadequate. An 'exact' p 
value may be calculated using tail probabilities of the Poisson or (equivalently) 
chi-square distributions (Pearson & Hartley, 1966). However, these are tabled for only 
a limited range of values. Byar (see Rothman & Boice, 1979) suggested an extremely 
accurate approximation to the exact Poisson test, which is obtained by calculating the 
deviate 

where D = D if D exceeds E*, and D = D + 1 otherwise, and referring it to tables of 
the unit normal distribution (Rothman & Boice, 1979). Alternatively, and somewhat 
easier to remember, we may use the fact that the square-root transform is 'variance 
stabilizing' (Armitage, 1971), so that D ' ~  is approximately normal with mean (E*)'" 
and variance 114 under the null hypothesis. This means treating 

as a standard normal deviate. 

(e) Confidence intervals for the SMR 

A second statistical question of common interest is to determine a range of possible 
values for the true SMR that are reasonably consistent with the observed data. If the 
test of the null hypothesis gives the verdict 'not significant', it may be important to 
demonstrate that the study had sufficient precision to render large differences between 
cohort and standard rates implausible. Or, if the result is positive, one may wish to 
examine its consistency with that of other studies. Putting a confidence interval around 
the observed SMR can achieve these goals. 

Exact confidence limits for the SMR are obtained by first finding lower (L) and 
upper (U) limits pL and pu for the mean p = E(D) of the Poisson distributed 
observation D, and then calculating SMRL = pL/ E* and SMRu = pu /E  *. Exploiting 
the general relationship between confidence limits and -test statistics ($54.2 and 4.3 of 
Volume I),  the limits on p may be found by solution of equations involving Poisson 
probabilities. Table 2.10 presents exact 95% limits for a Poisson mean for selected 
values of D ranging from 1 to 1000 (Haenszel et al., 1962). 

For other confidence levels and values of D not shown in Table 2.10, Byar's 
approximation is sufficiently accurate that one may avoid the iterative calculations 
needed for the exact results. Thus, for a 100(1 -a)% confidence interval, we have the 
approximate limits (Rothman & Boice, 1979) 

and 

where Zd2 denotes the 100(1- a/2) percentile of the unit normal distribution. 
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Table 2.10 Tabulated values of 95% confidence limit factors for 
estimating a Poisson-distributed variablea 

Observed Lower Upper Observed Lower Upper Observed Lower Upper 
number limit limit number limit limit number limit limit 
on which factor factor on which factor factor on which factor factor 
estimate estimate estimate 
is based is based is based 
(n) (L) (U) (n) (L) (U) (n) (L) (U) 

a From Haenszel et a/. (1962) 

Somewhat less accurate but more easily remembered approximate limits for the 
SMR may be derived from analogues to the other statistics (2.10) and (2.12) used to 
test .the null hypothesis. Specifically, denoting by 8 the unknown value of the SMR, we 
solve the equation (D - ~ E ) ~ / B E  = Z:,, (ignoring the continuity correction) to find 

1 
SMRi= B L =  SMR 1 + - ~ $ ~ { 1 -  (1 + 4D/2:/J1"}] [ 2D 

and 

1 
SMRU = Bo = SMR 1 + - 2:,{1+ (1 + 4~/2:~~)'"}] [ 2D 

as the limits derived from the standard chi-square test. We have not used a continuity 
correction for this calculation, since to do so gives less accurate limits empirically. 
Alternatively, limits based on the square-root transform are obtained by solving the 
equation 2{D1I2 - ( 8 ~ ) " ~ )  = ZLl2, which gives 
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and 

The use of D + 1 in the second equation is made on strictly empirical grounds in order 
to improve the approximation for small D (compare equation (2.13)). 

The exact Poisson limits and all three sets of approximate confidence limits 
(2.13)-(2.15) can b e  expressed in the form SMRL = S M R  x ML and SMRu = S M R  x 
Mu, where ML and Mu are multipliers determined by a and D. Table 2.11 compares 
the multipliers obtained by each method for several values of D, a = 0.05 and a = 0.01 
(95% and 99% confidence). Byar's approximation is shown to be accurate even for 
quite small numbers of deaths. The square-root transform performs reasonably well as 
soon as D exceeds 10 or so. Especially as regards the lower bound, which is usually of 
prime interest, however, the approximation based on the simple chi-square statistic is 
not very satisfactory. 

