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CHAPTER 4 

FITTING MODELS TO GROUPED DATA 

A major goal of the statistical procedures considered in the preceding two chapters 
was to condense the information in a large set of incidence or mortality rates into a few 
summary measures so as to estimate the effects that a risk factor has on the rates. A 
secondary goal was to evaluate the statistical significance of the effect estimates at 
different levels of exposure in order to rule out the possibility that the observed 
differences in rates were due simply to the play of chance. Some attention was devoted 
also to determining whether the effect measures used (relative risks) were reasonable 
summary measures in the sense of remaining relatively constant from one age stratum 
to the next, or whether, instead, it was necessary to describe how the effect was 
modified by age or other variables used for stratification. 

Role of statistical modelling 

Estimation of risk factor effects and tests of hypotheses about them are also the goals 
of statistical modelling. The statistician constructs a probability model that explicitly 
recognizes the role of chance mechanisms in producing some of the variation in the 
rates. Observed rates are regarded as just one of many possible realizations of an 
underlying random process. Parameters in the model describe the systematic effects of 
.the exposures of interest, and estimates of those parameters, obtained during the 
process of fitting the model to the data, serve as summary statistics analogous to the 
SMR or Mantel-Haenszel estimates of relative risk. Evaluation of dose-response 
trends is conducted in terms of tests for the significance of regression coefficients for 
variables representing quantitative levels of exposure. Additional parameters may be 
incorporated in order to model variations of the exposure effects with age, calendar 
year or other stratum variables. 

Statistical modelling has several advantages over standardization and related 
techniques. It facilitates consideration of .the simultaneous effects of several different 
exposure variables on risk. Applied to the study of nasal sinus and lung cancers in 
Welsh nickel workers, for example, the effects of period of employment, age at 
employment and years since employment may be estimated in a single model equation 
(see $4.3) rather than in separate stratified analyses (Tables 3.12 and 3.13). If 
quantitative variables are available that specify the timing and degree of exposure, then 
a more economical description of the data often may be given in terms of 
dose-time-response relationships rather than by making separate estimates of risk for 
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each exposure category. Such quantitative expression of the results facilitates the 
interpolation of risk estimates for intermediate levels of exposure. It is essential for 
extrapolation beyond the range of the available data, although this is usually a 
hazardous undertaking. Examination of the goodness-of-fit of the model to the 
observed rates alerts the investigator to situations in which the simple model 
description is inadequate or in which important features of the data are being 
overlooked. Estimates of relative risk obtained by model fitting generally have greater 
numerical stability than those computed from standardized rates. 

There are, of course, some apparent drawbacks to model fitting that need to be 
considered along with the advantages. Perhaps the greatest problem lies in the 
parametric specification of the model. While explicit theories about the nature of the 
disease process are sometimes available to suggest models with a particular mathemati- 
cal form (see Chapter 6), more often the models used in statistical data analysis are 
selected on the basis of their flexibility and because the associated fitting procedures 
are well understood and convenient. Alternative models may have quite different 
epidemiological interpretations. Examining the relative goodness-of-fit of two distinct 
model structures enables one to judge whether the evidence favours one interpretation 
over another, or whether they are both more or less equally in agreement with the 
observed facts. Unfortunately, epidemiological data are rarely extensive enough to be 
used to discriminate clearly between closely related models, and some uncertainty and 
arbitrariness in the process of model selection is to be anticipated. Nevertheless the 
very act of thinking about the possible biological mechanisms that could have produced 
the observations under study can be beneficial. Consideration of possible model 
structures is not strictly necessary when applying the elementary techniques, but even 
these implicitly assume some regularity in the basic data and, as we have seen, may 
yield misleading answers if it is absent. 

Scope of Chapter 4 

This chapter develops methods for the analysis of grouped cohort data that are based 
on maximum likelihood estimation in Poisson models for the underlying disease rates. 
Additive and multiplicative models are introduced in 04.1 as a means of summarizing 
the basic structure in a two-dimensional table of rates. It is again shown that the ratio 
of two CMFs appropriately summarizes age-specific rate ratios under the multiplicative 
model, but that the ratio of two SMRs does not unless additional assumptions are met. 
The basic process of model fitting is illustrated by an analysis of Icelandic breast cancer 
rates classified by age and birth cohort. 

Section 4.2 contains more technical material that justifies the use of the Poisson 
model as the basis for maximum likelihood analysis of grouped cohort data. It may be 
omitted on a first reading. 

Methods of fitting multiplicative models to grouped cohort data consisting of a 
multidimensional cross-classification of cases (or deaths) and person-years de- 
nominators are developed in 04.3. The computer program GLIM is shown to offer 
particularly convenient features for fitting Poisson regression models. Quantities 
available from the GLIM fits are easily converted into 'deletion diagnostics7 that aid in 
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assessing the stability of the fitted model under perturbations of the basic data. These 
techniques are by no means limited to the analysis of relative risk: 04.4 shows that 
GLIM may be used also to fit a class of generalized linear models that range from 
additive to multiplicative. Methods for selecting the model equation that best describes 
the structure in the data are illustrated by application to a rather simple problem 
involving coronary deaths among smoking and nonsmoking British doctors. 

The Montana smelter workers data from Appendix V are reanalysed in 004.5, 4.6 
and 4.7 in order to demonstrate the close connection between multiplicative models 
and the elementary techniques of standardization and Mantel-Haenszel estimation 
introduced in 003.4, 3.6 and 3.7. Section 4.5 considers internal estimation of 
background rates from study data, whereas 04.6 develops analogous models that 
incorporate external standard rates. Proportional mortality analyses based on fitting of 
logistic regression models to case-'control' data, both with and without reference to 
external standard proportions, are developed in 84.7. 

More comprehensive analyses of the Montana data, using original records not 
published here, appear in 004.8 and 5.5. Some additional models that do not fall 
strictly under the rubric of the generalized linear model are considered in the last two 
sections of the chapter. Foremost among these is the additive relative risk model 
whereby different exposures act multiplicatively on the background rates, but combine 
additively in determining the relative risk. This is illustrated in 04.9 by application to 
data on lung cancer deaths among British doctors. GLIM macros are presented for 
fitting a general class of relative risk models which includes both the additive and 
multiplicative as special cases. In 04.10, grouped data from the Welsh nickel refiners 
study are used to illustrate the fitting of a model in which the excess risk of lung cancer 
(over background based on national rates) is expressed as a mutliplicative combination 
of exposure effects. These results are contrasted with those of a more conventional 
multivariate analysis of the SMR under the multiplicative model. 

Some familiarity with the principles of likelihood inference and linear models is 
assumed. Readers without such background are referred to 006.1 and 6.2 of Volume 1, 
and the references contained therein, for an appropriate introduction. 

4.1 Additive and multiplicative models for rates 

Most of the essential concepts involved in statistical modelling can be introduced by 
considering the simple example of a two-dimensional table of rates. The data layout 
(Table 3.4) consists of a table with J rows (j = 1, . . . , J )  and K columns (k = 

1, . . . , K). Within the cell formed by the intersection of the jth row and kth column, 
one records the number of incident cases or deaths djk and the person-years 
denominators njk. For concreteness, we may think of j as indexing J age intervals and k 
as representing one of K exposure categories. 

The observed rate in the (j, k)th cell may be written ijk = d,k/n,k. This is considered 
as an estimate of a true rate Ajk that could be known exactly only if an infinite amount 
of observation time were available. In order to account for sampling variability, the djk 
are regarded as independent Poisson variables with means and variances E(djk) = 
Var (djk) = Aiknjk. The denominators njk are assumed to be fixed. The rationale for this 
Poisson assumption is discussed in 004.2 and 5.2. 
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The goal of the statistical analysis is to uncover the basic structure in the underlying 
rates Ajk, and, in particular, to try to disentangle the separate effects of age and 
exposure. This is accomplished by introducing one set of parameters or summary 
indices which describe the age effects and another set for the exposures. However, such 
a simple description makes sense only if the age-specific rates display a degree of 
consistency such that, within defined limits of statistical variation, the relative position 
of each exposure group remains constant over the J age levels (see Chapter 2, Volume 
1). If one exposure group has higher death rates among young persons, but lower rates 
among the elderly, use of a single summary rate (or the analogous parameter in a 
statistical model) to represent the exposure effect will obscure the fact that the effect 
depends on age. 

(a) The model equations 

Various possible structures for the rates satisfy the requirement of consistency. In 
particular, it holds if the effect of exposure at level k is to add a constant amount Pk to 
the age-specific rates 4, for individuals in the baseline or nonexposed category (k = 1). 
The model equation is 

where a;. = Ail and pk (PI = 0) are parameters to be estimated from the data. 
If additivity does not hold on the original scale of measurement, it may hold for 

some transformation of the rates. The log transform 

log Ajk = a, + p, 
yields the multiplicative model 

where now q = log 8, = log 5, and pk = log qk. In this case, qk represents the relative 
risk (rate ratio) of disease for exposure at level k relative to a baseline at level 1 
(9% = 1). 

The excess (additive) and relative (multiplicative) risk models are the two most 
commonly used to describe the relationship between the effects of exposure and the 
effects of age and other 'nuisance' factors that may account for background or 
spontaneous cases. Both have been used to describe different aspects of radiation 
carcinogenesis in human populations (Committee on the Biological Effects of Ionizing 
Radiation, 1980). The upper two panels of Figure 4.1 contrast the age-incidence curves 
that result from the two models when a given dose of radiation produces a constant 
effect that persists for life after a latent period. Due to the sharp rise in background 
incidence with age, relative risk estimates derived from current data generally predict a 
greater lifetime radiation risk than do estimates of additive effect. The two lower 
panels of Figure 4.1 illustrate the effect of age at irradiation on risk for a multiplicative 
model in which the radiation effect itself is concentrated in the period from 1, to l2 
years after exposure. However, this complication of a limitation of the period of effect 
is not considered further in this section. 
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Fig. 4.1 Radiation-induced cancer effect superimposed on spontaneous cancer .in- 
cidence by age. Illustrations of various possibilities; X,, age at exposure; 1, 
minimal latent period. From Committee on the Biological Effects of Ionizing 
Radiation (1980) 
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Considerable attention has been given in recent years to the problems of dis- 
criminating between additive and multiplicative models using epidemiological data 
(Gardner & Munford, 1980; Thomas, D.C., 1981; Walker & Rothman, 1982; Breslow 
& Storer, 1985). One possible approach is presented in $4.5. Unless the data are quite 
extensive and the effect of exposure pronounced, however, random sampling errors 
may make such discriminations difficult. Furthermore, errors of misclassification of the 
exposure variable may operate to distort the true relationship (Tzonou et al., 1986). In 
view of such uncertainties, the choice of model is legitimately based as much on 
a-priori considerations as it is on goodness-of-fit tests, unless of course these show one 
or the other model to be markedly superior. As with the report of the Committee on 
the Biological Effects of Ionizing Radiation, some authors follow the prudent course of 
examining and presenting their data using several alternative model assumptions. 
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(b) Biological basis for model selection 

Sections 2.4-2.7 of Volume 1 gave both empirical and logical reasons for the usually 
greater convenience in cancer epidemiology of measuring the effects of exposures in 
terms of the relative risk parameters of the multiplicative model rather than the excess 
risk parameters of the additive model. Incidence and death rates for cancers of 
epithelial tissue are known to rise rapidly with age, the age-incidence curves 
approximating a power function with exponent between four and five (Doll, 1971). 
When plotted on log paper for different exposure or population groups, the 
age-incidence curves are therefore roughly linear with a common slope but varying 
intercept (Fig. 2.2). This implies a multiplicative relationship. 

If the two dimensions of the table correspond to two different exposure factors, 
however, then various models for the disease process suggest that their individual 
effects on the age-specific .rates or on the lifetime risks may combine additively, 
multiplicatively or in some other fashion. Models based on the multistage theory of 
carcinogenesis lead to approximately additive structures if the two risk factors affect 
the same stage of the process and to multiplicative structures if two distinct stages are 
affected (Lee, 1975; Siemiatycki & Thomas, 1981; Hamilton, 1982). A detailed 
discussion of quantitative theories of carcinogenesis and how they may be used to 
suggest appropriate dose-time-response relationships involving one or more agents is 
given in Chapter 6. Under Rothman's (1976) component-sufficient cause paradigm of 
disease causation, which is perhaps of greater relevance to other areas of epidemiol- 
ogy, 'independent' factors or those which contribute to different disease pathways have 
effects that combine in a nearly additive fashion, whereas the effects of 'complemen- 
tary' factors or those that contribute different parts to the same pathway combine in a 
manner that is close to multiplicative (Koopman, 1982). 

(c) Standardization and multiplicative models 

The CMF and the SMR (see Chapter 2) were originally developed from a general, 
intuitive perspective, in the absence of any formal assumption about the structure that 
might be present in the underlying age-specific disease rates. Nevertheless, con- 
siderable insight into the properties of such statistical measures is gained by 
investigating their performance under well-defined and plausible models for the basic 
data. Here, we compare the performance of the CMF and SMR in the multiplicative 
environment and develop an interesting relationship between the iterative fitting of 
multiplicative models and the calculation of the indirectly standardized SMR. Similar 
investigations have been undertaken by Freeman and Holford (1980), Anderson et al. 
(1980j and Hoem (1987). 

Suppose, for simplicity, that there are only two exposures categories (k = 1 or 2) and 
denote by y = njo/No and A; = dio/nio the standard weights and rates that enter into the 
calculation of the summary measures. According to (4.2) the ratio of age-specific rates 
for the two categories is equal to 9!J2/9!J1, or just 9!J2 if 99, = 1 as is generally assumed, 
regardless of the age interval. Thus, the ratio of the two corresponding summary 
measures should tend towards 9!J2 in large samples if the measures are to reflect 
accurately the basic regularity in the rates. An easy calculation shows this is indeed 



126 BRESLOW AND DAY 

true for direct standardization: 

For the ratio of two SMRs, however, we have 

SMR2 + Cf= njiAj2/Cf=l ATnj2 C;=, nj2Oj/Cf=, A;nj2 
SMRI Cf=l njl Aj1/C:=, A;nj, 

= '4'2 x J * -  C f = ,  n , le j /Cj=l  5 nil 

The second term in this expression generally does not equal 1 unless we also have 
Oj = const x ;li* or else nj2 = const x nil; that is, unless the age-specific rates for 
exposure categories 1 and 2 are both proportional to the external standard rates, in 
addition to being proportional to each other, or else the two age distributions are 
identical. The bias in the ratio of SMRs can be severe if these conditions are grossly 
violated, as Table 2.13 makes clear. 

The condition of proportionality with the external standard automatically holds for 
the multiplicative model if one takes for the 'standard' either one of the two sets of 
age-specific rates that are being compared. If the first exposure group (k = 1) is taken 
as standard for computation of the CMF, and the second group (k = 2) as standard for 
the SMR, then the ratios of CMFs and SMRs are identical (Anderson et al.,  1980, 
Section 7A.4). Using the pool of the two comparison groups as an internal standard, 
however, generally does not satisfy the proportionality condition, and the ratio of 
SMRs computed on this basis does not estimate the ratio of age-specific rates. 
Nevertheless, use of the pooled population seems to avoid some of the more severe 
biases that can arise with a completely external standard population. Moreover, the 
SMR calculated with the pooled groups as standard arises naturally at the first cycle of 
iteration in one of the numerical procedures for fitting the multiplicative model. These 
features are illustrated in a cohort analysis of Icelandic breast cancer incidence rates. 

