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CHAPTER 7

DESIGN CONSIDERATIONS

7.1 Introduction

In Chapter 1, we considered a range of questions concerned with the implementation
of a cohort study. In this chapter, we concentrate on the more formal aspects of study
design, in particular power, efficiency and study size. The design issues considered
initially in this chapter are based, in large part, on the analytical methods of Chapters 2
and 3, comprising simple comparisons of a group with an external standard, internal
comparisons within a cohort, and tests for trend using the approach of §3.6. Power
considerations based on the modelling approach of Chapters 4 and 5 are only touched
on.

The design of case-control studies is considered at some length. The motivation
comes principally from the concept of risk-set sampling introduced in Chapter 5, but
the results apply to general case-control studies. Topics discussed include the choice of
matching criteria, the number of controls to select, and the effects that control of
confounding or an interest in interaction will have on study size requirements.
Attention is focused on the simple situation of one, or a small number, of dichotomous
variables. ' , ,

Two approaches are taken to the evaluation of different study designs; the first is
based on calculation of the power function, the second is based on the expected
standard errors of the relevant parameters. The power considerations are based on
one-sided tests of significance unless specifically stated to the contrary, since in most
studies the direction of the main effect of interest is an inherent part of the specification
of the problem under study. The discussion of the design of cohort studies assumes that
external rates are known, even though the analysis may be based on internal
comparison and does not use external rates. The reason is evident — that evaluation of
the potential performance of a study before it is carried out must be based on
information exterior to the study. Since in this chapter all expected numbers are based
on external rates, we have dispensed with the notation used in earlier chapters, where
expected numbers based on external rates are starred. ’

It needs stressing strongly that power calculations are essentially approximate. The
size, age composition and survival of the cohort will usually not be known with any
great accuracy before the study is performed. In addition, calculations are generally
based assuming a Poisson distribution for the observed events, since they derive from
the statistical methods of Chapters 2 and 3. Many data may be affected by extra
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Poisson variation, which will augment the imprecision in probability statements.
Furthermore, the level of excess risk that one decides that it is important to detect is to
some extent arbitrary.

7.2 Sample size for cohort studies — comparison with an external standard

This section considers the design of studies in which the total cohort experience is to
be compared to an external standard. It is assumed that analyses are in terms of the
SMR, with tests of significance and construction of confidence intervals following the
methods of Chapter 2.

The number of deaths, D, of the disease of interest (or number of cases if cancer
registry material is available) is to be determined in the cohort, and compared with the
number expected, E, based on rates for some external population, whether national or
local. The relative risk is measured by the ratio D/E, the SMR. Tests of significance
for departures of the SMR from its null value of unity and the construction of
confidence intervals were discussed in §2.3. The capacity of a given study design to
provide satisfactory inferences on the SMR can be judged in two ways: first, in terms of
the capacity of the design to demonstrate that the SMR differs significantly from unity,
when in fact it does, and, second, in terms of the width of the resulting confidence
intervals, and the adequacy of the expected precision of estimation.

The first approach proceeds as follows. For an observed number of deaths, D, to be
significantly greater than the expected number, E, using a one-sided test at the 100 %
level, it has to be greater than or equal to the o point of the Poisson distribution with
mean E, a point that we shall denote by C(E, «). (For a two-sided test, « is replaced
by a/2.) Since the Poisson is a discrete distribution, the exact o point does not usually
exist, and we take C(E, «) to be the smallest integer such that the probability of an
observation greater than or equal to C(E, «) is less than or equal to . Table 7.1 gives
the value of C(E, «) for « =0.05 and 0.01, and a range of values of E. If, however,
the true value of the SMR is equal to R, then the observed number of deaths will
follow a Poisson distribution with mean RE. The probability of a significant result is
then the probability that D, following a Poisson distribution with mean RE, is greater
than or equal to C(E, «). For given values of E and «, this probability depends on!y
on R. It is simple if somewhat laborious to calculate and is known as the power
function of the study. Common practice is to choose a value of R that one feels is the
minimum that should not pass undetected, and to calculate the power for this value.
Table 7.2 gives the power for a range of values of E and R, for a equal to 0.05 and
0.01, respectively. The values in the column R =1 .are, of course, simply the
probabilities of rejecting the null hypothesis when in fact it is true, and so give the real
significance of the test, rather than the nominal 5% or 1%; one can see in Table 7.2a
that they are all less than 5%, and in Table 7.2b all less than 1%.

Example 7.1

Suppose that with a given study cohort and the applicable mortality rates, there is an expected number of
20 deaths. Then, all observed values greater than or equal to 29 will be significant at the 5% level, and all
values greater than or equal to 32 will be significant at the 1% level (Table 7.1). These are the values
C(20, 0.05) and C(20, 0.01), respectively. If the true value of the relative risk is 1.5, then the true expected
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Table 7.1 5% and 1% points of the Poisson distribution for different
values of the mean. The numbers tabulated are the smallest integers for
which the probability of being equalled or exceeded is less than 5% and
1% (designated C(E, 0.05) and C(E, 0.01)), respectively.

Mean of Poisson  C(E, 0.05) C(E, 0.01) Mean (E) C(E, 0.05) C{E, 0.01)
distribution, E

1 4 5 20 29 32
2 6 7 25 34 38
3 7 9 30 40 44
4 9 10 35 46 50
5 10 12 40 52 56
6 11 13 45 57 62
7 13 15 50 63 68
8 14 16 60 74 80
9 15 18 70 85 91
10 16 19 80 96 103
11 18 20 90 107 114
12 19 22 100 118 125
13 20 23

14 21 24

15 23 26

Table 7.2 Comparison with an external standard

{a) Probability (%) of obtaining a result significant at the 0.05 level (one-sided) for
varying values of the expected value E assuming no excess risk, and of the true relative
risk R

Expected number True relative risk {R)
of cases assuming

no excess risk 1.0 15 2.0 3.0 4.0 5.0 7.5 10.0 15.0 20.0
(R=1)
1.0 1.90 7 14. 35 57 74 94 99 100 100
2.0 1.66 8 21 55 81 93 100
3.0 3.3 17 39 79 95 99
4.0 214 15 41 84 98 100
5.0 3.18 22 54 93 100
6.0 426 29 - 65 97 100
7.0 2.70 26 64 98 100
8.0 342 32 73 99 100
9.0 415 38 79 100
10.0 487 43 84 100
11.0 322 39 83 100
12.0 374 44 87 100
13.0 4.27 48 90 100
14.0 479 53 93 100
15.0 3.27 49 92 100

20.0 3.43 60 97 100
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Table 7.2 (contd)

Expected number True relative risk (R)
of cases assuming

no excess risk 1.0 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8 1.9
(R=1)
20.0 3.43 9 18 30 45 60 73 83 90 94
25.0 498 13 26 42 59 74 85 92 96 98
30.0 463 13 27 46 64 79 89 95 98 99
35.0 425 13 29 49 69 83 92 97 99 100
40.0 387 13 30 52 72 86 94 98 99 100
45.0 473 16 36 60 79 91 97 99 100
50.0 424 16 37 61 81 93 98 99 100
60.0 442 18 42 69 88 96 99 100
70.0 448 19 47 75 92 98 100
80.0 446 21 51 80 94 99 100
90.0 439 22 b5 83 96 99 100
100.0 428 23 58 86 97 100

(b) Probability (%) of obtaining a result significant at the 0.01 level (one-sided) for
varying values of the expected value E assuming no excess risk, and of the true relative
risk R '

Expected number True relative risk (R)
of cases assuming

no excess risk 1.0 1.5 2.0 3.0 4.0 5.0 7.5 10.0 15.0 20.0
(R=1)
1.0 0.37 2 5 18 37 56 87 97 100 100
2.0 0.45 3 11 39 69 87 99 100
3.0 0.38 4 15 b4 84 96 100
4.0 0.81 8 28 76 96 99 100
5.0 0.55 8 30 82 98 100
6.0 088 12 42 91 99 100
7.0 0.57 11 43 93 100
8.0 082 16 653 97 100
9.0 053 14 653 97 100
10.0 072 18 62 99 100
11.0 093 22 69 99 100
12.0 0.61 20 69 100
13.0 0.76 . 24 75 100
14.0 093 28 80° 100
15.0 0.62 26 79 100

20.0 0.81 38 91 100
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Table 7.2 (contd)

Expected number True relative risk (R)
of cases assuming

no excess risk 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
{R=1)
20.0 0.81 3 7 14 25 38 52 66 77 86
25.0 0.92 3 9 19 33 49 65 78 87 93
30.0 0.97 4 11 23 40 58 74 85 93 97
35.0 0.98 4 12 27 46 65 81 91 96 98
40.0 0.97 5 14 31 52 71 86 94 98 100
45.0 0.93 5 15 34 57 76 89 96 99 100
50.0 0.89 5 17 37 61 81 92 97 99 100
60.0 0.78 5 19 43 68 87 96 99 100
70.0 0.91 6 24 51 77 92 98 100
80.0 0.76 6 25 55 81 95 99 100
90.0 0.83 7 29 62 87 97 100
100.0 0.88 9 34 68 91 98 100

value will be 20 x 1.5 = 30. The probability that an observation from a Poisson distribution with mean 30 is
greater than or equal to 29 is 60% (Table 7.2) and that it is greater than or equal to 32 is 38% (Table 7.2).
There is thus 60% power of obtaining a result significant at the 5% level, and 38% power of obtaining a
result significant at the 1% level, if the true relative risk is 1.5.

