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CHAPTER 7 

DESIGN CONSIDERATIONS 

7.1 Introduction 

In Chapter 1, we considered a range of questions concerned with the implementation 
of a cohort study. In this chapter, we concentrate on the more formal aspects of study 
design, in particular power, efficiency and study size. The design issues considered 
initially in this chapter are based, in large part, on the analytical methods of Chapters 2 
and 3, comprising simple comparisons of a group with an external standard, internal 
comparisons within a cohort, and tests for trend using the approach of 93.6. Power 
considerations based on the modelling approach of Chapters 4 and 5 are only touched 
on. 

The design of case-control studies is considered at some length. The motivation 
comes principally from the concept of risk-set sampling introduced in Chapter 5, but 
the results apply to general case-control studies. Topics discussed include the choice of 
matching criteria, the number of controls to select, and the effects that control of 
confounding or an interest in interaction will have on study size requirements. 
Attention is focused on the simple situation of one, or a small number, of dichotomous 
variables. 

Two approaches are taken to the evaluation of different study designs; the first is 
based on calculation of the power function, the second is based on the expected 
standard errors of the relevant parameters. The power considerations are based on 
one-sided tests of significance unless specifically stated to the contrary, since in most 
studies the direction of the main effect of interest is an inherent part of the specification 
of the problem under study. The discussion of the design of cohort studies assumes that 
external rates are known, even though the analysis may be based on internal 
comparison and does not use external rates. The reason is evident - that evaluation of 
the potential performance of a study before it is carried out must be based on 
information exterior to the study. Since in this chapter all expected numbers are based 
on external rates, we have dispensed with the notation used in earlier chapters, where 
expected numbers based on external rates are starred. 

It needs stressing strongly that power calculations are essentially approximate. The 
size, age composition and survival of the cohort will usually not be known with any 
great accuracy before the study is performed. In addition, calculations are generally 
based assuming a Poisson distribution for the observed events, since they derive from 
the statistical methods of Chapters 2 and 3. Many data may be affected by extra 



DESIGN CONSIDERATIONS 273 

Poisson variation, which will augment the imprecision in probability statements. 
Furthermore, the level of excess risk that one decides that it is important to detect is to 
some extent arbitrary. 

7.2 Sample size for cohort studies - comparison with an external standard 

This section considers the design of studies in which the total cohort experience is to 
be compared to an external standard. It is assumed that analyses are in terms of the 
SMR, with tests of significance and construction of confidence intervals following the 
methods of Chapter 2. 

The number of deaths, D, of the disease of interest (or number of cases if cancer 
registry material is available) is to be determined in the cohort, and compared with the 
number expected, E, based on rates for some external population, whether national or 
local. The relative risk is measured by the ratio DIE, the SMR. Tests of significance 
for departures of the SMR from its null value of unity and the construction of 
confidence intervals were discussed in 02.3. The capacity of a given study design to 
provide satisfactory inferences on the SMR can be judged in two ways: first, in terms of 
the capacity of the design to demonstrate that the SMR differs significantly from unity, 
when in fact it does, and, second, in terms of the width of the resulting confidence 
intervals, and the adequacy of the expected precision of estimation. 

The first approach proceeds as follows. For an observed number of deaths, D, to be 
significantly greater than the expected number, E, using a one-sided test at the 100a% 
level, it has to be greater than or equal to the a point of the Poisson distribution with 
mean E, a point that we shall denote by C(E, a). (For a two-sided test, a is replaced 
by a12.) Since the Poisson is a discrete distribution, the exact a point does not usually 
exist, and we take C(E, a )  to be the smallest integer such that the probability of an 
observation greater than or equal to C(E, a )  is less than or equal to a .  Table 7.1 gives 
the value of C(E, a )  for a = 0.05 and 0.01, and a range of values of E. If, however, 
the true value of the SMR is equal to R, then the observed number of deaths will 
follow a Poisson distribution with mean RE. The probability of a significant result is 
then the probability that D, following a Poisson distribution with mean RE, is greater 
than or equal to C(E, a). For given values of E and a ,  this probability depends on!] 
on R. It is simple if somewhat laborious to calculate and is known as the power 
function of the study. Common practice is to choose a value of R that one feels is the 
minimum that should not pass undetected, and to calculate the power for this value. 
Table 7.2 gives the power for a range of values of E and R, for a equal to 0.05 and 
0.01, respectively. The values in the column R = 1 are, of course, simply the 
probabilities of rejecting the null hypothesis when in fact it is true, and so give the real 
significance of the test, rather than the nominal 5% or 1%; one can see in Table 7.2a 
that they are all less than 5%, and in Table 7.2b all less than 1%. 

Example 7.1 
Suppose that with a given study cohort and the applicable mortality rates, there is an expected number of 

20 deaths. Then, all observed values greater than or equal to 29 will be significant at the 5% level, and all 
values greater than or equal to 32 will be significant at the 1% level (Table 7.1). These are the values 
C(20, 0.05) and C(20, 0.01), respectively. If the true value of the relative risk is 1.5, then the true expected 
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Table 7.1 5% and 1% points of the Poisson distribution for different 
values of the mean. The numbers tabulated are the smallest integers for 
which the probability of being equalled or exceeded is less than 5% and 
1 % (designated C( E, 0.05) and C( E, 0.01 )), respectively. 

Mean of Poisson C(E, 0.05) C(E, 0.01) Mean ( E )  C(E, 0.05) C(E, 0.01) 
distribution, E 

Table 7.2 Comparison with an external standard 

(a) Probability ( % I  of obtaining a result significant at the 0.05 level (one-sided) for 
varying values of the expected value E assuming no excess risk, and of the true relative 
risk R 

Expected number True relative risk ( R )  
of cases assuming 
no excess risk 1 .O 1.5 2.0 3.0 4.0 5.0 7.5 10.0 15.0 20.0 
( R = l )  
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Table 7.2 (contd) 

Expected number True relative risk ( R )  
of cases assuming 
no excess risk 1 .O 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
( R = l )  

(b) Probability (%) of obtaining a result significant at the 0.01 level (one-sided) for 
varying values of the expected value E assuming no excess risk, and of the true relative 
risk R 

Expected number True relative risk ( R )  
of cases assuming 
no excess risk 1 .O 1.5 2.0 3.0 4.0 5.0 7.5 10.0 15.0 20.0 
( R = l )  
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Table 7.2 (contd) 

Expected number True relative risk ( R )  
of cases assuming 
no excess risk 1 .O 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 
( R = l )  

value will be 20 x 1.5 = 30. The probability that an observation from a Poisson distribution with mean 30 is 
greater than or equal to 29 is 60% (Table 7.2) and that it is greater than or equal to 32 is 38% (Table 7.2). 
There is thus 60940 power of obtaining a result significant at the 5% level, and 38% power of obtaining a 
result significant at the 1% level, if the true relative risk is 1.5. 

An alternative way of expressing the power of a study is to give the relative risk for 
which the power is equal to a certain quantity, such as 80% or 95%. Table 7.3 gives the 
relative risks for a range of values of E and of the power, for 0.05 and 0.01 levels of 
significance, respectively. 

Example 7.1 (contd) 
To continue the previous example, with E equal to 20, using a 5% significance test, 50% power is obtained 

if the relative risk is 1.43, 80% power if R is 1.67 and 95% power if R is 1.92. The corresponding figures for 
1% significance are relative risks of 1.58, 1.83 and 2.09. 