( d )  Effects of birth cohort on breast cancer incidence in Iceland 

Table 4.1 shows the numbers of female breast cancer cases diagnosed in Iceland 
during 1910-1971 according to five-year interval and decade of birth (Bjarnason et al.,  
1974). These data can be considered as arising from a large-scale retrospective cohort 
study that was made possible by the existence of good records and the fact that all 
diagnoses in a nearly closed population were made by a small number of pathologists. 
Also shown are the person-years denominators as estimated from census data and the 
expected number of cases after fitting of the multiplicative model (4.2). Note that the 
cells in the lower left- and upper right-hand corners of the table are empty, a 
consequence of the limited period of case ascertainment. This means that the age 
distributions of the different birth cohorts are extremely different, and, since the cohort 
effects are strong also, the age-specific rates for the pooled population will not be 
proportional to the rates for any particular cohort. Thus, we should not expect that 
SMRs computed using the pooled population as standard will provide very accurate 
estimates of the relative risk parameters. 
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Table 4.1 Observed (0) and expected (El numbers of female breast cancer cases in  Iceland during 
1910-1971 by age and year of birth, with approximate person-years (P-Y) at riska 

Age group Year of birth 
(years) 

1840- 1850- 1860- 1870- 1880- 1890- 1900- 1910- 1920- 1930- 1940- 
1849 1859 1869 1879 1889 1899 1909 1919 1929 1939 1949 

- 

20-24 0 
E 
P-Y 

25-29 0 
E 
P-Y 

30-34 0 
E 
P-Y 

35-39 0 
E 
P-Y 

40-44 0 
E 
P-Y 

45-49 0 
E 
P-Y 

50-54 0 
E 
P-Y 

55-59 0 
E 
P-Y 

60-64 0 
E. 
P-Y 

65-69 0 
E 
P-Y 

70-74 0 
E 
P-Y 

75-79 0 
E 
P-Y 

80-84 0 
E 
P-Y 

- -- 

a From Breslow and Day (1975) 



128 BRESLOW AND DAY 

Methods of fitting the multiplicative model by maximum likelihood using the 
computer program GLIM (Baker & Nelder, 1978) are described below in a more 
general context. This program uses a modification of the Newton-Raphson algorithm 
to solve the nonlinear likelihood equations; standard errors of the parameter estimates 
arise as a by-product of these calculations. For the particular model (4.2), however, 
there is an alternative fitting algorithm, use of which provides greater insight into the 
relationship between model fitting and the technique of indirect standardization 
(Breslow & Day, 1975). The equations that determine the maximum likelihood 
solution may be written 

and 

q k  = ( k = l , .  . . , K), 
Cf=l ejnjk 

where Dj = Ck djk are the total deaths at age j and Ok = C, djk the total deaths at 
exposure level k (Table 3.4). Inserting initial values q(P) = 1 in the first equation leads 
to 8,") = D,/N,, the marginal death rate in the jth age group, as the initial estimate of 
8,. Here, N, = Ck njk denotes the total person-years in the jth group. Substituting 8,(11 
in the second equation gives an initial estimate for qk of = ok/Cj (njkDj/4). ~ h u s ,  
the first-cycle estimate of qk is simply the SMR for the kth exposure group, computed 
using the age-specific rates for the pooled exposure groups as the standard. Refine- 
ments to the initial estimate are obtained by sutstituting qil) in the first equation to 
obtain qL2), and continuing until convergence when both sets of equations are satisfied 
simultaneously. If and 8, denote the maximum likelihood estimates found at 
convergence, I), may be interpreted as an SMR using the estimated rates 8j as 
standard. 

Model (4.2) is over-parametrized in the sense that if a particular set of J + K 
numbers Oj and qk satisfy the model equation, then so do the sets a0, and ( l / a ) q k  for 
any positive a. Statisticians refer to such a situation, in which there are more free 
parameters than can be estimated from the data, as the problem of nonidentifiability. 
The usual means of solving the problem is to impose constraints on the parameters that 
are consistent wih a desired interpretation. For the usual choice 99, = 1, the remaining 
qk may be interpreted as relative risks using the first exposure category (k = 1) as 
baseline. The 8, then correspond to age-specific rates in that baseline category. Of 
course, the 8j are actually determined using the data for all the exposure groups, a fact 
that is especially apparent in this example since for the baseline 1840-1849 cohort 
data are available for only three age groups. 

Another possible resolution of the nonidentifiability problem (Mantel & Stark, 1968) 
is to choose the normalizing constant a in such a way that when the 8,, interpreted as 
adjusted age-specific rates, are applied to  the pooled population at risk in each age 
interval, the expected number of deaths is equal to the observed number. Thus, 
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Table 4.2 Results of fitting the multiplicative model to the data in Table 4.1 (10 iterations)" 

( a )  Adjusted SMR by cohort 
Year of birth 

1840- 1850- 1860- 1870- 1880- 1890- 1900- 1910- 1920- 1930- 1940- 

( b )  Adjusted age-specific incidence rates per 100 000 person- years 
Age (years) 

a From Breslow and Day (1975) 

where D+ = C Dj denotes total deaths. This ensures that the 8j will be roughly 
comparable in magnitude to the pooled rates 2, = Dj/N, determined from the marginal 
totals. 

Table 4.2 presents the parameter estimates 8j and Gk that arise from fitting model 
(4.2) under the constraint (4.5). Goodness-of-fit is evaluated by comparing the 
observed djk and fitted djk = 8j$kn,k numbers of cases in each cell, both of which are 
shown in Table 4.1. A summary of the goodness-of-fit is provided by the chi-square 
statistic 

Fig. 4.2 Crude (x) and fitted (a) age-specific incidence rates for female breast cancer 
in Iceland, 1911-1972. From Breslow and Day (1975) 
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in which the degrees of freedom equal the number of cells with non-zero denominators 
(n,, > 0), minus the number of independently estimated parameters. For our example, 
(4.6) yields x2 = 49.0 with 77 - 23 = 54 degrees of freedom ( p  = 0.67). It is important 
that the contributions to chi-square (djk - djk)2/% exceed the 95% critical value of 3.84 
for a squared normal deviate for only one cell: in the youngest age group in the 
1890-1899 cohort there were two cases observed versus only 0.42 expected. Thus, the 
fit appears remarkably good. 

The estimates 8, are plotted on a semilogarithmic scale in Figure 4.2 together with 
the marginal rates = DjlN,. It is clear that pooling several heterogeneous birth 
cohorts has overemphasized the change in slope of the age-incidence curve that occurs 
around the time of the menopause. This is because the marginal rates at older ages are 
based on earlier birth cohorts which had lower incidence, whereas the marginal rates at 
younger ages are based on recent cohorts with high incidence. The fitted values 8, give 
an impression of the shape of the age relationship for breast cancer that is more 
comparable to those seen in other populations (Moolgavkar et al., 1980). 

A similar disparity between the SMRks determined using the marginal rates as 
standard and the fitted parameters Gk representing birth cohorts effects is shown in 
Figure 4.3 (Hoem, 1987). Here, the expected numbers of cases for recent birth cohorts 
are too high since only marginal rates for young women are used in their calculation, 
whereas the expected numbers for the earliest cohorts use only the rates at the oldest 

Fig. 4.3 Comparison of indirect standardization and multiplicative model fitting in 
cohort analysis of female breast cancer in Iceland; 0, standardized mortality 
ratio; a, multiplicative parameter. From Hoem (1987) 

Year of birth 
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ages. The estimated effect for the 1940-1949 cohort should probably be ignored as it is 
based on only seven cases occurring at young ages. 

4.2 The Poisson assumption1 

The Poisson model is used throughout this monograph for purposes of making 
statistical inferences about rates. Specifically, the number of deaths d occurring in a 
particular age-time-exposure cell is assumed to take on the values x = 0, 1, 2, . . . with 
probabilities 

pr (d = x) = exp (-An)(An)"/x!, 

where A denotes the unknown rate and n is the person-years denominator. Further- 
more, the numbers of deaths occurring in different cells are regarded as statistically 
independent, even if the same individuals contribute person-years observation time to 
more than one of them. In this section, we explore the assumptions required for (4.7) 
to provide a reasonably accurate description of the statistical fluctuations in a collection 
of rates. Pocock et al. (1981) and Breslow (1984a) have developed some alternative 
models and techniques that may be used in cases in which the observed variation in 
rates is greater than that predicted by Poisson theory. 

(a) Exponential survival times 

Suppose, for simplicity, that there is a single study interval or cell to which I 
individuals (i = 1, 2, . . . , I )  contribute person-years observation times ti. Set 6, = 1 if 
the ith person dies from (or is diagnosed with) the disease of interest in that cell after 
observation for ti years; otherwise, 6, = 0. We further suppose (although this may be 
unrealistic in certain applications) that there is a fixed maximum time & for which the 
ith individual will be observed if death does not occur. Most frequently, & represents 
the limitation on the period of observation imposed by the person's entry in the middle 
of the study or his withdrawal from observation at its end (see Fig. 2.1). Thus, ti = & if 
6, = 0, in which case we say that the observation ti is censored on the right by T .  

Inferences are to be made about the death rate A, defined as the instantaneous 
probability A dt that someone dies in the infinitesimal interval (t, t + dt) of time, given 
that he was alive and under observation at its start. We assume that the rate A remains 
constant for the entire period that each individual is under observation. While 
obviously only an approximation to the true situation, in practice this means that the 
cell should be constructed to represent a reasonably short interval of age and/or 
calendar time and that the corresponding exposure category should be fairly homoge- 
neous. Thus, for example, thinking of duration of employment as a measure of 
exposure, a particular cell might refer to deaths and person-years that occurred 
between the ages of 55 and 59 during the years 1960-1964 for persons who had been 
employed for at least 25 and no more than 30 years. We also make the entirely 

'This section treats a specialized and rather technical topic. Since it presumes greater familiarity with 
probability theory and statistical inference than the other sections, it may be omitted at first reading. 
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plausible assumption that the death of one individual has no effect on the outcome for 
another, or in other words that the two outcomes are statistically independent. Under 
these conditions the exact distribution of the data (ti, 6,) for i = 1, . . . , I is that of a 
series of censored exponential survival times. 

The exponential distribution has a long history of use in the fields of biometrics, 
reliability' and industrial life testing (Little, 1952; Epstein, 1954; Zelen & Dannemiller, 
1961). The ith individual contributes a factor Ae-Ati to the likelihood if he is observed 
to die during the study interval (ti < z ,  = 1) and a factor e-";( or e-Az) if he survives 
until withdrawal (ti = T,  di = 0). Thus, the log-likelihood function is written 

I 

L(A) = 2 (6j log A -tJ) = d log (A) - nA, 
i = l  (4.8) 

where d = Ci 6, denotes the total number of events observed and n = Ci ti the total 
person-years observation time in the specified cell. The elementary estimate i = d/n  
introduced in Chapter 2 is thus seen to be maximum likelihood; it satisfies the 
likelihood equation dL/dA = d/A - n = 0. 

The exact probability distribution of i is extremely complicated due to the presence 
of the censoring times (Kalbfleisch & Prentice, 1980). Mendelhall and Lehman 
(1960) and Bartholomew (1963) have investigated the first few moments of the 
distribution, or rather that of the estimated mean survival time 1/& under the 
restriction that the censoring times are constant (z = T for all i). Approximations to 
the first two moments are available when the ?;- vary. However, these results are all 
sufficiently complex as to discourage their application to routine problems. One tends 
to rely instead on large sample normal approximations to the distribution that are 
based on the log-likeiihood (4.8). 

(b) The Poisson model 

One reason for the complexity of the exact distribution of d /n  is the fact that the 
observation time is terminated at ti < T for individuals who die. Much simpler 
distributional properties would obtain if each such subject were immediately replaced 
by an 'identical' one at the time of death, a type of experimental design that is possible 
in industrial life testing. For then, considering the ith individual and all subsequent 
replacements as a single experimental unit, the times of death or failure for that unit 
constitute observations on a single Poisson process on the interval 0 s  t s ?;:. The 4 ,  
which could then take on the values O,1,2, . . . rather than just 0 or 1, would have exact 
Poisson distributions with means AT. Since the sum of independent Poisson variables is 
also Poisson, it follows that the sampling distribution of d = Ci di would be given 
precisely by (4.7) with n = Ci T,, a fixed quantity. 

Noting the problems caused by the random observation times ti, Bartholomew 
(1963) proposed simply to ignore them in order to obtain an alternative estimate of A 
with a more tractable sampling distribution. The only random variables are then the 4 ,  
which have independent Bernoulli (0/1) distributions with probabilities pi = pr (6, = 1) 
= 1 - exp (-AT). If all z = T, d = Ci di follows the binomial law exactly. If the T, 
vary, but either they or A are sufficiently small that pr (d = 1) is moderate, then an 
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extension of the usual Poisson approximation to the binomial distribution (Armitage, 
1971) shows that d is approximately Poisson with mean A xi K .  

Both lines of reasoning suggest that the Poisson approximation to the exact sampling 
distribution of dln, i.e., treating d as Poisson with fixed mean An as in (4.7), will be 
adequate, provided that A is sufficiently small and that only a fraction of the cohort 
members are expected to become incident cases or deaths during the period in 
question. Then, the withdrawal of such cases from observation will have a negligible 
effect on the total observation time and xi ti will approximate xi KT;-. From another 
point of view, the number of 'units' that experience more than one event in the 
fictitious experiment described above will be negligible. Thus, when the number of 
deaths or cases d is small in comparison with the total cohort size, a condition which 
holds for many of the cohort studies of particular cancers that we have in mind, the 
Poisson model should provide a reasonable approximation to the exact distribution of 
the rate. Under these same conditions, moreover, the numbers of deaths occurring in 
different cells may be regarded as statistically independent. Due to their rarity, deaths 
occurring in one interval will have negligible effects on the probability that a specified 
number of deaths occurs in the next interval, even though they remove the individuals 
in question from risk. Hoem (1987) provides a formal statement and proof of this 
property that is based on unpublished work of Assmussen. 

(c) Asymptotic normality 

If the cases are numerous enough to make up a considerable fraction of the total 
cohort, the arguments just used to justify the Poisson approximation do not apply. One 
would probably tend not to use exact Poisson probabilities when the events are 
numerous anyway, but would instead rely on the approach to normality of estimators 
and tests based on the Poisson model. This point of view provides some reassurance 
regarding our reliance on approximate methods of inference based on the likelihood 
function. Since the log-likelihoods for the Poisson and exponential distributions, both 
being given by equation (4.8), are identical, it makes no difference which sampling 
framework we adopt for purposes of making likelihood inferences. The usual 
large-sample distributions of the maximum likelihood estimates and associated statistics 
are the same, whether we regard the number of deaths as random and the observation 
times as fixed, the times as random and the number of deaths as fixed, or both times 
and number of deaths as random. 

This conclusion holds also for problems with multiple cells and rates. Suppose there 
are J cells with associated death rates A,, and let aii denote whether (aii = 1) or not 
(aii = 0) the ith individual dies in the jth cell, while tii denotes his contribution to the 
observation time n, in that cell. According to the general theory of survival 
distributions (Kalbfleisch & Prentice, 1980; see also 85.2), the log-likelihood of the 
data may be written 

I J J 

L(A) = L(Al, - . - ,  A,) = z z hi, log Ai - ti$, = 2 d, log A, - n,A,. 
i= l  j=1 j=1 

(4.9) 

This likelihood also arises when the d, are independent Poisson variables with means 
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njAj or when the ti, form a censored sample of independent exponential survival times 
with death rate parameters 4 (Holford, 1980). However, because of the dependencies 
between deaths that occur in different intervals and the fact that the n, are random 
variables, neither of these exact sampling models is strictly correct. While they are 
adequate for large-sample likelihood inferences, such as made in this section, other 
properties based on the Poisson model (such as the standard errors given by equations 
(2.6) and (2.7)) may require also that the deaths be only a small fraction of the total 
persons in each cell in order that these be reasonably accurate (Hoem, 1987). 

In the sequel, log-likelihood functions similar to (4.9) will be considered as functions 
of a relatively small number of unknown parameters that describe the structure in the 
rates. The shape of the log-likelihood function can change drastically depending upon 
the model selected or even upon the choice of parameters used to describe a given 
model. As an example, suppose that ten deaths are observed in a single cell with 1000 
person-years of observation. Figure 4.4 contrasts the shape of the log-likelihood (4.9) 
of these data considered as a function of: (i) the death rate A itself; (ii) the expected 

Fig. 4.4 Exact (-) and approximate (- - - -) log-likelihoods for various parametriza- 
tions of the death rate, A, when d = 10 and n = 1000 
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lifetime 1/A; (iii) the cube-root transform A'", and (iv) the log death rate log A. Also 
shown are quadratic approximations to each likelihood that would apply if the data 
were normally distributed with a mean value equal to the unknown parameter and a 
fixed variance given by the observed information1 function evaluated at the maximum 
likelihood estimate. Comparison of the four figures shows that the cube-root and log 
parametrizations yield the most 'normal' looking likelihoods, whereas those for A anc 
especially 1 / A  are rather skewed. The cube-root transform, which also occurred in 
Byar's approximation to Poisson err0.r probabilities (equations (2.11) and (2.3.3)), has 
the property that it exactly eliminates the cubic term in a series expansion of L about 
the maximum likelihood estimate (Sprott, 1973). Empirical work by Schou and Vaeth 
(1980) has confirmed that the sampling distributions of log f i  and fil" are more nearly 
normal in finite samples than those of fi or its inverse. 