Table 2.11 Exact and approximate multipliers for computing confidence inter- 
vals for the SMRa 

No. of Exact limits Byar's approximation Square root Chi-square 
deaths (equation 2.13) (equation 2.15) (equation 2.14) 
( D )  

Lower Upper Lower Upper Lower Upper Lower Upper 

95% intervals 
5.565 0.000 
3.61 1 0.094 
2.922 0.188 
2.561 0.260 
2.334 0.31 5 
1.839 0.476 
1.650 0.558 
1.545 0.61 0 
1.476 0.646 
1.31 8 0.742 
99% intervals 
7.471 0.000 
4.656 0.008 
3.671 0.066 
3.157 0.1 27 
2.836 0.1 80 
2.142 0.351 
1.879 0.445 
1.734 0.507 
1.641 0.551 
1.426 0.669 

a Note: In order to obtain lower and upper limits for an SMR based on the indicated number of deaths, 
the computed SMR is multiplied by the values shown. 
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Example 2.8 
Fifteen deaths from bladder cancer were recorded prior to 1964 among the Montana smelter workers, 

whereas only 8.33 were expected from US population rates: SMR = 1518.33 = 1.80. The 95% confidence 
limits found from the exact multipliers corresponding to D = 15 in Table 2.10 are SMR, = 0.560 x 1.80 = 
1.01 and SMR, = 1.649 X 1.80 = 2.97. Those based on Byar's formula are almost the same, and those for the 
square-root transform only very slightly wider (1.00, 2.98). However, the limits based on the chi-square test 
statistic (1.11, 2.97) have a lower limit which is seriously in error, as do those based on the standard error of 
log(SMR), namely 1.80 x exp ( f 1 . 9 6 / m )  = (1.09, 2.99). 

Since the exact lower limit just excludes 1.0, we know that the exact two-sided significance level must be 
just under 0.05. Equation (2.11) gives 2 = 1.98 (p = 0.048), whereas with (2.12) we find = 1.97 (p = 0.049). 
The conventional formula (2.10) yields 2 =2.14 (p =0.033) with continuity correction and x =2.31 
(p = 0.021) without. This reinforces our conclusion that the test statistics (2.11) and (2.12) should be used in 
preference to (2.10). 

( f )  SMR versus CMF: a tradeoff between bias and variance 

Up until now we have emphasized the statistical advantages of the SMR over the 
CMF, but, unfortunately, this is not the entire story. The major weakness of the SMR 
is that ratios of SMRs for two comparison groups may not adequately represent the 
ensemble of ratios of their component age- or stratum-specific rates (Yule, 1934). In 
fact, as the schema shown in Table 2.12 makes clear, there is a precise analogy with the 
arithmetic of statistical confounding. 

The ratios of SMRs for Cohort 1 versus Cohort 2 within each age group equal the 
odds ratio calculated from the corresponding 2 x 2 table, and likewise the overall SMR 
ratio is the odds ratio from the totals table. According to the general principle of 
statistical confounding (83.4 of Volume I) ,  it follows that, even if the two age-specific 
odds ratios are equal, they may differ from the pooled odds ratio if both (i) the SMRs 
for each cohort vary from one age group to another and (ii) the age distributions of the 
two cohorts, and hence the distributions of expected numbers of deaths, are disparate. 
Since the age-specific ratios of SMRs equal the ratios of the corresponding rates 
(assuming that the standard rates are used in calculation of the expected numbers), it 
follows that the ratio of two SMRs determined by pooling observed and expected 
deaths across age groups may sometimes lie completely outside the range of the 
age-specific rate ratios. 

