
CHAPTER 5 

FITTING MODELS TO CONTINUOUS DATA 

Grouping of cohort data into a multidimensional classification of casesldeaths and 
person-years by categories of age, calendar period, cumulative exposures indices and 
other fixed or time-varying factors is a convenient way of reducing a frequently massive 
set of information into a form suitable for statistical analysis. It encourages the 
investigator to examine disease rates calculated within each cell of the cross- 
classification, making plots of rates against quantitative exposure measurements for 
purposes of model development. Inferences regarding disease mechanisms are made 
possible by examining the data for trends in excess or relative risk measures according 
to ordered categories of age at onset of exposure, duration of exposure, or time since 
cessation of exposure. By assigning average duration or dose levels to these categories, 
quantitative regression models may be fitted for purposes of risk assessment. 
Validation of the fitted models is facilitated by the calculation of standardized 
differences (residuals) between observed and fitted numbers of cases in each cell. 

We believe that such grouped data analyses are generally the method of choice for 
cohort analysis. Given the inherent limitations of cohort data in terms of the number of 
cases and the accuracy of recorded exposure variables, more elaborate approaches such 
as those embodied in the continuous data analyses that we now describe are perhaps 
best limited to special situations. A possible exception is the use of the method of 
case-control within a cohort sampling (85.4) to conduct preliminary exploratory 
analyses in order to select variables for a final analysis, which is carried out using either 
grouped or continuous data techniques. 

Restrictions on grouped data analyses 

A key assumption of the grouped data approach is that disease rates are constant 
within each cell of the multidimensional cross-classification. While clearly an ap- 
proximation, this assumption can be made more plausible by refining the classification, 
for example, by using five-year rather than ten-year intervals of age and calendar time. 
However, there are obvious restrictions on the number of different variables that can 
be considered simultaneously and on the number of levels or categories into which 
each variable is factored. When most cells contain few, if any, cases, the previously 
cited measures of goodness-of-fit based on comparisons of observed and expected 
(fitted) numbers of cases have little if any value. Practical difficulties arise in coping 
with large numbers of cells and estimating large numbers of parameters. 
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Scope of Chapter 5 

This chapter develops methods of continuous cohort data analysis that utilize age, 
time and exposure measurements in their original form rather than after partitioning 
the data into discrete categories. Many different explanatory variables may be 
considered simultaneously in the same analysis. To  a large extent, the methods 
presented here are applications and refinements of survival analysis techniques 
originally proposed by Cox (1972) and developed further in texts by Kalbfleisch and 
Prentice (1980) and Cox and Oakes (1984), which should be consulted for a more 
detailed development. We first review, in 85.1, the fundamental concept of a disease 
incidence rate, considered as a continuous function of age and/or time. We describe 
how model equations already developed to express the effects of exposure on disease 
rates calculated from grouped data are adapted to the continuous case. Section 5.2 
introduces the 'partial likelihood' methodology for estimating regression coefficients in 
models in which the exposure variables are assumed to act multiplicatively on the 
background rates. It contains a detailed, worked example for the simplest situation - 
that of a single, binary (but age-dependent) exposure variable. In 85.3 we develop 
nonparametric estimates of unknown baseline disease rates, both for homogeneous 
samples and for heterogeneous ones in which the heterogeneity is expressed by 
covariables in the multiplicative model. When the background rates are determined 
from vital statistics or are assumed to have a specific parametric form, the same 
techniques provide a nonparametric description of how relative mortality rates (SMRs) 
may vary continuously with time since first exposure, time since cessation of exposure, 
or with some other relevant time variable. Plots of baseline or relative mortality 
functions against one or more time-varying factors are shown to be quite useful as a 
means of informally examining model assumptions. In 85.4, we present details about 
the 'case-control within a cohort' or 'synthetic retrospective study' sampling technique 
that was introduced in Chapter 1 as a device for conducting efficient, exploratory 
analyses of continuous cohort data. This section also presents analytical methods for 
gauging the influence of individual cases or controls on the estimated regression 
coefficients. In sections 5.5 and 5.6 these methods are applied systematically to 
the studies of Montana smelter workers and Welsh nickel refinery workers, and 
comparisons are made with results of grouped analyses of these same data sets already 
presented in Chapter 4. 

5.1 Fundamentals of continuous data analysis 

Continuous data methods rest fundamentally on the concept of an instantaneous 
disease rate considered as a continuous function of a continuous time variable t (see 
Chapter 2 of Volume 1). Let A(t) denote the rate for a given subject at time t such that 
A(t) dt is the probability of disease diagnosis or death in the time interval (t, t + dt), 
given that he was alive and/or disease-free at its start. We assume there is a 
background rate function A,(t) that represents the degree of risk for someone with no 
exposure or, in some cases, a standard set of exposures. The object of the data analysis 
is to construct models that describe how the exposure variables' x(t), which may 



180 BRESLOW AND DAY 

themselves vary continuously and depend on time, act to modify the background rates 
AO(t). Exposure effects are expressed parametrically in terms of a vector P of unknown 
parameters, and the statistical problem is one of estimating P in the presence of the 
unknown nuisance function AO(t). The most widely studied of such semi-parametric 
structures is the proportional hazards model of Cox (1972), in which A(t) = 

AO(f exp {x(t)P) - 
An important generalization is to consider several background rate functions A,(t), 

one for each of S strata (s = 1, . . . , S). The strata may also be time-dependent, and we 
denote by s(t) the stratum at which the subject finds himself at time t. The exposure 
variables are generally assumed to act in the same way (e.g., additively, multiplica- 
tively) on each of the background rates, regardless of stratum, and a single set of P 
parameters is used to describe their effects. Further generalizations are possible to 
situations in which the background rates vary continuously with two or more 
continuous time variables, but these methods have not yet been fully developed and 
are not presented here. 

(a) Choice of basic time variable 

Substantial flexibility is available with the continuous variable models, since different 
choices can be made for the basic time variable t. Candidates for t include time on 
study, time since first employment, age and calendar year. Once t has been specified, 
its effects on the background mortality rates are estimated nonparametrically in AO(t). 
The effects of the remaining time-dependent factors are then modelled in regression 
variables x(t). Stratification of the sample into several subgroups, each with its own 
background mortality rate function, allows even greater flexibility. The choice of t is 
important, and the investigator will usually want to think carefully about the goals of 
the analysis before deciding which time variable to model nonparametrically and which 
to account for by means of regression coefficients. 

Several of the analyses we have carried out have used t =age as the fundamental 
time variable. Secular trends in the age-specific background rates are accommodated 
by stratification of the sample into five- or ten-year intervals of calendar year or 
birthdate. One rationale for this choice of t is the fact that age is generally the most 
critical determinant of cancer rates. This suggests that one allow the greatest possible 
flexibility in their age dependence. The effects of various exposure indices that change 
with time on study are accommodated in the regression variables. 

In other examples, particularly those involving external standard rates or in which 
the background age-specific rates are known to have a simple parametric form, we 
have examined the evolution of excess or relative risk as a nonparametric function of 
t = time since first exposure. Sometimes, one may wish to conduct several parallel 
analyses with different choices of t, in order to determine the most appropriate 
parametric form for each one prior to its inclusion in subsequent analyses as a 
time-dependent regression variable. However, some caution must be exercised in order 
that an inappropriate choice for t not obscure the very effects that one is looking for. 
For example, suppose that major attention is focused on a cumulative exposure 
variable x(t) that is highly correlated with time on study. If time on study is selected as 
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t, some of the effects that rightfully should be quantified in the regression coefficient of 
the exposure variable will instead be hidden in the estimate of the baseline risk 
function Ao(t). 

( 6 )  Construction of exposure functions 

One potential advantage of continuous variable methods is their ability, at least in 
principle, to make full use of the time history of exposures that may be recorded for 
each individual in the study. Estimates of annual exposure increments may be available 
from periodic readings of radiation dosimeters, from personal records on dates of 
transfer between job sites, or periodic examination of blood, urine or tissue specimens. 
A wide variety of exposure functions may be constructed from such data. 

We first considered an approach that is of interest primarily for historical reasons. 
Suppose z(u)du denotes the increment in exposure estimated to occur in the time or 
age interval (u, u + du). Several investigators have constructed regression variables 
representing time-weighted cumulative or average exposures in the form 

where to is the age at entry to the study and w(u) is a suitable weight function. If 
w(u) = 0 or 1, according to whether u L or u > L years, x(t) represents a lagged 
cumulative exposure such that increments received during the preceding L years have 
no effect on risk (e.g., Gilbert & Marks, 1979). By defining w(u) = min(1, ulL), 
exposures may be phased in linearly over a period of L years before taking maximum 
effect. Berry et al. (1979) set w(u) = (1 - exp(-Au))lA as a method of time-weighting 
accumulating exposure to asbestos fibres that allows for their elimination from the 
lungs at rate A. By taking w(u) to be a probability density, one can express the concept 
of a biological latent interval as the random duration of time between an exposure 
increment and its effect on disease (Knox, 1973). A typical choice for w is the density 
function of a log-normal distribution, with mode and variance possibly estimated from 
the data. The 'working level month' used in the study of Rocky Mountain uranium 
miners is defined in precisely this way (Lundin et al., 1979). We explore this method in 
55.5, using data from the Montana smelter workers study. 

One cause for concern regarding the uncritical use of cumulative exposure 
measurements is that they may fail to separate intensity and duration of exposure 
adequately. For example, radiation risks are commonly assessed in terms of lifetime 
excess cancer cases per cGy of exposure per million population, without consideration 
of dose fractionation or timing (Committee on the Biological Effects of Ioniziqg 
Radiation, 1980). While this practice may have some empirical justification in radiation 
carcinogenesis, its widespread adoption in other situations is surely to be deplored. 
Consider, for example, the lung cancer risk at age 60 among two smokers - one who 
consumed 10 cigarettes per day since age 20 and the other 20 cigarettes per day since 
age 40. The total number of cigarettes is the same, namely 20 pack-years or 
20 x 20 x 365 = 146 000 cigarettes. However, data from the British doctors study and 
elsewhere suggest that the lung cancer risk is approximately proportional to dt4.5, 
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where d is the number of cigarettes smoked per day and t is years of smoking (Doll & 
Peto, 1978; see also Example 4.7 above). This suggests that the 20-pack-year smoker 
who started at age 20 has 0.5(2)4.5 = 11.3 times the lung cancer risk of the 20-pack-year 
smoker who started at age 40. Analysing the two individuals in the same category of 
'cumulative dose' would be a serious error. 

The choice of exposure variables used in continuous data analyses can have a major 
influence on the results and interpretation and on any quantitative risk assessments that 
are made. It is important, therefore, to demonstrate the goodness-of-fit of the resulting 
model and to evaluate its sensitivity to perturbations in the weight function or model 
equation. Even when analysing data using continuously varying baseline age rates, it is 
often prudent as a first step in the analysis to define the regression variables so that 
they represent discrete levels of intensity and duration of exposure, just as was done 
for grouped data. Examination of the results of such descriptive analyses can then 
suggest a possible role for a more quantitative approach. 

We suggest that initial explorations of the data be conducted using categorical binary 
variables that represent different levels of each of the factors of primary interest: age at 
onset of exposure; intensity of exposure averaged over the period of accumulation; 
duration of exposure; fractionation; and time since last exposure. Trends in excess or 
relative risk measures according to each of these factors are of inherent interest and 
may help to elucidate possible underlying mechanisms. In Chapter 6, we consider how 
such descriptive analyses may be interpreted in terms of mathematical models of 
carcinogenesis. Some authors (Thomss, D.C., 1983; Brown & Chu, 1987) have 
successfully fitted biomathematical models directly to data from cohort studies, but, 
often, the quality of the data does not warrant the considerable effort that must be 
made to achieve a good fit, nor can competing models be clearly differentiated in terms 
of the weight of evidence to support them. 

(c) Some model equations 

Models are available to express the effect of regression variables x(t) on background 
rates Ao(t) that parallel those for the grouped data analyses considered in Chapter 4. 
Thus, one has 

for an additive effect and 

for a multiplicative one with multiplicative combination of risk variables (Cox, 1972). 
More general relative risk models may be written 

where, for example 

(1 + 2)" - 1 
log r(z) = j 

P 
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as in (4.24). This yields the multiplicative model (5.3) at p = 1, whereas the additive 
relative risk model 

occurs in the limit as p tends to 0. More general relative risk functions r{x(t); P) may 
be constructed in which the explanatory variables x and the parameters P do not 
combine in the usual linear regression fashion. Frome (1983) considers models of the 
form 

for his analysis of grouped data on lung cancer and smoking from the British doctors 
study. He also estimates the baseline rates as a parametric function 

rather than leaving them unspecified, as suggested here. 
An alternative to (5.2), in which the excess risk is a multiplicative function of the 

covariables, is given by 

Pierce and Preston (1984) consider parametric models such that A(t) is expressed as a 
sum of products of linear and multiplicative terms, 

where the explanatory and regression variables are partitioned x = (x,, yl, x,, y,, . . .) 
and p = (PI, y,, p2, y2, . . . ). This includes (5.6) as a special case, provided that Ao(t) is 
modelled parametrically. They implement a similar generalization of the relative risk 
mode1 (5.5). 