The implication of these results for the statistician is that statistical inferences that 
rely on asymptotic normal theory are better carried out using procedures that are 
invariant under transformations of the basic parameters. The maximum likelihood 
estimate itself satisfies this requirement, as do likelihood ratio tests, score tests 
computed with expected information, and confidence intervals obtained by inverting 
such invariant tests. However, procedures based on a comparison of the point estimatz 
with its standard error as obtained from the normal (quadratic) approximation to the 
log-likelihood are not generally reliable and should be used only if the normal 
approximation is known to be good (Vaeth, 1985). This condition is met for 
parameters in the standard multiplicative models considered below, as it was for the 
logistic models discussed in Volume 1. It is not met for other models, as we shall see. 

4.3 Fitting the multiplicative model 

Most of the features of the multiplicative model for rates are already present in the 
two-dimensional table considered in $4.1. We continue to think of the basic data as 
being stratified in two dimensions. The first dimension corresponds to nuisance factors 
such as age and calendar time, the effects of which on the baseline rates are conceded 
in advance and are generally of secondary interest in the study at hand. The second 
dimension corresponds to the exposure variables, the effects of which we wish to model 
explicitly. The total number of cells into which the data are grouped is thus the product 
of J strata and K exposure categories. The basic data consist of the counts of deaths dik 
and the person-years denominators nik in each cell, together with p-dimensional row 

(1) vectors xik = (xi, , . . . , x$)) of regression variables. These latter may represent either 
qualitative or quantitative effects of the exposures on the stratum-specific rates, 
interactions among the exposures and interactions between exposure variables and 
stratification (nuisance) variables. 

Recall from 06.4 of Volume 1 or elsewhere that the information is defined as minus the second derivative 
of L. Since we consider some models in this volume for which the information depends on the data, a 
distinction is made between the observed information and its expectation. The latter is also known as Fisher 
information. 
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(a)  The model equation 

A general form of the multiplicative model is 

where the Ajk are the unknown true disease rates, the are nuisance parameters 
specifying the effects of age and other stratification variables, and P = ( P I ,  . . . , PP)' is 
a p-dimensional column vector of regression coefficients that describe the effects of 
primary interest. An important feature of this and other models introduced below is 
that the disease rates depend on the exposures only through the quantity a, + xjkP, 
which is known as the linear predictor. If the regression variables xjk depend only on 
the exposure category k and not on j, (4.10) specifies a purely multiplicative 
relationship such that the ratio of disease rates Ajk/hkr for two exposure levels k and 
k',  namely exp { ( x k  - xkI)fi), is constant over the strata. Evaluation of the goodness- 
of-fit of such models informs us as to whether a summary of the data in terms of 
relative risk is reasonably plausible. If the ratios Ajk/Ajkr  change with j, additional 
variables xjk which depend on both j and k and describe interactions between stratum 
and exposure effects may be needed to provide a comprehensive summary of the data. 

The simple multiplicative model (4.2) for the two-dimensional table of rates is 
expressed by taking the x variables to be dummy or indicator variables with a value of 
1 for a particular exposure category and 0 elsewhere. A total of K - 1 such indicator 
variables is needed to express the relative risks associated with the different exposure 
categories, the first level ( k  = 1) typically being used as a reference or baseline 
category. The advantage of the more general model (4.10) is that it allows us to 
quantify the relative risks according to measured dose levels, impose some structure on 
the joint effects of two or more exposures, and relax the strict multiplicative hypothesis 
through the introduction of interaction terms. These features are developed below in a 
series of examples. However, we first discuss implementation of the methodology using 
the Royal Statistical Society's GLIM program for fitting generalized linear models 
(Baker & Nelder, 1978). 

( b )  Fitting the model with GLIM 

Input to GLIM or other standard programs will consist of up to JK data records 
containing the counts d of disease cases or deaths, the person-years denominators njk, 
the values x$), . . . , x$) of the regression variables to be included in the model, and 
sufficient additional data to identify each stratum (j) and exposure category (k). 
Records for (j, k )  cells with no person-years of observation (njk = 0 )  are usually 
omitted. 

If some or all of the exposures are to be analysed as qualitative or discrete variables, 
it is not necessary to construct the 011 indicators explicitly for each exposure category 
or stratum, since GLIM makes provision in its FACTOR command for designating 
certain input variables as qualitative. Their values ( 1 , 2 .  . . ) are then presumed to 
designate the factor level. By default, the first level is taken as baseline, binary 
indicator variables being constructed by the program for each higher level. 

According to $4.2 the numbers of deaths djk from a specific cause may be regarded 
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as independent Poisson variables with mean values E(djk) = njk?Ljk. In view of (4.10) we 
have 

log E(djk) = log (n,k) + aci + xikP- (4.11) 

Since the log transform of the mean is a linear function of the unknown parameters a 
and p, the model conforms to the usual log-linear model for Poisson variables and as 
such is easily fitted using standard features of GLIM. Note that the constants log (njk) 
offset the model equation (4.11) from the origin in the sense that the log mean equals 
log (njk) when the a and p parameters are zero. This means that a variable containing 
the log person-years denominators is declared an OFFSET when invoking the 
program. In order to fit a separate a, for each stratum level, it is easiest to create a 
stratum variable taking values j = 1, . . . , J and declare it as a FACTOR. When the 
strata are formed by combinations of two or more variables, these may each be 
declared FACTORS and included in the model with all their interactions. The 
exposures are treated as either variables or factors, depending upon whether 
quantitative or qualitative (categorical) effects are to be specified. 

An alternative GLIM approach is to define the dependent or y variable as the 
observed rate & = djk/njk and to declare the person-years denominator njk as a prior 
WEIGHT. Then, no OFFSET is needed. This approach also applies with the additive 
(identity) and power 'link' functions considered in 54.4, whereas the approach that 
declares log (njk) to be an OFFSET does not. See Frome and Checkoway (1985). 

( c )  Summary measures of Jit 

Summary measures of fit give an overall evaluation of the agreement between 
observed and fitted values. Two are in common use. One is the X 2  statistic already 
defined in (4.6) as .the sum of the -squared residuals. The other is the log-likelihood 
ratio statistic that compares the observed and fitted values via 

G2 is known as the deviance in GLIM. c2 and X 2  are referred to tables of the 
chi-square distribution in order to ascertain the overall goodness-of-fit. They tend to 
give similar values in most applications. Both may overstate the degree of departure 
from the fitted model when many cells contain small counts (Fienberg, 1980) and when 
they are interpreted as chi-square statistics; a correction factor for G2 is available 
(Williams, 1976). 

The degrees of freedom associated with these statistics equal the number of cells 
with nonzero person-years of observation minus the number of linearly independent 
parameters in the model, namely J + p in the above formulation. When the value of G2 
or X 2  exceeds its degrees of freedom by an amount significantly greater than expected 
under chi-square sampling, we conclude that the fit is inadequate. Either there are 
systematic effects that have not been accounted for by the model, or else the random 
variation in disease rates among neighbouring cells is greater than that specified by the 
Poisson assumption. Agreement between the deviance and its degrees of freedom does 
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not guarantee that the fit is good, however, particularly when the degrees of freedom 
are large. Systematic patterns or trends in the residuals that may be indicative of 
departures from model assumptions, and large residual values for individual cells, often 
are not reilected adequately in the summary measure. Also, a good fit for a model 
based on a cross-classification that ignores relevant covariables does not imply that 
such variables are unimportant or should not be considered. 

(d) Adding variables to the model equation 

The most common remedy for the lack of fit of a given model equation, or for 
examining whether systematic departures from model assumptions are being obscured 
by the global goodness-of-fit statistic, is to add regression variables. Indeed, the 
process of model building generally involves fitting a hierarchy of model equations that 
represent increasing degrees of complexity in the relationship between the relative risk 
and the exposure variables, or increasingly complex interaction (modifying) effects of 
the stratification variables with the exposure variables. Comparison of the goodness-of- 
fit measures for two different models, one of which is contained within the other, 
provides a formal test of the statistical significance of the additional variables. Thus, if 
Gf and G; are the deviances for models 1 and 2, where model 2 contains q more 
independent parameters than model 1, the difference G f -  G; is treated as a 
chi-square statistic with q degrees of freedom for testing the significance of the 
additional variables. Two other commonly used tests, one based on the estimated 
regression coefficients and the other on the efficient score (first derivative of the 
log-likelihood), are briefly described in 06.4 of Volume 1. 

(e) Further evaluation of goodness-of -fit: analysis of residuals 

The extent to which the model summarizes the data can be evaluated globally by an 
overall goodness-of-fit test, but often a more informative approach is to examine how 
well the number of deaths in each cell is predicted. This is accomplished by comparing 
the observed numbers of deaths djk in each cell with the fitted number djk = 
njk exp (kj  + xjk?), where $ and ? denote the maximum likelihood estimates. Inorder 
to get some idea of whether the deviations between observed and fitted values are 
greater than would be expected from sampling (Poisson) variability, we calculate the 
standardized residuals ri, = (djk - d j k ) / a .  Since they have the form of the difference 
between an observation and its estimated mean, divided by the estimated standard 
deviation under the Poisson model, the qk may be regarded roughly as equivalent 
normal deviates when assessing the fit for any particular cell. A refinement, taking 
account of the number of fitted parameters, is to consider as equivalent normal 
deviates the adjusted residuals 

where .the hik denote the diagonal element of the 'hat7 or projection matrix that arises 
in the theory of linear regression (Hoaglin & Welsh, '1978). These are available in 
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GLIM as the product of the 'iterative weights', which equal djk for the multiplicative 
Poisson model, times the variances of the linear predictors. In other words, for the 
multiplicative model, 

The sum of the hjk equals the number of parameters estimated, namely J +p. 
Modern texts on regression anslysis (e.g., Cook & Weisberg, 1982) devote 

considerable attention to graphical me,thods of residual analysis. Certain patterns in the 
residuals are indicative of specific types of departures from model assumptions. For 
example, a tendency for the absolute values lqkl to increase with djk would indicate that 
the equality of mean and variance specified by the Poisson model was inadequate and 
that the variability increased faster than as a linear function of the mean. Correlations 
between the residuals and regression variables not yet included in the model equation 
would indicate that the model was incomplete, whereas correlations with certain 
functions of the fitted values may indicate that the log-linear specification (4.11) is 
inadequate and that the death rates hjk are better modelled by some other function of 
the linear predictors (Pregibon, 1980). We present some examples of graphical residual 
analyses in the sequel, but systematic discussion of their rationale and use is beyond 
the scope of this monograph. 

( f )  Gauging the influence of individual data points 

Another aspect of model checking, apart from examination of residuals, is to 
determine the influence that individual data points have on the estimated regression 
coefficients iu, and fi. The investigator needs to be aware whenever elimination of one 
of the (j, k) cells from the analysis would lead to a particularly marked change in the 
fitted model. Sometimes, such influential cells are also 'outliers', in the sense that the 
multivariable observation (djk, njk, xjk) is far removed from the rest of the data. It is 
important to check that such data have been correctly recorded and are not in error. 
The same is true for data points that give rise to large residuals. 'Robust' regression 
methods have been developed specifically to reduce the influence of such outlying 
observations (Huber, 1983); however, the rationale for their use is not entirely clear 
when the data in question are known to be valid. A concerted effort to understand why 
the particular observation does not conform to the rest of the data may be more 
important than finding the model that best fits when that point is removed. 

Influential data points are often reasonably well fitted by the model and not 
amenable to detection by an examination of their residuals. More sensitive measures of 
influence can be developed using a combination of the residuals and the diagonal 
elements hjk of the 'hat' matrix (equation 4.14). A rough rule of thumb for general 
applications is to regard an individual observation as having a particularly heavy 
influence on the overall fit if the corresponding hjk exceeds twice the average value 
(Hoaglin & Welsh, 1978). This rule is not applicable in the present context, however, 
since cells with large person-years and expected numbers of cases will- necessarily have 
a large impact on the fit. Rather, we use the. hjk diagnostics in a descriptive and 
comparative manner to identify those cells that have the greatest overall influence on 
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the fit and to demonstrate that the relative influence of different cells on the regression 
coefficients can depend on the transformation linking the rates 3Ljk to the linear 
predictor. 

Measures of the influence of individual cells on particular regression coefficients 
involve these same basic quantities (Pregibon, 1979, 1981). In particular, an ap- 
proximation to the change in the estimated regression coefficients (&, 8) that is 
occasioned by deletion of the (j, k) cell from the statistical analysis is given by 

A(& , b) -jk -$ x;(djk - djk)/(l - hjk), (4.15) 

where $ denotes the asymptotic covariance matrix of the estimates (a, 6) and x; = (0, 
. . . 1, . . . , 0, xjk) denotes an augmented vector of regression variables preceded by 3 
stratum indicators of which the jth equals one. 

Example 4.1 
Appendix VI contains grouped data from a recent update (Peto, J. et al., 1984) of the Welsh nickel 

refinery workers study that is described in detail in Appendix ID. Previously published data from this study 
(Doll et al., 1970) were used in 43.5 to illustrate techniques of internal standardization. The latest follow-up 
through 1981 uncovered 137 lung cancer deaths among men aged 40-85 years and 56 deaths from cancer of 
the nasal sinus. 

Nasal sinus cancer deaths and person-years of observation are classified in Appendix VI by three risk 
factors: (i) age at first employment (AFE) in four levels (1 = <20; 2 = 20-27.4; 3 = 27.5-34.9; and 4 = 35+ 
years); (ii) calendar year of first employment ( W E )  in four levels (1 = 4 9 1 0 ;  2 = 1910-1914; 3 = 1915- 
1919; and 4 = 1920-1924); and (iii) time since first employment (TFE) in five levels (1 = 0-19; 2 = 20-29; 
3 = 30-39; 4 = 40-49; and 5 = 50+ years). Since less than one case of nasal sinus cancer would have been 
expected from national rates, it was deemed unnecessary to account for the background rates. Instead, the 
object was to study the evolution of nasal sinus cancer risk as a function of time since first exposure, and to 
determine whether this was influenced by the age and year in which that exposure began. 

Table 4.3 displays the GLIM commands needed to read the 72 data records, fit the log-linear model with 
main effects for factors AFE, YFE and TFE, and print the results shown in Tables 4.5 and 4.6. Models 
involving a number of other combinations of these same factors were investigated also. Their deviances, 
displayed in Table 4.4, demonstrate that the three factors have strong, independent effects on rates of nasal 
sinus cancer. The log-likelihood ratio statistics of 95.6 - 58.2 = 37.4 for AFE, 83.5 - 58.2 = 25.3 for YFE and 
70.8 - 58.2 = 12.6 for TFE, with 3, 3 and 4 degrees of freedom, are all highly significant. The parameter 
estimates in Table 4.5 indicate that nasal sinus cancer risk increases steadily with both age at and time since 
first exposure, and that it peaks for men who were first employed in the 1910-1914 period. Since the global 
tests for two-factor interactions are of at most borderline significance, the largest being 16.4 (9 degrees of 
freedom, p = 0.06) for YFE x TFE, we conclude that the simple multiplicative model provides a reasonable 
description of the data. Further support for this conclusion is obtained by comparing observed and fitted 
numbers of cases classified by AFE X TFE collapsing over YFE (Table 4.6), and similarly for the other 
two-factor combinations. The greatest discrepancy is observed for the YFE x TFE cross-classification (not 
shown), where four cases are observed in the cell with YFE = 4 9 1 0  and TFE = 20-29 years, whereas only 
1.30 are expected under the model (x :  = 5.6). We are inclined to interpret this aberrant value as a chance 
occurrence. 