The values given in Tables 7.2 and 7.3 are based on exact Poisson probabilities. To 
calculate power values for other values of E and R, one can use one of the 
approximations to the Poisson distribution suggested in Chapter 2. For example, one 
can use expression (2.12), the square root transformation, from which the quantity 

is approximately a standard normal deviate. If 2, is the a point of the normal 
distribution, then for D to be significant at the 5% level (one-sided as before) we must 
have 

This value corresponds to the value C(E, a )  of the discussion in the previous pages. 
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Table 7.3 Comparison with an external standard 

(a) True value of the relative risk required to have given 
power of achieving a result significant at the 5% level 
(one-sided), for varying values of the expected value E 
assuming no excess risk (R = 1) 

Expected cases Probability of declaring significant (pc0.05) difference 
( R =  1) 

0.50 0.80 0.90 0.95 0.99 

1 .O 3.67 5.52 6.68 7.75 10.05 
2.0 2.84 3.95 4.64 5.26 6.55 
3.0 2.22 3.03 3.51 3.95 4.86 
4.0 2.1 7 2.84 3.25 3.61 4.35 
5.0 1.93 2.50 2.84 3.14 3.76 
6.0 1.78 2.28 2.57 2.83 3.36 
7.0 1.81 2.27 2.54 2.78 3.26 
8.0 1.71 2.13 2.37 2.58 3.02 
9.0 1.63 2.01 2.24 2.43 2.83 

10.0 1.57 1.92 2.13 2.31 2.67 
11.0 1.61 1.95 2.15 2.32 2.66 
12.0 1.56 1.88 2.06 2.22 2.55 
13.0 1.51 1.82 1.99 2.14 2.45 
14.0 1.48 1.77 1.93 2.08 2.36 
15.0 1.51 1.79 1.95 2.09 2.37 
20.0 1.43 1.67 1.80 1.92 2.1 5 
25.0 1.35 1.55 1.67 1.77 1.96 
30.0 1.32 1.51 1.61 1.70 1.87 
35.0 1.30 1.47 1.57 1.65 1.81 
40.0 1.29 1.45 1.54 1.61 1.76 
45.0 1.26 1.41 1.49 1.55 1.69 . 

50.0 1.25 1.39 1.47 1.53 1.66 
60.0 1.23 1.35 1.42 1.48 1.59 
70.0 1.21 1.32 1.39 1.44 1.54 
80.0 1.20 1.30 1.36 1.41 1.50 
90.0 1.19 1.28 1.34 1.38 1.47 

100.0 1.18 1.27 1.32 1.36 1.45 

(b) True value of the relative risk required to have given 
power of achieving a result significant at the 1% level 
(one-sided), for varying values of the expected value E 
assuming no excess risk (R = 3 ) 

- 

Expected cases Probability of declaring significant ( p c  0.01) difference 
( R  = 1) 

0.50 0.80 0.90 0.95 0.99 
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Expected cases Probability of declaring significant ( p  G 0.01) difference 
( /=?=I)  

0.50 0.80 0.90 0.95 0.99 

When rounded up to the next integer value, one obtains exactly the same result as in 
Table 7.1 on almost every occasion. 

If the true value of the relative risk is R,  then the observation D will have a 
distribution such that 

is a standard normal distribution. To achieve significance at the a level, we must have 

D 2 { E  ' I 2  + (Z,)/2}2, 

which will occur with probability /3 when 

(RE)'n - (E)'" = (Z,  + Z1-p)/2, 

where Zi-p is the (1 - /3) point of the standard normal distribution. In other words, to 
have probability /3 of obtaining a result significant at the a level when the true relative 
risk is R,  one needs a value of E equal to or greater than 

As can be simply verified, use of this expression gives values close to those shown in 
Tables 7.2 and 7.3. For example, with a = 1 - /3 = 0.05, for which Z, = Z1+ = 1.645, a 
value of R equal to 2.31 requires a value of E equal to 10.01 from expression (7.1), and 
a value of 10.0 from Table 7.3. Use of expression (2.11) based on the cube root 
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transformation will give slightly improved accuracy for small values of E - say, less 
than 10 -whereas use of expression (2.10), the usual x2 statistic, will give somewhat 
less accurate results. Only for very small studies in which large relative risks are 
expected would- the accuracy of the simple expression (7.1) be inadequate. 

The other approach to assessing the capacity of a given study design to respond to 
the questions for which answers are sought is in terms of the expected widths of the 
resulting confidence intervals. These widths are given, in proportional terms, in Table 
2.11. Given an expected number E based on external rates and a postulated value R 
for the relative risk, one can read off, from Table 2.11, the lower and upper multipliers 
one would expect to apply to the observed SMR to construct a confidence interval. 

Thus, for E = 20 and for different values of R, we have the following 95% 
confidence intervals for R if D takes its expected value of RE: 

Lower bound Upper bound 

The investigator would have to decide whether confidence intervals of this expected 
width satisfy the objectives of the study, or whether attempts would be needed to 
augment the size of the study. 

For values of E and R not covered in Table 2.11, we can use as before the square 
root transformation (see expression 2.15). For a given value of E and R, the square 
root of the observed number of deaths, D'", will be approximately normally 
distributed, with mean (ER)'" and variance 114. The resulting 100(1- a)% confidence 
intervals if D took its expected value would thus be given by 

The upper limit is improved by incorporating the modification of (2.15), replacing R by 
R(D + 1)lD. 

7.3 Sample size for cohort studies - comparison with an internal control group 

In this section, we outline power and sample size determination when it is envisaged 
that the main comparisons of interest will be among subgroups of the study cohort, 
using the analytical methods of Chapter 3. We start by considering the simplest 
situation, in which the comparison of interest is between two subgroups of the study 
cohort, one considered to be exposed, the other nonexposed. Rates for the disease of 
interest are to be compared between the two groups. The situation corresponds to that 
of 93.4, with two dose levels. As argued in the preceding chapters, use of an internal 
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control group is often important in order to reduce bias. Suppose that the two groups 
are of equal size and age structure, and that we observe 0, events in one group (the 
exposed) and 0, in the other. Since the age structures are the same, age is not a 
confounder, and no stratification is necessary. Following $3.4, inferences on the 
relative risk R are based on the binomial parameter of a trial in which 0, successes 
have occurred from 0, + 0, observations, the binomial parameter, n say, and R being 
related by 

as in expression (3.6). 
Now if R is equal to unity, n is equal to 112, and the test of significance can be based 

on the tail probabilities of the exact binomial distribution given by 

where 0, = 0, + 0,. For a fixed value of 0 + ,  the power of the study can be evaluated 
for different values of R, using the binomial distribution with parameter R/(R + 1). 
0 + ,  however, is not fixed, but a random variable following a Poisson distribution with 
mean E(1+ R), where E is the expected number of events in the nonexposed group. 
The power for each possible value of 0, needs to be calculated, and the weighted sum 
computed, using as weights the corresponding Poisson probabilities. This weighted sum 
gives the unconditional power. 

When the groups are of unequal size, but have the same age structure, a similar 
approach can be adopted. Suppose that E, events are expected in the exposed group 
under the null hypothesis, and that E, events are expected in the control group. Then, 
under the null hypothesis, the number of events in the exposed group, given 0, the 
total number of events, will follow a binomial distribution with probability parameter 
E,/(E, + E,). Under the alternative hypothesis with relative risk R, the binomial 
distribution will have parameter RE,I(RE, + E,). The power can be evaluated for each 
value of 0 + ,  and the weighted sum computed using as weights the probabilities of the 
Poisson distribution with mean RE1 + E,. Gail (1974) has published power calculations 
when El equals E2, and Brown and Green (1982) the corresponding values when El is 
not equal to E,. Table 7.4 gives the expected number of events in the control group, 
E,, for power of 80% and 90% and significance (one-sided) of 5% and 1% for various 
values of R and of the ratio E2/El (written as k). 

On many occasions, particularly when O1 and 0, are large, the formal statistical test 
is unlikely to be based on the binomial probabilities, but on a normal approximation 
using either a corrected or uncorrected x2 test. 