The fictitious data in Table 2.13 provide a clear numerical illustration of this 
phenomenon. The overall SMR for each cohort is a weighted average of the two 

Table 2.12 Confounding remaining after indirect standardization 

Age group 1 Age group 2 Total 
- - 

Observed Expected Observed Expected Observed Expected 

Cohort 1 dl, e 7 dl 2 e?2 01 E 7 
Cohort 2 4, e l  d22 e,+, 4 E; 
SMR, dl 1 e,", d12eZ2 

-- 

SMR2 4 1  ~ T I  d22e7z 4 E 7  

d and D = number of deaths observed 
e* and E X  = number of deaths expected 
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Table 2.13 Example of a misleading ratio of SMRsa 

Cohort Age range (years) 

20-44 45-64 Total (20-64) 

d 100 1600 1700 
I e* 200 800 1000 

SNIR, (%) 50 200 170 

d 80 180 260 
II e* 120 60 180 

SMR, (%) 67 300 144 

SMR,/SMR, 75 67 118 

a Adapted from Kilpatrick (1963) 
d = number of deaths observed 
e* = number of deaths expected 

age-specific dle* ratios, the weights being proportional to the expected number of 
deaths. Since Cohort 1 has more older people, the high dle* ratio for the 45-64-year 
age interval is weighted more heavily, whereas in Cohort 2 much more emphasis is 
given to the lower dle* ratio in the 25-44-year age interval. The overall result is a 
change of sign in the apparent effect, from an excess of deaths in Cohort 2 on an 
age-specific basis to an apparent excess in Cohort 1 when the data are pooled. 

The CMF does not suffer from this problem. Ratios of two CMFs, being ratios of 
directly standardized rates, can be expressed as a weighted average of the age-specific 
rate ratios. If these are all equal to some constant value 8, therefore, the ratio of 
CMFs must also equal 8 .  However, this equality does not hold for the SMRs, unless, 
in addition, the age-specific rates for each comparison group are also in constant 
proportion with those for the standard population. This bias in the SMR has led many 
authors to conclude that the CMF is the preferred measure. Miettinen (1972) says of 
the SMR that 'estimates computed in this manner are internally standardized but not 
mutually comparable'. Kilpatrick (1963) notes that 'the ratio of two CMFs is a CMF 
but the ratio of two SMRs is not an SMR'. 

In spite of these criticisms, the SMR and the CMF usually provide numerical results 
that are remarkably close in practice. In cases in which they differ, moreover, it is not 
necessarily true that the CMF is more nearly 'correct'. Table 2.14, compiled by the 
Office of Population Censuses and Surveys (1978), examines occupations of British 
men for which the CMF and SMR differ by 5 or more when each was expressed as a 
percentage. The large discrepancy between the two measures for trainee craftsmen in 
engineering trades is caused by undue weight in the CMF to the lack of deaths among 
men over 25 years of age, even though these men accounted for only 1% of the 
population. Since only one death in the 55-64-year age group would have increased the 
CMF from 1 to 35, this is another example of its extreme sensitivity to small numbers 
and serves as a reminder that we need to consider variance as well as bias in our choice 
of a summary statistic (see also Example 2.6). 

The CMF may itself overemphasize biases in the basic data. As noted by the Office 
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Table 2.14 Occupation units for which the CMF and SMR differa 

Occupation unit SMR CMF Age group (years) 
( % I  (%) 

No. Title 15-24 25-34 35-44 45-54 55-64 

Major differences (10 or more) 
009 Workers below ground 

032 Trainee craftsmen 
(engineering trades) 

117 Pilots, navigators and 
flight engineers 

151 Fire brigade officers 
and men 

152 Police officers and men 

187 Chiropodists 

302 Metallurgists 

221 Armed forces (UK) 

222 Armed forces (foreign) 

Minor differences (5-9) 
61 Shoemakers and 

repairers 
114 Other labourers 

134 Lorry drivers' mates 
van guards 

158 Domestic 
housekeepers 

163 Kitchen hands 

164 Maids, valets and 
related workers 

204 Chemists 

All men 

Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 

Mortality ratio 
% Population 
Mortality ratio 
% Popoulation 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
% Population 
Mortality ratio 
Population 
(15 - 64= 100) 

a From Office of Population Censuses & Surveys (1978) 

of Population Censuses and Surveys for the data in Table 2.14: 

'Pilots, policemen, firemen and members of the armed forces all recorded differences 
between the SMR and CMF of greater than 10. Although men in these units generally 
retired before 55 years of age and took up other work their main occupations instead of 
their last occupations were often recorded when the deaths were registered. The 
age-specific mortality ratio in the 55-64 age group was consequently inflated by this 
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bias. The CMF placed considerable weight on the death rates in this age group since 
over 60 percent of the standard deaths occurred at this age. Since however for each of 
these occupation units the population in this age group was small, the SMR placed less 
weight on these high death rates, compensating for the bias introduced.' 