(d) External standard rates 

External standard rates are incorporated into each of these model equations just as 
they were for grouped data. One simply replaces the unknown functions Ao(t) in 
(5.2)-(5.6) by the quantity 8A*(t) where A*(t) is the standard background rate at time t 
for a subject, depending upon his age and the calendar period, and 8 = exp ( a )  is an 
unknown scale parameter used to adjust the standard rates so as to give the best fit to 
the background rates actually observed for the cohort. (Alternatively, especially in the 
context of (5.2), Ao(t) might be replaced by 8 + A*(t) whereby an additive constant is 
used to adjust standard to background.) The known rates A*(t) are typically obtained 
from national vital statistics, but occasionally they may come from theoretical models 
of the disease process, as in Example 4.7. Explicit equations for models analogous to 
(5.2), (5.3) and (5.5) are thus 

A(t) = A*(t)' exp {a + x(t)P) (5.8) 
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and 

The continuous time version of the excess mortality ratio model considered in 54.10 is 

A(t) = OA* (t) + exp {x(t)p). 

The availability of information on background rates is of particular importance when 
estimating excess risks using (5.7) or (5.10). We are unaware of any method that may 
exist for fitting (5.6) when Ao(t) is left completely unspecified. Such models may be 
fitted when the data are grouped, as we saw in the last chapter, or when Ao(t) is 
expressed in terms of a small number of unknown parameters, as suggested by Pierce 
and Preston (1984). A fully nonparametric treatment of background rates is currently 
limited to the multiplicative models. 

In addition to the disease rates A(t) of primary interest, an important conceptual role 
is played in the sequel by a function ~ ( t )  that represents the instantaneous rate at 
which subjects are lost from view during the study. Such loss may be caused by death 
due to 'competing' illnesses, emigration from the study area, or other reasons. We 
make the important assumption that Y does not depend on p, meaning that the timing 
and nature of deaths due to other diseases or the withdrawal of persons from the study 
carry no information on how exposures affect the disease of interest. The fitted 
statistical model represents a 'smoothing' of the observed variation in disease rates 
according to exposure and other explanatory variables, in the presence of competing 
causes of death. Conclusions about exposure effects apply only to the conditions that 
prevail in the particular study and should not be expected a priori to hold in a 
population subject to other types of intercurrent mortality (Prentice et al., 1978). The 
question as to whether or not the results can be generalized must be argued on a 
broader basis. These caveats apply equally, of course, to results obtained with more 
elementary methods. 

5.2 Likelihood inference 

Just as was true for grouped data analyses, statistical inference'about the parameters 
of interest in models for continuous data requires construction of an appropriate 
likelihood function. Denote by ti the age (or time) at which the ith subject ends the 
study, and define Si as 1 or 0 according to whether death or diagnosis has or has not 
occurred at ti. Also denote x( t )  = 1 or 0 according to whether he is or is not under 
observation at age t, and let tp = inf {t: x( t )  = 1) denote the age at entry. General 
considerations suggest that the contribution of the ith subject to the likelihood function 
is 

A~(ti)v~-"(ti) exp x(u)  {A&) + vi(u)> du 

where subscripts i have been added to the rate functions A and Y defined earlier to 
indicate that they usually vary from one subject to another. The exponential term 
represents the probability of being disease-free between ages t! and ti. For subjects 
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who develop the disease of interest (ai = 1), the leading term &(ti) represents the 
conditional probability of death or diagnosis at ti, given that it has not occurred earlier; 
for those who do not (ai = O), the leading term vi(ti) represents the conditional 
probability of loss. A rigorous derivation of this result requires consideration of the 
product integral of the instantaneous probabilities of death or disease at each age, 
conditional on past history (Kalbfleisch & Prentice, 1980; Johansen, 1981). Since vi is 
assumed to be free of 9, its contribution to the likelihood factor is usually ignored. 

The only unknowns for models that incorporate standard rates are the scalar 
8 = exp ( a )  and the vector 9. In this case, the log-likelihood function for the entire set 
of cohort data may be written 

where Ai(t; a ,  p) is specified by any one of the equations (5.7)-(5.10) or an analogous 
model formula. Formal proofs that maximum likelihood estimates based on this 
expression have the usual properties of consistency and asymptotic normality, with 
covariances estimable from the inverse information matrix, may be based on the large 
sample theory of counting processes (Borgan, 1984). Likelihood analyses based on 
(5.12) have been implemented for the multiplicative model (5.8) by Breslow et al. 
(1983), who approximate the integrals and their first and second derivatives by a 
summation in which the time-dependent covariables are evaluated annually for each 
subject. Some results of these analyses are presented in 05.5. 

(a) Poisson models for grouped data 

A formal justification for the Poisson model (4.7) used for grouped data analysis is 
obtained by specializing (5.11) to discrete time. Suppose that there are J x K cells or 
states and that Ai(t) = Ajk if the ith subject is in state (j, k) at time t. This condition 
holds for grouped data models, in which the background rates are given by Ai(t) = Aj 
and the regression variables by xi(t) =xi, for subjects in state (j, k) at that time. 
Summing up the log-likelihood contributions from (5.11) over all subjects in the study 
leads to the total log-likelihood (Holford, 1980), 

where djk are the numbers of deaths that occur while a subject is in the (j, k)th state 
and njk is the total observation time (person-years) in that state. This is precisely the 
log-likelihood for the Poisson distribution on which the statistical methods of Chapter 4 
were based, and each of the models (5.2)-(5.10) reduces to its discrete counterpart as 
considered there. 

( b )  Partial likelihood for multiplicative models 

The likelihood for models (5.2)-(5.6) involves the unknown nuisance functions A,(t), 
the presence of which considerably complicates estimation of P. Cox (1972, 1975) 
solved this problem for the. subgroup of multiplicative models (5.3)-(5.5) by 
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constructing an appropriate 'partial likelihood', in which the contribution of the 
nuisance function is eliminated and only fi remains. His approach is easily generalized 
to accommodate several background nuisance functions A,(t) in a stratified analysis. 
Suppose, for example, that the ith individual is known to have died (or been 
diagnosed) at age ti in calendar period (stratum) si. Denote by Ri the set of all subjects 
'at risk' of death at that same age and period, meaning those who were alive and under 
observation just prior to age ti and who were in calendar period si at that age. The 
conditional probability that the ith subject died, given that one death occurred among 
those in the risk set R,, is thus 

Summing up the 1ogari.thms of such contributions for all subjects who die or develop 
disease yields the log partial likelihood 

where r denotes the relative risk function. If several deaths (or disease cases) occur in a 
given risk set Ri, each one contributes a term to (5.13). The expression then serves as 
an approximation to the log partial likelihood, which is adequate so long as the deaths 
form only a small fraction (e.g., under 5%) of the total number in each risk set (Peto, 
R., 1972; Breslow, 1974). 

O.ther methods are needed when the times of death or diagnosis are grouped, so that 
a substantial number di of cases occurs among those in the risk set at a specified ti. Cox 
(1972) also proposed a linear logistic model for discrete survival data, such that each 
risk set yields a partial likelihood contribution proportional to 

r{xq(ti); P} 
E 1 1 r (ti) ; b) ' 

where the numerator is a product of relative risks overthe di cases, and xv(ti) denotes 
the covariable vector for the jth member of R,. Assuming that the risk set also contains 
gi noncases, the denominator is a summation over all ni . Cdi ways of selecting a 
'control sample' containing di of the ni = di + gi individuals in R,. Each control sample 
is specified by a set of indices I = {l,, I,, . . . , Id;) chosen from the numbers (1, 2, . . . , 
ni) that identify the 'risk set' members. The labels (1, 2, . . . , di} are assumed to 
correspond to cases. Although the large number of terms in the denominator sum 
renders its calculation. unfeasible if both di and gi are large, recursive algorithms 
developed by Gail et al. (1981) and Storer et al. (1983) permit this approach to be used 
when there is a moderate number of cases - say, no more than 20 or so - in each risk 
set. 

For the special case r(x; P) = exp (xp), Andersen and Gill (1982) show that the usual 
likelihood calculations based on differentiation of (5.13) yield asymptotically normal 
estimates, the variances and covariances of which may be estimated from the observed 
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information matrix. Prentice and Self (1983) derived analogous results for models (5.4) 
and' (5.5), in which the relative risk function is given by r(x; p) = 1 + xp or a more 
general expression. As already mentioned, satisfactory nonparametric methods of 
estimation for the additive models (5.2 and 5.6) have not yet been developed. 

Example 5.1 
Hutchinson and colleagues (1980) conducted a historical cohort study of nearly 1500 women treated for 

benign breast disease to determine their subsequent incidence of breast cancer. A later analysis of these data 
related each woman's history of treatment with hormones (oestrogens) to breast cancer risk (Thomas, D.B. 
et al., 1982). The data used here for illustrative purposes were compiled by Persing (1981) from 1353 cases 
with a histological confirmation of the initial benign lesion. 

A simple tabulation of the data, shown in Table 5.1, leads to a relative risk estimate for hormone users 
versus nonusers of (25 x 499)/(33 x 522) = 0.72, and suggests a possible protective effect of the oestrogens. 
However, it ignores the person-years of observation denominators and, more importantly, the relationship 
between the age at which each woman started to take oestrogens and the age at which she developed, or was 
at risk of developing, breast cancer. Oestrogen use and age were strongly related, since the cohort had been 
assembled during a 35-year surgical practice over which time there were marked changes in the use of 
oestrogens for contraception or treatment of post-menopausal symptoms. 

A partial likelihood analysis was undertaken with t = age in order to account for the age dependence of 
both exposure and disease risk. Table 5.2 lists the integral ages ti at which diagnoses of breast cancer were 
made and the composition of the risk sets for 1036 women for whom it was known whether or not and, if so, 
at what age, oestrogen use began. A woman contributed to the risk set Ri provided that her benign breast 
disease had been diagnosed before age ti, so that she was under observation, and provided also that she had 
not yet died, been lost to follow-up or otherwise removed from risk of breast cancer, for example, by having 
a double mastectomy. 

In this example, there is a single, age-dependent binary covariate xl(t) indicating whether or not a woman 
has received oestrogen. It is defined as 1 for all women in Ri who received hormone prior to ti, i.e., for the 
women in columns labelled H1 in Table 5.2, and 0 for the remaining women. Note that a woman's covariable 
value may change from xl(t) = 0 to xl(t) = 1 as she is followed forward in the study. A parallel analysis in 
terms of a fixed (i.e., not age-dependent) covariable, taking values 1 or 0 according to whether a woman ever 
received oestrogen (columns H1 and H2), yields fallacious results, since some women are then analysed as 
'exposed' at ages before the exposure actually began. 

Suppose that the relative risk function is defined by r(x; p )  =exp (xp), so that the relative risk is 
q = exp (PI) for prior exposure {xl(t) = 1) and 1 = exp (0) for no prior exposure {xl(t) = 0). The data in 
each risk set are conveniently arranged in a 2 x 2 table of exposed versus nonexposed and cases versus 

Table 5.1 Distribution of 1353 women treated for 
benign breast disease according to history of oestro- 
gen use and development of breast cancera 

- - 

Oestrogen Breast cancer 
use 

Yes No Total 

Yes 25 522 547 
No 33 499 532 
Unknown 8 266 274 

Total 66 1287 1353 

a From Persing (1981), from data originally collected by Hutchinson et 
a/. (1980) 
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Table 5.2 Composition of the risk sets at each age of diagnosis of breast cancer 

Age= f. Total number Cancer casesa Non-cancer casesa 
i n  risk 
set Ri H 1 H2b no H H 1 H2 no H 

a HI, hormone (oestrogen) users at ages less than o r  equal to  f; H2, hormone users at ages greater than 
f.; no H, hormone nonusers 

bThis column contains only zeros, since women who developed breast cancer at age f were removed 
from further study 

noncases. For example, at age ti = 52 we have 

Exposed Nonexposed 

Cases 4 (4)  

Noncases 573 (gi) 226 Cf, - e,) E 
Total 228 Cf,) 349 577 (ni )  

The contribution to the numerator of the partial likelihood (5.14) for the risk set at age ti =52  is thus 
q212 = q2. More generally, if ei of the d ,  cases are exposed, the contribution is qei. If a 'control' sample { I , ,  
. . . , ldi)  in the denominator yields u exposed and n, - u nonexposed, its contribution to the denominator is 
q". Since the number of such samples with exactly u exposed is 
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the total contribution of the risk set R, to the partial likelihood is proportional to 

For example, the risk set at age ti = 52 years yields the contribution 

For this special case of a single binary exposure variable, the partial likelihood (5.15) is identical to the 
exact conditional likelihood used for estimation of relative risk in a series of 2 x 2 tables compiled from 
case-control data ($7.5 Volume 1; Breslow, 1976). The computer program LOGODDS, presented in 
Appendix VI of Volume 1, may be utilized for this special problem, although some modifications are needed 
to accommodate the large binomial coefficients that occur in (5.15). 