In the case of equal-sized exposed and control cohorts, the observed proportion 
p = Ol/(O1 + 0,) is compared with the proportion under the null hypothesis, namely 
112, using as variance, that under the null. The uncorrected x2 test statistic is equivalent 
to comparing 

with a standard normal distribution. 
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Table 7.4. Comparison with an internal control group 

(a) Expected number of cases in the control group required to detect a 
difference with 5% significance and given power, for given relative risk, 
when the control group is k times the size of the exposed group (using 
exact Poisson distribution) 

ka Relative riskb 

2 3 4 5 6 8 10 20 

1/10 11.3 3.86 2.16 1.47 1.10 0.712 0.528 0.212 
15.0 5.00 2.75 1.84 1.36 0.881 0.639 0.262 

115 12.3 4.23 2.37 1.60 1.18 0.770 0.566 0.236 
16.2 5.45 3.03 2.03 1.50 0.958 0.696 0.283 

112 15.1 5.18 2.85 1.93 1.45 0.954 0.706 0.299 
20.2 6.80 3.74 2.48 1.83 1.19 0.873 0.363 

1 20.0 6.70 3.71 2.52 1.89 1.25 0.923 0.392 
27.0 8.89 4.90 3.27 2.43 1.58 1.17 0.485 

2 29.6 9.91 5.40 3.58 2.59 1.63 1.19 0.498 
40.3 13.5 7.26 4.82 3.54 2.22 1.59 0.642 

5 58.6 19.5 10.8 7.21 5.21 3.33 2.44 1.00 
80.1 26.3 14.5 9.76 7.19 4.50 3.25 1.33 

10 107 35.0 19.5 13.0 9.52 6.00 4.29 1.67 
146 48.2 26.5 17.7 13.0 8.27 5.93 2.31 

(b) Expected number of cases in the control group required to 
detect a difference with 1% significance and given power, for 
given relative risk, when the control group is ktimes the size of the 
exposed group (using exact Poisson distribution) 

ka Relative riskb 

1/10 17.9 6.06 3.38 2.26 1.69 1.10 0.805 0.336 
22.5 7.51 4.12 2.76 2.03 1.30 0.952 0.387 

115 19.4 6.55 3.63 2.44 1.82 1.19 0.864 0.275 
24.5 8.15 4.47 2.97 2.20 1.42 1.03 0.416 

112 23.9 8.03 4.46 2.96 2.19 1.41 1.03 0.431 
30.3 10.0 5.57 3.69 2.70 1.73 1.25 0.508 

1 31.2 10.5 5.73 3.82 2.85 1.87 1.38 0.567 
39.8 13.2 7.27 4.79 3.52 2.28 1.68 0.689 

2 46.1 15.1 8.33 5.42 3.91 2.49 1.82 0.775 
59.2 19.4 10.6 7.02 5.08 3.17 2.29 0.946 

5 90.5 29.2 15.9 10.6 7.76 4.80 3.41 1.38 
116 37.9 20.5 13.6 10.0 6.32 4.47 1.75 

10 164 52.8 28.5 18.6 13.5 8.50 6.07 2.41 
213 69.0 37.3 24.3 17.7 11.2 7.98 3.15 

Ratio of E,IE,, where E2 is the number of events expected in the control group and E, 
the number expected in the exposed group under the null hypothesis 

bThe top number corresponds to a power of 80% and the bottom to a power of 90% 
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Under the alternative of a relative increase in risk of R, p has mean R / ( R  + 1) and 
variance R/{Q+(R + I ) ~ ) .  The required sample size is then given by 

0+ = 
($2, + ~ l - ,  (2-J - ( ( R  + 1)Z. + 2 ~ ~ - p f l ) ~  

- 
( R  - 1)2 (A-3 

When R is close to unity, approximate solutions are given by approximating 
R / ( R  + 1)2 by 114 and rewriting the equation 

When the two groups are of unequal size, nl and n2, say, but the same age 
distribution, then we have 

Following Casagrande et al. (1978b) and Ury and Fleiss (1980), more accurate values 
are given by incorporating Yates' correction in the X 2  significance test, which for 
groups of equal size results in multiplying the right-hand side of (7.3) by the term 

where 
f l  R 

A= $Z,+ ( ( R + l )  
p2 = ;. 

When the groups are of unequal size, n1 and n,, respectively, the corresponding 
correction factor is given by 

where 

Table 7.5 gives the number of cases that would need to be expected in the 
nonexposed group for a range of values of the relative risk R, of the relative sizes of 
the exposed and unexposed group, and of a and /3. The numbers are based on 
expression (7.3), modified by incorporating Yates7 correction. The values in Table 7.5 
are very close to the corresponding values based on exact binomial probabilities given 
in Table 1 of Brown and Green (1982). They are slightly smaller than the values in 
Table 7.4 for the more extreme values of R and of the ratio of the sizes of the two 
groups; the values in Table 7.4 took account of the Poisson variability of 0,. 
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Table 7.5 Sample size requirements in cohort studies when the ex- 
posed group is to be compared with a control group of k times the size. 
The numbers in the table are those expected in the control group (using 
X 2  approximation) 

k Relative risk 

Significance, 5% 
Power, 50% 

Significance, 5% 
Power, 80% 

Significance, 5% 
Power, 90% 

Significance, 5% 
Power, 95% 

Significance, 7 %  
Power, 50% 
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k Relative risk 

Significance, 1% 1 .OO 
Power, 80% 2.00 

4.00 
1 0.00 

100.00 
0.50 
0.25 
0.1 0 

Significance, 1% 1 .OO 
Power, 90% 2.00 

4.00 
10.00 

100.00 
0.50 
0.25 
0.1 0 

Significance, 1% 1 .OO 
Power, 95% 2.00 

4.00 
10.00 

100.00 
0.50 
0.25 
0.1 0 

Comparison of Table 7.5 with Table 7.2 indicates that, for given a, t., and R, roughly 
twice as many cases must be expected in the nonexposed control group when an 
internal comparison group of equal size is used. Since there are two groups, this 
implies that roughly four times as many individuals must be followed. This increase 
represents the price to be paid for using internal rather than external comparisons. 

Since power calculations are essentially approximate, an alternative and simple 
approach is obtained by using the variance stabilizing arcsin transformation, given by 

This transformed variable is approximately normally distributed with variance equal to 
1/{4(01 + 02)). The mean if the two groups are of equal size is given by 
arcsin{R /(R + 1)) I". 

Under the null hypothesis, R equals unity, so that a result significant at the a level is 
obtained if 

If the relative risk among the exposed is equal to R, then this inequality will hold with 
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probability at least P if 

whre Zldp is the (1 - p)  point of the normal distribution. 
This expression gives the total number of events expected in the two groups 

combined that are required to have probability /3 of achieving a result significant at the 
cu level if the true relative risk is R. An approximation closer to the equivalent X2 test 
with the continuity correction is given if one adds a correction term to the arcsin 
transformation, replacing, for a binomial with proportion p and denominator n, 
a r c ~ i n @ ) ~ I ~  by arcsin@ - $n)ln. In the present context n is given by O1 + 02 ,  so that 
(7.5) would no longer give an explicit expression for E, but would require an iterative 
solution. Usually one iteration would suffice. 

If the exposed and nonexposed groups are not of equal size, but the age distributions 
are the same, then a minor modification can be made to the above inequality. The 
binomial parameter, previously R I(R + I), now becomes Rnl/(Rnl + n,), where n1 
and n2 are the numbers of individuals in the two groups. Expression (7.2) then 
becomes 

When the age structures of the two groups are dissimilar, one could use the approach 
of 03.4 or 63.5, and replace nl and n, in expressions (7.3), (7.4) and (7.5) by El  and 
E,, the expected number of cases in the two groups based on an external standard or 
on the pooled rates for the two groups. If the confounding due to age is at all severe, 
however, this procedure will suffer from appreciable bias, and one should use the 
preferred methods of 63.6, basing power considerations on the variance of the 
Mantel-Haenszel estimate of relative risk (expression 3.17) (Muiioz, 1985). The effect 
of confounding on sample size requirements is discussed in more detail in 67.7. 