Silcock (1959) determined analytically three conditions under which the CMF and 
SMR give substantially different results. Denote by pj = n j / N  and p7 = n;/N* the age 
distributions of the comparison group and the standard population, both expressed as 
proportions, and by f i j  and A; the corresponding rates. Then the conditions are: (i) the 
differences p i - p l  must be non-negligible; (ii) the ratios r, = L , / A ;  must vary 
substantially with age 0'); and (iii) the differences in (i) and the ratios in (ii) must be 
correlated, such that positive differences tend to occur with high ratios and negative 
differences with low ratios, or vice versa. The 'data7 in Table 2.13 confirm that these 
conditions hold in situations where the CNIF and SMR differ. 

( g )  Summary ratios under heterogeneity of effecl 

Much of the preceding discussion of the relative merits of the CMF and SMR was 
conducted under the (sometimes only implicit) hypothesis that each measure was 
estimating the same quantity, namely the ratio of age-specific rates assumed constant 
from one age group to the next. The major exception was the fact just cited that the 
two measures could yield substantially different results only if the age-specific ratios 
varied in tandem with differences in the age distribution. Our basic viewpoint remains 
that summary measures should be avoided whenever there is substantial heterogeneity 
in the age-specific quantities being summarized. 

Other authors have been more concerned with the issue of how to choose a summary 
measure in order to arrive at a scientifically meaningful result, even in the face of 
heterogeneity. Greenland (1982) notes that the CMF, viewed as a weighted average of 
ratios with weights equal to standard deaths (equation 2.5), represents the proportion- 
ate increase (or decrease) in the total disease rate that would be expected to occur in 
the standard population if its members had the same exposures as those in the cohort. 
Similarly, the SMR represents the proportionate increase in the cohort disease rate due 
to the exposures that occurred as a result of cohort membership. Following Miettinen 
(1976), he proposes yet another summary measure that uses the age distribution of the 
combined (cohort plus standard) population for calculation of the weights used to 
mutliply the age-specific ratios, namely: uj = (nj + n,*)jli*. 

Several other proposals are reviewed by Kilpatrick (1963) and Fleiss (1973). The 
relative mortality index (RMI) weights the ratios r;- = f i j / A 7  by the age distribution of 
the cohort: 

C;=,.njAjlA7 ;*;=,dj/A7 
RMI = - - 

J 
C;;l nj Cj=lnj  * 

Liddell (1960) examines some properties of this measure, which he credits to Kerridge 
(1958) and Doering and Forbes (1939). Yerushalmy (1951) and Elveback (1966) use 
the length of the age interval to weight these same ratios, while Haenszel (1950) 
considers a ratio of directly standardized rates with weights equal to the number of 
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years of working life (up to age 65) lost. Of course, if the ratios are constant, none of 
these schemes is optimal in the sense of minimum variance, as was true of the SMR, 
nor has any of them come into common use. 

2.4 Proportional measures of incidence and mortality 

Proportional mortality studies were mentioned in 01.6 as a timely and cost-effective 
way to provide a rough measure of the effect of cohort membership or of specific 
exposures on mortality caused by particular diseases. If the only data available concern 
incident cancer cases, information about their distribution by topographic site or 
histology can alert one to the possibility of unusual patterns of incidence that should be 
investigated using more orthodox methodologies. It is especially important in such 
studies to try to ascertain all deaths or cases that occur in a defined population during a 
defined period, or else to ensure that the probabilities of ascertainment do not depend 
on the cause of death or type of cancer. Otherwise one runs the risk of making 
misleading inferences due to selection bias. Even if such precautions are taken, major 
problems of interpretation remain due to the logical impossibility of making compara- 
tive statements about rates from 'numerator' data only 

In this section we present the usual epidemiological methods for adjusting numerator 
or proportional mortality data so as to account for the differences in age distribution 
between the study group and the standard population. The same techniques may be 
used to control the effects of calendar year and other potentially confounding variables. 
We also show some empirical comparisons of the different results obtained from SMR 
and proportional mortality analyses when both are applied to the same set of data. A 
more theoretical evaluation of the behaviour of the proportional mortality measures is 
presented in 04.7, together with some suggestions for statistical modelling of this type 
of data. 