The full partial likelihood is a product of terms of the form (5.15), one for each line in Table 5.2. 
Maximizing this, we find 6 = 1.80. The Mantel-Haenszel test of the hypothesis Ho: I) = 1 ($4.4, Volume I), 
known also as the logrank test (Peto, R. & Peto, 1972), yields = 4.41 (p  = 0.02). We conclude that 
oestrogen use significantly increased the breast cancer risk in this population of women with benign breast 
disease. However, part of the observed association might be related to the confounding effects of other risk 
factors that were increasing with calendar time. Both oestrogen use and breast cancer incidence were rising 
during the course of the study, and inclusion of year of birth as an additional covariate in the inodel reduced 
the estimated relative risk for oestrogen to 6 = 1.49, = 1.82 (Thomas, D.B. et al., 1982). 

Repeating the analysis in terms of the improper (fixed) exposure covariate yields 6 = 0.70, = 1.59 (NS), 
a result rather close to that for the summary data in Table 5.1 where we ignored age altogether. Careful 
examination of Table 5.2 shows the reason for the discrepancy. When averaged over the 23 risk sets, with 
weights proportional to their size, the proportion of women who used oestrogen at any time (HI + H2) is 
0.38 for cases and 0.52 for noncases. However, the average proportions of women who had started using 
oestrogens previously are instead 0.38 and 0.29. In other words, when cases and noncases are compared in 
terms of whether or not they had a history of exposure at the same age, the cases are more likely to have 
used the hormone. More noncases were observed during the later ages and calendar periods, at which 
oestrogen treatment was more common. 

We tested whether or not the relative risk for oestrogen use varied with age by including an age-dependent 
covariable x2(t) = xl(t) x (t - 55) in the model A(t) = Ao(t) exp {P1xl(f) + P2x2(t)). Here, I) = exp(P,) 
denotes the relative risk at age 55, whileexp {P2(t - 55)) is a multiplicative factor that measures the change 
in the relative risk for younger or older women. Alternatively, we could have set x2(t) = xl(t) x log (t/55), in 
which case the relative risk would be modelled as a power function ~ ( t / 5 5 ) ~ ~ .  With the addition of x2(t) to 
the model, the contributions to (5.15) become 

Using once again a modification of the program LOGODDS, we find fil = 0.614 f 0.285, fi2 = 0.017 f 0.029 
and a score statistic for testing p2 = 0 of X ;  = 0.32 (NS). Thus, there is no evidence for a trend in the relative 
risk with age. 

An explicit formula for the score statistic used to test P2 = was given in Volume 1, equation (4.31). 
Contrary to the assertion made there, however, the estimates q of relative risk inserted in equations 4.30 
and 4.31 of Volume 1 must be maximum (partial) likelihood estimates in order that these statistics have 
asymptotic chi-square distributions under the null hypothesis. Modifications of the equations are needed 



190 BRESLOW AND DAY 

when the Mantel-Haenszel estimate I$,, is used in place of the maximum likelihood estimate. (See Breslow 
et al. (1984) for the modification needed in the test for trend, and Tarone (1985) for the corresponding global 
test of homogeneity of relative risk.) 

The goodness-of-fit of models fitted to grouped cohort data may be evaluated 
relatively easily by comparing the observed and fitted numbers of deaths in each cell of 
the cross-classification, by plotting the adjusted residuals (4.13) in various ways and by 
examining the summary chi-square (4.6) or deviance (4.12) goodness-of-fit statistics. 
Indeed, an advantage of this approach is that one is almost forced to examine how well 
the model predicts the outcome in each cell. Unfortunately, no such safeguard is built 
into the continuous data analysis, and extra steps are needed to determine whether or 
not the model provides a reasonable summary of the observed data. 

One of the most important methods for examining the goodness-of-fit of the 
proportional hazards model was introduced in Example 5.1. It involves adding to the 
model age- or time-dependent covariables that represent the interaction of exposure 
effects with those of age or time. Such covariables typically take the form y(t) = 
x(t) log (tlc) or y(t) = x(t)(t - c), where c is a constant representing a standard age and 
x = x(t) represents an exposure that may or may not be time-dependent. The sign of 
the regression coefficient estimated for y(t) indicates whether the trend in relative risk 
associated with a given amount of exposure is increasing or decreasing with age. 
Additional interaction variables with quadratic terms (t - c ) ~  or log2 (tlc) may be 
needed if the relative risk first rises and then declines with age. 

An alternative approach that may be implemented without explicit recourse to 
age-dependent covariables is to carry out separate analyses for each of two or three age 
intervals by dividing the risk sets into groups depending on ti. Comparison of 
regression coefficients for the same exposure variables in different age groups indicates 
the direction of any trend, and comparison of the maximized partial likelihood for the 
combined analysis with the sum of the maximized partial likelihoods for the separate 
analyses provides a formal test of the statistical significance of the differences in the 
coefficients. 

A third approach that retains some of the features of the grouped data analysis is to 
define a partition of age into J intervals and exposure into K categories. Separate 
binary covariables are then defined for each of the JK cells in the cross-classification. 
The score test for the addition of these covariables to the regression models compares 
the observed and expected numbers of cases in each cell. However, since the expected 
values are based on the model fitted to continuous data, the simple C ( 0  - E ) ~ / E  
chi-square formula does not apply (Schoenfeld, 1980; Tsiatis, 1980). It is necessary to 
estimate the covariances of the 0 - E differences in order to carry out the test. 

A graphical approach to the evaluation of goodness-of-fit of proportional hazards is 
to partition the sample into a small number of (possibly time-dependent) categories of 
persons with similar exposure histories. Separate estimates of the age-specific disease 
incidence functions are modelled for each one. When plotted against age on a 
semilogarithmic scale, these curves should stay roughly a constant distance apart if the 
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hypothesis of proportionality holds. This procedure is illustrated below with the benign 
breast disease data. (See especially Figure 5.2.) 

A variation of this graphical analysis is helpful when the exposure variables are 
numerous, and estimation of a separate age incidence function within categories of 
exposure is not feasible. One defines a partition of the data into K subgroups on the 
basis of the estimated relative risk function r{x(t); i)). If x = x(t) depends on age, 
therefore, so will subgroup membership. Separate estimates of the age-incidence 
curves for each subgroup, say, ik( t )  for k = 1, . . . , K, are compared with the fitted 
age-incidence curves rkio(t), where rk is the average relative risk in the kth subgroup 
and io(t) is the background age incidence function estimated from the total cohort. 
Breslow (1979) gives an illustration using data from clinical trials. 

The addition of exposure X age interaction variables to the basic equation is also 
applicable as a means of assessing goodness-of-fit when the background rates are 
assumed to be proportional to external standard rates or are modelled parametrically. 
A graphical method for evaluating the proportionality assumption is illustrated in 
Figures 5.4 to 5.6. 

(d) Nonmultiplicative models 

Partial likelihood unfortunately provides only a partial solution to the problem of 
fitting continuous models to cohort data. The approach is not applicable if the basic 
model is additive, for example, or has any other form in which the exposure effects do 
not act multiplicatively on the background rates. It is necessary in such circumstances 
to assume that the background rates are given by some formula that depends on 
parameters a and to base the inference on the general log-likelihood (5.12). This is 
precisely what one does when the background rates are assumed to be known up to a 
constant 8 = exp (a) of proportionality, or when explicit parameters are used to 
represent background rates by age and year in grouped data analyses. 

(e) Notes on computing 

Example 5.1 is a very special case in that it involves only a single binary covariable. 
This allows the data to be represented as a series of 2 x 2 tables and allows use of 
programs for the regression analysis of log odds ratios in 2 x 2 tables in the analysis. 
Most problems, including analyses of the data on Montana smelter and on Welsh 
nickel workers, presented below, involve multiple discrete and continuous regression 
variables x(t). Here, the computing problems are considerably more complex. One 
must either compute and store the covariable history x(t) for each individual at times 
t = ti for each of the risk sets Ri in which he appears, or else supply a set of covariable 
function subroutines that calculate the requisite covariables, at different times, from 
basic data available for each subject. An exception is the additive relative risk model 
(5.9, for which only the covariable values for the cases and the average of the 
covariables for the other risk-set members need to be stored (Gilbert, 1983; Prentice & 
Mason, 1986). For large cohort studies, it is generally not possible to store all the data 
needed in the central memory of a computer. This means that a separate pass through 
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the data files is made .at each iteration of the procedure used to find the maximum 
partial likelihood estimate fi. The program must also be capable of accommodating 
time-dependent stratification, whereby the stratum index for each subject is available 
from stored data, or from function subprogram calculations, for each risk set in which 
he appears.' 

5.3 Nonparametric estimation of background rates 

Nonparametric estimates of cumulative disease incidence or death rates based on 
continuous data sampled from a homogeneous population were introduced in Volume 
1 (52.3) with an illustrative application to data on mouse skin tumours. Virtually 
identical techniques are used to estimate cumulative disease rates from cohort data. 
Suppose that the distinct times or ages at which deaths or cases occur are 
0 < tl < t2 < . < t I .  Denote by di the number of cases at ti and by ni = di + gi the total 
size of the risk set Ri, i.e., the number of cohort members under observation at ti. Let 
A(t) = J-6 A(s) ds denote the unknown cumulative rate in the general population. The 
usual estimate of A, often ascribed to Nelson (1969), is 

Some motivation for this formula is provided by the fact that the differentials 

which equal the observed number of deaths divided by the approximate person-years 
observation time in the age interval (ti-,, ti), are obvious estimates of the correspond- 
ing instantaneous rates. 

The variance of A(t) is estimated using Greenwood's (1926) formula 

This is the continuous data analogue of equation (2.2) for the standard error of a 
cumulative or directly standardized rate calculated from grouped data. When con- 
sidered as a random function of t, A is approximately distributed as a Gaussian 
stochastic process with mean A(t) and a covariance function C(s, t) = Cov {h(t), &s)) 
that is estimated for t <s  by (5.17) (Breslow & Crowley, 1974). This fact has enabled 
statisticians to develop simultanous confidence bands for A(t), or the corresponding 
'survival7 function S(t) = exp {-A(t)), over an interval of time or age (Gillespie & 
Fisher, 1979; Hall & Wellner, 1980). 

The same approach may be used to obtain separate estimates of cumulative hazard 

'Pat Marek of the Fred Hutchinson Cancer Research Center (see Peterson et al., 1983) developed the 
program that we used for the illustrative analyses presented here. This program is currently.being simplified 
and adapted to run on microcomputers. 
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or mortality within each of several subsets or strata. One simply classifies the di deaths 
and ni risk-set members according to the particular stratum in which they appear at 
time ti. As we noted earlier, plots of the estimated &(t) for different strata are useful 
for examining .the consistency of the data with the assumption of proportional hazards. 
If the disease incidence rates Al(t) and A2(t) are in constant ratio A2(t) = eAl(t), then so 
are the integrated hazards A2(t) = 8Al(t). Plots of Al and $ on a semilogarithmic 
scale should therefore be roughly a constant distance apart. 

Example 5.2 
From the data in Table 5.2 and equation (5.16), one may construct an estimate of cumulative breast cancer 

incidence for women who had no prior exposure to oestrogen and another for women with such exposure. 
For example, the cumulative incidence at age t = 45 for women without prior exposure is estimated to be 

whereas for women with an exposure history it is 

Figure 5.1 shows these two functions, plotted using arithmetic (Fig. 5.1A) and logarithmic (Fig. 5.1B) scales 
for fi. Although there is considerable instability in the estimates due to the small numbers, there is no 
evidence of a systematic trend in the difference between the two curves on the semilogarithmic plot. This 
confirms the results of the formal analysis of Example 5.1 in which we tested whether the ratio of rates for 
exposed versus unexposed showed a trend with age and concluded that the assuinption of proportionality was 
justified. 