If more emphasis is to be put on the precision of estimates of relative risk, rather 
than on detection of an effect, then the width of expected confidence intervals is of 
more relevance. The equations given by (3.19) can be solved to give upper and lower 
limits, or alternatively one can use the simpler expression (3.18). 

7.4 Tests for trend 

The results of a cohort study will be more persuasive of a genuine effect of exposure 
on risk if one can demonstrate, in addition to a difference between an exposed and an 
unexposed group, a smoothly changing risk with changing exposure. It is thus 
important that the study be designed with this aim in view. Under favourable 
circumstances, one will have not just two groups - one exposed and one nonexposed - 
but a number of groups, each with different exposures. In the analysis of the results of 
such a study, the single most powerful test for an effect of exposure on risk will 
normally be a trend test. It will therefore be useful, when assessing the value of a given 



286 BRESLOW AND DAY 

study design, to examine the power of a trend test. For the sake of simplicity, we 
consider the situation in which we have K exposure groups but no further stratification 
by age or other confounding variables. Using the notation of Chapter 3, we shall 
investigate the power of the test statistic (3.12), given by 

where the Ek are expectations based on external rates, but normalized so that 

For a one-sided test of size a for positive slope, and writing the denominator in the 
above expression as V, we need 

to achieve significance. 
V is given by 

and so, being a multiple of C Ok, will have a Poisson distribution, multiplied by a scale 
factor involving the xk and Ek. v"' will then be approximately normal, with standard 
deviation given by 112 times the scale factor 

If Ek are the expectations based on external rates, then the left-hand side of 
expression (7.6) can be written as 

In order to assess the probability that the inequality (7.6) will hold, we have to 
specify a range of distributions for the 0, alternative to the null distribution that 
E(Ok) = Ek for all k. 

A simple family of alternatives representing a linear trend in risk is given by 

E(Ok) = (1 + fi~k)Ek, 

from which we have 

( ";El) Expectation (Ek) = Ek 1 + 

The power is then given by the probability that the following inequality holds: 
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Writing 

v = w c ok, 

where W is a function of the xk and Ek, then under the family of alternative 
distributions given above, the left-hand side will have mean rn approximated by 

and variance s2 by 

The power is then approximately the probability corresponding to the normal deviate 
Z1+ given by rn = s . Z1+. 

An alternative approach to the power of tests for linear trend was given by Chapman 
and Nam (1968) based on the noncentral x2 distribution. 

Example 7.2 
We consider a hypothetical example, comparing power considerations based on a trend test with those 

based on two alternative dichotomizations of the data. Let us suppose that we have four exposure levels, 0, 
1, 2, 3, and that the groups at each level are of the same size and age structure. Under the null hypothesis, 
they therefore have the same expected numbers of events, E, say, in each group. 

We consider a family of alternative hypotheses in which the relative risk is given as above by 

where xk takes the values 0, 1,  2, 3. Substituting into the expression for m and s2 gives 

an equation that can be solved for P given S and E or, conversely, solved for E given 6 and P. 
It is interesting to compare the results of power calculations for the trend test to the results one would 

obtain by dichotomizing the data, grouping, for example, the two highest and the two lowest exposed 
groups. We would then have a relative risk between the two groups of 

and each of the two groups would be twice the size of the original four groups. 
Substituting these values in expression (7.5) gives 

2 + 5 6  2 + 5 6  2 
2E(1+ -) = (Z, + ~ ~ - ~ ) ~ / 4 { a r c s i n ( ~ )  - arcsin(?)ln] 

(the 2 at the start of the left-hand side arises since we have the sum of two groups each of size E),  again an 
equation that can be solved for either E or for B. 

Alternatively, one could base power calculations on a comparison between the two groups with highest 
and lowest exposure, respectively, the risk of the former relative to the latter being 1 + 3S. 
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The three approaches give the following result for the expected number E required in each group, using a 
test with a = 0.05 and P = 0.95: 

Trend test Dichotomy into two Highest against 
6 equal groups lowest 

The trend test is considerably more powerful in this example than the test obtained by dichotomizing the 
study cohort, and marginally more powerful than the simple test of highest against lowest. 

7.5 Restriction of power considerations to the follow-up period of interest 

The discussion so far has treated observed and expected deaths as if all periods of 
follow-up were of equal interest. Usually, however, one would expect any excess risk 
to be concentrated in particular periods of follow-up, as outlined in Chapter 6. The 
carcinogenic effect of many exposures is not seen for ten years or more since the start 
of exposure. One is clearly going to overestimate the power of a study if one groups 
together all person-years of follow-up. An example comes from a study of the later 
cancer experience among women diagnosed with cancer of the cervix (Day & Boice, 
1983). The purpose of the study was to investigate the occurrence of second cancers 
induced by radiotherapy given for the cervical cancer. For this purpose, three cohorts 
were assembled: women with invasive cancer of the cervix treated by radiotherapy, 
women with invasive cancer of the cervix not treated by radiotherapy, and women with 
in-situ carcinoma of the cervix not treated by radiotherapy. Table 7.6 gives the 
woman-years in different follow-up periods for the three groups, and the expected 
numbers of cancers in the first group, excluding the first year, and excluding the first 
ten years of follow-up. One can see that in the in-situ group 90% of the person-years of 
follow-up occurred in the first ten years, with a corresponding figure of over 70% for 
the women with invasive cancer. This example is extreme in the sense that cohort 
membership for the invasive cases is defined in terms of a life-shortening condition, 

Table 7.6a Woman-years at risk by time since entry into 
the cohort (i.e., diagnosis of cervical cancer) 

- 

Time since lnvasive cancer In-situ cancer 
diagnosis 
(years) Treated by Not treated by 

radiotherapy radiotherapy 

Total 625 438 121 625 540 91 2 
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Table 7.6b Expected number of second cancers at selected 
sites among the radiation-treated group 

Excluding the first Excluding the first ten 
year of follow-up years of follow-up 

Stomach 210.4 86.1 
Rectum 1 57.4 68.6 
Breast 804.4 304.6 
Multiple myeloma 33.9 14.8 

and large-scale identification of in-situ cases by mass screening did not occur until the 
mid-1960s or later in many of the participating areas. For most of the cancers of 
interest, excesses were not seen until at least ten years after entry, so that power 
considerations based on the full follow-up period would seriously overestimate the 
potential of the study, especially in assessing the value of the in-situ cohort as a 
comparison group. 

7.6 Case-control sampling within a cohort 

( a )  Basic considerations of case-control design: dichotomous exposure - unmatched 
design 

Before discussing the specific issues of concern when sampling from a risk set in the 
context of $5.4, we review more generally design aspects of case-control studies. We 
begin with the simplest situation, of a single dichotomous exposure variable. The 
problem is that of comparing two independent binomial distributions, one correspond- 
ing to the cases, one to the control population, with binomial probabilities, respec- 
tively, of p ,  and p2, say. 

The approach to the comparison of two proportions that we have taken in these two 
volumes has been based on the exact conditional distribution of a 2 x 2 table, 
expressed in terms of the odds ratio. Tests of the null hypothesis were derived either 
from this exact distribution, or from the approximation to it given by the x2 test with 
continuity correction. Since sample size and' power calculations should refer to the 
statistical test that is going to be used, most of the subsequent discussions of power 
refer to the exact test, or approximations to it. 