The marginal totals of expected numbers of deaths in Table 4.6 agree exactly with the observed numbers, 
which confirms this as a defining characteristic of the maximum likelihood fitting of the log-linear model 
(Fienberg, 1980). Inclusion of the main effects of AFE, YFE and TFE in the model ensures that the fitted 
values for each of these factors, when summed over the levels of the other two, will agree with the subtotals 
of observed values. (Inclusion of the AFE X TFE interactions in the model in addition to the main effects 
would result in subtotals of fitted values for the AFE x TFE two-dimensional marginal table that agree with 
the corresponding observed subtotals.) Table 4.6 also illustrates a fundamental property of the 'hat' matrix 
elements, h ,  namely, that their grand total equals the number of independent parameters in the model. In 
this example, there is one parameter associated with the constant term or grand mean (see Table 4-59, three 
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Table 4.3 GLlM commands used to analyse the data in Appendix VI 

$UIVITS 72 ! 72 DATA RECORDS IN FILE IN APPENDIX VI; EQUATE TO FORTRAN UNIT 1 
$DATA AFE YFE TFE CASE PY! NAMES OF 5 VARIABLES TO BE READ FROM FILE 
$DINPUT 1 80 ! READ DATA FROM FORTRAN UNIT 1 
$FACTOR 72 AFE 4 YFE 4 TFE 5 ! DECLARE FACTORS WITH 4 AND 5 LEVELS EACH 
$CAL LPY = %LOG(PY) ! CALCULATE LOG PERSON-YEARS 
$OFFSET LPY ! DECLARE LOG PERSON-YEARS AS OFFSET TO MODEL EQUATION 
$ERR P ! POISSON MODEL WITH DEFAULT (LOG-LINEAR) I-INK 
$WAR CASE ! IVO. OF NASAL CANCERS (CASE) AS DEPENDENT VARIABLE 
$FIT AFE + YFE + TFE ! FIT LOG-LINEAR MODEL WITH MAIN EFFECTS FOR EACH FACTOR 
$ACC 5 ! CHANGE NO. OF DECIMALS IIV PRINTOUT 
$REC 10 $FIT. ! REFIT SAME MODEL FOR GREATER ACCURACY 
$DIS M E$ ! DISPLAY MODEL AND PARAMETER ESTIMATES. SEE TABLE 4.5 
$EXT %VL %PE ! EXTRACT VARIANCE OF LINEAR PREDICTOR AND PARAMETER ESTIMATES 
$VAR 11 PR ! DECLARE REL RISK RR AS VARIABLE OF DIMEN'SION 11 
$CAL RR = %EXP(%PE) $LOOK RR $ ! CALCULATE AND PRINT REL RISKS FOR TABLE 4.5 
$CAL H = %WT*%VL ! CALCULATE DIAGONAL ELEMENTS OF 'HAT' MATRIX H 
$CAL I = 5*(AFE-1) +TFE ! SET UP INDEX FOR CELLS IN AFE BY 'TFE MARGINAL TABLE 
$VAR 20 CAST EXPT PYT HT ! SET UP VARIABLES OF DIMENSION 20 
$CAL CAST = 0 : EXPT = 0 : PYT = 0 : HT = 0 ! INITIALIZE ARRAYS 
$CAL CAST(I) = CAST (I) + CASE : EXPT(1) = EXPT(I) + %FV : PYT(I) + PYT(I) + PY$ 
$CAL HT(I) = HT(I) + H ! CULULATE SUBTOTALS OF CASES, FlUED VALLIES ETC. OVER YFE 
$LOOK CAST EXPT PTY HT ! PRINTOUT FOR TABLE 4.6 
$STOP 

Table 4.4 Goodness-of-fit statistics (deviances) for a 
number of multiplicative models fitted to  the data on 
Welsh nickel refinery workers in Appendix VI 

Factors in modela Degrees of freedom Deviance 

- 7 1 135.7 
AFE 68 109.1 
Y FE 68 100.6 
TFE 67 120.6 
AFE + YFE 65 70.8 
AFE + TFE 64 83.5 
YFE + TFE 64 95.6 
AFE + YFE + TFE 6 1 58.2 
AFE*YFE~ + TFE 52 49.2 
AFE*TFE + YFE 50 48.5 
YFE*TFE + AFE 50 41.8 

a AFE, age at first employment; YFE, year of first employment; TFE, time 
since first employment 

b ~ ~ ~ * Y F E  indicates, in standard GLlM notation, that both main effects 
and. first-order interactions involving the indicated factors are included in 
the model equation. 
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Table 4.5 Regression coefficients, standard errors and associated relative risks for 
the multiplicative model fitted to data on nasal sinus cancers in Welsh nickel 
refinery workers (Appendix VI) 

Factora Level Regression coefficient Relative riskb 
f standard error 

AFE <20 - 1 .O 
20.0-27.4 1.67 f 0.75 5.3 
27.5-34.9 2.48 f 0.76 12.0 
35+ 3.43 f 0.78 30.8 

Y FE <I910 - 1 .O 
1910-14 0.62 f 0.37 1.9 
1915-19 0.05 f 0.47 1 .I 
1920-24 -1.13 f 0.45 0.3 

-rFE <20 - 1 .O 
20-29 1.60 f 1.05 4.9 
30-39 1.75 f 1.06 5.8 
40-49 2.35 f 1.07 10.5 
50 + 2.82f 1.12 16.7 

Constant term -9.27 f 1.32 Estimated baselinec rate of nasal 
sinus cancer deaths: 9.42 per 
100 000 person-years 

Deviance: G2 = 58.2 on 61 degrees of freedom 

a AFE, age at first employment; YFE, year of first employment; TFE, time since first employment 
Exponentiated regression coefficients 
For AFE < 20, YFE < 1910 and TFE < 20 

each with AFE and YFE and four with TFE, for a total of 11. Note that the larger values of h+ are generally 
associated with the cells with the largest number of observed deaths. 

4.4 Choosing between additive and multiplicative models 

If a good fit is obtainable with the multiplicative model only by introducing 
complicated interaction terms involving baseline and exposure factors, re-examination 
of the basic multiplicative relationship is usually in order. It may be that the effects of 
exposure are better and more easily expressed on another scale. Formal evaluation of 
the relative merits of the multiplicative and additive models for any particular set of 
regression variables is made possible by embedding them in a wider class of models 
that contain both as special cases. One useful class of models for this purpose is the 
.power family 

that relates the disease rates to the linear predictors aj + xjk$ by means of the power 
transform with exponent p (Aranda-Ordaz, 1983). The additive model corresponds to 
the case p = 1, whereas, since (AP  - 1)lp tends to log A in the limit as p tends towards 
zero, the multiplicative model corkesponds to p = 0. 

Power models may be fitted easily using GLIM. The dependent or y observations, 
assumed to have a Poisson error structure, are the rates ijk = djk/njk rather than 
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Table 4.6 Results of fitting the multiplicative model to the data on Welsh nickel refinery workers in 
Appendix VI: observed (0 )  and expected (E) numbers of nasal sinus cancer deaths, person-years 
(P-Y) and summed regression diagnostics h by age at first employment and time since first 
employment 

Age at first 
employment 
(years) 

Years since first employment 

0-19 20-29 30-39 40-49 50+ Total 

35+ 

Total 

<20 0 
E" 
P-Y 
h+ 

20.0-27.4 0 
E 
P-Y 
h+ 

27.5-34.4 O 
E 
P-Y 
h+ 
0 
E 
P-Y 
h+ 
0 
E 
P-Y 
h+ 

a Expected values adjusted also for year of first employment 
bRegression diagnostics h summed over levels of year of first employment. These values should not be substituted in the 

expression for adjusted residuals (equation 4.13). 

the numbers of deaths; the person-years denominators are treated as prior weights, 
using the WEIGHT command. The model (4.16) is available as an alternative GLIM 
'link' for Poisson observations. 

Diagonal elements of the 'hat' matrix are obtained at convergence as 

where yk is the GLIM iterated weight for the power model and il,, = kjk + xjk(Z is the 
linear predictor. The approximate change in the regression coefficients upon deletion 
of the (j, k)th cell of data is given by 

where x; is the vector of augmented regression variables, yjk denotes the GLIM 
'working variable', and $ is again the covariance matrix of the estimated parameters. 

Example 4.2 
The data on coronary deaths among British male doctors shown in Table 3.15 offer a simple example for 

examining some of these issues regarding goodness-of-fit and model selection. The rate ratios for smokers 
versus nonsmokers decrease with advancing age, while the rate differences generally increase. This suggests 
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Fig. 4.5 Goodness-of-fit statistics ( G ~ )  for a variety of power models fitted to the data 
in Table 3.15 

- Multiplicative 

- Additive 

0 0 0.0 0.5 1.0 

Exponent in power transformation 

that neither the multiplicative nor the additive model is completely appropriate for expressing the effect of 
smoking in a single number, and  that some intermediate power model might work better. Accordingly, 
several models of the form (4.16) were fitted with a single binary exposure variable coded 0 for nonsmokers 
and 1 for smokers. Figure 4.5 shows that the minimum value of the deviance G2, nominally a 
chi-square-distributed statistic with 10 - 6 = 4 degrees of freedom, occurs in the vicinity of p = 0.55, 
intermediate between the additive and multiplicative models. Neither of these extremes provides a 
satisfactory fit, since one finds G2 = 12.1 for the multiplicative and G2 = 7.4 for the additive structure, 
compared with G2 = 2.1 for the best power transform. 

Table 4.7 presents estimates and standard errors for the five parameters and the single smoking 
coefficient /3 under each of the three models. When suitably transformed, the a 's  represent the fitted death 
rates among nonsmokers per 1000 person-years of observation. Under the additive model, for example, the 
fitted rate for men aged 55-64 years is 6.2 deaths per 1000 population per year. For the power model the rate 
per 1000 person-years is (2 .180) ( "~ .~~ '  = 4 . 1 , a nd for the multiplicative model it is exp (1.616) = 5.0. Smoking 
is estimated to increase (add to) the death rate by 0.59 deaths per 1000 person-years under the additive 
model, while under the multiplicative model smoking multiplies the death rate by exp (0.355) = 1.43 at all 
ages. The smoking effect is not so conveniently expressed on the power scale, but since p and /3 are each 
about equal to 0.5 it may be roughly described as increasing the square root of the death rate per 1000 
person-years by one-half. Note that t statistics of the form t = P / s E ( P )  yield roughly comparable values for 
all three models with these data. The likelihood ratio (deviance) tests for smoking (/3 = 0)  are obtained by 
subtracting the goodness-of-fit deviances in Table 4.7 from the deviance for the model with age effects only, 
which equals 23.99 regardless of the value of p.  Best agreement between the t test and deviance test of 
smoking effect is found for the multiplicative model. 

Table 4.7 also shows the fitted numbers of deaths djk for smokers and nonsmokers under the three models. 
These were combined with the diagnostic values hi, to calculate adjusted residuals 5, (equation 4.13). The 
'hat' matrix elements hjk, approximate changes in the smoking coefficient from equation 4.15 or 4.17 and 
adjusted residuals 5, are all displayed in Table 4.8. 

Examination of the entries in the first two parts of Table 4.8 shows that the data for the youngest age 
group, which contains a small number of deaths observed in a rather large population, have the greatest 
influence on the estimated rate difference in the additive model. More of the information about the rate ratio 
under the multiplicative model comes from older age groups where there are larger numbers of deaths. The 
power model occupies an intermediate position vis-2-vis the diagnostics h,,, and deletion of single cells has 
little effect on the smoking parameter. The residual patterns are in the anticipated direction, the death rates 
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Table 4.7 Parameter estimates and fitted values for three statistical models for the data 
on coronary deaths among British male doctors in Table 3.15 

Age range 
(years) 

Parameter Statistical modela 

Additive (p = 1) Power (p = 0.55) Multiplicative (p = 0) 

35-44 
45-54 
55-64 
65-74 
75-84 

Smoking 

t2 = ( ~ ~ I s E ( P ) ) ~  

Goodness- 
of-fit 
(deviance) X $  

Deviance test 
for smoking 
effect X: 

Parameter estimates f S E ~  

f f1  
0.084 f 0.066 0.276 f 0.092 

ff2 1.641 f 0.218 1.115f 0.110 

ff3 
6.304 f 0.456 2.456 f 0.1 32 

ff4 
13.524 f 0.964 3.859 f 0.1 80 

ff5 
19.170 f 1.704 4.763 f 0.257 

Fitted valuesc 

Non- Non- 

smokers Smokers smokers Smokers 

1.59 35.37 1.81 32.53 
17.51 96.50 13.00 102.56 
35.99 197.25 29.26 204.49 
34.96 178.73 30.1 2 183.61 
28.03 105.07 24.97 108.65 

a Exponent (p) of power function relating death rates and linear predictor 
Person-years denominators expressed in units of 1000 

"See Table 3.15 for observed values 

Non- 

smokers Smokers 

for smokers being seriously underestimated by the multiplicative model in the youngest age group and 
seriously overestimated in the oldest group. By contrast, in spite of the heavy influence of this age group on 
the estimated regression coefficients, the death rate among 35-44-year-old smokers is seriously overestim- 
ated by the additive model. With the power model, the residuals are all quite small, indicative of the good 
fit, and none of them shows statistically significant deviations when referred to tables of the standard normal 
distribution. 

An alternative method of examining the goodness-of-fit is via the introduction of regression variables 
representing the interaction of smoking and age. For this purpose we defined a single quantitative interaction 
term in coded age and exposure levels, namely xjk = (j - 3)(k - 1.5) for j = 1, 2, . . . , 5 and k = 1,2. The 
constants 3 and 1.5 were subtracted before multiplying in order that the interaction variable be not too highly 
correlated with the main effects for age and smoking (see 56.10, Volume 1). Table 4.9 shows the estimated 
regression coefficient 7 of the interaction variable, its standard error, and the goodness-of-fit statistic G' for 
each of the three basic models. The deviances at the bottom of Table 4.7 show that introduction of the 
interaction term results in a marked improvement in fit for both additive and multiplicative models. Note 
that the estimated interaction term is positive in the additive model, indicating that the rate difference 
increases with age, and negative in the multiplicative model, indicating that the rate ratios decline. These 
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Table 4.8 Regression diagnostics and adjusted residuals for three 
statistical models fitted to the data on coronary deaths among British 
male doctors (Table 3.15) 

Age range Statistical model 
(years) 
(j) Additive (p = 1) Power (p = 0.55) Multiplicative ( p  = 0 )  

Non- Non- 
smokers Smokers smokers 
( k = l )  ( k = 2 )  ( k = l )  

Diagonal elements of hat matrix (hi,) 
35-44 0.98 0.93 0.67 
45-54 0.31 0.77 0.42 
55-64 0.19 0.82 0.28 
65-74 0.18 0.83 0.22 
75-84 0.22 0.78 0.24 

Smokers 
( k = 2 )  

Non- 
smokers 
(k= 1) 

Smokers 
( k =  2) 

Approximate change in P coefficient for smoking after deletion of 
each observation 

Adjusted residuals (c,) 

Table 4.9 Fitting of a quantitative interaction variable in age x smoking to the data on 
coronary deaths among British male doctors (Table 3.15): regression coefficients f 
standard errors for three statistical models 

Statistical model 

Additive (p = 1) Power (p = 0.55) Multiplicative (p = 0) 

Coefficient y 0.732 f 0.301 -0.024 f 0.095 -0.309 f 0.097 
Goodness-of-fit 

G2 on 3 degrees 
of freedom 2.16 2.08 1.55 

feqtures are of course already evident from the original data (Table 3.15). The fit to the power model was 
improved scarcely at all by the interaction terms. Thus, for these simple data, inclusion of interaction 
variables to measure lack of fit gives the same result as when lack of fit is evaluated via the power model. 