Note that the estimated lifetime cumulative incidence for oestrogen nonusers in this cohort is 
approximately twice that of the general population rate of 7%. The rates for users are even higher. This 
illustrates the fact that a history of benign breast disease itself augments the subsequent breast cancer risk 
(Hutchinson et al., 1980). 

(a) Smoothed estimates of age- or time-specijic rates 

Estimates of cumulative incidence or mortality rates such as shown in Figure 5.1 are 
not as informative as they might appear at first sight. They tend to overemphasize the 
jumps that occur at very high ages, at which the estimate is least stable due to declining 
numbers at risk. Also, the age- or time-specific rates are usually of greater intrinsic 
interest than the cumulative rate. Recent work by Ramlau-Hansen (1983) and Yandell 
(1983) has validated kernel estimates of A(t) that have the form 

1 "  t - s  1 '  t - t : d i  
"t) =-6 b ~ ( ~ ) d ~ ( s )  = c K(?) - .  

i=l n i 

Here, K(x) is a smooth, positive kernel function integrating to one, and b is a 
bandwidth that determines the degree of smoothness in the estimate. Thus, i(t) is 
simply a weighted average of the increments di/ni in fi(t), with K defining the weights 
and b the size of the 'window' about t within which the estimates of the instantaneous 
rates are averaged. Its standard error is given by 
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Fig. 5.1 Cumulative incidence of breast cancer for women with benign breast disease 
with (solid line) and without (dotted line) prior exposure to oestrogen. (A) 
Arithmetic scale; (B) log scale 

Age [years] 
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In the examples below we have used the kernel defined by K(x) = (0.75)(1- x2) for 
-1 sx s 1, and K(x) = 0 elsewhere. Bandwidths are varied to achieve a compromise 
between too much random noise (small b) and too great a loss of structure in the 
estimated rates (large b). The final choice is based largely on visual appearance, 
although objective criteria are also available (Titterington, 1985). Note that i ( t )  is 
defined only over the interval (t, + b, tI - b), where t, and t, are the minimum and 
maximum times at which cases were observed to occur. In a refinement of this method, 
Tanner and Wong (1984) select the bandwidths depznding on age, so that they are 
narrow when deaths are frequent and risk-set sizes are large, and wide elsewhere. 

Example 5.3 
Figure 5.2 graphs smoothed estimates of breast cancer incidence for the data on women with benign breast 

disease shown in Table 5.2. These were obtained from the cumulative incidence estimates A shown in Figure 
5.1 by applying (5.18) with K(x) = 0.75(1- x2) for 1x1 S 1 and two bandwidths b = 10 (Fig. 5.2A) and b = 15 
years (Fig. 5.2B). Relatively large bandwidths were necessary to achieve statistical stability because of the 
small number of cases in this study, namely 23 among women with prior exposure to oestrogens and 34 
among those not so exposed. Consequently, they may obscure somewhat the true variation in incidence with 
age. Note the greater degree of smoothing achieved with the larger bandwidth. Although the rate ratio for 
exposed versus unexposed seems to increase slightly over the 40-65-year age range, we already know from 
the partial likelihood analysis in Example 5.1 that this trend is not statistically significant. 

The observation that the age-specific rates are nearly constant over the age range 
shown, especially for women with no prior exposure to oestrogen, is not surprising. As 
mentioned in the previous example, there was a strong birth cohort effect on the 
age-specific breast cancer rates in this particular population. Since the data are 
analysed here on a cross-sectional basis, ignoring birth cohort, the observed age- 
incidence curve is distorted (flattened) in comparison with the more typical pattern of 
rising incidence until the age of menopause with a change in slope thereafter. A similar 
phenomenon was observed in Volume 1 for breast cancer rates in Iceland that were 
analysed according to both calendar year and birth cohort. Compare Figures 2.3 and 
2.4 in Volume 1, and also Figure 4.2. 

(b) Estimating baseline rates under the multiplicative model 

These techniques are easily extended to provide estimates of the cumulative baseline 
rate function 

under the various multiplicative models proposed for heterogeneous samples. Using a 
heuristic argument to achieve joint maximum likelihood estimation of A,, and fl in 
Cox's (1972) mode1 (5.3), Breslow (1974) derived the estimate 

where fi is the maximum partial likelihood estimate from (5.13) or (5.14). The obvious 



196 BRESLOW AND DAY 

Fig. 5.2 Smoothed estimates of breast cancer incidence for women with benign breast 
disease with (solid line) and without (dotted line) prior exposure to 
oestrogen. (A) Ten-year bandwidth; (B) 15-year bandwidth 

50 55 60 
Age (years) 

1 5-year bandwidth 
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extension for the general multiplicative model is to 

The main difference between (5.20) or (5.21) and the equation applicable to 
homogeneous samples is that the size of the risk set at ti, which appears in the 
denominator of (5.16), is replaced by the total estimated relative risk for the risk set at 
that time. Tsiatis (1981) has shown that $(t) defined by (5.20) also has an asymptotic 
Gaussian distribution. 

If the data are stratified, separate estimates of the background rates 

are obtained for each stratum simply by restricting the deaths and risk sets in (5.20) or 
(5.21) to that stratum. Smoothed estimates of the age-specific baseline rates As(t) are 
available via (5.18). However, their standard errors are more complicated than that 
shown in (5.19) because of the need to account for the error in estimation of P 
(Andersen & Rasmussen, 1982). We present some illustrative examples in $85.5 and 
5.6 below. 

( c )  Nonparametric estimation of relative mortality functions 

An extension of the multiplicative models, incorporating external standard rates, 
allows the equations and computer programs already developed for nonparametric 
estimation of cumulative baseline rates to be used also for nonparametric estimation of 
cumulative relative mortality functions (Andersen et al., 1985). Consider first the 
simple model A(t) = 8A*(t), whereby each subject's disease rate is assumed to be equal 
to a constant multiple of the standard rate for a person of the same age and sex. 
Maximization of the parametric likelihood (5.12) in this situation yields the usual ratio 
of observed to expected deaths, i.e., the SMR 

as the 'optimal' estimate (Breslow, 1975). Here, I: is as defined in $5.2. 
One way of looking for changes in the SMR that would invalidate its use as a single 

summary measure is to divide the age or time axis into a number of discrete intervals 
and to cumulate the deaths and integrated standard rates within each one. The 
methods developed for testing the homogeneity of such SMRs with grouped data ($3.4) 
continue to apply and indeed are strongly recommended. Formal justification is 
provided in terms of a generalization of the basic model to A(t) = 8,A*(t) for 
tk-, < t =s tk. 

A further generalization of this approach allows the SMR to be modelled as a 
continuous function of time, i.e., 8 ( t )  = A(t)/A*(t) or A(t) = 8(t)A*(t). Comparing this 
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formula with (5.3), we note that the two models are formally identical: O(t) plays the 
role of the unknown baseline rate Ao(t), and log A*(t) is a time-dependent covariate 
with known regression coefficient /3 = 1. Just as we were earlier able to estimate the 
cumulative baseline rate 

nonparametrically in terms of a step-function (equations 5.16, 5.20 and 5.21), here we 
are able to estimate the cumulative or integrated SMR 

o( t )  = O(u) du. i 
Note that the cumulative SMR equals the average SMR over the time interval (0, t) 
multiplied by the length of the interval. It is measured in units of time. A(t), however, 
is the product of a rate with time and is thus dimensionless. These differences 
notwithstanding, an estimate of the integrated SMR is obtained from (5.20) as 

G(t) = C di 
t iSt  jeRi AT (ti) . 

The estimate of the average SMR over the time interval (ti-,, ti) is thus given by the 
number of deaths or cases observed at time ti divided by the total expected number 
among the risk-set members. 

Introduction of explanatory variables x(t) into the model allows covariance adjust- 
ment of the nonparametric SMR estimates. In its most general form, the underlying 
model for the unknown disease rate is written 

The /3 parameters in the relative risk function are estimated by a generalization of the 
partial likelihood (5.14), namely 

In practice, q ( t i )  or its logarithm is incorporated into the model as an 'offset7 or 
covariable with known regression coefficient. Once $ is obtained via maximization of 
(5.24), the integrated SMR is estimated as 

generalizing (5.21). Adjusted or unadjusted estimates 6 ( t )  based on (5.25) and (5.23), 
respectively, are smoothed via the kernel method to yield nonparametric estimates of 
the SMR: 

1 " t - s  t - ti di 
b ( t ) = i  b K ( ~ )  ~ & ( s ) = ~ Z  b i = 1  K ( - ) -  b R" 
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where R' is the total standard risk at ti, either 

for the unadjusted estimate or 

for the adjusted one. The standard error of the unadjusted estimate is 

analogous to (5.19). 
Sections 5.5 and 5.6 contain several illustrations of nonparametric estimation of 

baseline and relative disease mortality functions and the fitting of multiplicative models 
to continuous cohort data by partial likelihood. Flexible model structures are available 
even within the multiplicative environment by varying the fundamental time variable t, 
the definitions of the covariables x(t) and the relative risk function r. The choice should 
be made separately for each study, taking into account the goals of the investigation 
and the nature of the available data. If good a-priori information suggests that the 
background rates are of a simple parametric form, it may be preferable to model them 
by time-dependent covariables, rather than nonparametrically in the function A,(t). For 
example, population data and multistage theory both suggest that cancer incidence 
rates are proportional to a power of age. Defining one of the covariables x(t) to be the 
logarithm of age at 'time' t, this sort of age dependence is easily accommodated in 
relative risk functions of the form r{x(t); $1 = exp {x(t)P). In this case,. and also when 
the background rates are assumed to be proportional to standard rates A*(t), one may 
want to set t = 'time since onset of exposure' in order to have a nonparametric 
evaluation of the evolution of relative risk with continuing exposure. Alternatively, if 
we set t = age and incorporate x(t) = log (t) into the exponential relative risk function, 
our nonparametric estimate of 8(t) via (5.26) provides a graphical evaluation of the 
goodness-of-fit of the assumed parametric model.' 

5.4 Sampling from the risk sets 

Implementation of the methods of analysis of continuous data outlined in the 
preceding sections is expensive and time-consuming in the case of data from large 
cohort studies. This is true whether one uses external standard rates and the 
log-likelihood (5.12) or adopts the partial likelihood approach based on (5.13) or 
(5.14). In the former instance, the basic data for each subject are needed to re-evaluate 
integrals of the form x(u)Ai(u; a; P) du at each cycle of iteration. In the latter case, 
one must re-evaluate the relative risks r{xj(ti); p) for each subject in every risk set in 

'Recent work by F. O'Sullivan at the University of California, Berkeley, on spline-smoothed hazard 
estimates with cross-validation may offer some advantages over the kernel methods suggested here. 
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which he appears (except, as noted earlier, for the additive relative risk model). It is 
often possible to store some intermediate quantities, such as the covariable values xj(ti) 
for each subject at each time of death, for use in subsequent iterations. However, this 
may not be advisable if it greatly increases the amount of reading the computer does 
from disk files. 

(a) Complexity of partial likelihood analyses 

Suppose that the basic time variable is in fact age and that birth cohort or calendar 
year is accounted for by stratification. Let R denote the risk set consisting of all persons 
being followed in the study at a given age t at some time during a specified calendar 
period s. In practice, we'have found that integral ages and five- or ten-year calendar 
periods generally provide sufficient accuracy for construction of the risk sets. Because 
of ties in the recorded data, several deaths may occur in some of the risk sets. This 
would not happen if they were defined in terms of exact (continuous) ages at death. 
However, since the number of deaths or cases is generally much smaller than the total 
size of the risk set, which may well be of the order of hundreds or even thousands 
depending on the size of the original cohort, the approximation inherent in the use of 
(5.13) with such tied data is excellent. 

Example 5.4 
Table 5.3 shows the distribution by age and calendar period of 142 respiratory cancer deaths that occurred 

among the Montana smelter workers during the years 1938-1963, this being the period of follow-up of the 
initial study reported by Lee and Fraumeni (1969). When classified by integral age at death and by calendar 
year in six intervals of five years or less, they define 91 separate risk sets. Most risk sets contain a single 
respiratory cancer death, but the multiplicities range as high as di = 4, for example, among workers aged 51 
or 67 during the period 1955-1959. Also shown for each risk set are the numbers of deaths from other 
causes, these being the matched 'controls' one would use in a proportional mortality analysis. 