An alternative way of expressing the power of a study is to give the relative risk for
which the power is equal to a certain quantity, such as 80% or 95%. Table 7.3 gives the
relative risks for a range of values of E and of the power, for 0.05 and 0.01 levels of
significance, respectively.

Example 7.1 (contd)

To continue the previous example, with E equal to 20, using a 5% significance test, 50% power is obtained
if the relative risk is 1.43, 80% power if R is 1.67 and 95% power if R is 1.92. The corresponding figures for
1% significance are relative risks of 1.58, 1.83 and 2.09. '

The values given in Tables 7.2 and 7.3 are based on exact Poisson probabilities. To
calculate power values for other values of E and R, one can use one of the
approximations to the Poisson distribution suggested in Chapter 2. For example, one
can use expression (2.12), the square root transformation, from which the quantity

X = 2(D1/2 _ E1/2)

is approximately a standard normal deviate. If ’Z,,, is the a point of the normal
distribution, then for D to be significant at the 5% level (one-sided as before) we must
have : .

2(D1/2 _ EI/Z) = Za
or |
D ={E+(Z,)/2)%

This value corresponds to the value C(E, «) of the discussion in the previous pages.
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{(a) True value of the relative risk required to have given
power of achieving a result significant at the 5% level
(one-sided), for varying values of the expected value E
assuming no excess risk (R =1)

Expected cases
(R=1)

Probability of declaring significant (p < 0.05) difference

0.50 0.80 0.90 0.95 0.99
1.0 3.67 5.62 6.68 7.75 10.05
2.0 2.84 3.95 4.64 5.26 6.55
3.0 2.22 3.03 3.51 3.95 4.86
4.0 2.17 2.84 3.25 3.61 4.35
5.0 1.93 2.50 2.84 3.14 3.76
6.0 1.78 2.28 2.57 2.83 3.36
7.0 1.81 2.27 2.54 2.78 3.26
8.0 1.71 2.13 2.37 2.58 3.02
9.0 1.63 2.01 2.24 243 2.83
10.0 1.57 1.92 2.13 2.31 2.67
11.0 1.61 1.95 2.15 2.32 2.66
12.0 1.56 1.88 2.06 2.22 2.55
13.0 1.51 1.82 1.99 2.14 2.45
14.0 1.48 1.77 1.93 2.08 2.36
15.0 1.561 1.79 1.95 2.09 2.37
20.0 1.43 1.67 1.80 1.92 2.15
25.0 1.35 1.55 1.67 1.77 1.96
30.0 1.32 1.51 1.61 1.70 1.87
35.0 1.30 1.47 1.57 1.65 1.81
40.0 1.29 1.45 1.54 1.61 1.76
45.0 1.26 1.41 1.49 1.55 1.69
50.0 1.256 1.39 1.47 1.53 1.66
60.0 1.23 1.35 1.42 1.48 1.59
70.0 1.21 1.32 1.39 1.44 1.54
80.0 1.20 1.30 1.36 1.41 1.50
90.0 1.19 1.28 1.34 1.38 1.47
100.0 1.18 1.27 1.32 1.36 1.45

(b} True value of the relative risk required to have given
power of achieving a result significant at the 1% level
(one-sided), for varying values of the expected value E
assuming no excess risk (R=1)

Expected cases
(R=1)

Probability of declaring significant (p < 0.01) difference

0.50 0.80 0.90 0.95 0.99
1.0 4.67 6.72 7.99 9.15 11.60
2.0 3.33 4.54 5.27 5.92 7.29
3.0 2.89 3.79 4.33 4.81 5.80
4.0 2.42 3.13 3.55 3.93 4.70
5.0 2.33 2.96 3.32 3.64 4.30
6.0 2.1 2.65 2.96 3.24 3.80

277
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Table 7.3 (contd)

Expected cases  Probability of declaring significant {p < 0.01) difference

{R=1)
0.50 0.80 0.90 0.95 0.99

7.0 2.10 2.59 2.88 3.13 3.64
8.0 1.96 2.40 2.66 2.89 3.34
9.0 1.96 2.38 2.62 2.83 3.26
10.0 1.87 2.25 2.48 2.67 3.06
11.0 1.79 2.15 2.35 2.53 2.90
12.0 1.81 2.15 2.35 2.52 2.86
13.0 1.74 2.07 2.26 242 2.74
14.0 1.69 2.00 2.18 2.33 2.63
15.0 1.71 2.01 2.18 2.33 2.62
20.0 1.58 1.83 1.97 2.09 2.33
25.0 1.51 1.72 1.84 1.95 2.15
30.0 1.46 1.65 1.76 1.85 2.03
35.0 1.42 1.60 1.69 1.78 1.94
40.0 1.39 1.55 1.64 1.72 1.87
45.0 1.37 1.62 1.61 1.68 1.82
50.0 1.35 1.50 1.58 1.64 1.77
60.0 1.33 1.46 1.3 1.59 1.70
70.0 1.30 1.41 148 1.53 1.64
80.0 1.28 1.39 1.45 1.50 1.60
90.0 1.26 1.37 1.42 1.47 1.56
100.0 1.25 1.34 1.40 1.44 1.2

When rounded up to the next integer value, one obtains exactly the same result as in
Table 7.1 on almost every occasion.

If the true value of the relative risk is R, then the observation D will have a
distribution such that

2{D"* — (RE)'*}
is a standard normal distribution. To achieve significance at the « level, we must have
D=(E+(Z)/2),
which will occur with probability § when
(REY"”? —(E)'?=(Z, + Z14)/2,

where Z,_g is the (1 — ) point of the standard normal distribution. In other words, to
have probability 8 of obtaining a result significant at the « level when the true relative
risk is R, one needs a value of E equal to or greater than

(Za + Zo_p)?/4(RY2 = 1)2 (7.1)

As can be simply verified, use of this expression gives values close to those shown in
Tables 7.2 and 7.3. For example, with a =1— =0.05, for which Z, = Z;,_;=1.645, a
value of R equal to 2.31 requires a value of E equal to 10.01 from expression (7.1), and
a value of 10.0 from Table 7.3. Use of expression (2.11) based on the cube root
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transformation will give slightly improved accuracy for small values of E - say, less
than 10 — whereas use of expression (2.10), the usual x* statistic, will give somewhat
less accurate results. Only for very small studies in which large relative risks are
expected would-the accuracy of the simple expression (7.1) be inadequate.

The other approach to assessing the capacity of a given study design to respond to
the questions for which answers are sought is in terms of the expected widths of the
resulting confidence intervals. These widths are given, in proportional terms, in Table
2.11. Given an expected number E based on external rates and a postulated value R
for the relative risk, one can read off, from Table 2.11, the lower and upper multipliers
one would expect to apply to the observed SMR to construct a confidence interval.

Thus, for E=20 and for different values of R, we have the following 95%
confidence intervals for R if D takes its expected value of RE:

Lower bound Upper bound

R=15 1.01 2.09
R=20 143 2.67
R=3.0 229 3.81

The investigator would have to decide whether confidence intervals of this expected
width satisfy the objectives of the study, or whether attempts would be needed to
augment the size of the study.

For values of E and R not covered in Table 2.11, we can use as before the square
root transformation (see expression 2.15). For a given value of E and R, the square
root of the observed number of deaths, D', will be approximately normally
distributed, with mean (ER)"? and variance 1/4. The resulting 100(1 — a)% confidence
intervals if D took its expected value would thus be given by

{(ER)"? £ Z,,/2}*|E

or
172
R :t Za//2 (E) + Zi/2/4E.

The upper limit is improved by incorporating the modification of (2.15), replacing R by
R(D +1)/D.

7.3 Sample size for cohort studies — comparison with an internal control group

In this section, we outline power and sample size determination when it is envisaged
that the main comparisons of interest will be among subgroups of the study cohort,
using the analytical methods of Chapter 3. We start by considering the simplest
situation, in which the comparison of interest is between two subgroups of the study
cohort, one considered to be exposed, the other nonexposed. Rates for the disease of
interest are to be compared between the two groups. The situation corresponds to that
of §3.4, with two dose levels. As argued in the preceding chapters, use of an internal



280 BRESLOW AND DAY

control group is often important in order to reduce bias. Suppose that the two groups
are of equal size and age structure, and that we observe O; events in one group (the
exposed) and O, in the other. Since the age structures are the same, age is not a
confounder, and no stratification is necessary. Following §3.4, inferences on the
relative risk R are based on the binomial parameter of a trial in which O, successes
have occurred from O, + O, observations, the binomial parameter, & say, and R being
related by
R

(R+1)

R=n/(l1-m) or m=

as in expression (3.6).
Now if R is equal to unity, 7 is equal to 1/2, and the test of significance can be based
on the tail probabilities of the exact binomial distribution given by

31: (0+>2_0+,

x=0 X
where O, = O; + O,. For a fixed value of O, , the power of the study can be evaluated
for different values of R, using the binomial distribution with parameter R/(R +1).
0., however, is not fixed, but a random variable following a Poisson distribution with
mean E(1+ R), where E is the expected number of events in the nonexposed group.
The power for each possible value of O, needs to be calculated, and the weighted sum
computed, using as weights the corresponding Poisson probabilities. This weighted sum
gives the unconditional power.