(a) The proportional mortality ratio (PMR) 

The basic idea of proportional mortality analysis is to compare the fraction of cohort 
deaths due to a specified cause with the corresponding fraction for the general 
population. Denote by dj the number of deaths from the cause of interest observed in 
age interval j in the study group, and by d; the corresponding number of standard 
deaths. Likewise denote by tj and t,? the total numbers of age-specific deaths, regardless 
of cause. Then, with D = C dj, D* = C d,?, T = C ti and T* = C t,? indicating the totals 
of these quantities summed across age strata, the ratio (DIT) t (D*IT*) of the two 
proportions provides a crude measure of relative effect. Note that this can also be 
expressed as the ratio of the observed number of cause-specific deaths, D, to the 
number expected by applying the standard proportion to the total deaths, namely 
T x (D*IT*). 

Since the death rates, and thus the proportions of deaths for different causes, depend 
on age in different ways, the age distribution of the comparison group can influence the 
overall proportion DIT. The conventional approach to adjusting for such age 
differences (Monson, 1980) is to calculate the expected numbers on an age-specific 
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basis and then sum up. This yields a measure known as the proportional mortality ratio 
(PMR) , namely: 

PMR = 
D 

C;=, t,(d;/t;) ' 

Under the null hypothesis that the age-specific proportions agree between cohort and 
standard population, the PMR will be approximately unity in large samples of data, 
regardless of differences in the age distributions. However, unless the disease is rare, 
the PMR does not estimate any well-defined or appropriate parameter under 
alternative hypotheses of interest ($4.7). For this reason, we do not recommend that 
statistical inference procedures be conducted on the PMR, but suggest instead that one 
use the parameter estimates, tests and confidence limits produced as a by-product of 
the model fitting described later. Nevertheless, we record here an equation for the 
standard error of log(PMR) that is based on the notion that the denominator is fixed 
whereas the numerator D is a sum of independent binomial variables: 

(CJ d.(t.-d,)/t,)ln 
SE(1og PMR) = '=' ' ' 

D 

The simpler equation (2.9) can be viewed as a conservative approximation to (2.17), to 
be used with the PMR as well as the SMR provided that the fraction of deaths due to 
the cause of interest is quite small. 

( 6 )  The PMR and the relative SMR 

Several investigators have noted that, in practice, the PMR for a given cause of 
death is approximately equal to the SMR for that cause divided by the SMR for all 
causes combined. When there is no stratification by age or other factors one has: 

PMR = 
D I T  - DIN TIN 

- - - - SMR 
D*lT* D*lN* ' T*IN* SMR(al1)' 

where SMR(al1) denotes the all-causes ratio (Decoufle et al., 1980). This equality does 
not hold, however, for the usual age-standardized PMRs and SMRs. Kupper et al. 
(1978), who refer to the ratio of cause-specific to all-causes SMR as the 'relative 
standardized mortality ratio' (RSMR), have attempted to establish confidence bounds 
within which the ratio of the two sides of the equation would be expected to lie with 
high probability. Unfortunately, their method relies on an assumption that cannot be 
verified from numerator data alone, namely that the age distribution of the deaths that 
would be expected to occur in the comparison group by applying the standard rates is 
roughly the same as the age distribution of the standard deaths. If this condition does 
not hold, the magnitude of the difference between the two sides of the equation could 
be larger than their calculations would suggest. Nevertheless, it is a frequent empirical 
finding that the PMR and RSMR tend to agree, probably because the age distributions 
in question are rarely all that different. 