Table 5.4 presents the numbers of noncases (gi) for each of the risk sets defined in Table 5.3. These range 
from 17 workers (in addition to the one case) under observation at age 84 during 1950-1954, to 880 workers 
on study at age 40 during 1955-1959. The mean risk-set size was 322, with a standard deviation of 215. Thus, 
each of the 8014 subjects appeared on average in 3.6 risk sets. Since the calculations needed for a partial 
likelihood analysis treat each such risk-set appearance as a separate observation, the effective 'sample size' is 
of the order of 30 000 observations, of which 142 are cases. This gives some feeling for the magnitude of the 
computing problem. 

(6)  Risk-set sampling 

It is evident from equations (5.13) and (5.14) that the information about relative 
risks associated with the exposure variables is provided by a comparison of the 
exposures of the case(s) with the exposures of the remainder of the cohort members in 
each risk set. Since most risk sets are very large in comparison with the number of 
cases, little information would be lost if the comparison were made between the cases 
and a small sample of 'controls7 drawn randomly from among the other cohort 
members in the risk set. This is the idea of matched 'case-control within a cohort7 
sampling proposed by Thomas, D.C. (1977) for efficient analyses of continuous cohort. 
data. Mantel (1973) earlier suggested a similar strategy for stratified analyses under the 
label 'synthetic retrospective study'. As emphasized in Volume 1, the idea of sampling 
controls from an on-going but unobserved (and possibly only conceptual) cohort 
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Table 5.3 Respiratory cancer deaths (dl and deaths from other causes ( t - d )  for the Montana cohort 
by age and year; construction of the risk setsa 

Age Calendar year 
(years) 

1938- 1939 1940- 1944 1945-1 949 1950-1 954 1955-1 959 1960- 1963 

d t-d d t-d d t-d d t-d d t-d d t-d 

a Entries appear for a given agelcalendar year only if one or more respiratory cancer deaths occurred. 
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Table 5.4 Numbers of Montana smelter workers alive and under observation at particular 
ages and calendar periods; sizes of the risk sets with cases excluded 

Age Calendar year 
(years) 

1938-1 939 1940-1944 1945-1949 1950-1954 1955-1959 1960-1 963 

investigation is one of the main justifications for the validity of inferences made in 
actual case-control investigations. 

( c )  Likelihood analysis 

Under the general multiplicative model, the contribution to the likelihood from a 
risk set containing d cases with exposure variables xl(t), . . . , xd(t), and rn randomly 
sampled 'controls' with exposure variables xd+,(t), . . . , xd+,, is proportional to 
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(Prentice & Breslow, 1978) 

The numerator of this expression is the product of the relative risks for the actual 
cases. The denominator summation is over all possible subsets t = ( t l ,  . . . , td) of size 

d drawn from the d + m members of the risk set, there being (d +dm)  such subsets in 

all. Each may be thought of as representing a possible set of d cases that might have 
been observed to die from the cause of interest at time t and whose relative risk 
product is compared to that for the actual cases. Precisely the same likelihood is used 
for the matched analysis of actual case-control studies. However, in Volume 1 
(equation 7.1), we restricted consideration to multiplicative relative risk functions of 
the form r(x; p) = exp (xp). The same expression is used also for the full partial 
likelihood analysis (5.14), except that there the denominator sum is taken over the 

much larger number of subsamples drawn from the full risk set. (3 
An important feature of the case-control within a cohort method of analysis is that 

the time-dependent covariables for the controls need be evaluated only at the 
particular age t for which they are sampled. Once calculated, they are easily stored in a 
rectangular data array in central memory for efficient computer processing. In a partial 
likelihood analysis, the time-dependent covariables for each cohort member must 
usually be re-evaluated for each risk set in which he appears. 

(d) Model selection and regression diagnostics 

The primary advantage of the risk-set sampling methodology is that it reduces the 
effective number of observations to a reasonable size for efficient computer processing. 
This encourages the investigator sitting at a computer terminal to fit a variety of models 
involving different exposure variables to the sampled data and select those that fit well 
for further examination. Such interactive data analysis is often not possible with a full 
partial likelihood approach. Depending on the size of the data set and the available 
computer, one may have to wait several hours or even overnight before seeing the 
results of a particular fit. 

Regression diagnostics for matched case-control and partial likelihood analyses, 
analogous to those considered in 94.3 for grouped data, have recently become available 
as a result of work by Pregibon (1984), Moolgavkar et al. (1984) and Storer and 
Crowley (1985). For the most part, these are developed in terms of approximate 
changes in estimated regression coefficients or test statistics that would accompany 
deletion of individual observations (cases or controls), or deletion of entire risk' sets. 
As shown earlier, such diagnostics are helpful in evaluating the stability of the fitted 
model. and the extent to which the results depend on data for only one or  a few 
individuals. An illustration of their use in case-control within a cohort analyses appears 
in 95.6. One may also use the predicted within-risk set 'probability of being a case' as a 
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guide to goodness-of-fit. This is defined for each subject as his estimated relative risk 
divided by the sum of relative risks for the entire risk set (assuming one case per set). 
Such predicted probabilities are usefully summed across individuals when there are 
particular covariate values for comparison with the corresponding observed numbers. 
They may also be used to define 'residuals' for case-control studies. 

(e) Estimating background and relative rates from the case-control samples 

An examination of equations (5.20), (5.21)' (5.23) and (5.25), used to estimate the 
cumulative background rates A(t) or the cumulative relative rates O(t), suggests how 
they may be adapted to serve also for case-control samples. The essential requirement 
is that one know the sampling fractions used to select controls within each risk set, i.e., 
the total size of the risk set from which the controls are sampled. This requirement is 
met for the 'synthetic' case-control technique suggested here, where one explicitly 
constructs the risk sets using the cohort data base and then carries out the control 
sampling by computer. It usually will not be met for case-control studies conducted 
outside the context of a cohort study. One then needs supplementary data in order to 
estimate absolute risks. 

Denote by pi = the average of the estimated relative risk factors associated 
with the ni = di + gi subjects in the ith risk set. Thus, 

where rii is the estimated 
A t )  { x )  ; , depending 
estimates A and 6 may both 

relative risk r{x,(ti); 8)' or estimated absolute risk 
upon whether A or O is under consideration. The 
be expressed in the general form 

If we lack data for the entire risk set but do have available a sample of mi controls 
drawn without replacement from the gi noncases in Ri, we could estimate pi by the 
sample mean 

A refinement would be to substitute n;'{diSi + giFi) for Ti, where Si denotes the average 
(relative) risk for the di cases. However, this should make little difference unless the 
cases constitute a large fraction of the risk set. Substituting Fi for pi in (5.21) thus yields 

as our approximation to A, and a similar substitution in (5.25) gives an approximation 
to 6. 

The main drawback to this approach is the fact that the reciprocal of a sample mean 
is a biased estimator of the mean. The problem is acute for the small control sample 
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sizes typically used, with mi in the range from 1 to 20. Breslow and Langholz (1987) 
suggest two possible ways of correcting the bias in (5.29) to yield a better estimate. The 
most promising, based on a Taylor series expansion of ?-' about p-', leads to the 
equation 

where 6: = (mi - 1)-' Cj  (rij - ?i)2 is the within-risk-set variance. The other, derived 
from the jackknife principle of Quenouille (1949), leads to 

Note that (5.30) and (5.31) both reduce to (5.29) if rii = c  for all of the sampled 
controls. 

Section 5.5 illustrates the application of these equations to data from the Montana 
cohort (see especially Figure 5.8). Neither applies very well for mi = 5, but both 
perform satisfactorily for mi = 20. If only five controls or fewer are available from each 
risk set, it is probably wise to pool the controls sampled from each Ri with those from 
neighbouring risk sets R,, i.e., those with ($  - til < b where b is a designated 
bandwidth, in order to increase the effective number of controls for each. The rationale 
for this procedure is that the average (relative) risk pi should be reasonably constant 
over risk sets within a narrow time interval, since their membership will change little. 

( f )  Selection of controls 

The procedure recommended here for construction of the matched sets of cases and 
controls that will actually be used in the analysis is as follows: First select from the risk 
set Ri all di cases that develop or die from the disease of interest at time ti. Then select 
mi controls, at random and without replacement, from among the gi members of Ri who 
do not develop the disease at that time. The total of di cases and mi sampled controls 
then constitutes a reduced risk set RT. 

Early theoretical arguments given in support of this procedure (Prentice & Breslow, 
1978) assumed that the number gi of potential controls was effectively infinite. This 
meant that there would be no overlap between the controls sampled from different risk 
sets, nor would a subject who later developed disease be sampled as a control. In 
practice, of course, this assumption is not met. Indeed, the risks sets corresponding to 
advanced ages are often quite small (see Table 5.4), and it may be desirable to sample 
all available controls from them. It is then quite conceivable that an individual sampled 
as a control at one age will turn out to be a case later on or be sampled again as a 
control at that time. With the methodology employed here, therefore, the R: can and 
do overlap, at least on occasion. 

The fact that the reduced risk sets R, may not be disjoint in finite cohorts has caused 
some concern about the validity of the inference procedure implicit in the use of (5.28), 
since this approach combines statistical information from each of them as if they were 
statistically independent. For example, Lubin and Gail (1984) mentioned the possibility 
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of excluding previously chosen controls from consideration as future controls, yet 
including them as cases if and when they developed the disease. If the original risk sets 
Ri are small, however, this latter procedure is biased (Robins et al., 1986a). Prentice et 
al. (1986) propose a rather more elaborate sampling procedure in which the controls 
sampled along with a case from Ri are also considered as controls in each of .the risk 
sets in which that case previously appeared. This increases the amount of information 
available in the case-control sample by increasing the sizes of the sampled risk sets. 
However, it also introduces correlations between the partial likelihood contributions 
from different risk sets which then need to be accounted for in the analysis. In order to 
avoid these complications, and also to keep the effective sample size small enough to 
permit interactive analyses, we prefer the procedure outlined above in the context of 
case-control analysis of assembled cohort data. Oakes (1981) and Cox and Oakes 
(1984, section 8.8) have shown that the product of terms (5.28) is still a partial 
likelihood (Cox, 1975) and that estimates and standard errors derived from them have 
the same asymptotic validity as those based on all the data. 

The question of the number of controls that should be sampled from each risk set is 
considered in $7.6. 

(g) Computer programs 

Appendix IV of Volume 1 contained the source code for a computer program that 
implemented matched case-control analyses based on the conditional likelihood (5.28) 
with r(x; p) = exp (xp), d = 1 and variable m. Another program, given in Appendix V 
of Volume 1 (Smith et al., 1981) permitted arbitrary numbers of cases and controls in 
each stratum or risk set. However, since the relative risk function was restricted to the 
log-linear form and since the program used an inefficient method of evaluating the 
denominator of (5.28) and related expressions, it is now outmoded. Gail et al. (1981) 
developed a more efficient algorithm for the log-linear model using a recursive method 
of calculation. This approach was developed further by Storer et al. (1983) so as to 
permit additive and other more general relative risk functions. The latest version of 
their program, known as PECAN, mimics the GLIM syntax for specifying terms in the 
model, allows for variable factoring and offsets to the regression equation, and 
provides an option for calculation of regression diagnostics in the manner of Storer and 
Crowley (1985). 

5.5 Analyses of continuous data from the Montana smelter workers cohort 

From descriptions of the Montana smelter workers study and the grouped data 
analyses presented earlier, especially in Examples 2.1 and 2.2 and in $$3.2, 4.5 and 4.8, 
the reader should already have a good understanding of how the occurrence of 
respiratory cancer in this cohort is related to date of hire, birthplace and duration of 
work in moderate or high arsenic exposure areas. In this section, we elaborate by 
reporting the results of fitting of continuous models to the original data set, consisting 
of 8014 individual data records containing details of exposure history and follow-up. 
Due to the complexity of the partial likelihood calculations, fitting each model 
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generally required an overnight computer run in batch mode. In spite of this effort, the 
results serve mostly to confirm what has already been learned from the more 
economical grouped data analyses. They do not provide any really new insights. 

(a) Respiratory cancer SMR and years since first employed 

The simple ratios of observed to expected numbers of respiratory cancer deaths 
shown in Table 4.17 increased markedly about 30 years or so after date of initial 
employment. Here, we take a more detailed look at this change in relative risk using 
the nonparametric estimate (5.23) of the cumulative SMR, defining t = 'years since 
initial employment7. Using all 288 respiratory cancer deaths, including 12 at 80 years of 
age or older that were excluded from most previous analyses, we obtained the results 
shown in Figure 5.3. The first case occurred at 4.07 years from date of hire and the last 
at 62.25 years. The cumulative SMR climbs steeply for the first few years, rises more 
gradually until about 35 years, and then steepens again. However, just as is true for 
estimates of the cumulative mortality function, it is hard to get a good visual 
impression of the SMR itself from this graph alone. 