When the groups are of unequal size, but have the same age structure, a similar
approach can be adopted. Suppose that E; events are expected in the exposed group
under the null hypothesis, and that E, events are expected in the control group. Then,
under the null hypothesis, the number of events in the exposed group, given O, the
total number of events, will follow a binomial distribution with probability parameter
E,/(E{+ E,). Under the alternative hypothesis with relative risk R, the binomial
distribution will have parameter RE,/(RE, + E;). The power can be evaluated for each
value of O,, and the weighted sum computed using as weights the probabilities of the
Poisson distribution with mean RE; + E,. Gail (1974) has published power calculations
when E; equals E,, and Brown and Green (1982) the corresponding values when E; is
not equal to E,. Table 7.4 gives the expected number of events in the control group,
E,, for power of 80% and 90% and significance (one-sided) of 5% and 1% for various
values of R and of the ratio E,/E, (written as k).

On many occasions, particularly when O, and O, are large, the formal statistical test
is unlikely to be based on the binomial probabilities, but on a normal approximation
using either a corrected or uncorrected y° test.

In the case of equal-sized exposed and control cohorts, the observed proportion
p = 04/(0; + O,) is compared with the proportion under the null hypothesis, namely
1/2, using as variance that under the null. The uncorrected x? test statistic is equivalent

to comparing
2V0,(p - %)

with a standard normal distribution.
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Table 7.4 Comparison with an internal contro! group

(a) Expected number of cases in the control group required to detect a
difference with 5% significance and given power, for given relative risk,
when the control group is k times the size of the exposed group (using
exact Poisson distribution)

'S Relative risk?

2 3 4 5 [ 8 10 20

1/10 11.3 3.86 2.16 1.47 1.10 0.712 0.528 0.212
15.0 5.00 2.75 1.84 1.36 0.881 0.639 0.262
1/5 123 4.23 237 1.60 1.18 0.770 0.566 0.236
16.2 545 3.03 2.03 1.60 0.958 0.696 0.283

1/2 15.1 5.18 2.85 1.93 145 0954 0.706 0.299
20.2 6.80 3.74 248 1.83 1.19 0.873 0.363
1 20.0 6.70 3.71 2.62 189 1.25 0.923 0.392
27.0 8.89 4.90 3.27 243 1.68 1.17 0.485
2 29.6 99 5.40 3.58 259 1.63 1.19 0.498
40.3 135 7.26 4.82 354 222 1.59 0.642
5 58.6 19.5 10.8 7.21 5.21 333 2.44 1.00

80.1 263 145 9.76 7.19 450 3.25 1.33
10 107 35.0 19.5 13.0 9.52 6.00 4.29 1.67
146 48.2 26.5 17.7 13.0 8.27 5.93 231

{b) Expected number of cases in the control group required to
detect a difference with 1% significance and given power, for
given relative risk, when the control group is k times the size of the
exposed group (using exact Poisson distribution)

k2 Relative risk®

2 3 4 5 6 8 10 20

1/10 179 6.06 338 226 1.69 1.10 0805 - 0.336
225 751 412 2796 2.03 130 0952 0.387

1/5 194 655 363 244 182 1.19 0864 0.275
245 815 447 297 220 142 1.03 0.416
1/2 239 8.03 446 296 2.19 141 1.03 0.431
30.3 10.0 557 369 270 173 1.25 0.508
1 31.2 105 573 382 285 1.87 1.38 0.567
398 13.2 7.27 479 362 2.28 1.68 0.689
2 46.1 15,1 833 b5.42 391 249 1.82 0.775
59.2 194 106 7.02 5.08 3.17 229 0.946
5 90.5 29.2 159 10.6 7.76 4.80 341 1.38

116 379 205 13.6 10.0 6.32 447 1.75
10 164 52.8 285 186 135 850 6.07 2.41
213 69.0 373 243 17.7 11.2 7.98 3.15

@ Ratio of E,/E,, where E, is the number of events expected in the control group and £,
the number expected in the exposed group under the null hypothesis
B The top number corresponds to a power of 80% and the bottom to a power of 90%
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Under the alternative of a relative increase in risk of R, p has mean R/(R + 1) and
variance R/{O.(R + 1)*}. The required sample size is then given by

(%Za +Z,_4 \/m—f—T—)z)z_ {(R+1)Z, + 2Z1_3\/1—3}2_

( R 1)2 - (R— 1)

O,= (7 2)

R+1 2

When R is close to unity, approximate solutions are given by approximating
R/(R + 1)* by 1/4 and rewriting the equation

0. =E(1+R)=(Z, + 2, ﬁ)Z(R“).

1

When the two groups are of unequal size, n, and n,, say, but the same age

distribution, then we have
 mn, Rnn, 2
2 2 Zl—ﬁ
(ny +ny) (Rny + n,)
> )

( Rn1 )
Rn,+n, n,+n,

(7.3)

Following Casagrande et al. (1978b) and Ury and Fleiss (1980), more accurate values
are given by incorporating Yates’ correction in the yx” significance test, which for
groups of equal size results in multiplying the right-hand side of (7.3) by the term

%[1 +V1+ 4(p, _Pz)/A)]Z’

where

D=

P2=

VR 5 )2 _ R
(R+1)“** Pr=pir

When the groups are of unequal size, n, and n,, respectively, the corresponding
correction factor is given by

a=(iz v VB

ML+ VI+ AP

Rnl nn, Rn1n2
e JA R e RN T v S R
A Rnl + ny, Ny + (%) (nl + n2)2 (Rnl + n2)2 ( )

Table 7.5 gives the number of cases that would need to be expected in the
nonexposed group for a range of values of the relative risk R, of the relative sizes of
the exposed and unexposed group, and of & and f. The numbers are based on
expression (7.3), modified by incorporating Yates’ correction. The values in Table 7.5
are very close to the corresponding values based on exact binomial probabilities given
in Table 1 of Brown and Green (1982). They are slightly smaller than the values in
Table 7.4 for the more extreme values of R and of the ratio of the sizes of the two
groups; the values in Table 7.4 took account of the Poisson variability of O,.

where
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Table 7.5 Sample size requirements in cohort studies when the ex-
posed group is to be compared with a control group of k times the size.
The numbers in the table are those expected in the control group (using
x? approximation)

k Relative risk
1.5 2.0 2.5 5.0 10.0
Significance, 5% 1.00 30.9 10.0 5.5 1.5 0.6
Power, 50% 2.00 43.7 13.7 7.3 1.9 0.7

4.00 69.2 20.9 10.9 26 09
10.00 145.6 42.8 21.7 4.9 1.7
100.00 1292.6 370.1 184.4 389 123

0.50 24.6 8.2 4.6 1.3 05
0.25 214 7.3 4.1 1.2 05
0.10 19.5 6.7 3.8 1.1 0.5

Significance, 5% 1.00 64.9 19.8 10.3 24 08
Power, 80% 2.00 954 28.7 14.8 3.3 1.1
4.00 156.5 46.6 23.8 5.2 1.7

10.00 340.0 100.5 51.1 1.2 35

100.00 3094.3 911.3 463.0 102.0 33.0

0.50 49.7 154 8.1 20 0.7
0.25 42.2 13.2 7.0 1.7 0.6
0.10 37.6 1.9 6.3 16 0.6

Significance, 5% 1.00 88.1 26.4 135 3.0 1.0
Power, 90% 2.00 131.1 39.0 19.9 4.3 1.4
4.00 2175 64.6 329 71 2.2

10.00 4771 142.0 724 15.8 4.9

100.00 4374.8 1305.8 669.8 151.3 49.7

0.50 66.7 20.1 104 24 0.8

0.25 56.0 17.0 8.9 2.1 0.7

0.10 49.7 15.2 8.0 1.9 0.7

Significance, 5% 1.00 110.0 32.6 16.6 3.6 1.1
Power, 95% 2.00 165.1 48.9 24.8 5.3 1.6
4.00 275.8 82.0 41.7 89 26

10.00 608.7 182.0 93.2 203 6.2

100.00 5607.8 1689.6 872.6 200.7 66.7

0.50 82.6 246 12.5 28 09

0.25 69.0 20.6 10.6 24 08

0.10 60.9 18.3 9.4 22 07
Significance, 1% 1.00 58.0 18.2 9.7 25 0.9
Power, 50% 2.00 81.7 24.6 12.7 3.1 1.1

4.00 128.9 37.3 18.8 4.2 1.4
10.00 270.5 75.5 37.0 7.6 24
100.00 2394.9 649.1 310.2 58.0 16.7
0.50 46.2 15.0 . 8.2 22 09
0.25 40.3 13.4 74 2.1 0.8
0.10 36.8 124 7.0 20 08
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Table 7.5 (contd)

k Relative risk
15 2.0 25 5.0 10.0
Significance, 1% 1.00 103.2 31.2 16.1 3.8 1.3
Power, 80% 2.00 150.2 444 22.6 5.0 1.6

4.00 244.2 71.0 35.7 76 24
10.00 526.4 150.9 751 - 155 4.7
100.00 47615 1352.1 6884 1364 41.4
0.50 79.8 24.6 12.9 3.1 1.1
0.25 68.1 21.3 11.3 2.8 1.0
0.10 61.1 19.4 104 2.6 1.0

Significance, 1% 1.00 132.3 39.5 20.2 45 15
Power, 90% 2.00 194.7 57.3 29.0 6.3 2.0
400 3198 93.3 46.9 98 3.0

10.00 6958 201.7 101.0 21.0 6.3

100.00 6338.3 18318 9175 194.0 60.4

0.50 101.2 30.6 15.9 37 13

0.25 85.7 26.2 137 33 141

0.10 76.4 23.6 12.4 30 11

Significance, 1% 1.00 159.1 471 23.9 50 1.7
Power, 95% 2.00 235.9 69.3 34.9 7.4 2.3
4.00 390.2 1141 574 12.0 3.6

10.00 8540 2494 1256 263 7.8

100.00 7816.1 2286.2 1155.3 250.3 79.3

0.50 120.8 36.1 18.5 4.2 14

0.25 101.7 30.7 15.9 37 1.2

0.10 90.3 275 143 34 1.2

Comparison of Table 7.5 with Table 7.2 indicates that, for given «, f# and R, roughly
twice as many cases must be expected in the nonexposed control group when an
internal comparison group of equal size is used. Since there are two groups, this
implies that roughly four times as many individuals must be followed. This increase
represents the price to be paid for using internal rather than external comparisons.