When the samples of cases and controls are of the same size, n, say, then for a x2 
test without the continuity correction the power and sample sizes are related by the 
equation 

n = ( z a m  + ~ l - p V ~ l q l +  ~ 2 q 2 ) ~ / @ 1 -  p d 2 ,  (7- 7 )  

where ac is the size of the test, /3 the power, p ,  the proportion exposed among the cases 
and p2 the proportion exposed among the controls (and with qi = 1 -p i ,  i = 1, 2 and 
p = 1 - q = (pl  +p2) /2 . )  

Incorporating the continuity correction into the X 2  test, to make it approach the 
exact test more closely, results in multiplying the right-hand side of (7.7) by the factor 
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(Casagrande et al., 1978b) 

+ dl +4(pi - p2)lAI2, 
where 

A = ( z m ~ + z l - B ~ p l q 1 + ~ 2 q 2 ) ~ -  

From this expression, one can either calculate the power p from a given sample size, 
or the sample size n required to achieve a given power. 

This result has been extended by Fleiss et al. (1980) to the situation of unequal 
sample sizes. If we have a sample of size n from the population of cases (with 
parameter pl) and size nk from the controls (0 < k <a), then to have probability /3 of 
achieving significance at the a level, we need 

where 

and 

P = 1 - 4  = ( p l  + kp2)l(l + k). 

In any particular study, sample size considerations would normally be based on an 
estimate of p2, the prevalence of the exposure in the general population, and a value R 
for the relative risk that the investigator feels it would be important not to miss. In 
terms of the previous discussion, we would then have 

or P I =  Rp2/(1 - P2 + Rp2). 
Table 7.7 gives the required number of cases for a range of values of R, p2, a, P and 

k, the ratio of the number of controls to the number of cases, for the x2 test with 
continuity correction. The values are close to those obtained using the exact 
conditional test (Casagrande et al., 1978a). 

An alternative, simple approximation is obtained using the variance stabilizing arcsin 
transformation, with which the sample size needed from each of the two populations to 
achieve one-sided significance at the a level with probability P is given by 

112 2 n = (Z,  + Zl-B)2/2(arcsin p :I2 - arcsin p2 ) . 
If there are nk controls and n cases, this expression becomes 

112 2 n = (k + 1)(Z, + ~ , - ~ ) ~ / 4 k ( a r c s i n  in - arcsin p2 ) . (7.8) 

Consideration has recently been given to exact unconditional tests for equality of two 
proportions (Suissa & Shuster, 1985), approximations to which would be given by the 
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Table 7.7 Unmatched case-control studies. Number of cases required in an unmatched case- 
control study for different values of the relative risk, proportion of exposed among controls, 
significance level, power and number of controls per case. The three numbers in each cell refer to 
case-control ratios of 1 : 1, 1 : 2 and 1 : 4. 

( a )  Significance = 0.05; power = 0.80 

Relative Proportion exposed in control group 
risk 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

( b )  Significance = 0.05; power = 0.95 

Relative Proportion exposed in control group 
risk 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 
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Table 7.7 (contd) 

(b) Significance = 0.05; power = 0.95 

Relative Proportion exposed in control group 
risk 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

( c )  Significance = 0.07; power = 0.80 

Risk Proportion exposed in control group 
ratio 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

1.5 10583 2245 121 1 873 711 620 565 515 515 559 664 906 
7698 1638 887 642 524 458 419 385 387 422 505 693 
6247 1332 724 525 430 377 346 319 323 354 425 585 

2.0 3266 703 386 283 234 207 192 181 186 207 253 354 
2328 504 278 206 171 153 142 135 140 158 194 274 
1851 403 224 166 139 125 117 112 117 133 165 234 

2.5 1728 377 210 156 131 118 110 106 112 128 159 226 
1214 267 150 113 95 86 82 80 85 98 123 177 
950 210 119 90 77 70 67 66 71 82 104 151 

3.0 1128 249 140 106 90 82 78 76 82 95 119 173 
784 175 100 76 65 60 57 57 62 73 93 136 
606 136 79 61 52 48 47 47 52 61 79 116 

4.0 641 144 84 64 56 52 50 51 56 66 85 126 
439 100 59 46 40 38 37 38 43 51 67 100 
333 77 46 36 32 31 30 31 36 43 57 86 



Table7.7 (contd) 

( c )  Significance = 0.01; power = 0.80 

Risk Proportion exposed in control group 
ratio 

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 

( d )  Significance = 0.0 1; power = 0.95 

Risk 
ratio 

Proportion exposed in control group 

0.01 0.05 0.10 0.15 

16402 3478 1875 1352 
12155 2580 1393 1006 
10016 2128 1151 832 
5018 1078 591 433 
3686 794 437 321 
3007 649 358 264 
2639 574 319 237 
1926 420 235 175 
1557 341 191 143 
1715 377 212 160 
1245 275 156 118 
1000 222 126 96 
968 217 125 95 
698 157 91 70 
554 126 73 57 
662 151 88 69 
474 109 64 51 
373 86 5 1 41 
362 86 52 43 
258 62 38 31 
200 48 30 25 
248 61 38 32 
176 44 28 24 
136 34 22 19 
153 40 27 23 
108 29 19 17 
82 22 15 13 

11 1 3 1 21 19 
79 22 16 14 
60 17 12 11 
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X2 test without continuity correction. Sample sizes for the latter can be calculated 
directly from expression (7.7). 

A comparison of the sample size requirements, for 80% power and a test at the 0.05 
level, is given in Table 7.8, for the exact conditional test, the exact unconditional test, 
the x2 test with and without correction, and for the arcsin approximation. It is 
noteworthy that in each case the exact unconditional test is more powerful than the 
exact conditional test. At present, however, the advantages of working within a unified 
structure of inference based on Cox regression methods and conditional likelihood, of 
which the conditional exact test is an example, more than outweigh this slight loss of 
power. 

( 6 )  Basic considerations of case-control design: dichotomous exposure - matched 
design 

In matched designs, two problems have to be faced: how many controls to choose 
per case, and how many case-control sets to include, given the number of controls per 
case. We consider the second question first. 

For the sake of simplicity, we shall assume that each case is matched to the same 
number of controls, k, say. The method of analysis is described in Chapter 5 of 
Volume 1. When k = 1, a matched-pairs design, the analysis concentrates on the 
discordant pairs. Suppose we have T discordant pairs, among O1 of which the case is 
exposed. If risk for disease is unaffected by exposure, then O1 is binomially distributed 
with proportion 112. If exposure increases the relative risk by R, then 0, is binomially 
distributed with proportion R/(R + 1). The situation is discussed in 07.3, and similar 
power considerations apply. 

Expression (7.2), with the continuity correction factor and with n1 = n2, gives the 
number of discordant case-control pairs that will be required to detect a relative risk of 
R with probability /3 at significance level a!. Table 7.5, based on expression (7.2) and in 
the context of a cohort study, gives the expected number of cases required in the 
nonexposed group. To obtain the expected number of discordant case-control pairs 
required in a 1 : 1 matched case-control study, which corresponds to the total number of 
cases in the exposed and nonexposed groups combined in the context of Table 7.5, the 
quantities in the part of Table 7.5 referring to equal numbers in the exposed and 
nonexposed groups must be multiplied by (1 + R). 

The total number of case-control pairs that is required must be evaluated. If, as in 
the previous section, the probability of exposure is pl among the cases and p2 among 
the controls, then the probability of a pair being discordant is simply 

In a situation in which a matched design is thought appropriate, the probability of 
exposure would vary among pairs. The above expression then, strictly speaking, 
requires integration over the distribution of exposure probabilities. For the approxi- 
mate purposes of sample size determination, however, it would usually be sufficient to 
use the average exposure probabilities, p1 and p2. The number of matched pairs, M, 
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Table 7.8 Comparison of minimum sample 
sizes to have 80% power of achieving 5% 
significance for comparing two independent 
binomial proportionsa, for five different test 
proceduresb 

a From Suisa and Shuster (1985) 
ne = Fisher's exact test; nr = corrected chi-squared ap- 

proximation; np = uncorrected chi-squared approximation; 
nas = arcsin formula; n* = unconditional exact test; h = 
proportion exposed in control group; pl = proportion ex- 
posed among cases 
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Table 7.8 (contd) 

required is then given by 

where T is the number of discordant pairs. Table 7.9 with M = 1 indicates the number 
of matched pairs required for different values of R, p,, a and P. 