A much better representation of the temporal changes in the SMR is provided in 
Figure 5.4, where we graph the smoothed SMRs calculated from (5.26) using 
bandwidths of five and ten years. The ten-year bandwidth results in a substantially 
smoother curve, but also restricts the range over which the estimate is available. The 
sharp rise in the SMR appears. to begin at about 30 years using the ten-year bandwidth 
and a little later with the shorter width. Such details may be obscured with a grouped 
analysis. 

Figure 5.5 presents 90% confidence bands for the SMR estimated using a five-year 

Fig. 5.3 Cumulative standardized mortality ratio (SNIR) for respiratory cancer, by 
number of years since initial employment for Montana smelter workers 
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Fig. 5.4 Smoothed estimates of the standardized mortality ratio (SMR) for respiratory cancer, by years since initial 
employment for Montana smelter workers using five- (-) and ten-year (---) bandwidths 
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Fig. 5.5 Ninety percent confidence bands (---) for the smoothed standardized 
mortality ratio (SMR) for respiratory cancer (-), Montana smelter 
workers 
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bandwidth. The confidence bands were derived on the log scale in order to 
approximate more closely a normal error distribution. Specifically, we used the formula 

log 6(t) * 1.645 x {~~(6 ( t ) )} /B( t )  

where s ~ ( B ( t ) )  is given by (5.27). 
One possible interpretation of the results depicted in Figure 5.4 would be that the 

Montana cohort as a whole had somewhat elevated rates of respiratory cancer in 
comparison with the US population, perhaps because of a higher prevalence of 
cigarette smokers, but that the specific effects of the arsenic exposure did not become 
manifest until after a latent period of some 30 years. However, we already know from 
our analyses in Table 4.18 that this interpretation is probably fallacious. Because of the 
study design, namely the fact that follow-up began no earlier than 1938 whereas the 
first employees were hired before the turn of the century, most of the person-years of 
observation for those hired before 1925 occurred in the interval from 25 to 63 years 
from date of hire. Since we already know that the SMR for those hired before 1925 is 
much greater than for those hired later, it seems likely that the apparent rise at 30 
years from date of hire is an artefact caused by confounding with period of hire. 

In order to confirm this latter interpretation, we conducted a proportional hazards 
regression analysis based on equation (5.3) with t = 'years since first employment7. In 
addition to the log standard rates x,(t) = log {A*(t)}, the covariables were x,, a binary 
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indicator of date hired coded 1 for 1885-1924; x ,  a binary indicator of birthplace coded 
1 for foreigh born; x3(t) a lagged, continuous, time-dependent covariable giving the 
number of years worked in moderate arsenic exposure areas at time t - 2; and x,(t), as 
for x3 for years worked in a heavy arsenic exposure area. There were 280 distinct times 
at which cases occurred (for eight pairs of cases, the recorded values of years for 
employment to death were tied), and thus 280 separate risk sets containing as many as 
5000 members each. Even on a large computer system, the partial likelihood fitting of 
the model with four covariables would have been prohibitively expensive and 
time-consuming. For this reason, we rounded time since initial employment to the 
midpoint of the corresponding year, and also excluded the 12 deaths that occurred at 
age 80 and above, thereby reducing the number of risk sets from 280 to 57 for the 
adjusted analysis. 

The regression coefficients ( f  standard errors) estimated with this approach for the 
four covariables were: b, = 0.70 f 0.18, B2 = 0.47 f 0.14, b3 = 0.017 f 0.007 and b, = 
0.041 f 0.010. Two smoothed estimates of the SMR were constructed using a five-year 
bandwidth - one with and one without covariable adjustment. The difference is striking 
(Fig. 5.6). The curve calculated without covariable adjustment closely resembles that in 
Figure 5.4 but is a bit smoother due to the fact that some averaging took place by 
consolidating the number of risk sets from 280 to 57. The adjusted curve has a shape 
that closely resembles the unadjusted one for the first 30 years, but remains roughly 
constant thereafter and even starts to decline to values below 1.0. The sharp peak 
noted in the unadjusted SMR is thus entirely explained by the four covariables and 
mostly, as we have previously noted, by the first one. What appears from Figure 5.4 to 
be evidence for a 'latent interval' turns out on closer examination to be an artefact 
caused by the confounding effects of year of first employment. 

Fig. 5.6 Smoothed estimates of the standardized mortality ratio (SMR) for respira- 
tory cancer, by years since first employment for Montana smelter workers, 
with (---) and without (-) adjustment for covariable effects 
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The adjusted curve in Figure 5.6 represents the SMR for a baseline category of 
US-born smelter workers hired in 1925 or after who spent their entire work history in 
'light' arsenic exposure areas. If the model is reasonably correct, such workers had 
respiratory cancer rates that were only slightly elevated over those of the US 
population. There is no suggestion that the relative risk increased with time since initial 
employment once account is taken of the covariables. If anything, it declined! 

( b )  Comparison of grouped and continuous data analyses 

Similar conclusions regarding the cohort to national rate ratio and its evolution in 
time may be drawn from the grouped data results presented in Table 4.19. See 
especially the middle column of that table, in which variations in the SMR with 
calendar year of follow-up (rather than time since initial exposure) are investigated. 
We estimated a rate ratio for US-born workers hired after 1924 with 'light' arsenic 
exposure of exp (0.581) = 1.79 for the first calendar period of follow-up (1938-1949), 
but this declines to exp (0.581-0.480) = 1.11 during the last period (1970-1977). 

Table 5.5 compares the results of a grouped analysis of the Montana data (Table 
4.19, column 3) with the results from a partial likelihood analysis of the full data set. 

Table 5.5 Regression coefficients and standard errors from multiplica- 
tive models fitted to grouped and continuous data from the Montana 
smelter workers study: 1 938-1977a 
- - 

Regression variables Method of analysis 

Grouped Continuous (partial 
likelihood) 

All covariables binary (011) 

Employed before 1925 
Foreign-born 
Moderate arsenicb 

1-4 years 
5-14 years 
15+ years 

Heavy arsenicb 
1-4 years 
5+ years 

Deviance 

Continuous arsenic variables 

Employed before 1925 
Foreign-born 
Years moderate arsenica ( x  10) 
Years- heavy arsenica ( x  10) 
Deviance 

a From Breslow (1985a) 
Lagged two years 

=Twice log-likelihood 
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Exposure variables for the partial likelihood analysis first were defined with discrete 
values that indexed the same categories of exposure that were used earlier to group the 
data. The results in the first part of the table indicate an excellent agreement between 
the two methods. This is not surprising in view of the fact that precisely the same 
model structures were used for relative risk. The grouped data analysis accounted for 
age and year effects by stratification into 16 age x year cells (four ten-year intervals for 
each) and explicit estimation of the corresponding parameters. The partial likelihood 
analysis accounted for age and year by stratification of the 276 respiratory cancer 
deaths into 167 risk sets on the basis of integral age at death and five-year calendar 
period. Evidently the age and year effects have been dealt with adequately by the 
broad categories used for grouping the data. There is little point in carrying out the 
costly and time-consuming partial likelihood analysis in this case. 

The second part of Table 5.5 presents results for a partial likelihood analysis that 
incorporates the continuously changing arsenic variables defined by numbers of years 
of work in moderate or heavy exposure areas. A rather crude approximation to this 
continuous analysis can be obtained with the grouped data by assigning quantitative 
exposure values to each level of the two factors for arsenic exposure duration. From a 
sample consisting of 20 controls drawn from each risk set, we estimated that the 
average number of years of moderate arsenic exposure in the <l-year category was 
0.05775 years, in the 1-4 category 2.272 years, in the 5-14 category 8.746 years and for 
the 15+ category 29.74 years. The corresponding averages for the three categories of 
heavy arsenic exposure were 0.0205, 2.219 and 16.69 years, respectively. These values 
were used to define the two quantitative variables for the grouped analysis. In spite of 
the rather approximate nature of their definition, the agreement between the grouped 
and continuous data analyses is still remarkably good. 

Some information regarding the adequacy of the relative risk function exp ( x p )  
proposed for the continuous exposure variable analyses is available by comparing the 
goodness-of-fit measures in the two parts of Table 5.5. Whether obtained from grouped 
or continuous analyses, there is a difference of 10.0 between the two measures of fit. 
Although the justification is approximate for the continuous analysis (due to the 
fact that the continuous exposure variables cannot be exactly represented as linear 
combinations of the corresponding discrete exposure variables), we referred this value 
to tables of chi-square on three degrees of freedom to gauge the relative merits of each 
fit and found p = 0.02. Thus, the assumption of a linear increase in log relative risk 
with increasing duration of exposure does not appear to be a tenable one. The separate 
coefficients for moderate arsenic exposure suggest that a plateau is reached after one 
year of exposure, whereas with heavy arsenic exposure the main effect is not seen until 
five or more years following exposure. See also Example 3.6. 

( c )  External standard rates versus partial likelihood 

Breslow et al. (1983) conducted a partial likelihood analysis of continuous data from 
the Montana cohort and a parallel analysis based on the parametric likelihood (5.12) 
using US death rates for white males in five-year intervals of age and calendar year as a 
standard. These analyses, which were based on follow-up through 1963 only and 
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ignored date of hire, are not comparable with those presented elsewhere in this 
monograph. The results are reproduced here because we did not wish to undertake the 
cumbersome job of reanalysing the 1938-1977 data using the fully parametric model. 
The sizes of the risk sets used in this analysis are those shown in Tables 5.3 and 5.4.. 

There were three exposure variables: xl,  a binary indicator of birthplace, coded 1 for 
foreign born; x,(t), a continuous, age-dependent variable specifying the number of 
years employed in one or more of the areas said to have moderate levels of arsenic 
exposure; and x3(t), defined analogously to x, for heavy arsenic exposure. The latter 
two variables were constructed from personnel records that allowed determination of 
the number of years a worker spent at moderate or high arsenic exposure levels for 
each of the seven calendar periods pre-1938, 1938-1939, 1940-1944,. . . ,1960-1963. 
The relative risk function that related these variables to the age- and year-specific 
background rates was RR = exp{Plxl + P2x2(t) + P3x3(t)} for the partial likelihood 
and RR = exp{a + Plxl + P2x2(t) + P3x3(t)} for the parametric analysis. 

The parametric analysis entailed approximation of the integral expression (5.12) and 
its first and second partial derivatives by a summation over years of calendar time. 
Functions of the covariable values evaluated at annual intervals were multiplied by 
each subject's contribution to the expected number of deaths (i.e., standard death 
rate x time on study during the year), and these products were summed over all 
calendar years that the subject was in the study. 

The first two columns of Table 5.6 contrast the parameter estimates and standard 
errors obtained using these two very different approaches. There is again substantial 
agreement between the estimated regression coefficients. The parametric model, 
incorporating the external standard rates, also allows estimation of the constant term 
6 = exp (&), which represents the SMR for cohort members with zero covariable 
values, relative to the national population. Since 6 = exp (0.61) = 1.84, one would 
interpret the results as saying that US-born workers who remained in light exposure 

Table 5.6 Parameter estimates (f standard errors) obtained by fitting a variety of multiplicative 
models to continuous data from the Montana study: 1938-1963a 

Regression Method of analysis Proportionate 
variable mortality 

Parametric Partial Case and rn controls (other deaths 
based on likelihood as controls) 
standard 
rates rn = 20 rn = 10 rn = 5 

Constant cr 0.61 f 0.12 - - - - - 
Foreign- 6, 0.76 f 0.18 0.72 f 0.20 0.70 f 0.21 0.66 f 0.23 0.75 f 0.25 0.72 f 0.23 

born 
Moderate 6, 0.22f0.07 0.22f0.07 0.21f0.08 0.29f0.10 0.35f0.11 0.22f0.10 

arsenic 
IxlO) 

Heavy 6, 0.58f 0.13 0.60f 0.13 0.69f 0.16 0.74f 0.18 0.85f 0.23 0.53f 0.18 
arsenic 
(~10) 

a From Breslow et a/. (1983) 
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areas had respiratory cancer rates approximately 84% in excess of those of US white 
males of the same age. Foreign-born workers experienced mortality rates approxi- 
mately exp (0.76) = 2.1 times higher than this. For each year spent in a moderate or 
heavy arsenic exposure area, these rates were increased roughly by another 2% 
(moderate exposure) or 6% (heavy exposure). Of course, from our earlier analyses of 
grouped data for 1938-1977 (see especially Table 4.19), we know that these results are 
confounded to some extent with the effect of period of hire and that the change in 
relative risk with additional arsenic exposure, especially at moderate levels, does not 
increase smoothly as assumed by the model. 