4.5 Grouped data analyses of the Montana cohort with the multiplicative model 

We now turn to a re-examination of the data on  Montana smelter workers analysed 
in Chapter 3, in order to  illustrate how the results of model fitting compare with the 
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techniques of standardization. Appendix V contains the data records from the 
Montana smelter workers study that were analysed earlier using standardization and 
related techniques (Tables 3.3, 3.11 and 3.16). There are J = 16 strata formed by the 
combination of four ten-year age groups and four calendar periods of variable length. 
The K = 8 'exposure' categories are defined by the combination of two periods of first 
employment or date of hire (1 = pre-1925, 2 = post-1925) and four categories of 
duration of employment in work areas with high or medium exposure to arsenic 
(1 = <1 years, 2 = 1-4 years, 3 = 5-14 years, 4 = 15+ years). The coded levels for 
these four factors (AGE, YEAR, PERiod and Exposure duration) appear as the first 
four columns (variables) in the data set. For 14 of the 4 x 4 x 2 x 4 = 128 combinations 
of these factors, no person-years of observation, and hence no deaths, occurred and no 
data record is included. These include the combinations with AGE = 1 (40-49 years), 
YEAR = 3 or 4 (1960-1977), and PER = 1 (pre-1925) and those with AGE = 2, 
YEAR = 4 and PER = 1. Individuals in these categories, being under 50 years of age in 
1960, would have been aged 14 or less in 1925 and unlikely to have started work 
earlier. Likewise, there is no observation at AGE = 4 (60-79 years), YEAR = 1 
(1938-1949), PER = 2 (post-1925) and EXP = 4 (15+ years). 

(a )  Estimation of relative risk 

Our first goal is to reproduce as closely as possible the results obtained in the last 
chapter. Recall that relative risks of respiratory cancer for each duration of arsenic 
exposure were obtained separately for the pre-and post-1925 cohorts by three methods: 
(i) external standardization (Table 3.3); (ii) internal standardization (Table 3.11); and 
(iii) the Mantel-Haenszel procedure (Table 3.11). Maximum likelihood estimates of 
these same relative risks, using a multiplicative model with three binary exposure 
variables to represent the effect of each exposure category versus baseline (0-0.9 years 
heavylmedium arsenic exposure) and a varying number of stratum parameters aj to 
represent the effects of age and calendar year, are shown in Table 4.10. Differences in 
the degrees of freedom for the goodness-of-fit statistics used with each subcohort are 
due to the fact that information on person-years was available for different combina- 
tions of age-year-exposure. For the pre-1925 cohort there were 13 age x year strata, 
and each of these had a data record for the full complement of four exposure 
categories. Thus, the total number of data records is 4 x 13 = 52 and the degrees of 
freedom are 52 - 13 - 3 = 36. For the post-1925 cohort, two of the 4 x 16 = 64 possible 
exposure-age-year combinations were missing, and since there were 16 + 3 = 19 
parameters estimated, the degrees of freedom numbered 62 - 19 = 43. 

( b )  Testing for heterogeneity and trend in the relative risk with exposure duration 

The relative risk estimates and likelihood ratio (deviance) tests for heterogeneity and 
trend obtained via maximum likelihood fitting (Table 4.10) agree reasonably well with 
those based on Mantel-Haenszel methodology (Table 3.11). The Mantel-Haenszel 
style test statistics (3.24) and (3.25) are in fact efficient score tests based on the 
multiplicative model (4.2), as were the analogous statistics developed in Volume 1 for 
case-control data (Day & Byar, 1979). When interpreting the individual relative risk 
estimates by comparing each exposure group with baseline, it is important to 
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Table 4.10 Fitting o f  multiplicative models to grouped data from the Montana smelter 
workers study: internal estimation of baseline rates 

Variable fitted Relative risk (exponentiated regression coefficient) and standardized regression 
coefficient (in parentheses) 

Employed Employed Combined cohort 
prior 1925 
to 1925 or after Four levels Two levels 

of exposure of exposure 

Exposure duration (years) 
Under 1 1 .O 1 .O 1 .O 1 .O 

1-4 2.43 (3.20) 2.10 (3.88) 2.21 (5.04) 
5-14 1.96 (2.15) 1.67 (1.84) 1.77 (2.77) 2.1 9 (6.45) 

15+ 3.12 (5.10) 1.75 (1.52) 2.58 (5.25) 
Pre-1925 employment - - 1.62 (3.23) 1.66 (3.46) 
Deviance (G') 32.9 56.0 96.8 99.2 
Degrees of freedom 36 43 94 96 
Tests of significance 

of exposure based on G2 
Global xz  = 28.3 x z  = 15.8 x$ = 42.4 
Trend x: = 24.7 x: = 8.9 x: = 32.7 

x: = 39.7 

remember that they utilize information from all the exposure categories, and not just 
the two in question. For example, the estimated risk ratio of G2 = 2.43 comparing rates 
in the 1-4-year exposure duration category to those in the under-1-year category uses 
some information from the comparisons of the 1-4 versus 5-9 and under 1 versus 5-9 
categories, and so on. Were we to estimate the relative risks for pairwise comparisons 
of exposure categories using only the data for each pair, whether by Mantel-Haenszel 
or maximum likelihood, the resulting estimates would fail to be consistent with each 
other. The product of estimated relative risks for under 1 versus 1-4 and 1-4 versus 
5-9 years would not necessarily equal the relative risk for under 1 versus 5-9. The 
same phenomenon was noted also for case-control studies (994.5 and 5.5, Volume 1). 
Consistency is achieved only by building it into the fitted model. 

(c) Evaluating the goodness-of -fit of the multiplicative model 

An evaluation of the goodness-of-fit of the multiplicative model was made by 
examination of residuals and the addition of interaction terms to the model equation. 
While the goodness-of-fit statistic for the pre-1925 cohort is slightly less than its degrees 
of freedom, indicating that the model fits reasonably well overall, that for the post-1925 
cohort is larger (G2= 56.0, degrees of freedom = 43, p = 0.09). The corresponding 
chi-square statistic is xi, = 54.9. However, examination of the observed and fitted 
numbers of deaths for the 62 age-year-exposure cells for this cohort reveals no 
particular pattern to the lack of fit. The greatest contribution to chi-square is from the 
15+ year exposure category for ages 50-59 and years 1950-1959 where two respiratory 
cancer deaths were observed versus 0.24 expected from the multiplicative model. 
Elimination of this one cell would markedly improve the fit. The example also serves as 
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Table 4.11 Evaluating the goodness-of-fit of the multiplicative model of Table 
4.10; deviance test statistics for interaction effects 

Interaction effect Degrees Employed prior Employed 1925 Combined cohort 
of to 1925 or after 
freedom 

Year x exposure 
Qualitative 9 8.2 18.0 15.3 
Quantitative 1 2.7 2.5 6.5 
(linear x linear) 

Age x exposure 
Qualitative 9 9.1 14.0 13.2 
Quantitative 1 3.3 3.7 3.5 
(linear x linear) 

a reminder that the usual asymptotic approximations for x2 and G2 statistics may not 
apply when the data are sparse and expected values for some cells are small 
(McCullagh, 1986). 

In order to look more systematically for possible trends in the relative risks with age 
and year, we examined a number of additional models with both qualitative and 
quantitative interaction terms. The results, summarized in Table 4.11, do not suggest 
that the relative risks estimated for different exposure durations change systematically 
with either age or year in the pre-1925 cohort. However, even in the absence of a 
definite trend, there is considerable variation in the exposure effects from one calendar 
period to another for the post-1925 cohort. Some caution needs to be exercised, 
therefore, in interpreting the relative risks shown in Table 4.10 for the latter cohort. 

Table 4.12 lists the deviances for several models that we fitted to the full set of 
cohort data in the process of obtaining the results shown in the right-hand columns of 

Table 4.12 Goodness-of-fit (deviance) statistics for a series of models fitted to 
the data on Montana smelter workers: internal estimation of baseline rates 

Model Terms included in the modela Degrees Deviance 
number of 

freedom 

- 

PER 
EXP 
PER + EXP 
PER + EXPO + PER. EXP 
PER + EXPl 
PER + EXPl + PER. EXPl 
PER + EXPl + AGE. EXPl 
PER + EXPl +YEAR. EXPl 

a In addition to 16 terms for stratum (age and year) effects. The variables are coded as follows: PER, 
period of employment (pre- versus post-1925); EXP, four-level factor for duration of exposure; EXPI, binary 
indicator of one or more years of heavylmedium arsenic exposure 
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Table 4.10. (Models 4 and 6 in Table 4.12 correspond to columns 3 and 4 of Table 
4.10.) The first four lines of Table 4.12 show that both period of first employment and 
exposure to heavy-medium arsenic had marked and relatively independent effects on 
risk. The addition of period x exposure interaction terms (model 5) does not 
significantly improve the fit. Relative risks for the three exposure duration levels are 
estimated by model 5 to be 2.43, 1.99 and 3.22 for those first employed before 1925 
and 2.03, 1.63 and 1.62 for those employed afterwards, which results compare well to 
those obtained when the two subcohorts are analysed separately (columns 1 and 2 of 
Table 4.10). 

An important advantage of model fitting is the flexibility it offers for looking at the 
same data in a number of different ways. Examination of the relative risk estimates in 
Table 4.10 suggests that they do not change much either with increasing duration of 
exposure or with period of first employment. In order to study the issue further, we 
constructed a new binary exposure variable EXPl to indicate whether or not a full year 
of heavyjmedium arsenic exposure had yet been experienced, and fitted several 
additional models to the complete set of cohort data. The most interesting aspect of 
Table 4.12 is the comparison of models 5 and 6. Constraining the relative risk 
estimates for arsenic exposure to be constant regardless of period or duration of 
exposure leads to nearly as good a suinmary of the data as allowing them to vary 
(99.2 - 94.6 = 4.6,s degrees of freedom, p = 0.47). The estimated effect of exposure for 
a year or more to heavylmedium levels of arsenic is to increase the subsequent 
respiratory cancer death rate by z factor of 2.2. There is little evidence that this 
estimate of arsenic effect changes with additional exposure or according to the date of 
hire. The improved fit from model 8 suggests, however, that it may depend on age 
(99.2 - 90.0 = 9.2, 3 degrees of freedom, p = 0.03), the estimated relative risks being 
1-68, 3.07, 2.50 and 1.10 for the four age groups. Using EXPl rather than EXP gives 
less evidence for an interaction with calendar year; the separately estimated relative 
risks for the four decades are 2.57, 3.23, 1.92 and 1.76. 

In order to determine whether one or two data records might have had an undue 
influence on the fit, we computed the 'hat7 matrix elements and approximate changes in 
regression coefficients for model 6 of Table 4.12. (This model is also shown in the last 
column of Table 4.10.) GLIM was used to carry out the calculations of h and A) using 
equations 4.14 and 4.15. As expected, the records with the largest effects on the overall 
fit were generally those with the largest person-years of observation: record 17 with 
seven lung cancer cases and over 12 000 person-years gave h = 0.617; record 21 with 
one case and 7151 person-years gave h = 0.634; and record 49 with 89 cases and 8495 
person-years gave h = 0.590. The total value of h summed over all 114 records is 18, 
the number of parameters being estimated. 

Other data records had the largest influence on the estimated effect of arsenic 
exposure as evaluated by the change in the coefficient of EXP1. The maximum change 
occurred with record 56 (9 cases observed versus 4.00 expected), the deletion of which 
would reduce the relative risk associated with heavyjmoderate arsenic exposure by a 
factor of approximately exp (-0.086), i.e., from 2.19 to 2.01. None of these results 
suggests any serious instability in the fitted model. 
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4.6 Incorporating external standard rates into the multiplicative model 

Up to now we have considered that the stratum-specific parameters aci in the model 
equation (4.10), which represent the log death rates for unexposed (xik = 0) individuals 
in that stratum, were unknown 'nuisance' parameters to be estimated internally from 
the study data. The spirit of this approach is similar to that discussed in $83.5 and 3.6. 
It avoids the problems caused by the noncomparability of external standard rates, 
namely, that relative risk estimates for different exposure groups will fail to summarize 
adequately the stratum-specific rate ratios. 

While this ability of multivariate modelling to accommodate the internal estimation 
of baseline rates is desirable, incorportion of external standard rates into the analysis 
may be advantageous in some circumstances. Suppose the baseline rates are specified 
up to a scale factor 8, say Aj = 8A; where the A; are known from vital statistics or 
other sources. The model equation analogous to (4.10) is 

where p = log (8) is a parameter (the grand mean) which represents the log SMR for 
the unexposed (xjk = O), and ac; = log A;. If follows that the mean values E(djk) for the 
number of deaths in the ('j, k) cell satisfy 

so that now the log expected standard deaths are declared as the OFFSET in a GLIM 
analysis, rather than the log person-years (compare equation 4.11). 

One advantage of (4.18) is that it provides in the parameter p an overall measure of 
how the baseline cohort rates compare with those for the general population. Also, 
since the number of parameters to be estimated from the data is reduced considerably 
in comparison to (4.11), there could theoretically be an improvement in the efficiency 
of estimation of the p parameters of most interest. However, this improvement is not 
likely to be great for many practical problems (see Example 4.7). Perhaps more 
important is the fact that when the x variables depend only on exposure (k) and not on 
stratum (j), the likelihood for the model (4.18) is a function of the totals Ok = Cj djk 
and E: = zjnjkAT of observed and expected deaths in each of the K exposure 
categories. (In fact, if a separate parameter pk is attached to each exposure category, 
the SMRk = Ok/Ez are maximum likelihood estimates.) This permits a much more 
economical presentation of the basic data needed for the regression analysis than is 
true for the models considered in the preceding section. For tests of goodness-of-fit, 
however, the full set of data records for all J x K cells are needed. 

Since the p parameters describe how the log SNIR varies as a function of the 
exposures, (4.18) extends the method of indirect standardization into the domain of 
multivariate regression analysis. If P indexes K different exposure classes, the efficient 
score statistic of the hypothesis P = 0 developed from this model corresponds to the 
statistic (3.11) previously proposed for testing heterogeneity of risk. Likewise, for a 
single quantitative regression variable the score test of P = 0 is identical with the trend 
test (3.12). Finally, the maximum likelihood estimate of p in the model where P = 0 is 
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precisely ji = log (O+/E;) = log (SMR), where 0, and E; denote totals of observed 
and expected values. These results provide the essential link between the elementary 
methods of cohort analysis considered in Chapter 3 and those based on the 
multiplicative model. 

The drawbacks of indirect standardization noted earlier of course apply also to an 
uncritical application of the regression model. However, the process of model fitting 
encourages the investigator to evaluate the assumptions of proportionality that are 
essential in order that the estimated /3 parameters have the intended interpretation. 
The usual goodness-of-fit machinery may be applied to validate these assumptions. 
Additional terms may be incorporated in the model to account for confounding of the 
SMR/exposure relationship by age, year or other stratification factors. The estimates 
of the exposure effects as expressed in C) will then start to approximate those obtained 
with the model (4.10), wherein the baseline rates are estimated internally. See $4.8 for 
an example. 

Example 4.3 
To illustrate the process of multivariate modelling using external standard rates, we return to the problem 

of estimating relative risks of respiratory cancer associated with duration of heavy/medium arsenic exposure 
in the Montana cohort. The basic data needed to fit the models consist of just eight records containing 
observed (0,) and expected ( E ; )  numbers of deaths by period of employment and exposure duration (Table 
3.3). 

Table 4.13 summarizes the results of fitting the same models as in Table 4.10, but where the baseline rates 
are obtained from Table 3.2 rather than estimated internally. There is good agreement between the two 
analyses as far as the arsenic effects are concerned, but the pre- versus post-1925 period effect is 
overestimated when the comparison is made using the external standard rates. Goodness-of-fit using external 

Table 4.13 Fitting of multiplicative models to grouped data from the Montana smelter 
workers study: external baseline rates 

Regression 
variable 

Relative risk (exponentiated regression coefficient) and standardized regression 
coefficient (in parentheses) 

- - - - 

Employed Employed Combined cohort 
prior 1925 
to 1925 or after Four levels Two levels 

of exposure of exposure 

Constant (SMR) 
Duration heavy/medium 

arsenic exposure 
(years) 

Under 1 
1-4 
5-14 
15+ 

Pre-1925 employment 
Deviance (G*) 
Degrees of freedom 
Tests of significance 

of exposure based on G' 
Global 
Trend 
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standard rates appears no worse than when the rates are estimated. Note that we have considered the fit of 
the model to the original data from Appendix VI rather than to the summary data in Table 3.3 in order to be 
able to evaluate goodness-of-fit. 