Since power calculations are essentially approximate, an alternative and simple

_approach is obtained by using the variance stabilizing arcsin transformation, given by

arcsin[{O,/(0; + 0,)}"?].

This transformed variable is approximately normally distributed with variance equal to
1/{4(O,+ O,)}. The mean if the two groups are of equal size is given by
arcsin{R/(R + 1)} |

Under the null hypothesis, R equals unity, so that a result significant at the « level is
obtained if

arcsin{0,/(0, + 0,)}"* = arcsin(3)'? + 0.5Z,(0; + 0,) 2,

If the relative risk among the exposed is equal to R, then this inequality will hold with
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probability at least B if

2

)1/2 - arcsin(%)”z} , (7.5)

(0, + 0,)=(Z, + Zl_ﬁ)2/4{arcsin(R 1
whre Z,_; is the (1 — ) point of the normal distribution.

This expression gives the total number of events expected in the two groups
combined that are required to have probability § of achieving a result significant at the
a level if the true relative risk is R. An approximation closer to the equivalent y? test
with the continuity correction is given if one adds a correction term to the arcsin
transformation, replacing, for a binomial with proportion p and denominator n,
arcsin(p)"? by arcsin(p — 3n)". In the present context n is given by O; + O, so that
(7.5) would no longer give an explicit expression for E, but would require an iterative
solution. Usually one iteration would suffice. '

If the exposed and nonexposed groups are not of equal size, but the age distributions
are the same, then a minor modification can be made to the above inequality. The
binomial parameter, previously R/(R + 1), now becomes Rn,/(Rn,+ n,), where n,
and n, are the numbers of individuals in the two groups. Expression (7.2) then
becomes

) . Rnl 1/2 . n, 1/252
(O, +0)=(Z, +Z,_p) /4{arcsm<Rn1 n nz) arcsm(n1 " ’12) } .

When the age structures of the two groups are dissimilar, one could use the approach
of §3.4 or §3.5, and replace n; and n, in expressions (7.3), (7.4) and (7.5) by E; and
E,, the expected number of cases in the two groups based on an external standard or
on the pooled rates for the two groups. If the confounding due to age is at all severe,
however, this procedure will suffer from appreciable bias, and one should use the
preferred methods of §3.6, basing power considerations on the variance of the
Mantel-Haenszel estimate of relative risk (expression 3.17) (Muiioz, 1985). The effect
of confounding on sample size requirements is discussed in more detail in §7.7.

If more emphasis is to be put on the precision of estimates of relative risk, rather
than on detection of an effect, then the width of expected confidence intervals is of
more relevance. The equations given by (3.19) can be solved to give upper and lower
limits, or alternatively one can use the simpler expression (3.18).

7.4 Tests for trend

The results of a cohort study will be more persuasive of a genuine effect of exposure
on risk if one can demonstrate, in addition to a difference between an exposed and an
unexposed group, a smoothly changing risk with changing exposure. It is thus
important that the study be designed with this aim in view. Under favourable
circumstances, one will have not just two groups — one exposed and one nonexposed —
but a number of groups, each with different exposures. In the analysis of the results of
such a study, the single most powerful test for an effect of exposure on risk will
normally be a trend test. It will therefore be useful, when assessing the value of a given
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study design, to examine the power of a trend test. For the sake of simplicity, we
consider the situation in which we have K exposure groups but no further stratification
by age or other confounding variables. Using the notation of Chapter 3, we shall
investigate the power of the test statistic (3.12), given by

X =2 2Ok = EQY {2 xiEr — (X xE )2 Er),

where the E, are expectations based on external rates, but normalized so that

e
LE

S E.=D 0 ie., E,=E,

For a one-sided test of size a for positive slope, and writing the denominator in the
above expression as V, we need

25O —E)=VV-Z, | (7.6)

to achieve significance.

V is given by
L O
LE;

{2 Xk — (2 xkEk)z/E E.}

and so, being a multiple of }; O,, will have a Poisson distribution, multiplied by a scale
factor involving the x, and E,. V2 will then be approximately normal, with standard
deviation given by 1/2 times the scale factor

If E, are the expectations based on external rates, then the left-hand side of
expression (7.6) can be written as

S0 (33 5}

In order to assess the probability that the inequality (7.6) will hold, we have to
specify a range of distributions for the O, alternative to the null distribution that
E(O,) = E, for all k.

A simple family of alternatives representing a linear trend in risk is given by

E(Oy) = (1+ 6xp)Ey,

from which we have

Expectation (F) = Ek<1 + SLY Ei).

% E,

The power is then given by the probability that the following inequality holds:

> Ol — O E; [ E)} — Z, NV =0.
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Writing
V=W 0,

where W is a function of the x, and E,, then under the family of alternative
distributions given above, the left-hand side will have mean m approximated by

m = Sx Ec{xe — (O E1 D, E)} ~ ZoWY{D, (E) + dx,El)}

and variance s* by
s2 =2, (1 + 8x)E{x — O 5,Ej/ 2 EpY

— Z WY S E{xi— (O 5Ei/ D ENY (O, E) V2 + 22W /4.

The power is then approximately the probability corresponding to the normal deviate
Z,_g givenbym=s -2, g.

An alternative approach to the power of tests for linear trend was given by Chapman
and Nam (1968) based on the noncentral x? distribution.

Example 7.2

We consider a hypothetical example, comparing power considerations based on a trend test with those
based on two alternative dichotomizations of the data. Let us suppose that we have four exposure levels, 0,
1, 2, 3, and that the groups at each level are of the same size and age structure. Under the null hypothesis,
they therefore have the same expected numbers of events, E, say, in each group.

We consider a family of alternative hypotheses in which the relative risk is given as above by

1+ ox,,

where x, takes the values 0, 1, 2, 3. Substituting into the expression for m and s gives
SOVE = Z,\V(5+17.58) + Z;_g{(5+7.58) — SOE~'?Z,(5/16)"* + 5Z%/16E}"",

an equation that can be solved for § given 6 and E or, conversely, solved for E given é and §.

It is interesting to compare the results of power calculations for the trend test to the results one would
obtain by dichotomizing the data, grouping, for example, the two highest and the two lowest exposed
groups. We would then have a relative risk between the two groups of

(2+58)/(2 +9),

and each of the two groups would be twice the size of the original four groups.
Substituting these values in expression (7.5) gives

2

2458\ _ 5 . (2+58\1 e
2E(1 + 715 ) =(Zy+Z1_p) /4{arcsm(4+66) — arcsin(3) }

(the 2 at the start of the left-hand side arises since we have the sum of two groups each of size E), again an
equation that can be solved for either E or for 8.

Alternatively, one could base power calculations on a comparison between the two groups with highest
and lowest exposure, respectively, the risk of the former relative to the latter being 1 + 34.
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The three approaches give the following result for the expected number E required in each group, using a
test with & =0.05 and 8 =0.95:

Trend test Dichotomy into two Highest against
S equal groups lowest
0.25 46.8 66.2 51.6
0.5 14.6 22.9 16.4
1.0 5.0 9.5 6.0
2.0 1.8 4.9 24

The trend test is considerably more powerful in this example than the test obtained by dichotomizing the
study cohort, and marginally more powerful than the simple test of highest against lowest.