The excellent agreement between the results of the two analyses indicates that 
variations in the SMR by age and calendar year do not seriously confound the 
comparisons of SMRs for foreign- versus US-born or those with different degrees of 
arsenic exposure. Furthermore, when interaction terms were added to the partial 
likelihood model, there was no indication that the effects of the exposure variables 
changed systematically with age or year. This provides some mild evidence in support 
of the multiplicative model. However, with the grouped analysis of the data for 
1938-1977 (Table 4.19), we noticed some confounding between calendar year of 
follow-up and period of hire, a variable that had been ignored in the analysis of the 
data for 1938-1963. 

(d) Eficiency gains from use of an external standard 

Perhaps just as striking as the agreement between the regression coefficients is the 
agreement in their standard errors as estimated by parametric and semiparametric 
(partial likelihood) analyses (Table 5.6, columns 1 and 2). According to the results of 
Oakes (1977, 1981), one would expect a substantial gain in efficiency from the use of 
external standard rates only if exposures varied between risk sets, that is to say with 
age and year. Consider a single exposure X considered as a random variable sampled 
from the risk sets. The relative efficiency of /3 estimation for the partial likelihood 
analysis, under the null hypothesis /3 = 0, is given by E{ Var (X I R))lVar (X) where 
Var (X) denotes the total and Var (X  1 R) the conditional (within risk set) variance. A 
similar result holds for the alternative hypothesis /3 #O, provided that the sampling 
probabilities for drawing subjects from risk sets are made proportional to their relative 
risks of death under the model. 

In order to evaluate this result empirically, we estimated the within (3,) and 
between (02,) risk-set components of variance for each of the three exposure variables 
used in the analysis. We found ratios 02,/(02, + o&) of 15.9% for birthplace, 4.5% for 
moderate arsenic exposure and 1.7% for heavy arsenic exposure. This is consistent 
with the small increases observed in estimated standard errors between parametric and 
partial likelihood analyses, these being about 10% for birthplace and smaller for the 
coefficients of the arsenic exposure duration variables. 

(e) Results of sampling from the risk sets 

Table 5.6 also shows the regression coefficients estimated by applying the conditional 
likelihood analysis, based on equation (5.28) with r(x; g) = exp (xg), to case-control 
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samples drawn from the 91 risk sets depicted in Tables 5.3 and 5.4. Twenty controls 
were sampled from each risk set, except that at age 84 (period 1955-1959) all 17 
available controls were used. Subsamples of ten and five were then drawn from the 20. 
Thus, the errors in the estimated coefficients resulting from the post-hoc sampling are 
not statistically independent. Comparison of the case-control results with those of the 
full partial likelihood or parametric analyses shows that the standard errors of the 
estimated coefficients, especially for heavy arsenic exposure, increase sharply as rn (the 
number of controls) decreases. This reflects the loss in information as fewer members 
of each risk set are utilized in the analysis. Twenty controls per case seems none too 
large a number if one wants estimates that are reasonably close to those obtained from 
the full partial likelihood analysis. 

Table 5.7 presents the results of a similar set of case-control analyses, including data 
for the additional follow-up through 1977, for comparison with the partial likelihood 
results in Table 5.5. Sets of five, ten and 20 controls were drawn from each of 167 risk 
sets. The number of data records that were analysed thus approached 3600 when using 
the maximum number (20) of controls. This limited somewhat the number of exposure 
variables that could be accommodated, interfered with the interactive nature of the 
analysis, and thus reduced the advantages of the methodology. The increase in the 
estimated standard errors as one goes from the full partial likelihood analysis (Table 
5.5) to rn = 5 controls is in the range of 23% to 32% for the regression variables in the 

Table 5.7 Regression coefficients and standard errors from case-control analyses of the Montana 
cohort: 1938-1977 

Regression 
variable 

Number of controls (m) Proportionate 
mortality 

m = 20 m = l O  m = 5  (other deaths 
as controls) 

All covariables binary (011) 

Employed before 1925 
Foreign-born 
Moderate arsenic 

1-4 years 
5-14 years 
15+ years 

Heavy arsenic 
1-4 years 
5+ years 

-2 x log-likelihood 

Continuous arsenic exposure variables 

Employed before 1925 0.378 f 0.164 
Foreign-born 0.554 f 0.167 
Years moderate 

arsenic ( x  10) 0.1 59 f 0.075 
Years heavy 

arsenic ( x  10) 0.538 f 0.189 
-2  x log-likelihood 1448.78 
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second part of the table. The percentage increases in Table 5.6 were larger (25-77%). 
Theoretical calculations (see $7.6) suggest that the largest increases in standard error 
should occur with exposures that are relatively infrequent and that have large relative 
risks. This effect is seen in Table 5.6 but is not so obvious with the updated analysis in 
Table 5.7. 

There is reasonably good agreement between the coefficients of the continuous 
arsenic exposure variables shown in Table 5.6 and those shown in the second part of 
Table 5.5, in spite of the fact that the number of respiratory cancer deaths used in the 
latter analysis was nearly twice .that used in the former. However, the relative risk 
estimated for foreign birth has declined considerably from the earlier analysis. This is 
due to confounding with date of hire, which is not considered in Table 5.6. 

(f ) Proportional mortality analyses 

The final columns of Tables 5.6 and 5.7 present results of parallel case-control 
analyses for the 1938-1963 and 1938-1977 data, respectively, in which the controls 
consist of all deaths from causes other than respiratory cancer in the 91 or 167 risk sets. 
These are reasonably comparable with the results of the other case-control analyses. 
However, the coefficients associated with heavy arsenic exposure generally appear to 
be smaller, which suggests that heavy arsenic exposure may have adverse effects on 
mortality from causes other than lung cancer. 

(g) Estimating the 'latent interval7 

One of the ways of constructing cumulative exposure functions from a time record of 
exposure levels is as a time-weighted average (see $5.1). This means selecting the 
weight function w(u)  in equation (5.1) to be a probability density. Several authors have 
proposed that the log-normal distribution has an intuitively reasonable shape in this 
context. They assume that there is a random interval of time T between each exposure 
increment and its effect on the probability of cancer development, and that log T has a 
normal distribution with mean p and 02. The corresponding distribution of T has a 
mode at exp ( p  - a)', and its coefficient of variation is {exp (2) - 1)'". Figure 5.7 
graphs log-normal density functions with modes at 20 years and various coefficients of 
variation. 

While this manner of constructing exposure functions has a strong intuitive rationale, 
it is not suggested by any particular biological theory of carcinogenesis, and its use in 
cancer epidemiology could well be questioned. Nevertheless, largely out of curiosity, 
we fit a number of models analogous to those shown in the second part of Table 5.7 but 
in which the cumulative exposure variables were calculated as time-weighted average 
exposures with log-normal densities. Table 5.8 presents the results. Comparing the 
goodness-of-fit measures and considering the curves in Figure 5.7, it is clear that 
strikingly different densities give very similar fits and that precise estimation of the 
'latent interval7 is simply not possible with this model and these data. The best fit is 
obtained with a rather peaked distribution (coefficient of variation = 0.1) and a mode 
at 20 years, but the interpretation of this result is unclear for the reasons already 
mentioned. 
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Fig. 5.7 Density functions for the log-normal distribution with mode at 20 years and 
various coefficients of variation (CV) 

0 20 40 60 80 100 
Time between exposure and effect (years) 

This approach is not, of course, limited to the log-normal distribution. Parameters in 
the other weight functions considered following equation (5.1) could also be varied, to 
see which gave the best fit. 

(h) SMR by years since first employed: case-control approach 

We now return to the analyses depicted in Figures 5.3-5.6, in which we studied the 
evolution in the respiratory cancer SMR as a function of years since initial 
employment. The object is to determine empirically how well we can reproduce these 
results, which required lengthy calculations involving the entire cohort data set, from 
the samples of the cases in each of the 57 risk sets plus five or 20 controls drawn from 
the noncases. The illustrative analyses are restricted to estimation of the SMR without 
covariate adjustment, since this curve had a. more distinctive shape than the adjusted 
curve, even if it was misleading.   he results shown are averages of those obtained with 
25 separate samplings of five controls 'per risk set and 15 separate samplings of 20 
controls. Elsewhere in this section we have considered results obtained from only a 
single sampling (as would be done in practice). 
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Table 5.8 Regression coefficients and standard errors for a series of log-normally 
time-weighted average exposure models fitted to the Montana cohort data; case- 
control (m  = 20) analysis 

p p p p p  - 

Regression variable Coefficient of variation 

0.5 0.1 0.05 O.Oa 

A. Mode = 15 years 

Foreign-born 0.53f 0.16 0.54f 0.16 0.54k0.16 0.53f 0.16 
Moderate arsenicb 0.72 f 0.28 0.52 f 0.22 0.52 * 0.22 0.54f 0.21 
Heavy arsenicb 2.12 f 0.45 1.51 f 0.35 1.445 0.34 1.42 f 0.34 
-2 x log-likelihood 1519.68 1523.36 1524.04 1523.53 

8. Mode = 20 years 

Foreign-born 0.52 f 0.16 0.53 f 0.16 0.53f 0.16 0.52f 0.16 
Moderate arsenic 0.88 f 0.32 0.67 f 0.24 0.67 f 0.23 0.70 f 0.22 
Heavy arsenic 2.40f0.53 1.83f0.36 1.75f0.35 1.67f0.35 
-2 x log-likelihood 151 9.44 151 5.44 151 5.99 151 6.43 

C. Mode = 25 years 

Foreign-born 0.52f 0.16 0.53f 0.16 0.53f 0.16 0.52f 0.16 
Moderate arsenic 1.05f0.37 0.70f0.25 0.68f0.25 0.64f0.23 
Heavy arsenic 2.88 f 0.66 1.86 f 0.41 1.75 f 0.38 1.61 f 0.37 
-2 x log-likelihood 1521.32 151 9.68 1520.13 1521.26 

a Exposure effect concentrated on a one-year period 15, 20 or 25 years later 
Lagged two years 

Figure 5.8A contrasts the curve obtained using all the available data (also shown in 
Figure 5.6) with the average curves obtained by applying the Taylor series (5.30) and 
jackknife (5.31) estimates to case-control samples with five controls per risk set. The 
bias is clearly unacceptable, the Taylor series estimate overestimating the SNIR and the. 
jackknife underestimating it for the first 20-30 years. A much more satisfactory result 
is obtained by using 20 controls per risk set (Fig. 5.8B) or by pooling the five risk sets 
containing five controls each for which the ti are wi.thin 2.5 years of the target value 
(Fig. 5.8C). The latter procedures both provide a reasonably faithful reproduction of 
the original result. 

5.6 Continuous variable analysis of nasal sinus cancer deaths among Welsh nickel 
refiners 

We continue our analyses of cohort data from the Welsh nickel refiners study in 
order to illustrate some further features of continuous variable modelling. These data 
have already been considered in Example 4.1 and $4.10. 

Table 5.9 presents observed and expected numbers of nasal sinus cancer deaths 
according to the four risk variables of primary interest: age at first employment, year of 
employment, exposure index and time since first employment. Many of the essential 
features of the data are already evident from these simple descriptive statistics. The 
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Fig. 5.8 Smoothed estimates of the standardized mortality ratio (SMR) for respira- 
tory cancer for Montana smelter workers estimated from 15 case-control 
samples. (A) Five controls per risk set, no pooling; (B) 20 controls per risk 
set, no pooling; (C) five controls per risk set with pooling of five 
neighbouring risk sets. - , all controls; ---, jackknife; --- , Taylor 
series 

Time since first employment (years) 
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Table 5.9 Summary data on deaths from nasal sinus cancer among Welsh nickel 
refinersa 

Variable Category Person- Nasal sinus cancer 
years 

Observed Expected Rateb 

Age at first 
employment 
(years) 

Year of first 
employment 

Exposure 
category (years) 

Time since first 
employed (years) 

Totals 15230.8 56 0.21 0 3.7 

a Determined from data shown in Appendix VIII. There are slight differences between Tables 4.23 and 5.9 in 
the totals of expected numbers of deaths due to the use of slightly different data. 

Nasal sinus cancer death rate per 1000 person-years of observation 

nasal sinus cancer rates increase dramatically with duration of 'exposure': they seem to 
have one peak about 25-29 years from date of hire and another at about 50 years. 
However, both exposure and time since employment are correlated with age and year 
of employment. A major goal of our analysis will be to try to separate the effects of 
each of the explanatory variables using an appropriate regression model. Results for 
nasal sinus cancer are analysed without reference to standard rates since the 
'background' is so inconsequential. 