The relative risk estimates shown separately for the two employment periods in Table 4.13 are identical to 
those given in Table 3.3, and the coefficients exp (P) = 2.38 for the pre-1925 cohort or exp (P) = 1.35 for the 
post-1925 cohort also agree with the SMRs of 238% and 135% found earlier for the baseline exposure 
.duration category (under 1 year). This is a numerical confirmation of the fact that the maximum likelihood 
estimates of parameters in these simple qualitative models are log (SMR)s, or differences between log (SMR)s. 

4.7 Proportional mortality analyses 

Regression analyses similar to those already considered for grouped cohort data with 
person-years denominators can also be carried out using information only for persons 
who have died. As mentioned in $3.7, the data are best considered as arising from a 
case-control study in which the persons who die from the cause of interest are regarded 
as the 'cases', while those who die of other causes (or some subset thereof) are the 
'controls'. They are classified into precisely the same J strata and K exposure classes as 
are the cases and person-years in the corresponding cohort analysis. The observations 
in stratum j and exposure class k consist of the number dik of deaths or cases, the total 
ti, of cases and controls (all deaths) and the associated covariables xjk. 

(a) Derivation of the logistic regression model 

As usual we denote the death rate from the cause of interest in the ('j, k) cell by Aik. 
We denote the death rate from the other causes by vik so that the total death rate is 
given by A,, + vjk. Let us suppose that each of these satisfies the multiplicative model 
(4. lo), say 

log vik = yj + xik6. (4.19) 

It follows that the conditional probability pik that a death in'the ('j, k) cell is from the 
cause of interest, given that one occurred at all, is given by 

4 k  - 
Pjk = - exp {(aj - ~ j )  + ~jk(P - a)} 

5 + vik exp {(aj - yi) + xik(P - a)) + 1 ' 

In other words, the probability that a death is from the specific cause satisfies the linear 
logistic model 

Pjk logit pik = log - = (ai - yi) + xik($ - 6). 
1 - p j k  

Furthermore, if the exposures have no effect on the rate of death from the other causes 
(6 = O ) ,  the regression parameters of the covariables xik estimated from this linear 
logistic relationship correspond precisely to the log relative risks of principal interest. 
This provides a formal confirmation of the well-known fact that proportional mortality 
analyses are valid only if the controls are' selected from among deaths due to causes 
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Table 4.14 Fitting of multiplicative models to grouped data from the Montana smelter 
workers study: proportional mortality analysis with internal control 

Variable fitted Relative risk (exponentiated regression coefficient) and standardized regression 
coefficient (in parentheses) 

Employed Employed Combined cohort 
prior 1925 
to 1925 or after Four levels Two levels 

of exposure of exposure 

Exposure duration (years) 
Under 1 
1-4 
5-14 
15+ 

Pre-1925 employment 
Deviance (G2) 
Degrees of freedom 
Tests of significance 

of exposure based on G2 
Global 
Trend 

that have no relation to the exposures. Prentice and Breslow (1978) make the same 
observation in deriving the analogous relationship for continuous data. 

In order to carry out the proportional mortality analysis, we treat the djk as 
independent binomial random variables with denominators tjk and probabilities pjk of 
'being a case' that satisfy the linear logistic model (4.20). Techniques of maximum 
likelihood estimation are applied exactly as described in Chapter 6 of Volume 1. 
Provided that the other causes of death are unrelated to the exposures, the regression 
coefficients may be interpreted as log relative risks in the usual fashion. 

Example 4.4 
The data in Appendix V include the total numbers of deaths observed in each of the 114 categories defined 

by the cross-classification in the Montana smelter workers study. These were analysed using the logistic 
regression model (4.20) with covariables xjk defined just as in the earlier cohort analyses to represent the 
effects of period of hire and duration of moderate to heavy arsenic exposure. Table 4.14 presents the results 
in the same format as for the parallel cohort analyses (Table 4.10). The significance of the estimated 
exposure effects is somewhat reduced in comparison, as might be expected since more restricted data are 
being used. The deviances measuring the goodness-of-fit of the models to the proportional data are 
considerably higher. Note that three degrees of freedom have been lost in comparison with Table 4.10, due 
to the fact that there was no death at all (tjk = 0) in three cells. Nevertheless, the estimated regression 
coefficients for the proportional mortality analysis are quite comparable to those for the full cohort analysis. 
There is a slight reducticn in the estimated effects for period of hire and for 15 or more years of arsenic 
exposure, indicating that these two factors may possibly have increased mortality rates from causes other 
than respiratory cancer. 

(b )  Incorporating standard rates into the proportional mortality analysis 

Suppose now that external standard rates A; and yi* are available for deaths due to 
specific and nonspecific causes in stratum j .  We continue to rely on the basic 
multiplicative model (4.19), except that the unknown log background rates aj and yj 
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are replaced by a + log A; and y + log vf , respectively. Defining pi* = A;/(A; + vf) to 
be the standard proportions of deaths due to the cause of interest in the jth stratum, it 
follows that the probability that a death is due to that cause may be written 

The probabilities of 'being a case7 continue to satisfy the linear logistic model (4.20). 
Now, however, the known variable logit pi* 'offsets7 the model equation, and there is a 
constant term with coefficient ( a  - y). This coefficient may be interpreted as the 
logarithm of the standardized relative mortality ratio (SRMR) for unexposed members 
of the cohort (x = 0 ) ,  where the SRMR is defined as the ratio of SMRs for specific 
versus nonspecific causes (Breslow & Day, 1975). The proportional mortality ratio as 
usually defined, namely the ratio of the number of deaths observed to those 'expected7 
on the basis of the stratum-specific proportions pi*, is of lesser interest for reasons 
discussed in 93.7. 

Example 4.5 
Table 4.15 presents the standard proportions for the 16 age x year strata used with the Montana 

smelter workers data. These were obtained by dividing the standard death rates from respiratory cancer 
(Table 3.2) by the corresponding standard death rates for all causes. The logistic transform of these standard 
proportions was used as an offset in a logistic regression analysis based on equation (4.21). 

Table 4.16 presents the results in what has now become a standard format. Just as observed earlier for the 
full cohort analysis (Tables 4.10 and 4.13), the relative risk estimated for pre- versus post-1925 employment 
is greater when the standardized proportions are used as a basis of comparison than when these same 
proportions are estimated internally. This suggests that the association between the SMR (or SRMR) and 
period of employment is confounded by one or more of the stratification factors, an interpretation that is 
confirmed by more detailed analyses of data from the Montana cohort reported below. Otherwise, the 
agreement between the two types of proportional mortality analyses is quite good. The difference between 
the constant terms for the full cohort analysis (Table 4.13) and the proportional analysis (Table 4.16) 
suggests that the y coefficient in equation (4.21) is nonzero. This implies simply that the SMR for 
nonrespiratory cancer deaths among cohort members with zero covariates is different from unity. 

4.8 Further grouped data analyses of the Montana cohort 

The preceding illustrative analyses of the Montana smelter workers study are limited 
in scope by the requirement that they be based on the relatively small data set 
presented in Appendix V. More realistic analyses were undertaken also by fitting 
multiplicative models to a more elaborate set of grouped data (Breslow, 1985a; 
Breslow & Day, 1985). Respiratory cancer deaths and person-years of exposure were 

Table 4.1 5 Standard proportions of deaths due to respiratory cancer: US 
white males 

- -- 

Age group Calendar year 
(years) 

1938-1 949 1950-1959 1960-1 969 1970-1 977 

40-49 0.021 51 5 0.038246 0.052288 0.070208 
50-59 0.028478 0.055765 0.074081 0.095478 
60-69 0.021 247 0.047646 0.072328 0.0951 59 
70-79 0.009894 0.024390 0.041 900 0.064688 
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Table 4.16 Fitting of multiplicative models to grouped data from the Montana smelter 
workers study: proportional mortality analysis with external control 

Variable fitted Relative risk (exponentiated regression coefficient) and standardized regression 
coefficient (in parentheses) 

Employed Employed Combined cohort 
prior 1925 
to 1925 or after Four levels Two levels 

of exposure of exposure 

Constant (SRMR) 2.02(4.77) 1.13(1.16) 2.22 (6.54) 2.26 (6.83) 
Exposure duration (years) 

Under 1 1 .O 1 .O 1 .O 1 .O 
1-4 2.26 (2.64) 1.90 (3.14) 2.02 (4.1 1 ) 
5-14 2.15 (2.25) 1.49 (1.36) 1.72 (2.45) 2.03 (5.42) 
15+ 2.89(4.37) 1.54(1.11) 2.35 (4.31 ) 

Pre-1925 employment - - 2.07 (5.33) 2.13 (5.74) 
Deviance (GI 55.9 65.6 ,123.8 125.2 
Degrees of freedom 47 56 106 108 
Tests of significance of 

exposure based on G 
Global x:= 21.8 x: = 10.3 x: = 29.8 
Trend 

x: = 28.4 x: = 19.6 x: = 5.3 x: = 23.7 

classified in six dimensions: (i) age in four ten-year intervals; (ii) calendar year in four 
intervals; (iii) date of first employment (pre- versus post-1925); (iv) birthplace (US- 
versus foreign-born); (v) number of years worked in moderate arsenic areas (<I, 1-4, 
5-14, 15+) and (vi) number of years worked in heavy arsenic areas (<I, 1-4, 5+). Of 
the 4 x 4 x 2 x 2 x 4 x 3 = 768 possible cells in this six-dimensional table, only 478 
actually contained any person-years observation. The results obtained in this section 
will serve as a useful point of reference for those based on more complicated methods 
of analysis of continuous data that are considered in the next chapter. 

(a) Preliminary analyses 

Table 4.17 presents respiratory cancer SMRs according to a large number of possible 
risk variables, including several not mentioned above, and without regard to possible 
confounding effects. The time-dependent exposure variables were lagged two years in 
an attempt to estimate the exposure status at the time of disease onset, rather than at 
the time of death, and thus to avoid some of the healthy worker selection problem. 
Tests of significance were based on the heterogeneity statistic (3.11), or the trend test 
(3.12), as appropriate. 

From this preliminary analysis, we conclude that period of first employment, 
birthplace, years since first employed and level of arsenic exposure may each have 
some effect on the age-specific rates. We also note a sharp decline in the SMR with 
calendar year, indicating that the respiratory cancer rates for the cohort as a whole 
have not increased in constant proportion with those for the general population, 
although they have remained consistently higher (see Example 2.4). This serves as a 
warning of a possible lack of comparability of the SMRs for the various exposure 
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Table 4.17 Variations in respiratory cancer SMRs among Montana smelter workersa 

Factor analysed Level Number of ~ ~ ~ ( x 1 0 0 ) ~  Test of 
deaths significanceC 

Period of first 
employment 

Age at hire (years) 

Birthplace 

Time since first 
employedd (years) 

Time since last 
employedd (years) 

Arsenic exposured 

Age at follow-up 
(years) 

Year at follow-up 

1885-1 924 
1925- 1955 

< 24 
25-34 
35+ 

US 
Foreign 

1-14 
15-29 
30+ 

None 
0-9 
10+ 

Light only 
Moderatee 
Heavye 

40-49 
50-59 
60-69 
70-79 

1 938- 1 949 
1950- 1959 
1 960- 1 969 
1970-1977 

a From Breslow (1985a) 
Calculated with reference to US mortality rates for white males by age and calendar year 

CTest for homogeneity of SMRs among categories shown based on equations (3.11) or (3.12) 
Time-dependent exposure variable lagged two years 
Worked in moderate or heavy arsenic exposure area for at least one year 

classes due to confounding with calendar year. Additional confounding may result from 
the high correlation between certain exposure variables. For example, due to the fact 
that follow-up started only in 1938, virtually everyone employed before 1925 
contributed person-years only to the last two categories of years since first 
employment. 

Table 4.18 presents an analysis of variance of the log SMRs based on the model 
equation (4.18) and various indicator regression variables. This shows clearly that the 
effects of duration of employment are easily explained by the correlation with period of 
first employment, whereas those for arsenic exposure are not. Selection of the variables 
for the final analysis was based on such considerations. 

( b )  Regression analyses 

Table 4.19 presents further multiple regression analyses based on equations (4.18) 
(first two columns.) and (4.11) (last column). When calendar year is included in the 
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Table 4.18 Analysis of variance based on a multiplicative model for 
SMRs: respiratory cancer deaths in Montana smelter workersa 

Source of variationb Degrees of freedom Chi-square 

PERIOD of hire and 
TlME since first employment 

PERIOD alone 
TlME after PERIOD 
TlME alone 
PERIOD after TlME 

PERIOD and ARSENIC level 
PERIOD alone 
ARSENIC after PERIOD 
ARSENIC alone 
PERIOD after ARSENIC 

a From Breslow (1985a) 
See Table 4.17 for definition of factor levels 
Not statistically significant; all others have p < 0.0001 

SMR analysis, the regression coefficient for period of hire is much closer to that 
obtained when baseline rates are estimated internally. This confirms that part of the 
difference between the SMRs for those hired before and after 1925 is due to the 
confounding effects of calendar year on the ratios of cohort to standard death rates. 
Appropriate adjustment is made either by including calendar year as a covariable in 

Table 4.19 Regression coefficients f standard errors in the multiplicative model: two 
methods of analysis of grouped data from the Montana smelter workers studya 

Regression Method of analysis 
variable 

External standard rates (SMR analysis) Internal estimation 
of baseline rates 

Without calendar With calendar by age and year 
year effects year effects 

Constant (a) 0.256 f 0.092 0.581 f 0.219 - 
Hired before 

1925 0.564 f 0.133 0.441 f 0.143 0.444 f 0.1 51 
Foreign born 0.492 f 0.142 0.407 f 0.1 47 0.445 f 0.1 53 
Heavy arsenic 

1-4 years 0.170 f 0.310 0.1 99 f 0.303 0.1 93 f 0.305 
5+ years 1.067 f 0.230 1.076 f 0.230 1.069 f 0.230 

Moderate arsenic 
1-4 years 0.587 f 0.166 0.604 f 0.166 0.600 f 0.166 
5-14 years 0.253 f 0.242 0.262 f 0.242 0.259 f 0.242 
15+ years 0.678 f 0.204 0.683 f 0.205 0.689 f 0.206 

Calendar period 
1950-1 959 -0.075 f 0.216 
1 960- 1 969 -0.235 f 0.21 5 
1970-1 977 -0.480 f 0.228 

- -- -- 

a From Breslow and Day (1985) 
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the SMR analysis or else, and what is almost the same, by conducting a parallel 
internally controlled analysis in which background rates are estimated from the data. If 
age, year and age x year interactions are all included as covariables in the SMR 
analysis, the externally and internally controlled analyses yield identical results as far as 
the p coefficients are concerned. The difference in the coefficients for foreign-born 
between the second and third columns suggests some possible residual confounding by 
age. 

4.9 More general models of relative risk 

One possible drawback to the multiplicative model (4.10), at least when applied with 
quantitative exposure variables, is that it leads to relative risk functions that increase 
exponentially with increasing exposure: RR(x) = exp (xp). Apparently, some risks do 
increase this fast. For example, our analyses of the Ille-et-Vilaine case-control study in 
Volume 1 showed that alcohol had such an effect on the risk of oesophagael cancer. 
This example is atypical, however, and in most epidemiological studies the rate of 
increase would be less dramatic (see Chapter 6). In Ille-et-Vilaine, the relative risk of 
oesophageal cancer was approximately proportional to the square root of the daily 
dose of tobacco. 