Table 2.15, adapted from Decouflk et al. (1980), illustrates the typical agreement 
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Table 2.15 Cause-specific mortality experience of non-white male foundry workers 
employed at a plant between 1938 and 1967" 

Cause (ICD, 7th revision) No. of observed SMR (%I  PMR (%) RSMR (%) 
deaths 

All causes 172 55 100 100 
Cancer (140-205) 35 88 153 1 60 

Digestive (1 50-1 59) 14 92 161 167 
Respiratory (1 60-1 65) 12 114 199 207 
All other 9 65 11 1 118 

Stroke (331,332) 9 36 62 65 
Circulatory disease (400-468) 54 53 93 96 
Accidents, suicide, homicide 27 52 107 95 
All other causes 47 48 92 87 

a Adapted from Decouflb et a/. (1980) 
SMR =standardized mortality ratio 
PMR = proportional mortality ratio 
RSMR = relative standardized mortality ratio 

found between PMRs and RSMRs for the same cause. In their example, the overall 
mortality of the workers was so low in comparison with that of the general population 
that there appeared to be a marked excess of respiratory cancers when numerator data 
alone were considered. If one believed that the selection bias that operates to make 
industrial workers healthier than the general population applied with equal force to all 
diseases, then it would be reasonable to conclude that the elevated PMR observed for 
respiratory cancer was indicative of an effect of exposure on that disease. However, a 
more plausible explanation in this case is that the elevated PMR results from the 
selection bias being less pronounced for cancer than it is for other diseases (Enterline, 
1975). In view of the uncertainty surrounding these assumptions, use of the RSNIR and 
PMR remains controversial (Wen et al., 1983). 

Our last example illustrates a number of the basic calculations introduced throughout 
the chapter using data from the Montana cohort. 

Example 2.9 
Table 2.16 presents the CMFs, SMRs, PMRs and RSMRs for four causes of death for the 8014 workers in 

the Montana cohort. The 1950 US standard population (Table 2.5) provided the weights used for direct 
standardization and calculation of the CMF. Expected numbers needed for determination of the SMRs were 
obtained by multiplying the exact person-years shown in each cell of Table 2.2 by the corresponding rates for 
US white males (Appendix 111) and then summing. The denominators of the CMF statistics were obtained by 
applying the standard weights, a function of age alone, to the standard rates, which varied by both age and 
year. Thus, we have used equation (2.3) to calculate the CMF, rather than the simpler equation (2.4), which 
applies only when the weights are proportional to the denominators of the standard rates. The PMR was 
determined from equation (2.16); and the standard errors for the logarithms of the CMF, SMR and PMR 
(which equal the standard errors of the estimate expressed as a percentage of the estimate) were determined 
from equations (2.7), (2.9) and (2.17), respectively. 

This working cohort was unusual in having an all-causes summary rate ratio (CMF or SMR) substantially 
above 100%. The PMRs and RMSRs show good agreement, as do the CMFs and SMRs. Note that the 
standard errors of log(PMR) are less than those for log(SMR). Part of the difference is due to the inherently 
smaller degree of variability in a proportion than in a rate. For example, had we used equation (2.9) to find 
the standard error of log(PMR) for circulatory diseases, the result would have been SE(1og PMR) = 2.6% 
rather than 1.9%. Similarly, the log(SMRs) have smaller standard errors than do the log (CMFs). Besides 
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Table 2.16 Mortality ratios for the Montana cohort 

Cause of death 

All causes All cancers Respiratory Circulatory 
cancer disease 

No. of observed deaths 3404 62 1 288 1535 
No. of expected deaths 2761.0 485.4 137.1 1473.4 
CMF(x100) f SE(%)= 111.4f 2.5% 127.8f 5.0% 234.6f 7.0% 93.1 f 3.1% 
SMR(x 100) f SE(%Ia 123.3f 1.7% 127.9.f 4.0% 210.1 f 5.9% 104.2 f 2.6% 
PMR(%) f SE 100 102.9 f 3.6% 166.4 f 5.5% 84.5 f 1.9% 
RSMR(%) 100 103.7 170.4 84.5 

aStandard errors are computed on a log scale, e.g., SE(logCMF) =0.025, and we thus express the standard 
deviations of the estimate as a percentage of the estimated value 

CMF = comparative mortality figure 
SMR = standardized mortality ratio 
PMR = proportional mortality ratio 
RSMR = relative standardized mortality ratio 

the excesses of respiratory cancer and circulatory disease (mostly diseases of the heart) shown in Table 2.15, 
there were more deaths observed from tuberculosis, cirrhosis of the liver and emphysema than would have 
been expected from the standard rates (Lee-Feldstein, 1983). 