(a)  Analysis of nasal sinus cancer risk by time since first employment 

Figure 5.9A graphs the cumulative nasal sinus cancer death rate for the entire cohort 
as a function of time since initial employment (equation 5.16). We estimate the 
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Fig. 5.9 Death rate from nasal sinus cancer by years since initial employment, Welsh 
nickel refiners. (A) Cumulative rate; (B) smoothed instantanecius rate 
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cumulative 'lifetime' risk (to age 85) to be about 15-20%, a striking figure when one 
considers how rare the disease is in the general population. The smoothed estimate of 
the annual death rates shown in part B of the figure, obtained from equation (5.18) 
with a five-year bandwidth, confirms the possibility of a bimodal pattern that was 
already evident in the grouped data of Table 5.9. 

Our initial analysis of these data used the proportional hazards model with log-linear 
relative risk function (equation 5.3) and considered t = 'time since first employment' 
(TFE) as the basic time variable. We define a number of indicator variables to identify 
levels of the factors age at first employment (AFE), year of first employment (YFE) 
and exposure (EXP). Recall that AFE, YFE and TFE were investigated jointly in the 
grouped data analysis of Example 4.1. 

Since ages were recorded to two-decimal accuracy, and we retained this level of 
detail in the analysis, each of the 56 cases of nasal sinus cancer occurred at a unique 
time since first employment and generated a separate risk set. The first case occurred at 
15.23 years from initial hire, at which time there were 284 individuals under 
observation. Risk-set sizes increased gradually to a maximum of 531 men at risk at 
28.72 years since date of hire and then declined. The smallest risk set, with 73 subjects, 
was at 57.48 years since date of hire, the maximum number of years at which a case 
was observed. 

Table 5.10 summarizes the results of fitting the model with categorical regression 
variables by partial likelihood. Each of the factors AFE, YFE and EXP is seen to have 
a strong, independent effect on risk. The rise in relative risk with age at first 
employment is a particularly striking and unusual observation (Peto, J. et al., 1984). 
While an increase in risk with AFE is evident in the summary data of Table 5.9, its 
magnitude is obscured by the fact that those hired at later ages generally did not 
survive to the point 45-50 years from date of employment at which the nasal sinus 
cancer rates are highest. Once this confounding is accounted for in the regression 
analyses, the role of AFE appears to be even more dramatic. 

The baseline cumulative death rate is shown graphically in Figure 5.10A; a smoothed 
estimate of the instantaneous death rate, using a five-year bandwidth, appears in part B 
of the figure, and for a ten-year bandwidth in part C. Because of the coding of the 
covariables, this baseline risk is estimated for a (fictitious) subject who was under 20 
years at hire, first worked before 1910 and was never assigned to high-risk categories. 
The estimated cumulative lifetime risk for this category does not exceed I%,  whereas 
for the cohort as a whole it approaches 15-20%. Furthermore, the peak in the nasal 
sinus cancer death rate at 30 years past employment that was suggested by the crude 
analysis (Fig. 5.9B) essentially dissappears when adjustment is made for the covariable 
effects. 

The second part of Table 5.10 reports the fit of a model with continuous rather than 
discrete covariables. The definitions of the covariables used in this fit were determined 
after considering the results in the first part of the table and after conducting some 
exploratory analyses using the case-control technique (see below). Comparing the 
maximized partial likelihoods obtained from the grouped and continuous analyses, we 
conclude that the fit with four continuous covariables is almost as good as that with the 
larger number of binary variables that identified categories of risk. 
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Table 5.10 Results of fitting the multiplicative model by maximum likelihood to 
data on nasal sinus cancer deaths; 'time' = years since first employed 

Level Parameter estimate p value Relative risk 
f standard error 

All covariables discrete 

AFE (years) 15-19 
20-27.5 1.48 f 0.75 
27.5-35 2.21 f 0.76 
35 + 3.64 f 0.79 

Y FE 1 900- 1 909 
1910-1914 1.03f0.38 
1915-1919 1.11f0.51 
1920-1924 0.01 f 0.53 

EXP (years) 0 
0.5-4.0 0.88 f 0.40 
4.5-8.0 1.19 f 0.47 
8.5-1 2.0 2.30 f 0.52 
12.5+ 2.84 f 0.57 

-2 x log-likelihood = 561.2 

All covariables continuous 

log(AFE-10) 2.22 f 0.44 
(YFE-1915)/10 -0.09 f 0.32 
(YFE-1915)2/100 - 1.26 f 0.51 
log(EXP + 1 ) 0.77 f 0.17 

-2 x log-likelihood = 568.9 

a AFE, age at first employment; YFE, year of first employment; EXP, duration of 'exposure' in designated 
job categories 

One goal of constructing appropriate continuous covariables was to lay the 
foundation for assessing the goodness-of-fit of the multiplicative model by incorporat- 
ing cross-product or interaction terms in the regression equation. Such analyses are 
more sensitive if the interactions can be expressed in a quantitative rather than a 
qualitative manner so that the chi-square statistics for testing their significance have at 
most a few degrees of freedom (see Volume 1, 56.6 and 6.7). For reasons of economy 
and convenience, however, these explorations for interaction effects were restricted to 
the case-control analyses reported below. 

(b) Analysis of nasal sinus cancer risk by attained age 

We did not choose attained age as the basic time variable in our initial partial 
likelihood analysis of the nasal sinus cancer deaths. Since it is obvious that all or nearly 
all such cases were caused by the specific nickel exposure rather than by general 
environmental exposures, the usual reasons for regarding age as, the key explanatory 
variable were absent. Most persons concerned with the analysis of these data have 
considered duration of time since onset of exposure to the causal agent to be the most 
relevant time scale. 
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Fig. 5.10 Baseline death rate from nasal sinus cancer by years since initial employ- 
ment for Welsh nickel refiners, estimated by the multiplicative model. (A) 
Cumulative rate; (B) smoothed instantaneous rate (five-year bandwidth); 
(C) smoothed instantaneous rate (ten-year bandwidth) 

Time since first employment (years) 

Time since first employment (years) 
5-year bandwidth 
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Fig. 5.10 (contd) 
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Time since first employment (years) 
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One might ask whether attained age should be included as an additional variable in 
the analysis to see whether it carries some explanatory value after accounting for age at 
onset and time since first exposure. However, since attained age is the sum of these 
latter two variables, it is clear that such an analysis cannot separate the (linear) effects 
of the three factors. The basic problem is the same as that which occurs also with 
age-period-cohort analyses. 

Nevertheless, largely out of curiosity, we did conduct an alternative partial 
likelihood analysis with attained age replacing time since first employment as the basic 
time variable. Table 5.11 reports the regression coefficients for the discrete levels of the 
factors AFE, YFE and EXP obtained with this approach, and Figure 5.11 shows the 
smoothed estimate of the baseline death rate as a function of age. The relative risks 
associated with YFE and EXP depend little on whether the baseline risk is expressed 
as a function of age or of time since onset of exposure. The increase in relative risk 
with AFE, however, is substantially less when age is used as the basic time variable. 
Correspondingly, the baseline risk increases more smoothly and sharply as a function 
of age than as a function of time since onset of exposure. (Compare Figures 5.1OB and 
5.11.) 

(c) Nasal sinus cancer deaths: sampling from the risk set 

In order to reduce the volume of data so as to explore different ways of constructing 
continuous regression variables and to search for significant interactions, we carried out 
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Table 5.11 Results of fitting the multiplicative model by maximum partial 
likelihood to data on nasal sinus cancer deaths; 'time' = age 

Variablea Level Parameter estimate p value Relative risk 
f standard error 

AFE (years) 15-19 
20-27.5 1.03 f 0.75 0.17 
27.5-35 1.30 f 0.75 0.08 
35+ 2.08 f 0.77 0.007 

YFE 1900-1 909 
1910-1914 0.93 f 0.38 0.01 
1915-1919 0.93 f 0.51 0.07 
1920-1924 -0.12 f 0.52 0.82 

EXP (years) 0 
0.5-4.0 0.82 f 0.40 0.04 
4.5-8.0 1.10 f 0.47 0.02 
8.5-12.0 2.24 f 0.51 0.0001 
12.5+ 2.77 f 0.57 0.00001 

-2 x log-likelihood = 573.36 

a See legend to Table 5.10 

Fig. 5.11 Adjusted nasal sinus cancer rates by age, smoothed using five- (-) and 
ten-year (- - -) bandwidths 
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Table 5.12 Results of fitting the multiplicative models by conditional maximum 
likelihood to matched sets of a nasal sinus cancer case and 20 controls; 'timer= years 
since first employed 

Level Parameter estimate p value Relative risk 
f standard error 

YFE 

EXP (years) 

All covariables discrete 

AFE (years) 15-1 9 
20-27.5 
27.5-35 
35+ 
1900-1 909 
1910-1914 
191 5-1919 
1920-1 924 
0 
0.5-4.0 
4.5-8.0 
8.5-1 2.0 
12.5+ 

All covariables continuous 

0.83 f 0.42 
0.93 f 0.48 
2.45 f 0.56 
2.56 f 0.63 

Deviance = 259.80 

2.09 f 0.46 <0.001 
-0.23 f 0.32 0.438 
-1 .O1 f 0.53 0.057 

0.72 f 0.18 <0.001 
Deviance = 267.67 

- -  

"See legend to Table 5.10 

Table 5.13 Deviances for various interaction terms when fitting the multiplicative model to 
matched sets of a nasal sinus cancer case and 20 controls; 'time' = years since first employed 

Interaction variables included in equationa Deviance 

None 
log (AFE-10) x (YFE-1915)/10+ log (AFE-10) x ( ~ ~ ~ - 1 9 1 5 ) ~ / 1 0  
log (AFE-10) x log (EXP + 1) 
(YFE-1915)/10 x log (EXP + 1) + ( ~ ~ ~ - 1 9 1 5 ) ~ / 1 0 0  x log (EXP + 1) 
log (AFE-I 0) x log (AFE-I 0) 
log (EXP + 1) x log (EXP + 1) 
log (AFE-I 0) x TFE 
(YFE-1915)/10 x TFE + ( ~ ~ ~ - 1 9 1 5 ) ~ / 1 0 0  x TFE 
log (EXP + 1 ) x TFE 

a In addition to four continuous variables shown in the second part of Table 5.12; see legend to Table 5.10 
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the risk-set sampling procedure, selecting 20 controls from each of the 56 risk sets. This 
yielded a data file containing 21 x 56= 1176 records that could be analysed with 
relative ease. Table 5.12 shows the results of fitting the same modcls to the case-control 
data as had been fitted earlier to the entire data set (Table 5.11). While there is 
reasonably good agreement, the relative risks associated with the highest exposure 
category and employment in the 1910-1919 period are underestimated with the 
case-control data. Just as we found for the full analysis, however, a summary of the 
data in terms of the four continuous variables is quite adequate in comparison with a 
summary in terms of the corresponding discrete factors. 

Fig. 5.12 Deletion diagnostics for the model shown in the second part of Table 5.12; 
approximate effect on the standardized regression coefficients from deletion 
of individual cases. AFE, age at first employment; YFE, year of first 
employment; EXP, duration of 'exposure7 in designated job categories 
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The question of possible interactions between the continuous variables which, if 
present, would tend to invalidate the results obtained with the simple multiplicative 
model is examined in Table 5.13. For no risk variable was there any indication of a 
(linear) dependence of its multiplicative effect on values of another risk variable or on 
time since first employment, nor was there strong evidence of curvature in the 
dependence of log relative risk on log (AFE - 10) or log (EXP + 1). Had there been, it 
would suggest that some other transformation of these variables be used instead. 

One last check on the adequacy of the fitted model was to examine the approximate 
change in the regression coefficients estimated for each of the four continuous variables 
that would accompany the deletion of any one of the 56 cases from the analysis. Since 
each risk set contained a single case, deletion of a case has the same effect as deleting 
the entire risk set for these data. Results obtained using the procedure of Storer and 
Crowley (1985) are shown in Figure 5.12. The risk sets are numbered according to time 
since first employment so that number 1 corresponds to the case diagnosed at 15.23 
years and number 56 to the case diagnosed at 57.48 years. For none of the four 
variables does deletion of a risk set change the estimated value of the /3 regression 
coefficient by more than half its standard error. The linear and square terms in YFE 
are correlated, so that the deletion of certain risk sets (e.g., numbers 14, 24, 56) causes 
the coefficient of (YFE-1915)/10 to increase and that for (YFE-1915)~/100 to decrease, 
and vice versa. 