For studies involving 1 : M matching, the approach is similar, if more complicated. 
We use the data layout and notation of 95.14, Volume 1, as below: 

Number of controls positive 
0 1 . . . M 

Positive 
Cases n1,o n1,1 n1,2 n1, M 

Negative noT0 no, 1 120,2 M 

and we write = nl , i - l  + no,i. 

The usual test of the null hypothesis without the continuity correction is 

which, for significance at level a, we can write in the form 

Under the alternative hypothesis of a non-null relative risk R, we have (see 95.3, 
Volume 1) 
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Table 7.9 Matched case-control studies. Number of case-control sets in a matched 
case-control study required to achieve given power at the given level of significance, for 
different values of the relative risk and different matching ratios 

Ma Relative risk 

Proportion exposed = 0.1; significance = 5%; power = 80% 

Proportion exposed = 0.1; significance = 5%; power = 95% 

Proportion exposed = 0.7; significance = 7%; power = 80% 

Proportion exposed = 0.7; significance = 7%; power = 95% 

Proportion exposed = 0.3; significance = 5%; power = 80% 

Proportion exposed = 0.3; significance = 5%; power = 95% 

a M = number of controls oer case 
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Table 7.9 (contd) 

M Relative risk 

Proportion exposed = 0.3; significance = 1%; power = 80% 

Proportion exposed = 0.3; significance = 1%; power = 95% 

Proportion exposed = 0.5; significance = 5%; power = 80% 

Proportion exposed = 0.5; significance = 5%; power = 95% 

Proportion exposed = 0.5; significance = 1%; power = 80% 

Proportion exposed = 0.5; significance = 1%; power = 95% 
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Table 7.9 (contd) 

M Relative risk 

Proportion exposed = 0.7; significance = 5%; power = 80% 

Proportion exposed = 0.7; significance = 5%; power = 95% 

Proportion exposed = 0.7; significance = 1% ; power = 80% 

Proportion exposed = 0.7; significance = 7% ; power = 95% 

Proportion exposed = 0.9; significance = 5%; power = 80% 

Proportion exposed = 0.9; significance = 5%; power = 95% 
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Table 7.9 (contd) 

M Relative risk 

Proportion exposed = 0.9; significance = 1%; power = 80% 

Proportion exposed = 0.9; significance = 1%; power = 95% 

and 

Sample size requirements are therefore determined from the equation 

This equation involves the quantities TI, . . . , TM. The probability Pm that an individual 
matched set contributes t0.a specific Tm is given in terms of p1 and p2 by 

Pm = Pr(matched set contributes to Tm) 

As in the case of matched pairs, for approximate sample size calculations we can use 
the mean values of p1 and p, over all matched sets in this expression, rather than 
integrating it over the distribution of the p's over the matched sets. The quantities Tm 
in expression (7.10) are then replaced by NP,, where N is the total number of matched 
sets and Pm is evaluated for the mean values of p, and p2. Expression (7.10) can then 
be solved for N given a, P, p,, p2 and M. 

More complex situations in which the number of controls per case varies can clearly 
be handled in the same way (Walter, 1980), with the numerator and denominator of 
(7.9) summed over all relevant sets. There is usually little point, however, in 
introducing fine detail into what are essentially rather crude calculations. 
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A continuity correction can be incorporated into the test given by expression (7.9) by 
subtracting one half from the absolute value of the numerator. The resulting sample 
sizes differ from those obtained by omitting the continuity correction by a factor A, 
given by 

where 

and 

Sample size calculations incorporating the continuity correction into the statistical test 
are comparable to the sample sizes given in Table 7.7 for unmatched studies. 

Table 7.9 gives the number of matched sets required for a range of values of M ,  R ,  
p2,  a and p using the continuity correction. The values can be compared with those in 
Table 7.7 for the number of cases required in unmatched analyses, to indicate the 
effect of matching on the sample size. As a case of special interest, we have included in 
Table 7.9 a large value of M .  This corresponds to the situation in which one uses all 
available individuals as controls, of interest in the context of 95.4, where the entire risk 
set is potentially available. 

We now turn to the question of how many controls should be selected for each case. 
There are several contexts in which this issue can be discussed, as outlined in Chapter 
1. We may be in a situation, as in 95.4, in which all data are available and sampling 
from the risk sets is done solely for convenience and ease of computing. We should 
then want the information in the case-control series to correspond closely to the 
information in the full cohort, and we should select sufficient controls per case for the 
information loss to be acceptably small. Thus, in Table 7.9, we compare the power 
achieved by a given value of M with the value obtained when M is infinite, or, more 
generally, use expression (7.11) to evaluate the power (i.e., Z,+) for a range of values 
of M and R .  

In other situations, the cohort may be well defined and the cases identified but 
information on the exposures of interest not readily available and the cost of obtaining 
it a serious consideration. One should then assess the marginal gain in power 
associated with choosing more controls. 

On other occasions, as would arise in many conventional case-control studies, the 
investigator may be able to decide on both the number of case-control sets and the 
number of controls per case. The question would then be to decide on the optimal 
combination of controls per case and number of cases. 

Several authors have considered optimal designs in terms of the costs of inclusion in 
the study of cases and controls (Schlesselman, 1982). On occasion, the separate costs of 
cases and controls may be available, and a formal- economic calculation can then be 
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made. The more usual situation, however, is one in which one wants to know the cost 
in terms of the number of individuals required in the study, for different case-control 
ratios. For example, the rate at which cases are registered may be a limiting factor, and 
one would like to assess the cost, in terms of the number of extra controls required, of 
reducing the duration of the study by half, i.e., halving the number of cases, keeping 
the power constant. 

The values in Table 7.9 can be used to provide answers to all three of these 
questions. 

7.7 Efficiency calculations for matched designs 

As an alternative to the criterion of power to compare different designs, one can use 
the efficiency of estimation of the parameter of interest, given by the expectation of the 
inverse of the variance of the estimate. The parameter of interest is often taken as the 
logarithm of the relative risk. As a comparative measure, the efficiency has attractions, 
since interest is usually centred more on parameter estimation than on hypothesis 
testing. For parameter values close to the null, power and efficiency considerations 
give, of course, very similar results. For parameter values distant from the null, 
however, the two approaches may diverge considerably. Efficiency considerations have 
the additional advantage that, at least in large samples, they can be derived directly 
from the second derivative of the likelihood function evaluated at just one point in the 
parameter space (see 57-11). 

(a)  Relative size of the case and control series in unmatched studies 

In the simplest situation, of a single dichotomous variable, the results of a 
case-control study can be expressed as 

Exposure Total 

Case a b 1 

Control c d n 2 

If p1 is the probability of exposure for a case, and p2 the corresponding probability for 
a control, then 

and in large samples the variance of the estimate of log R is given by 

When n2 is large compared to n,, as it typically would be in a cohort study, the 
variance is dominated by the first two terms. If we write n2 = kn,, so that k is the 
number of controls per case, then we can clearly evaluate (7.13) for different values of 
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p2,  R and k.  When the relative risk is close to unity, then the efficiency relative to 
using the entire cohort for different values of k is well approximated by (1 + l / k ) - ' .  
The relative efficiency with k = 1 is thus SO%, and with k = 4 is 80%. Clearly, the 
marginal increase in relative efficiency as k increases beyond 4 becomes slight, hence, 
the conventional dictum that it is not worth choosing more than four controls per case. 
This is true, however, only when the expected relative risk is close to unity. As the 
relative risk diverges from one, considerably more than four controls per case may be 
necessary to achieve results close to those given by the entire cohort. Figure 7 . 1 A  

Fig. 7.1 Efficiency of case-control designs for differing values of the relative risk for a 
single dichotomous exposure E 

The efficiency of a design, defined as vk/v,,  where vk represents the asymptotic variance of the estimated 
log relative risk when using k controls per case, depends on both the relative risk and the control exposure 
probability p2. Efficiencies for unmatched designs were computed from the unconditional likelihood (A). 
From Whittemore and McM-illan (1982). Efficiencies for matched designs were computed from the 
conditional likelihood, assuming control exposure probabilities p2 are constant across matching strata (B). 
From Breslow et al. (1983) 
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shows the change in efficiency for changing k, relative to using the entire cohort, for a 
number of values of p2 and R.  