7.5 Restriction of power considerations to the follow-up period of interest

The discussion so far has treated observed and expected deaths as if all periods of
follow-up were of equal interest. Usually, however, one would expect any excess risk
to be concentrated in particular periods of follow-up, as outlined in Chapter 6. The
carcinogenic effect of many exposures is not seen for ten years or more since the start
of exposure. One is clearly going to overestimate the power of a study if one groups
together all person-years of follow-up. An example comes from a study of the later
cancer experience among women diagnosed with cancer of the cervix (Day & Boice,
1983). The purpose of the study was to investigate the occurrence of second cancers
induced by radiotherapy given for the cervical cancer. For this purpose, three cohorts
were assembled: women with invasive cancer of the cervix treated by radiotherapy,
women with invasive cancer of the cervix not treated by radiotherapy, and women with
in-situ carcinoma of the cervix not treated by radiotherapy. Table 7.6 gives the
woman-years in different follow-up periods for the three groups, and the expected
numbers of cancers in the first group, excluding the first year, and excluding the first
ten years of follow-up. One can see that in the in-situ group 90% of the person-years of
follow-up occurred in the first ten years, with a corresponding figure of over 70% for
the women with invasive cancer. This example is extreme in the sense that cohort
membership for the invasive cases is defined in terms of a life-shortening condition,

Table 7.6a Woman-—years at risk by time since entry into
the cohort (i.e., diagnosis of cervical cancer)

Time since Invasive cancer In-situ cancer

diagnosis
(years) Treated by Not treated by
radiotherapy radiotherapy
0-9 445990 (71%) 89719(74%) 485026 (90%)
10-19 149772 27 945 53 621
20+ 29676 3961 2 265

Total 625438 121 625 540912
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Table 7.6b Expected number of second cancers at selected
sites among the radiation-treated group

Excluding the first Excluding the first ten
year of follow-up years of follow-up
Stomach 2104 86.1
Rectum 167.4 68.6
Breast 804.4 304.6
Multiple myeloma 33.9 14.8

and large-scale identification of in-situ cases by mass screening did not occur until the
mid-1960s or later in many of the participating areas. For most of the cancers of
interest, excesses were not seen until at least ten years after entry, so that power
considerations based on the full follow-up period would seriously overestimate the
potential of the study, especially in assessing the value of the in-situ cohort as a
comparison group.

7.6 Case-control sampling within a cohort

(a) Basic considerations of case-control design: dichotomous exposure — unmatched
design

Before discussing the specific issues of concern when sampling from a risk set in the
context of §5.4, we review more generally design aspects of case-control studies. We
begin with the simplest situation, of a single dichotomous exposure variable. The
problem is that of comparing two independent binomial distributions, one correspond-
ing to the cases, one to the control population, with binomial probabilities, respec-
tively, of p, and p,, say.

The approach to the comparison of two proportions that we have taken in these two
volumes has been based on the exact conditional distribution of a 2 X2 table,
expressed in terms of the odds ratio. Tests of the null hypothesis were derived either
from this exact distribution, or from the approximation to it given by the x* test with
continuity correction. Since sample size and power calculations should refer to the
statistical test that is going to be used, most of the subsequent discussions of power
refer to the exact test, or approximations to it.

When the samples of cases and controls are of the same size, n, say, then for a x>
test without the continuity correction the power and sample sizes are related by the
equation '

n=(Z,V2pgq + Zy_gNp1q1 + p2q2)°/(p1 — p2)*, (7.7)

where « is the size of the test, 8 the power, p, the proportion exposed among the cases
and p, the proportion exposed among the controls (and with ¢;=1~p;, i=1, 2 and
P=1—-q=(p.+p2)/2.) _

Incorporating the continuity correction into the y” test, to make it approach the
exact test more closely, results in multiplying the right-hand side of (7.7) by the factor
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(Casagrande et al., 1978b)

H1+V1+4(p:i—py)/AY,
A=(ZN2pG+ Z,_gNp1q1 + p2qa)°.

From this expression, one can either calculate the power  from a given sample size,
or the sample size n required to achieve a given power.

This result has been extended by Fleiss et al. (1980) to the situation of unequal
sample sizes. If we have a sample of size n from the population of cases (with
parameter p,) and size nk from the controls (0 <k <), then to have probability ﬁ of
achieving significance at the « level, we need

n =A * W/k(pl_pz)Z,

where

where
2
= (Za V(k +1)pg + Z,_gVkp1q, +P2Q2) )
1 \/ 2(k + D(p, *Pz))z
SN G el
and

pP=1—-q=(p.+kp,)/(1+k).

In any particular study, sample size considerations would normally be based on an
estimate of p,, the prevalence of the exposure in the general population, and a value R
for the relative risk that the investigator feels it would be important not to miss. In
terms of the previous discussion, we would then have

pi(1 —p2)

=R
p1—p1)

or p, = Rp,/(1 —p, + Rp,).

Table 7.7 gives the required number of cases for a range of values of R, p,, «, f and
k, the ratio of the number of controls to the number of cases, for the y* test with
continuity correction. The values are close to those obtained using the exact
conditional test (Casagrande et al., 1978a).

An alternative, simple approximation is obtained using the variance stabilizing arcsin
transformation, with which the sample size needed from each of the two populations to

achieve one-sided significance at the « level with probability g is given by
n=(Z, + Z,_g)*/2(arcsin p{”* — arcsin p3?)>.

If there are nk controls and n cases, this expression becomes
n = (k + 1)(Z, + Z,_5)*/4k(arcsin pi”* — arcsin p3%)*. (7.8)

Consideration has recently been given to exact unconditional tests for equality of two
proportions (Suissa & Shuster, 1985), approximations to which would be given by the
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Table 7.7 Unmatched case-control studies. Number of cases required in an unmatched case-
control study for different values of the relative risk, proportion of exposed among controls,
significance level, power and number of controls per case. The three numbers in each cell refer to

case-control ratios of 1:1, 1:2 and 1:4.

(a) Significance = 0.05; power = 0.80

Relative  Proportion exposed in control group

risk

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80
1.5 6672 1415 763 550 448 390 356 325 325 352 419 571
4901 1041 563 407 332 290 265 243 244 265 317 434
4009 854 462 335 274 240 219 202 203 222 266 365
2.0 2087 449 246 181 150 133 123 115 119 133 162 226
15612 327 180 133 110 98 91 86 89 100 123 173
1220 264 146 108 90 81 75 72 75 84 104 146
2.5 1114 243 135 101 84 76 71 69 72 82 102 146
799 175 98 74 62 56 53 51 54 62 78 112
638 140 79 60 51 46 43 42 45 52 66 95
3.0 732 161 91 69 58 53 50 49 53 61 78 112
521 116 66 50 43 39 37 37 40 47 59 86
412 92 53 40 35 32 31 31 33 39 50 73
4.0 420 94 55 42 37 34 33 33 37 43 56 82
296 67 39 31 27 25 24 25 28 33 43 64
231 53 31 25 22 20 20 21 23 28 36 54
5.0 290 66 39 31 27 26 25 26 29 35 46 69
203 47 28 22 20 19 19 20 22 27 36 54
157 37 22 18 16 15 15 16 19 23 30 46
7.5 161 39 24 20 18 17 17 19 22 27 36 55
112 27 17 14 13 13 13 14 17 21 28 43
85 21 13 11 10 10 10 12 14 17 24 36
10.0 111 28 18 15 14 14 14 16 19 24 32 50
77 20 13 11 10 10 11 12 14 18 25 39
58 15 10 10 12 15 21 33
. 15.0 69 19 13 11 11 11 12 13 16 21 29 45
48 13 10 12 16 22 35
36 10 10 13 19 29
20.0 51 15 10 10 10 10 12 15 19 27 42
35 10 ' 11 15 21 33
26 12 17 28
(b) Significance = 0.05; power = 0.95
Relative  Proportion exposed in control group
risk -
0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80
1.5 11381 2413 1301 938 763 665 606 5563 6553 600 713 974
8527 1808 975 703 572 498 454 414 414 449 534 730
7089 1503 811 585 476 415 378 345 345 374 445 607
2.0 3505 753 413 302 250 221 205 193 199 221 271 379
2622 564 309 226 187 166 154 144 149 166 203 284
2171 467 256 188 165 138 128 120 123 138 168 235
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Table 7.7 {(contd)

{b) Significance = 0.05; power = 0.95

Relative  Proportion exposed in control group
risk

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80

25 1852 403 224 166 139 126 117 113 119 135 169 241
1383 301 167 124 104 93 88 84 89 101 126 180

1140 248 138 103 86 77 73 70 74 84 104 149

3.0 1208 265 149 112 95 86 82 80 86 100 127 184
900 198 1M1 84 71 64 61 60 64 75 94 137

739 163 92 ° 69 59 53 50 50 53 62 78 113

4.0 685 163 88 68 58 54 52 53 58 70 90 133
509 114 66 50 44 40 39 39 44 52 67 99

416 93 54 41 36 33 32 32 36 42 55 81

50 469 107 63 49 43 40 39 41 46 56 74 1M
348 79 47 36 32 30 29 31 34 42 55 82

283 65 38 30 26 25 24 25 28 34 45 67

7.5 258 61 37 30 27 26 27 29 34 42 57 88
191 45 28 22 20 20 20 21 25 31 42 65

154 37 22 18 17 16 16 17 20 25 34 52

10.0 177 43 27 23 21 21 21 24 29 37 50 78
131 32 20 17 16 15 16 18 21 27 37 57

105 26 16 14 13 12 13 14 17 22 30 46

15.0 109 28 19 17 16 16 17 20 24 32 44 70
81 21 14 12 12 12 12 14 18 23 32 51
64 17 11 10 10 10 11 14 18 26 40
20.0 80 22 15 14 14 14 15 18 22 30 42 66
59 16 11 10 10 10 11 13 16 21 30 48
47 13 10 13 17 24 38

(c) Significance = 0.01; power = 0.80

Risk Proportion exposed in control group
ratio

0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80

1.5 10583 2245 1211 873 711 620 565 515 515 559 664 906
7698 1638 887 642 524 458 419 385 387 422 505 693