(a) Transformations of dose 

Many of the quantitative dose-response relations actually observed in cancer 
epidemiology approximate a power relationship of the form 

Here xo>O is a small 'background7 exposure level introduced to account for the 
spontaneous incidence of cancer among the unexposed. This relative risk function may 
be approximated by first transforming the dose to z = log (x + x,) and then fitting the 
multiplicative model (4.10) in the form 

The choice xo=  1 is not uncommon as a 'starter7 dose since it yields the usual 
RR(x) = 1 at the baseline level x = 0. xo may also be treated as an unknown parameter 
and the best fitting value, found by trial and error or some other more systematic 
technique. However, the model is then no longer a log-linear one, and determination 
of the variances and covariances of the parameter estimates may be seriously 
complicated. There is a high degree of correlation between the estimates of xo and P, 
as might be expected from the fact that the slope of the relative risk function (4.22) at 
x = 0 is given by RRf(0) = Since small variations in xo often have little effect on 
the overall goodness-of-fit, it is usually adequate simply to select a nominal background 
dose a'priori and to proceed assuming that x, is fixed. 
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(b) Additive relative risk model 

Certain formulations of multistage theory and other more general considerations 
lead to relative risk functions that are linear or quadratic in measured exposures, for 
example RR(x) = 1 + px or RR(x) = 1 + bx + yx2 (Berry, 1980; Thomas, D.C., 1981). 
These are special cases of a general class of models of the form 

ajk = exP (ai){l + ~jkP) (4.24) 

which we shall call the additive relative risk model. One drawback of these is that the 
range of the p parameters is necessarily restricted by the requirement that xjkP > -1 
for all values of xjk, since negative relative risks would otherwise result. This suggests 
that, wherever possible, the regression variables xi, be coded so that they have positive 
coefficients. As usually happens for models in which there is a range restriction on the 
parameters, the log-likelihood function is skewed and not at all like the quadratic, 
symmetric log-likelihood of the approximating normal distribution. Estimates of the 
parameters may be unstable, and standard errors that are determined from the usual 
likelihood calculations may be unhelpful in assessing the degree of uncertainty. (This 
contrasts with additive models for absolute risk, where t statistics perform reasonably 
well. See Example 4.2.) Substantial differences may exist in practice between the 
observed and expected information measures, and score tests based on the former may 
give seriously misleading answers (Storer et al., 1983). Irregularities in the likelihood 
surface may frustrate the search for maximum likelihood estimates. The usual iterative 
procedures can diverge unless starting values in the immediate vicinity of the maximum 
likelihood are available. 

In view of these complications, we do not recommend the additive relative risk 
model for routine applications. It often suffices to transform the exposure variables and 
to approximate the additive relative risk model by a multiplicative model in the 
transformed variables. Nevertheless, one sometimes finds that the extra work involved 
in fitting the model (4.24) results in a substantially better fit to the data or is necessary 
in order that the regression coefficients have precisely the desired interpretation. 

(c) Fitting general models to Poisson rates 

The additive relative risk model (4.24) is a generalized linear model that involves a 
composite link function (Thompson & Baker, 1981): two separate linear functions 
(linear predictors) of the explanatory variables are related to the mean values 
E(djk) = nikajk. Since it is a nonlinear regression model for Poisson rates, however, it 
still may be fitted using GLIM or other programs that facilitate iterated reweighted 
least-squares analyses (Frome, 1983). However, the implementation is more involved 
than for the multiplicative (4.16) or power (4.15) models considered earlier. 

In their most general form Poisson regression models may be written 

where the asterisks on p* and x; indicate that these are the expanded vectors of length 
J + p  that involve the J stratum indicators and associated coefficients q in addition to 
the exposure variables. Maximum likelihood fitting of such models can be programmed 
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as a series of weighted least-squares analyses involving dependent variables 

weights 

and independent variables 

that are recalculated at each stage of iteration using fitted rates 

5 = g(x;; fi*) 

based on the current parameter estimates fi*. The change in the estimated coefficient 
going from one iteration to the next is given by 

where Z is a matrix with rows zjk and W is a diagonal matrix with diagonal elements 
y k .  

Programming the likelihood calculations in this fashion leads to regression diagnos- 
tics that help evaluate the goodness-of-fit and stability of the model just as we saw 
earlier for the multiplicative model and the power family (4.16). The diagonal terms hjk 
of the 'hat' matrix obtained at convergence of the iterative procedure, 

provide information about the general influence of the data in cell (j, k) on the fit. The 
specific changes in the estimated regression coefficients occasioned by deletion of those 
data are approximated by the vector 

A family of general relative risk models that is intermediate in generality between 
(4.24) and (4.25) is given by 

where the relative risk function is specified by the power relation 

This yields the additive relative risk model (4.24) at p = O  and the standard 
multiplicative model (4.10) at p = 1. Thomas, D.C. (1981) proposed another family 
RR(x) = exp (px$){l + XP)'-~, which also contains both additive and multiplicative 
forms. These two families, which specify how the exposure effects combine to yield a fac- 
tor r(x; $), which then multiplies background, should be contrasted with the family (4.16), 
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Table 4.20 GLlM macros for fitting the relative risk model specified by equation (4.28) to grouped 
cohort data 

$sub porr ! macros for power transform relative risks 
! MACRO PORR REQUIRES THE FOLLOWING INPUT DATA 
! r = NUMBER OF CASES (BINOMIAL NUMERATOR) 
! n = NUMBER OF CASES + CONTROLS (DENOMINATOR) 
! %I = POWER TRANSFORM USED IN RELATIVE RISK (%I = 0 FOR LOG) 
! strt = FACTOR WITH %i LEVELS THAT CONTAllVS STRATUM INDICATORS 
! %i = NUMBER OF LEVELS FROM STRATUM INDICATOR STRT 
! b = INITIAL VALUES FOR PARAMETERS (LENGTH %I + 8) 
! x l  . . . x8 = REGRESSION VARIABLES CODED TO HAVE POSITIVE RELATIVE RISK 

CODE XI = 0 FOR THOSE THAT ARE NOT TO BE FITTED. 
! 
! ON EXIT THE FOLLOWING QUANTITIES ARE AVAILABLE 
! 
4 p = PREDICTED PROBABILITY OF 'BEING A CASE' 
! h = DIAGONAL TERMS FROM 'HAT' MATRIX 
! cs = STANDARDIZED RESIDUALS (CHI-SQUARE TYPE) 
! %vc = MATRIX OF VARIANCES AND COVARIANCES OF ESTIMATES 
! 
$mat ftnl ! macro to fit nonlinear relative risk model 
$cal % k = 10 : %c = 0.0001 ! set convergence criteria 
$err n ! 
$wei w $yvar y $while %k porr $dis e $ext %vl $cal h = %vl*w ! 
$cal cs = (r - n*p)/%sqrt(w) : %t = %cu(cs*cs) ! 
$cal %u = 2*%cu(r*%log(r/(n*p)) + (n - r)*%log((n - r)/(n*(l - p)))) ! 
$pri 'chi-square' %t 'deviance' %u $ ! 
$del %pe y w %fv z l  22 23 24 25 26 27 28 xb th db %vl $$endmac ! 
$mac porr ! rr(x) = ((1 + xb)**%l - I)/%! 
$cal xb = b(%i + I )*XI + b(%i + 2)*x2 + b(%i + 3)*x3 + b(%i + 4)*x4 + b(%i + 5)*x5 
+ b(%i + 6)*x6 + b(%i + 7)*x7 + b(%i + 8)*x8 ! 
$cal xb = %if(%le(xb, O), 0.0001, xb) ! 
$cal %a = 1 + %eq(%l, 0) $switch %a pow log $ 
$cal xb = (1 + xb)**(%l - 1) ! 
$cal p = %exp(th) : p = p / ( l  + p) ! 
$cal w = n*p*(l - p) : y = (r - n*p)/w ! 
$cal z l  = XI *xb : 22 = x2*xb : 23 = x3*xb : 24 = x4*xb : 25 = x5*xb : 26 = x6*xb ! 
$calz7 = x7*xb : 28 = x8"xb ! 
$sca 1 ! 
$fit s t r t -%gm+zl  + z 2 + ~ 3 + ~ 4 + ~ 5 + ~ 6 + ~ 7 + ~ 8  $ext %pe$cal db=%pe : b =  b + d b  ! 
$pri %k 'estimates' b ! 
$use cchk ! check for convergence 
$$endmac 
$mac pow $cal th  = b(strt) + ((1 + xb)**%I - 1)/%1 $$endmac ! 
$mac log $cal th  = b(strt) + %log(l + xb) $$endmac ! 
$mac cchk ! convergence check 
$cal db = %if(%le(db, O), -db, db)/b ! 
$cal db = %if(%le(db, %c), 0, 1) : %t = %cu(db) ! 
$cal %k = %k - 1 : %k = %if(%le(%t, O), 0, %k) $$endmac ! 
$return 
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which specifies how exposure and background effects combine. Table 4.20 contains 
a series of GLIM macros, based on the general iterated least-squares method- 
ology just described, that were used to fit the class of models (4.28) in the illustra- 
tive examples. The multiplicative model with p = 1 is easily fitted using standard features 
of GLIM, and convergence is guaranteed. A recommended procedure is to fit 
this model to get starting values of $* = (a, $) for use with nearby values of p, say 
p = 0.9. One then uses the $* values obtained at convergence with p = 0.9 to start the 
procedure with p = 0.8, and so on until the additive relative risk model p = 0. 
However, due to the general problems with additive and other nonmultiplicative 
relative risk models mentioned above, it may prove impossible to implement this 
procedure with some data sets once p decreases beyond a certain point. Comparison of 
deviances for various values of p allows one to judge which (if either) of the additive or 
multiplicative relative risk models provides a reasonable description of the data, just as 
in Example 4.2. Thompson and Baker (1981) describe an alternative methodology for 
fitting models with composite link functions, which may be implemented using the 
OWN feature of GLIM to fit (4.28). Pierce et al. (1985) have developed a flexible 
program to fit models in which the rates are expressed as a sum of products of 
multiplicative and additive terms. 

Example 4.6 
In order to illustrate the fitting of the additive relative risk model, we consider another set of data from the 

British doctors study (Doll & Peto, 1978). Table 4.21 presents numbers of lung cancer deaths and 

Table 4.21 Numbers of lung cancers ( 0 )  and person-years of observation (P-Y) by age and 
smoking level among British male doctorsa 

No. of Average Age in years 
cigarettes number 
smoked smoked 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 
per day 

0 0 
P-Y 

2.7 0 
P-Y 

6.6 0 
P-Y 

11.3 0 
P-Y 

16.0 0 
P-Y 

20.4 0 
P-Y 

25.4 0 
P-Y 

30.2 0 
P-Y 

38.0 0 
P-Y 

a From Doll and Peto (1978) 
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Table 4.22 Results of fitting several relative risk models to the data on lung 
cancer in British doctors: internal estimation of age effectsa 

Model Equation for relative Degrees Deviance Parameter Standard 
no. risk (RR) or excess of estimate error 

risk (ER) as a function freedom 
of daily no. of 
cigarettes ( x )  

Separate RR each 
dose group 

RR = exp (px) 
RR = exp (px + yx2) 

Separate ER each 
dose group 

ER =Bx 

(see Fig. 4.6) 

a From Breslow (1985b) 

approximate person-years denominators classified by age and number of cigarettes smoked per day. Data for 
ages 80 and above were excluded from consideration, since the diagnosis is often uncertain at such advanced 
ages, while data for persons who reported smoking more than 40 cigarettes per day were excluded on the 
grounds of being unreliable and uncharacteristic. This latter exclusion, made also by Doll and Peto (1978), 
has a substantial impact on the dose-response analyses and has been the subject of some controversy. 

Table 4.22 presents the results of fitting a variety of models to these data. In addition to the smoking 
parameters, estimates of which are shown in the table, each requires estimation of eight aj parameters to 
represent the effects of age. The first four models are multiplicative. Smoking is treated qualitatively in 
model 1, with a separate relative risk being estimated for each smoking level. In models 2 and 3, the 
quantitative dose variable x = 'average number of cigarettes smoked per day' and then its square are 
introduced into the exponential term. Model 4 is the power relative risk model specified by equation (4.23), 
and models 5 and 6 are additive relative risk models as specified by (4.24). 

Except for model 2, all the relative risk models (models 1-6) fit the observed data reasonably well. Model 
4 fits best among those that require only a single parameter to describe the relative risk. The fact that a 
quadratic term significantly improves the fit of the additive relative risk model (X :  = 58.36 - 51.03 = 5.35; 
p = 0.02) was interpreted by Doll and Peto (1978) as consistent with the notion that both an early and a late 
stage in the carcinogenic process are affected by cigarette smoke (see Chapter 6). 

Figure 4.6 shows the relative risks estimated from four of the models. By definition, all relative risks are 
constrained to equal unity at zero dose. However, since most lung cancer deaths occur among smokers, the 
regression coefficients are largely determined by a comparison of rates for different classes of smokers, rather 
than by a comparison of smokers with nonsmokers. The fact that nonsmokers form the baseline category 
thus explains the apparently aberrant behaviour of the estimated relative risk curve for the power model. 
Were a more typical category used as a baseline, say, smoking of 20 cigarettes per day, all the curves would 
pass through unity at that point and would appear to be in better harmony. See the parallel discussion in $6.9 
of Volume 1. 

Certain drawbacks of the additive relative risk model are evident from Table 4.22. The standard errors for 
the regression coefficients are quite large in comparison with those for the multiplicative model, to the extent 
that t statistics of the form r = ~ I S E ( ~ )  seriously understate the true statistical significance of the smoking 
effect. The r statistics for the multiplicative models 2 and 4 are r =0.0853/0.0063 = 13.5 and r = 
1.187/0.123 = 9.7, each highly significant, while that for model 5 is only r = 1.130/0.510= 2.2. The contrast 
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Fig. 4.6 Three relative risk (RR) functions fitted to data on lung cancer rates from 
the British doctors study 
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between the maximum log-likelihood functions for the multiplicative and additive relative risk models (Fig. 
4.7) is also striking. The P parameter in the additive relative risk model is less well determined, as indicated 
by the flatter log-likelihood, and there is substantial skewness. These problems may be largely overcome, 
however, by reparametrizing the model as Ajk = a j ( l  + ePxk) (Thomas, D.C., 1981), or as discussed by 
Barlow (1986). 

The last two models in Table 4.21 are additive models. Model 7 has the form Ajk = a;. + P,, where a 
separate excess risk Bk is estimated for each dose category. Model 8 is A,, = aj + Px,, where the excess risk is 
assumed to be linear in dose. Neither fits the observed data at all well. In fact, as soon as one moves much 
away from the relative risk models 1-6, for example, by considering the power family (4.16) with p departing 
slightly from 0, the goodness-of-fit declines substantially. Thus, although there may be some doubt about the 
specific form of relative risk as a function of dose, smoking does appear to act multiplicatively on the 
age-specific rates. 

(d) Incorporating external standard rates 

External standard rates A; are incorporated into the additive relative risk model by 
writing it in the form 

where fl = q / O  is the parameter of interest. This is formally equivalent to the additive 
model (equation (4.16) with p = I), except that there is only one stratum parameter 0  
and all the regression variables are pre-multiplied by the known rates A;. Thus, it may 
be fitted directly in GLIM without recourse to the specialized macros given in Table 
4.20. 

Although there are fewer parameters to estimate, (4.29) has the same drawbacks as 
(4.24) with regard to instability of the P coefficients. Indeed, it is clear from the 
relation p = v/O that much of the instability in this model is due to the extremely high 
dependence between the estimated relative risks and the estimates of the baseline 
rates, or between the relative risks and the scale factor 0  used to adjust those rates. 

Example 4.7 
The same series of models considered in Example 4.6 was fitted to the British doctors data shown in Table 

4.21, except that the baseline age-specific rates were assumed to be proportional to = (ti - 22.5)4.5 x 
lo-", where tj is the midpoint of the jth age interval. Here, tj - 22.5 represents the approximate duration of 
exposure to the putative carcinogen in the jth age group and the exponent 4.5 represents a compromise 
between five and six stages in the multistage theory of carcinogenesis (Doll & Peto, 1978). Thus, the external 
'standard' rates are based on theoretical concepts, rather than on national vital statistics as in some earlier 
examples. 