(b) Number of controls per case in a matched study 

With M controls per case and the layout of §7.6(b), the maximum likelihood 
equation for R is given by 

(see 55-17 in Volume I),  from which the expectation of the inverse of the variance of 
log R is given by 

TmmR(M-m+ 1) 
[Var log R]-' = C 

m,l (mR + M - m + I ) ~ '  

Using approximate values for Tm given by (7.11), we can evaluate this expression for 
given values of R, M and p2. As in the previous paragraph, large values of M 
correspond to the inclusion of the entire risk set (see 95.4), and the relative values one 
obtains for small M give the relative efficiency of choosing a small number of controls 
per risk set. Results are given in Figure 7. lB,  taken from Breslow et al. (1983), which 
can be compared with Figure 7.1A. From both figures it is clear that as the relative risk 
increases, for small values of p,, a substantial loss is sustained by selecting only a small 
number of controls. When R = 1, one has the same result as in the previous section, 
that the efficiency relative to a large number of controls is given by M/(At + 1). This 
result is a convenient rule of thumb when R is close to 1; but, as R increases, for many 
values of p2 it becomes increasingly misleading. 

7.8 Effect of confounding on sample size requirements 

We now consider the effect on the required sample size if account must be taken of a 
confounding factor. We consider the situation in which we have a single polytomous 
confounding variable, C, which can take K different values. We assume that the 
situation is given by the following layout for each stratum, and for simplicity treat the 
case of equal numbers of cases and controls. We assume further that there is no 
interaction. 

Exposure Total control Stratum i (C  takes value i) 
population 

Number of controls Relative risk of disease 

where n is the total number of controls. Thus, RE is the exposure-related relative risk 
for disease given C, Rci is the relative risk of the ith level of the confounder given E, 
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pli  is the proportion of those exposed to E also exposed to Ci, p,, is the proportion of 
those not exposed to E who are exposed to Ci, and P is the proportion exposed to E in 
the control population. We have taken Rc, = 1. 

When C is not a confounder, inferences on RE can be based on the pooled table 
given by 

Case Control 

Exposed nPRE/2 nP  
Not exposed n(1-P) /2  n(1-P)  

where 2 = (PRE + 1 - P). 
For a given value of RE, power p and significance a, the required number of cases is 

obtained by solving the equation 

log RE = ~,CN + G - ~ V E ,  (7.15) 

where VN is the variance of the estimate of log RE under the null hypothesis that 
RE = 1, and VA the equivalent variance with the given value of RE. They are given 
when inferences are based on the pooled table by 

and 

When C is a confounder, then stratification is required to give unbiased estimates of 
RE. The variances in equation (7.15) now have to be replaced by the variances of the 
stratified estimate of RE. An approximation to the variance of the Wolff estimate of 
the logarithm of RE (see expression 3.16) which has often been used in the past (Gail, 
1973; Thompson, W.D. et al., 1982, Smith & Day, 1984) is given by 

where V; is the variance of the logarithm of the odds ratio derived from stratum i (given 
by the expression from stratum i corresponding to VN and VA of the previous 
paragraph). Vw can be calculated for the null case (RE = 1), Vw,N, say, and for 
values of RE of interest Vw,,, say. We then solve for 

log RE = z , K N  + % - D G .  

Writing 

we have 
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and 

where 

2; = Wli + W2i = W3i + W4i 

Wli = Ppli + (1 - P)p2, = proportion of controls in stratum i 

WZi - (PpliRctRE + (1 - P)p2iRci)/Z' = proportion of cases in stratum i 

W3i = Ppli(l + RciRE/Z1) = proportion exposed in stratum i 

W4i = (1 - P)p2,(l + RCilZ1) = proportion nonexposed in stratum i. 

In the situation with only two strata, extensive tabulations have been published (Smith 
& Day, 1984) for a range of values of P, pli, pZi, RE and Rc. Some of the results are 
given in Table 7.10. The main conclusion to be drawn is that, unless C and E are 
strongly related, or C strongly related to disease (meaning by 'strongly related' an odds 
ratio of 10 or more), an increase of more than 10% in the sample size is unlikely to be 
needed. An alternative approach is through approximations to the variance of 
estimates obtained through the use of logistic regression, which has been used to 
investigate the joint effect of several confounding variables (Day et al., 1980). Results 
using this approach restricted to the case of two dichotomous variables are also given in 
Table 7.10; for values of Rc near to one, the approximation is close to the approach 
given above. For several confounding variables that are jointly independent, condi- 
tional on E, as a rough guide one could add the extra sample size requirements for 
each variable separately. 

7.9 Change in sample size requirements effected by matching 

If a matched design is adopted, then equal numbers of cases and controls are 
included in each stratum. Usually, -the numbers in each stratum would be determined 
by the distribution of cases rather than of controls (i.e., one chooses controls to match 
the available cases), so that they would be given by n times the W, of the preceding 
section. The computation then proceeds along similar lines to that of the previous 
section, and the sample size is given by 

where v L , ~  and v&, correspond to V , ,  and Vw,, but with the constraint of 
matching. ~ l t e r n a t i v e l ~ ,  one can compare the relative efficiencies of matched and 
unmatched designs, in terms of the variance of the estimates. Table 7.11, from Smith 
and Day (1981), compares the efficiency of the matched and unmatched designs. The 
main conclusion is that unless C is strongly related to disease (odds ratio greater than 
5 )  there is little benefit from matching. A similar derivation is given by Gail (1973). 
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Table 7.10 Increase in sample size required to test for a main effect i f  the analysis must incorporate 
a confounding variable. The ratio (x100) of the sample sizes, nc and n, required to have 95% power to 
detect an odds ratio associated with exposure, RE, at the 5% level of significance (one-sided) where 
nc =sample size required allowing for stratification on confounding variable C and n = sample size 
required if stratification on C is ignored 

a Approximation to (ncln) x 100 based on the normal approximation to logistic reqression = 1 / ( 1  - q2), where q  = correlation 
coefficient between E and C, q2 = P(1.- P)(p, - h ) 2 / { ( P p l  + (1 - P ) h ) ( l  - Pp, - (1 - P)pJ] .  See Smith and Day (1984). 
P  = proportion of controls exposed to E ;  
pi = proportion exposed to E who were also exposed to C; 
h = proportion not exposed to E who were exposed to C; 
R,, =odds ratio measure of association between E and C 
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Table 7.1 1 Relative efficiency of an unmatched to a matched design, in both cases with a stratified 
analysis, when the extra variable is a positive confounder. The body of table shows the values of 
100 x VM,/Vsa (where MS = 'matched stratified'; S = 'stratified') 

a From Smith and Day (1981) 

7.10 Interaction and matching 

Occasionally, the major aim of a study is not to investigate the main effect of some 
factor, but to examine the interaction between factors. One might, for example, want 
to test whether obesity is equally related to pre- and post-menopausal breast cancer, or 
whether the relative risk of lung cancer associated with asbestos exposure is the same 
among smokers and nonsmokers.. The basic question of interest is whether two relative 
risks are equal, rather than if a single relative risk is equal to unity. For illustrative 
purposes, we consider the simplest situation of two 2 x 2 tables, with a layout as before 
but restricted to two strata and with an interaction term, R,, added. 
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Exposure Proportion of Confounder Proportion of Relative risk 
population population of disease 