_ 6247 1332 724 525 430 377 346 319 323 354 425 585
2.0 3266 703 386 283 234 207 192 181 186 207 253 354
2328 504 278 206 171 163 142 135 140 158 194 274

1851 403 224 166 139 126 117 112 - 117 133 166 234

25 1728 377 210 156 131 118 110 106 112 128 159 226
1214 267 150 113 95 86 82 80 8 98 123 177

950 210 119 90 77 70 67 66 71 82 104 151

3.0 1128 249 140 106 90 82 78 76 82 9% 119 173
784 175 100 76 66 60 b7 57 62 73 93 136

606 136 79 61 52 48 47 47 52 61 79 116

4.0 641 144 84 64 5% 52 50 51 56 66 85 126
439 100 59 46 40 38 37 38 43 51 67 100

333 77 46 36 32 3 30 31 36 43 57 86
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{contd)

(c) Significance = 0.01; power = 0.80

Risk
ratio

Proportion exposed in control group

0.01

0.05

0.10

0.15

0.20

0.25

0.30

0.40

0.50

0.60

0.70

0.80

5.0 440 101 60 47 41 39 38 40 45 54 70 105
298 70 42 33 30 28 28 30 34 42 56 84
223 53 32 26 24 23 23 25 29 35 47 72
7.5 243 58 36 29 27 26 26 28 33 41 55 83
162 40 25 21 19 19 19 21 25 32 44 67
119 30 19 16 15 15 16 18 21 27 37 58
10.0 167 42 27 23 21 21 21 24 28 36 48 74
111 28 19 16 15 15 16 18 22 28 39 60
80 21 14 13 12 12 13 15 18 24 33 52
15.0 104 28 19 17 16 16 17 20 24 31 43 67
68 19 13 12 12 12 13 15 19 25 34 54
49 14 10 10 10 12 16 21 29 47
20.0 76 22 16 14 14 14. 15 18 22 29 40 63
50 15 11 10 10 11 12 14 17 23 32 51
35 1 1 14 19 28 44
(d) Significance = 0.01; power = 0.95
Risk Proportion exposed in control group
ratio
0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80
1.5 16402 3478 1875 1352 1100 959 874 797 797 865 1028 1404
12155 2580 1393 1006 820 715 653 597 598 650 775 1060
10016 2128 1151 832 679 593 542 496 498 542 647 886
2.0 5018 1078 591 433 359 317 294 276 285 317 388 543
3686 794 437 321 266 236 219 207 214 239 293 412
3007 649 3b8 264 219 195 181 172 178 199 245 345
2.5 2639 574 319 237 199 178 167 161 170 193 241 344
1926 420 235 175 147 132 125 121 128 146. 183 261
1657 341 191 143 121 109 103 100 106 122 152 219
3.0 1715 377 212 160 135 123 116 114 123 142 180 261
1245 275 156 118 100 91 87 86 92 107 137 199
1000 222 126 96 82 75 71 71 77 89 114 166
4.0 968 217 - 125. 95 83 77 74 75 83 99 128 189
698 157 91 70 61 57 55 56 62 74 97 144
554 126 73 57 50 46 45 46 52 62 81 120
5.0 662 151 88 69 61 57 56 58 66 80 1056 167
474 109 64 51 45 42 41 43 49 60 79 120
373 86 51 41 36 34 34 36 41 50 66 99
7.5 362 86 52 43 39 37 38 a1 48 60 81 123
258 62 38 31 28 28 28 30 36 45 61 94
200 48 30 25 23 22 23 25 29 37 50 78
10.0 248 61 38 32 30 30 30 34 41 52 71 110
176 44 28 24 22 22 22 25 30 39 54 84
136 34 22 19 18 18 18 20 25 32 44 69
15.0 153 40 27 23 22 23 24 28 34 45 62 98
108 29 19 17 17 17 18 21 26 34 47 74
82 22 15 13 13 13 14 17 21 27 38 61
20.0 111 31 21 19 19 20 21 25 32 a1 58 92
79 22 16 14 14 15 16 19 23 31 a4 70
60 17 12 11 11 12 12 15 19 25 36 57
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x> test without continuity correction. Sample sizes for the latter can be calculated
directly from expression (7.7).

A comparison of the sample size requirements, for 80% power and a test at the 0.05
level, is given in Table 7.8, for the exact conditional test, the exact unconditional test,
the x* test with and without correction, and for the arcsin approximation. It is
noteworthy that in each case the exact unconditional test is more powerful than the
exact conditional test. At present, however, the advantages of working within a unified
structure of inference based on Cox regression methods and conditional likelihood, of
which the conditional exact test is an example, more than outweigh this slight loss of
power.

(b) Basic considerations of case-control design: dichotomous exposure — matched
design

In matched designs, two problems have to be faced: how many controls to choose
per case, and how many case-control sets to include, given the number of controls per
case. We consider the second question first.

For the sake of simplicity, we shall assume that each case is matched to the same
number of controls, k, say. The method of analysis is described in Chapter 5 of
Volume 1. When k=1, a matched-pairs design, the analysis concentrates on the
discordant pairs. Suppose we have T discordant pairs, among O, of which the case is
exposed. If risk for disease is unaffected by exposure, then O, is binomially distributed
with proportion 1/2. If exposure increases the relative risk by R, then O, is binomially
distributed with proportion R/(R 4+ 1). The situation is discussed in §7.3, and similar
power considerations apply.

Expression (7.2), with the continuity correction factor and with n, = n,, gives the
number of discordant case-control pairs that will be required to detect a relative risk of
R with probability B at significance level a. Table 7.5, based on expression (7.2) and in
the context of a cohort study, gives the expected number of cases required in the
nonexposed group. To obtain the expected number of discordant case-control pairs
required in a 1:1 matched case-control study, which corresponds to the total number of
cases in the exposed and nonexposed groups combined in the context of Table 7.5, the
quantities in the part of Table 7.5 referring to equal numbers in the exposed and
nonexposed groups must be multiplied by (1 + R).

The total number of case-control pairs that is required must be evaluated. If, as in
the previous section, the probability of exposure is p, among the cases and p, among
the controls, then the probability of a pair being discordant is simply

p1(1—p2) + p(1 —py).

In a situation in which a matched design is thought appropriate, the probability of
exposure would vary among pairs. The above expression then, strictly speaking,
requires integration over the distribution of exposure probabilities. For the approxi-
mate purposes of sample size determination, however, it would usually be sufficient to
use the average exposure probabilities, p; and p,. The number of matched pairs, M,
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Table 7.8 Comparison of minimum sample
sizes to have 80% power of achieving 5%
significance for comparing two independent
binomial proportions?, for five different test
procedures®

*
=] ] U mn "p Mys n

0.05 0.15 126 130 111 105 107
0.20 67 72 59 55 56
025 45 48 39 35 38
030 34 36 28 25 28
035 25 28 21 19 22
040 20 22 17 15 18
045 17 19 14 12 13
010 025 8 92 79 76 79
0.30 56 58 49 47 49
035 39 42 34 32 35
040 30 31 25 24 26
045 24 25 20 19 21
050 19 20 16 15 17
0.55 16 17 13 12 13
0.60 13 14 11 10 10
0.15 030 106 108 95 94 96
0.35 65 67 57 56 59
040 46 46 39 38 40
045 34 35 28 - 28 29
050 26 27 22 21 23
055 22 22 17 17 18
0.60 17 18 14 13 14
065 15 16 11 11 13
0.20 035 121 122 109 108 111
040 73 74 64 64 68
045 49 50 43 42 45
050 36 37 31 30 32
0.556 27 28 23 23 26
0.60 23 23 18 18 20
0.65 17 18 14 14 16
0.70 15 16 12 12 13
0.25 040 132 133 120 119 123
045 78 79 70 69 7
050 54 53 46 46 48
0.56 37 39 32 32 33
060 30 30 24 24 26
066 23 23 19 19 20
0.70 18 19 15 15 17
075 15 15 12 12 13

2 From Suisa and Shuster {1985)

b, =Fisher's exact test; n, = corrected chi-squared ap-
proximation; n, = uncorrected chi-squared approximation;
n,c=arcsin formula; n*=unconditional exact test; p,=
proportion exposed in control group; p, = proportion ex-
posed among cases

295
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Table 7.8 (contd)

*
2] Py ’ne n np nas n

0.30 0.45 142 141 128 128 132
050 84 83 74 73 77
0.556 b5 65 48 48 50
0.60 M 40 33 33 37
0.65 31 30 25 25 27
070 23 23 19 19 20
035 050 143 147 134 134 136
055 8 8 76 76 79
060 56 56 49 49 51
0.65 41 40 34 34 37
040 055 144 149 136 136 144
060 8 8 77 77 79

required is then given by

T/{pi(1—py) + pa(1—py)},

where T is the number of discordant pairs. Table 7.9 with M =1 indicates the number
of matched pairs required for different values of R, p,, « and .

For studies involving 1:M matching, the approach is similar, if more complicated.
We use the data layout and notation of §5.14, Volume 1, as below:

Number of controls positive

0 1 ... M
Cases Positive nio nyq nyo Ny m
Negatlve n0,0 nO, 1 ’10,2 no, M

and we write T, =n,;_; + no ;.