The results, shown in Table 4.23, are little different from those in Table 4.22, where the age effects were 
estimated directly from the data. One would expect that the standard errors of the regression coefficients of 
the smoking variables might be reduced somewhat, reflecting an increase in precision stemming from the 
stronger assumptions made about the background rates. Theoretical calculations (Stewart & Pierce, 1982; 
Breslow, 1985b) indicate that such an increase would be expected if age were a strong confounder, in the 
sense that average smoking levels changed markedly from one age group to the other. While there is some 
evidence for such confounding in these data, it is evidently not strong enough that knowledge of the 
background rates, at least up to a constant of proportionality, would contribute a significant advantage in 
terms of increased precision. 

If the additive relative risk model is expressed in terms of the parameters 8 and I), as in (4.29), we 
estimate 6 = 0.837 f 0.356, 6 = 0.954 f 0.741 and ~ o v ( 6 ,  6 )  = -0.00686. A test of the smoking effect is 
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Table 4.23 Results of fitting several relative risk models to the data on lung cancer in 
British doctors; age effects assumed proportional to (age-22.5)4.5 x lo-" 
- - - -  

Model Equation for relative Degrees Deviance Parameter Standard 
no. risk (FJR) or excess of estimate error 

risk (ER) as a function freedom 
of daily no. of 
cigarettes (x) 

Separate RR each 
dose group 

RR = exp (px) 
RR = exp (px + yx2) 

Separate RR each 
dose group 

ER =px 

From Breslow (1985b) 

thus given by t = $/sE($) = 12.9, of the same order of magnitude as with the multiplicative models. 
However, the test based on fl = $/8 = 1.141 divided by its standard error {Var (8)f12 - 2 Cov (6, $)B + 
Var ($))"2/8 = 0.516 yields a t statistic of only 2.2. This suggests that a large part of the instability in fl in 
the additive relative risk model is its high correlation with parameter estimates (here 6) that represent the 
background rates. Further confirmation of this interpretation is given in Figure 4.8, which shows contour 
plots of the deviances obtained by varying the two parameters in the model equation (4.29). Although the 
minimum deviance of 60.0 occurs at fl = 1.141 (Table 4.23, model 5), nearly identical fits are obtained for a 
wide combination of parameter values (8, p). The corresponding Figure 4.9 for the multiplicative model 
(Table 4.12, model 4) shows that, while there is still a strong dependence between the parameters 
representing relative risk and background, it is not so extreme as to lead to serious instability. 

(e) General risk functions for proportional mortality 

The relative risk models considered for proportional mortality analyses in 84.7 may 
also be generalized using the techniques of this section. In place of (4.19) we suppose 

where r(x; p )  denotes the general relative risk function for the cause of interest and 
where we have explicitly assumed that death rates for other causes are not affected by 
the exposures. The probabilities pik of 'being a case' then satisfy 

logit pik = (ai - y,) + log r(xjk; P). 
As shown above, a flexible and convenient family of models for the log relative risks 

(although by no means the only one that could be suggested for this purpose) is the 



Fig. 4.8 Contour plot of deviances (G2) when fitting the additive relative risk model with external standard rates to lung 
cancer rates from the British doctors study 
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family 

which contains both additive (p- 0) and multiplicative (p = 1) relative risk functions 
as special cases. Breslow and Storer (1985) illustrate the fitting of such general relative 
risk functions to grouped data from actual case-control studies. The same techniques 
can be used in proportional mortality analyses. 

4.10 Fitting relative and excess risk models to grouped data on lung cancer deaths 
among Welsh nickel refiners 

Appendix ID presents a detailed discussion of the background and design of the 
study of Welsh nickel refinery workers. Summary data on nasal sinus cancer deaths 
(Appendix VI) were considered briefly in Example 4.1 in order to illustrate some 
features of the fitting of multiplicative models to grouped data. Published data from 
this study provided us in Chapter 3 with examples of the use of internal standard- 
ization. With the approval of Kaldor et al. (1986), we undertake in this section a more 
comprehensive analysis of grouped data on lung cancer deaths in order to contrast the 
results obtained with relative and excess risk models. In the next chapter, continuous 
variable modelling techniques are applied to the study of rates of nasal sinus cancer 
deaths that occurred among these same workers. 

(a) Basic data and summary statistics 

Table 4.24 was compiled by Peto, J. et al. (1984) to summarize the mortality 
experience through 1981. The excess mortality was due largely to nasal sinus and lung 
cancers and was essentially confined to the 679 men employed before 1925, to whom 
attention is henceforth confined. Appendix VIII lists basic data for each of the 679 men 
that were used for all the grouped and continuous variable analyses reported in this 

Table 4.24 Mortality experiences (0, observed; E, expected) of Welsh nickel refinersa 

Period first Number Cancers Other causes All 
employed of men causes 

Lung Nasal Other Circulatory Respiratory Other 
sinus disease disease 

Before 1925 679 0 137 56 67 220b 63 60 603 
E 26.86 0.21 59.44 194.76 62.39 75.74 419.38 

a From Peto, J. et a/. (1984) 
Including one death in which nasal sinus cancer was an underlying cause 
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monograph. There are slight differences between this data set and that analysed by 
Peto, J. et al. (1984), Kaldor et al. (1986) and others, due to the continual process of 
data editing. Thus, the person-years of observation, expected numbers of deaths and 
relative risks shown in Tables 4.24 and 6.8 and in our own summaries (e.g., Table 4.25) 
differ very slightly. However, these differences have no material effect on the results or 
interpretation. 

Six basic pieces of information are available for each subject: (i) ICD (7th revision) 
cause of death; (ii) exposure, defined as the number of years worked in one of seven 
'high-risk' job categories prior to the start of follow-up (see below); (iii) date of birth; 
(iv) age at initial employment; (v) age at start of follow-up; and (vi) age at death for 
those who died, age last seen for those lost to observation, or age at end of study for 
those withdrawn alive. Nasal sinus cancer deaths are coded 160 under the 7th ICD 
revision, and lung cancer deaths are 162 or 163. Further dates of interest, such as date 
entered follow-up and date of initial employment, are obtained by adding the 
corresponding ages to the date of birth. 

The nasal sinus cancer, lung cancer and total (all causes) death rates for England and 
Wales by five-year intervals of age and calendar time, listed in Appendix IX, were used 
to compute the expected numbers of deaths and the values of an age-dependent 
covariable, consisting of the standard death rate for each subject, at specified points in 
time. 

( b )  Construction of the exposure index 

Company records were used to classify each year of an individual's employment into 
one of ten categories, depending on the area of the plant in which he worked on 1 
April of that year. Such data were available for 82% of the 9354 calendar years during 
which the 679 subjects were employed prior to 1925. Kaldor et al. (1986) used a 
synthetic case-control approach to analyse the relation between work area and 
respiratory (nasal sinus and lung) cancer risk. They identified five exposure categories 
that appeared to be significantly related to the risk of both cancers: calcining I,  
calcining 11, copper sulphate, nickel sulphate and furnaces. (See Table 6.7.) On this 
basis, they developed an exposure index equal to the number of calendar years 
employed in these categories. A contribution of a half rather than a full year was given 
for the first and last calendar year of such employment. In contrast to the Montana 
study, there was no overlap of exposure and follow-up periods and hence no change in 
the exposure index with follow-up. This simplified the analysis considerably. 

Due to the circularity involved in construction of the exposure index, the excess risks 
may be overstated slightly. Another possible deficiency is that the index does not 
account for the time or age at which 'high-risk' exposures were received. Any 
difference between high-risk exposures received during 1905-1909 and those received 
between 1920 and 1924 is ignored. Furthermore, the use of date of initial employment 
to represent the start of exposure may obscure the fact that relevant exposures were 
primarily received in high-risk areas. One might consider an analysis of two exposure 
duration variables - years since initial employment and years since initial employment 
in a high-risk area. However, due to the undoubtedly high correlation between them, 
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estimation of their separate effects would be problematic. Hence, time since first 
employment is used as the only time-dependent variable in the ensuing analyses. 

(c) Grouping of data for analysis 

From the data in Appendix VIII we constructed a four-dimensional table of 
observed numbers of lung cancer deaths, person-years of observation, and expected 
numbers of lung cancer deaths, and likewise for nasal sinus cancer. The dimensions 
were (i) age at first employment (AFE) in four levels; (ii) calendar year of first 
employment (YFE) in four levels; (iii) the exposure index (EXP) in five levels; and (iv) 
time since first employment (TFE) in five levels. The calculation used Clayton's 
algorithm (Appendix IV) to combine the 679 original records with the national death 
rates for England and Wales. At one point it was necessary to add two more 
dimensions to the table, namely, current age and calendar year in the quinquinquennia 
for which the national rates were available. Person-years in each cell were multiplied 
by the corresponding standard rate and then summed to give expected numbers of lung 
cancer deaths. Only 242 of the 4 x 4 x 5 x 5 = 400 cells in the four-dimensional table 
had some person-years of observation time available. The data for these 242 cells are 
presented in.Appendix VII so that the reader can more easily verify our results. 

(d) Fitting the relative risk model 

Table 4.25 shows the person-years and observed and expected numbers accumulated 
for each factor level. The sixth column of the table presents estimated relative risks 
(ratios of SMRs) for each factor, adjusted for the remaining three factors. These were 
estimated from a multiplicative model (equation (4.18)) that incorporated the standard 
rates and 14 binary regression variables to represent the simultaneous effects of the 
four factors. An overall SMR of 8.92 was estimated for the baseline category, namely 
for the period up to 20 years since date of hire for workers hired under 20 years of age 
before 1910 with no time spent in a high-risk job. The lung cancer relative risk 
increased fourfold with increasing exposure, but declined markedly as TFE advanced 
beyond 20 years. The smaller changes in the SMR with age and year of initial 
employment were not statistically significant (Table 4.26). 

(e) Fitting the excess risk model 

Due to the ageing of the cohort and the secular increase in cigarette smoking, the 
national rates used to determine the SMRs were themselves climbing rapidly with 
increasing follow-up. Thus, it is unclear from the decline in the SMRs with TFE what 
the temporal evolution of absolute excess risk may be. In order to investigate this 
question, Kaldor et al. (1986) employed a model for excess risk that had been proposed 
earlier by Brown and Chu (1983), namely, 

Ajk = AT + exp ( a  + xkS). 
Here, exp ( a )  represents the excess mortality rate for someone with a standard set of 
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Table 4.25 Fitting of relative and excess risk models to data on lung cancer mortality among 
Welsh nickel refiners 

Risk 
factor 

Level Person-years No. of lung cancer Relative Excess 
at risk deaths risk mortality 

(ratio ratio 
Observed Expecteda of SMRs) (EMR) 

Age at <20 years 3089.2 
first 20-27.5 7064.9 
employment 27.5-35.0 371 1.9 
(AFE) 35.0+ 1364.9 

Year of 1 900- 1 909 1951 .O 
first 1910-1914 2904.5 
employment 1915-1919 2294.0 
( Y E )  1920-1924 808 1.3 

Exposure 0- 7738.8 
index 0.5-4.0 4905.1 
(EXPI 4.5-8.0 1716.9 

8.5-1 2.0 601.2 
12.5+ 269.9 

Time since 0-19 years 2586.1 
first 20-29 4777.5 
employment 30-39 4329.4 
(TFE) 40-49 246 1.4 

50 + 1076.4 
Baseline SMR: 
Baseline excess mortality (per 100 000 person- 
Chi-square goodness-of-fit (deviance; 

227 degrees of freedom) 

a Based on rates for England and Wales by age and calendar year (Appendix IX) 

covariable values (xk = O ) ,  and exp (xkP) represents the excess mortality ratio (EMR), 
i .e. ,  the factor by which the specific exposures modify the excess rate. 

The model defined by (4.32) may be fitted easily with the GLIM OWN facility for 
user-defined models, just as (4.18) is fitted using standard features of the program. 
Table 4.27 lists the GLIM commands needed to read the 242 data records from 

Table 4.26 Evaluating the significance of variations in the SMR and 
EMR for each risk factor: lung cancer mortality among Welsh nickel 
refiners 

Risk Degrees Effect on relative mortality Effect on  excess mortality 
factora of (SMR difference) (EMU difference) 

freedom 
Chi-square p value Chi-square p value 

AFE 3 2.96 0.40 7.35 0.06 
YFE 3 3.77 0.29 3.34 0.34 
EXP 4 21.25 0.0003 24.26 0.0001 
TFE 4 42.42 <0.0001 17.25 0.002 

aAFE, age at first employment; YFE, year of first employment; EXP, exposure index; 
TFE, time since first employment 
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Table 4.27 GLlM commands needed to produce the results shown in Table 4.25" 

$UNITS 242 $DATA AFE YFE EXP TFE CASES PYR EXPT $ 
$FORMAT 
(4(X, F2.01, 11X, F3.0,8X, 2(X, F12.6)) 
$C READ IN DATA FROM FORTRAN UNIT 1 - APPENDIX VII 
$DINPUT 1 80$ 
$C DECLARE OFFSET TO BE LOGARITHM OF EXPECTED NUMBERS OF CASES 
$CAL EXPT = EXPT/1000 $ 
$CAL LEX = %LOG(EXPT) $OFF LEX $ 
$WAR CASES $ERR P $ 
$FAC 242 AFE 4 YFE 4 EXP 5 TFE 5 $ 
$C FIT MUL-TIPLICA-I-IVE MODEL 
$FIT AFE + Y FE + EXP + TFE $ 
$DIS M E $ 
$C EXTRACT PARAMETER ESTIMATES AND CONVERT INTO RELATIVE RISKS 
$EXT %PE $CAL RR = %EXP(%PE) $LOOK RR $ 
$C NOW CONTINUE WITH EMR MODEL 
$OFF $ 
$MAC M1 $CAL %FV = %EXP(%LP)*PYR + EXPT $$ENDMAC 
$MAC M2 $CAL %DR = 1 ./(%FV - EXPT) $$ENDMAC 
$MAC M3 $CAL %VA = %FV $$ENDMAC 
$MAC M4 $CAL % W = %IF(%LT(%YV, .5), .0000001, %YV) $ 
$CAL %Dl = 2.*(%W*%LOG(%W/%FV) - (%W - %FV)) $$ ENDMAC 
$OWN M1 M2 M3 M4 $FIT. $REC 10 $FIT. $ 
$DIS M E $EXT %PE $CAL RR = %EXP(%PE) $LOOK RR $ 
$STOP 

aAdapted from Kaldor et al. (1986) 

Appendix VII and produce the SNIR and ENIR estimates shown in Table 4.25. The 
excess risk was estimated to be approximately 30 lung cancer cases per 100 000 
person-years for workers in the baseline category. It also increased sharply with the 
exposure index. By contrast to the pattern in the relative risk, however, the excess risk 
increased to a maximum some 40 years from date of hire and subsequently declined. 

Brown and Chu (1983) note that one will sometimes wish to adjust the standard rates 
A; used in modelling the excess risk in order to account for the healthy worker 
selection bias or other systematic departures of baseline mortality rates in the study 
group from the national averages. They suggest Ajk = OAT + exp (e + xkP)  as a 
generalization of (4.32) and arbitrarily set 8 = 0.8 or 8 = 1.2 in order to gauge the 
sensitivity of the p parameter estimates to variation in the assumed background rates. 
We used the ANIFIT program of Pierce et al. (1985) to estimate 8 by maximum 
likelihood and found 8 = 1.087. Since there was scarcely any improvement in fit over 
the model with 8 = 1, it appears that the national rates do a reasonable job of 
representing background lung cancer mortality for the Welsh cohort. 

Although the SMR and EMR models happen to fit this particular set of data equally 
well, they lead to markedly different estimates of lifetime risk for typical workers. 
Kaldor et al. (1986) estimated the lifetime (to age 85) probability of lung cancer for 
light smokers who were born in 1900, who started work at the nickel refinery in 1920, 
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and who accumulated an exposure index of 10. The probability was 0.27 under the 
multiplicative model and 0.58 under the additive one. For a heavy smoker, the 
estimated lifetime probability was 0.65 for the multiplicative model and 0.61 for the 
additive one. 

Section 6.6 presents a further discussion of these results in terms of the multistage 
theory of carcinogenesis. 