If $, is the odds ratio associating E with disease in the stratum with C+,  and $, the 
corresponding estimate in the stratum with C - ,  then 

and the required sample size is given by the solution of 

where VN is the expected value of Var(1og R,) in the absence of interaction, and' V, is 
the expected value of Var(1og R,) at the value R,. Some results are shown in Figures 
7.2, 7.3 and 7.4. The most striking results are perhaps those of Figure 7.4, in which the 

Fig. 7.2 Sample size for interaction effects between dichotomous variables. Size of 
study required to have 95% power to detect, using a one-sided test at the 5% 
level, the difference between a two-fold increased risk among those exposed 
to E and C and no increased risk among those exposed to E but not to C 
(RE = 1; R, = 2). The variable C is taken to be not associated with exposure 
( p ,  =p2 = p )  and not associated with disease among those not exposed to E 
(Rc = 1). From Smith and Day (1984) 

Proportlon of populatlon exposed to E 
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Fig. 7.3 Sample size for interaction effects between dichotomous variables. Size of 
study required to have 95% power to detect, using a one-sided test at the 5% 
level, the difference between no increased risk among those exposed to E but 
not to C (RE = 1) and an Rz-fold increased risk among those exposed to both 
E and C. It has been assumed that 50% of the population are exposed to C 
(pl = p2 = 0.5) and C is not associated with disease among those not exposed 
to E (Rc = 1). From Smith and Day (1984) 

0L I I I I I I I I I .1 . 2  - 3  .4 . S  .6 .7 - 8  .9 

Proportion of populatlon exposed to E 

sample size required to detect an interaction of size Rz is compared to the sample size 
required to detect a main effect of the same size. The former is always at least four 
times the latter, and often the ratio is considerably larger. This difference can be seen 
intuitively, for, whereas 

Var(1og R,) = u1 + u2, 

we have 

Var(1og RE) = ulu2/(ul + u2), approximately, 

and the ratio (ul + u2)2/ulu2 is always greater than or equal to 4, increasing the greater 
the disparity between u2 and u,. 

One might imagine that matching, by tending to balance the strata, would improve 
tests for interaction, but in general the effect is slight (Table 7.12). Matching can, on 
occasion, have an adverse effect. 
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Fig. 7.4 Ratio of sample sizes required to have 95% power to detect, using a 
one-sided test at the 5% level, (i) an interaction of strength RI and (ii) a 
main effect of strength RI (relative risk of RE for exposure to E for both 
levels, assuming 50% of the population exposed to E, p, =p, = p  and C not 
associated with disease among those not exposed to E (Rc = 1)). From Smith 
and Day (1984) 

Proportion of population exposed to C (p) 

7.11 More general considerations 

The previous sections have considered the simple case of dichotomous variables and 
power requirements for essentially univariate parameters. A more comprehensive 
approach can be taken in terms of generalized linear models. If interest centres on a 
p-dimensional parameter 0, then asymptotically the maximum l'lkelihood estimate of 0, 
8, say, is normally distributed with mean 00, the true value, and variance covariance 
matrix given by, the inverse of 1(0), the expected information matrix, the i,jth term of 
which is given by 
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Table 7.12 Effect of matching on testing for a non-null interaction. The ratio (x100) of the 
sample sizes, nl(MS) and nl(S) required to have 95% power to detect a difference at the 5% 
level of significance between an odds ratio associated with exposure E of RE among those not 
exposed to C and an odds ratio for E of RERl among those exposed to C, where 
n,(MS) = sample size required in a matched stratified study and n,(S) = sample size required in 
an unmatched studya 

p,(=&) Rc = 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0 

0.1 0.1 105 73 48 110 72 46 1?6 77 43 151 89 46 
0.3 102 88 89 106 87 86 116 87 76 133 93 74 
0.5 100 102 123 101 101 125 106 97 111 115 98 106 
0.7 98 114 145 96 115 156 96 107 137 96 102 134 
0.9 96 124 158 92 127 178 87 115 152 78 106 156 

0.5 0.1 116 88 62 117 93 67 137 115 80 125 115 90 
0.3 109 95 92 110 97 92 128 109 92 124 111 95 
0.5 102 101 116 102 100 112 113 101 103 114 103 100 
0.7 93 106 134 93 103 126 92 93 112 95 93 105 
0.9 84 111 147 82 106 137 64 84 119 65 81 109 

0.9 0.1 118 98 74 111 99 81 113 '111 98 105 106 99 
0.3 111 99 94 108 99 95 117 111 99 112 108 99 
0.5 102 100 112 102 100 106 112 103 100 112 104 100 
0.7 90 101 126 94 100 115 91 89 101 99 94 100 
0.9 76 102 138 82 100 123 54 71 103 67 79 100 

a From Smith and Day (1984) 
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where t(0)  is the logarithm of the likelihood function. An overall test that 0 = 8, is 
given by comparing 

with a x2 distribution on p degrees of freedom. 
Power and sample size considerations are then approached through the distribution 

of the quadratic form (7.16) under alternative values for the true value of 0. In the 
general case, for an alternative 0,, 0 will h u e  mean 0, and variance-covariance matrix 
I-'(O,), which will differ from I-'(OO). Power calculations will then require evaluation 
of the probability that a general quadratic form exceeds a certain value, necessitating 
direct numerical integration. Some special situations, however, give more tractable 
results. Whittemore (1981), for example, has given a sample size formula for the case 
of multiple logistic regression with rare outcomes. In the univariate case, expression 
(7.16) leads directly to the following relationship between sample size N and power P :  

N = {&I-ln(eo) + z , - , ~ - ~ ~ ( e , ) ) l ( e ,  - 

where now I refers to the expected information in a single observation. 

Table 7.13 Degree of approximation in sample size 
calculation assuming that the test statistic has the 
same variance under the alternative as under the null 
hypothesis - example of an unmatched case-control 
study with no continuity correction in the test statis- 
tic; equal number of cases and controls. 
Significance = 0.05; power = 0.80 

(a) Sample sizes calculated using expression (7.7), 
without the continuity correction 

Proportion exposed in Relative risk 
control population . 

1.5 2.0 2.5 5.0 10.0 

(b) Sample sizes calculated using expression (7.17) 

Proportion exposed in 
control population 

Relative risk 

1.5 2.0 2.5 5.0 10.0 

764 247 136 40 19.0 
357 124 72 26 15.4 
325 120 73 30 20.0 
420 163 103 74 33 
1056 430 282 140 103 
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More generally, in the multivariate situation, asymptotically only alternatives close to 
O0 are of interest, since power for distant alternatives will approach 100%. One can 
then take I(8,) to be approximately the same as I(OO). Under the alternative 
hypothesis, the statistic 

will then follow a noncentral x2 distribution on p degrees of freedom, with 
noncentrality parameter 

and the power will be given by the probability that this noncentral x2 distribution 
exceeds the cr point of the central x2 distribution on p degrees of freedom. Greenland 
(1985) discusses this approach in a number of situations. 

An example of the degree of approximation used in this approach is given in Table 
7.13, for unmatched case-control studies without the continuity correction. The 
relationship between power and sample size provided by this approach is, using the 
notation of expression (7.7), 

In Table 7.13, the results of using this expression in place of (7.7) are compared, no 
continuity correction being used in the latter. For moderate values of the relative risk, 
the difference is some 5% to 10%; for values of the relative risk of 5 or greater, the 
approximation can overestimate the required sample size by as muth as 50%. 

Since, on many occasions, the likelihood function and its derivatives take relatively 
simple values under the null hypothesis, this approach clearly has considerable utility 
when interest centres mainly on detecting weak or moderate excess risks. 