The usual test of the null hypothesis without the continuity correction is

(e (37 5]

1/2°
M T.m(M-m+ 1)}

X = (7.9)

1
{(M +1)? 2
which, for significance at level a, we can write in the form

M M M 172
2 Hym-1— ER=1( Z nl,m—l) = Za{vafR=1( Z n‘l,m—l)} .
m=1 ) m=1

m=1

Under the alternative hypothesis of a non-null relative risk R, we have (see §5.3,
Volume 1)

1,.,mR
mR+M-—-m+1

ER(nl,m—l) =
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Table 7.9 Matched case-control studies. Number of case-control sets in a matched
case-control study required to achieve given power at the given level of significance, for
different values of the relative risk and different matching ratios

M3 Relative risk

15 20 25 3.0 35 4.0 45 5.0 10.0

Proportion exposed = 0.1; significance = 5%; power = 80%

1
2

1 757 241 131 87 65 52 43 37 17
2 559 176 95 63 46 37 30 26 11
4 460 144 77 51 37 29 24 21 9
10 400 124 66 43 32 25 21 17 7
20 380 118 63 41 30 24 19 16 7
Proportion exposed = 0.1; significance = 5%; power = 95%
1 1283 398 211 138 101 79 65 55 23
2 963 299 158 103 76 59 48 41 17
4 804 250 133 87 63 49 40 34 14
10 708 221 118 77 56 44 36 31 12
20 677 211 113 74 54 42 35 29 12
Proportion exposed = 0.1; significance = 1%, power = 80%
1 1204 380 206 137 102 81 67 58 27
2 881 274 146 96 71 56 46 40 18
4 720 221 117 76 56 44 36 31 13
0 623 189 99 64 47 36 30 25 10
0 531 178 93 60 44 34 28 23 10
Proportion exposed = 0.1; significance = 1%; power = 95%
1 1855 575 305 200 147 115 95 81 35
2 1380 425 224 147 107 84 69 58 24
4 1142 351 185 120 88 68 56 47 19
10 1000 306 161 105 76 59 49 1 16
20 953 292 153 100 72 56 46 39 16
Proportion exposed = 0.3; significance = 5%; power = 80%
1 355 122 VA 50 39 32 28 25 14
2 264 90 52 37 29 24 20 18 10
4 219 74 43 30 23 19 17 15 8
10 191 65 37 26 20 17 14 13 7
20 182 62 35 24 19 16 13 12 6
Proportion exposed = 0.3; significance = 5%; power = 95%
1 602 201 114 79 60 49 42 37 19
2 452 152 86 59 46 37 32 28 14
4 377 126 72 49 38 31 26 23 12
10 331 111 63 43 33 27 23 20 10
20 316 106 60 4 32 26 22 19 10

2 M = number of controls per case
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Table 7.9

{contd)

BRESLOW AND DAY

M

Relative risk

15

2.0

25 3.0

35

4.0

45

5.0

10.0

Proportion exposed = 0.3; significance = 1%; power = 80%

AN =

[= =

1
2

Proportion exposed = 0.3; significance = 1%; power = 95%

870

o

[« =]

1
2

Proportion exposed = 0.5; significance = 5%; power = 80%

BN =

o O

1
2

Proportion exposed = 0.5; significance = 5%; power = 95%

1
2
4

10
20

Proportion exposed = 0.5, significance = 1%; power = 80%

1
2
4

10

20

Proportion exposed = 0.5; significance = 1%; power = 95%

oo h~AN-=

N =

565
419
346
301
287

651
540
474
452

324
243
203
178
170

550
413
344
302
289

516
387
323
284
271

795
597
498
437
417

192
142
116
101
95

291
217
180
1567
150

118
89
74
65
62

195
147
123
108
102

187
140
117
103

98

282
212
177
165
148

111 78
81 57
66 46
57 40
54 37

165 114
123 85
102 70
89 61
84 58

72 52
54 39
45 33
39 29
37 27

115 83
87 63
73 52

64 46
61 43

112 82
85 62
70 51
62 45
59 43

167 120
126 91
105 76
92 66
88 63

61
44
36
31
29

88
65
54
47
44

42
32
26
23
22

65
50
11
36
34

66
50
41
36
34

95
72
60
b2
50

51
37
30
25
24

72
54
44
38
36

36
27
22
20
19

55
42
35
30
29

56
42
35
31
29

80
61
50
44
42

32
25
22
20

62
46
38
32
31

31
24
20
17
16

48
36
30
26
25

49
37
31
27
26

- 69
53

38
36

39
28
22
19
18

54
40
33
28
27

28
21
18
16
16

42
32
27
23
22

45
34
28
24
23

62
47
39
34
33

22
16
12
10
10

29
21
17
15
14

18
13
11
10

24
18
15
13
13

28
21
17
15
14

36
28
23
20
19
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Table 7.9 (contd)

M Relative risk

15 2.0 25 3.0 35 4.0 4.5 5.0 10.0

Proportion exposed = 0.7; significance = 5% ; power = 80%

1 417 160 100 75 61 53 47 43 28
2 316 122 77 58 47 41 37 34 22
4 265 102 65 49 40 35 31 29 19
10 234 91 57 43 36 31 28 - 26 17
20 224 87 55 42 34 30 27 25 16

Proportion exposed = 0.7; significance = 5% ; power = 95%

1 707 263 161 118 95 81 71 64 39
2 531 199 122 90 73 62 55 49 30
4 443 166 102 75 61 52 46 141 25
10 390 146 90 66 54 46 40 37 23
20 372 139 86 63 51 44 39 35 22

Proportion exposed = 0.7; significance = 1%; power = 80%

1 663 252 157 117 96 83 74 67 44
2 504 193 121 91 75 65 - 58 53 35
4 424 163 103 78 64 56 50 46 31
10 376 146 92 70 57 50 45 41 28
20 360 140 88 67 55 48 43 - 40 27

Proportion exposed = 0.7; significance = 1% ; power = 95%

1 1022 381 233 172 138 118 104 94 58

2 771 289 178 132 107 91 81 73 46

4 645 242 150 111 920 77 68 62 39

10 569 214 132 98 80 69 61 55 35
20 544 205 127 94 76 66 58 53 34

Proportion exposed = 0.9; significance = 5% ; power = 80%

1 1045 417 268 205 170 148 134 123 83
2 798 322 209 161 134 118 107 98 68
4 674 275 179 139 116 103 93 86 60
10 599 246 162 125 106 93 85 79 56
20 575 237 156 121 102 90 82 76 54

Proportion exposed = 0.9; significance = 5% ; power = 95%

1 1772 688 432 323 264 226 201 182 113
2 1331 519 327 246 202 174 165 141 90
4 1111 434 275 207 170 147 132 120 78
10 979 384 244 184 162 132 118 108 71
20 936 367 233 177 146 127 113 104 . 68
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Table 7.9 (contd)

M Relative risk

1.5 20 25 3.0 3.5 4.0 4.5 5.0 10.0

Proportion exposed = 0.9; significance = 1%; power = 80%

1 1663 657 421 320 266 232 208 191 129
2 1278 514 333 256 214 188 170 157 109
4

1086 442 289 224 188 166 150 139 99
10 970 399 262 204 172 152 139 129 92
20 932 384 254 198 167 148 135 125 90

Proportion exposed = 0.9; significance = 1%; power = 95%

1 2562 993 624 468 383 329 293 266 168
2 1942 760 481 363 299 259 231 211 137
4 1631 643 409 311 257 223 200 183 122
10 1445 573 367 279 232 202 181 167 112
20 1384 549 352 269 233 195 175 161 109

and

mR(M —m+1)
(mMR+M—m+1)*

VarR(nlvm_.l) == Tm

Sample size requirements are therefore determined from the equation
M

2 {ER(nl,_m-—l) - ER=1(nl,m—l)}

m=1
1/2

M 1/2 M
= Za’{ Z VarR=l(nl,m—1)} + Zl_ﬂ{ Z VarR(nl,m_.l} . (710)
m=1 m=1

This equation involves the quantities T, . . . , T,. The probability P, that an individual
matched set contributes to-a specific 7,, is given in terms of p, and p, by

P,, = Pr(matched set contributes to 7,,)

= (M1 = ppra —py)nm + Aj pp5 I (1—p)" ™ (7.11)
m m

1
As in the case of matched pairs, for approximate sample size calculations we can use
the mean values of p; and p, over all matched sets in this expression, rather than
integrating it over the distribution of the p’s over the matched sets. The quantities T,
in expression (7.10) are then replaced by NP,,, where N is the total number of matched
sets and P, is evaluated for the mean values of p, and p,. Expression (7.10) can then
be solved for N given «, B, p,, p, and M.

More complex situations in which the number of controls per case varies can clearly
be handled in the same way (Walter, 1980), with the numerator and denominator of
(7.9) summed over all relevant sets. There is usually little point, however, in
introducing fine detail into what are essentially rather crude calculations.
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A"continuity correction can be incorporated into the test given by expression (7.9) by
subtracting one half from the absolute value of the numerator. The resulting sample
sizes differ from those obtained by omitting the continuity correction by a factor A,
given by

= {1+ V1+2(Eg — Er-)/(Z, VL + Z,_s VD), (7.12)
where
M
Er = E ER(nl,m—l)
m=1
and

M
Ve = Z Varg(ny,m-1)-

m=1

Sample size calculations incorporating the continuity correction into the statistical test
are comparable to the sample sizes given in Table 7.7 for unmatched studies.

Table 7.9 gives the number of matched sets required for a range of values of M, R,
P2, @ and B using the continuity correction. The values can be compared with those in
Table 7.7 for the number of cases required in unmatched analyses, to indicate the
effect of matching on the sample size. As a case of special interest, we have included in
Table 7.9 a large value of M. This corresponds to the situation in which one uses all
available individuals as controls, of interest in the context of §5.4, where the entire risk
set is potentially available.

We now turn to the question of how many controls should be selected for each case.
There are several contexts in which this issue can be discussed, as outlined in Chapter
1. We may be in a situation, as in §5.4, in which all data are available and sampling
from the risk sets is done solely for convenience and ease of computing. We should
then want the information in the case-control series to correspond closely to the
information in the full cohort, and we should select sufficient controls per case for the
information loss to be acceptably small. Thus, in Table 7.9, we compare the power
achieved by a given value of M with the value obtained when M is infinite, or, more
generally, use expression (7.11) to evaluate the power (i.e., Z,_g) for a range of values
of M and R.

In other situations, the cohort may be well defined and the cases identified but
information on the exposures of interest not readily available and the cost of obtaining
it a serious consideration. One should then assess the marginal gain in power
associated with choosing more controls.

On other occasions, as would arise in many conventional case-control studies, the
investigator may be able to decide on both the number of case-control sets and the
number of controls per case. The question would then be to decide on the optimal
combination of controls per case and number of cases.

Several authors have considered optimal designs in terms of the costs of inclusion in
the study of cases and controls (Schlesselman, 1982). On occasion, the separate costs of
cases and controls may be available, and a formal economic calculation can then be
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made. The more usual situation, however, is one in which one wants to know the cost
in terms of the number of individuals required in the study, for different case-control
ratios. For example, the rate at which cases are registered may be a limiting factor, and
one would like to assess the cost, in terms of the number of extra controls required, of
reducing the duration of the study by half, i.e., halving the number of cases, keeping
the power constant. ‘

The values in Table 7.9 can be used to provide answers to all three of these
questions.

7.7 Efficiency calculations for matched designs

As an alternative to the criterion of power to compare different designs, one can use
the efficiency of estimation of the parameter of interest, given by the expectation of the
inverse of the variance of the estimate. The parameter of interest is often taken as the
logarithm of the relative risk. As a comparative measure, the efficiency has attractions,
since interest is usually centred more on parameter estimation than on hypothesis
testing. For parameter values close to the null, power and efficiency considerations
give, of course, very similar results. For parameter values distant from the null,
however, the two approaches may diverge considerably. Efficiency considerations have
the additional advantage that, at least in large samples, they can be derived directly
from the second derivative of the likelihood function evaluated at just one point in the
parameter space (see §7.11).

(a) Relative size of the case and control series in unmatched studies

In the simplest situation, of a single dichotomous variable, the results of a
case-control study can be expressed as

Exposure Total
+ —_
Case a b n,
Control ¢ d Ry

If p, is the probability of exposure for a case, and p, the corresponding probability for
a control, then

E(a) =np, | E(c) = nap,,
and in large samples the variance of the estimate of log R is given by
1 + 1 1 1
mpr m(l—p1) nopy np(l-po)

When n, is large compared to n,, as it typically would be in a cohort study, the
variance is dominated by the first two terms. If we write n, = kn,, so that k is the
number of controls per case, then we can clearly evaluate (7.13) for different values of

(7.13)
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D2, R and k. When the relative risk is close to unity, then the efficiency relative to
using the entire cohort for different values of k is well approximated by (1 + 1/k)™".
The relative efficiency with k=1 is thus 50%, and with k=4 is 80%. Clearly, the
marginal increase in relative efficiency as k increases beyond 4 becomes slight, hence,
the conventional dictum that it is not worth choosing more than four controls per case.
This is true, however, only when the expected relative risk is close to unity. As the
relative risk diverges from one, considerably more than four controls per case may be
necessary to achieve results close to those given by the entire cohort. Figure 7.1A

Fig. 7.1 Efficiency of case-control designs for differing values of the relative risk for a
single dichotomous exposure E

The efficiency of a design, defined as v, /v., where v, represents the asymptotic variance of the estimated
log relative risk when using k controls per case, depends on both the relative risk and the control exposure
probability p,. Efficiencies for unmatched designs were computed from the unconditional likelihood (A).
From Whittemore and McMillan (1982). Efficiencies for matched designs were computed from the
conditional likelihood, assuming control exposure probabilities p, are constant across matching strata (B).
From Breslow et al. (1983)
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shows the change in efficiency for changing k, relative to using the entire cohort, for a
number of values of p, and R.
(b) Number of controls per case in a matched study

With M controls per case and the layout of §7.6(b), the maximum likelihood
equation for R is given by

i M T,,mR
,,Zlnl"""—,zlmR+M—m+ 1

(see §5.17 in Volume 1), from which the expectation of the inverse of the variance of
log R is given by
Y T,,mR(M—-m+1)

Varlog R]™! = .
[Var log R] ,,,Z=1(rnR+M—m+1)2

(7.14)

Using approximate values for 7,, given by (7.11), we can evaluate this expression for
given values of R, M and p,. As in the previous paragraph, large values of M
correspond to the inclusion of the entire risk set (see §5.4), and the relative values one
obtains for small M give the relative efficiency of choosing a small number of controls
per risk set. Results are given in Figure 7.1B, taken from Breslow et al. (1983), which
can be compared with Figure 7.1A. From both figures it is clear that as the relative risk
increases, for small values of p,, a substantial loss is sustained by selecting only a small
number of controls. When R =1, one has the same result as in the previous section,
that the efficiency relative to a large number of controls is given by M /(M + 1). This
result is a convenient rule of thumb when R is close to 1; but, as R increases, for many
values of p, it becomes increasingly misleading.

7.8 Effect of confounding on sample size requirements

We now consider the effect on the required sample size if account must be taken of a
confounding factor. We consider the situation in which we have a single polytomous
confounding variable, C, which can take K different values. We assume that the
situation is given by the following layout for each stratum, and for simplicity treat the
case of equal numbers of cases and controls. We assume further that there is no
interaction.

Exposure  Total control Stratum i (C takes value i)
population :
Number of controls Relative risk of disease
E+ nP nPpy; ReRc,
E— n(l - P) n(l - P)pZi . RC,-

where n is the total number of controls. Thus, Ry is the exposure-related relative risk
for disease given C, R, is the relative risk of the ith level of the confounder given E,
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P is the proportion of those exposed to E also exposed to C;, p,; is the proportion of
those not exposed to E who are exposed to C;, and P is the proportion exposed to E in
the control population. We have taken Rc, = 1.

When C is not a confounder, inferences on R can be based on the pooled table
given by

Case Control

Exposed nPR:/Z nP
Not exposed n(l1-P)/Z n(l-P)

where £ =(PRz+1-P).
For a given value of Rg, power f and significance «, the required number of cases is
obtained by solving the equation '

10g RE = Za, V VN -+ Zl—ﬁ V VA, (7. 15)

where Vj is the variance of the estimate of log Rr under the null hypothesis that
Rrg=1, and V, the equivalent variance with the given value of Rz. They are given
when inferences are based on the pooled table by

nVy =45[1/{P(Rg + )} + 1/(1 — P)(1 + 3)]

and
nV—(l+ ! +2+2>
A°\P 1-P PR: 1-P/
When C is a confounder, then stratification is required to give unbiased estimates of
Rg. The variances in equation (7.15) now have to be replaced by the variances of the
stratified estimate of Rz. An approximation to the variance of the Wolff estimate of

the logarithm of Rz (see expression 3.16) which has often been used in the past (Gail,
1973; Thompson, W.D. et al., 1982, Smith & Day, 1984) is given by

1 -1
W= (27)
where V; is the variance of the logarithm of the odds ratio derived from stratum i (given
by the expression from stratum i corresponding to V and V, of the previous
paragraph). Vi can be calculated for the null case (Rg=1), Vw.n, say, and for
values of Ry of interest Vi 4, say. We then solve for

log RE = Za VVW,N+ Zl—ﬁ VVW,A-

Writing

K K
2'=PRg 2 PuRc, + 1-P) 2 DP2Rc,
i=1 i=1

we have

v 1 + 1 + > + >’
n i = |
4 Ppy; ~ (1—P)p; Pp;Rc,Rg 1- P)PziRc,.
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and

”V;‘,N = T?/WliVVZiWIMMi’

where

T,=W,+ Wy =W, + W,
Wi = Ppy; + (1 — P)p,; = proportion of controls in stratum i
W, = (PpuRcRe + (1 — P)pyuRc)/Z' = proportion of cases in stratum i
Ws; = Ppy,(1 + RcRe/Z") = proportion exposed in stratum i |
Wi = (1— P)p(1 + Rc,/Z") = proportion nonexposed in stratum i.

In the situation with only two strata, extensive tabulations have been published (Smith
& Day, 1984) for a range of values of P, py;, p., Rz and R.. Some of the results are
given in Table 7.10. The main conclusion to be drawn is that, unless C and E are
strongly related, or C strongly related to disease (meaning by ‘strongly related’ an odds
ratio of 10 or more), an increase of more than 10% in the sample size is unlikely to be
needed. An alternative approach is through approximations to the variance of
estimates obtained through the use of logistic regression, which has been used to
investigate the joint effect of several confounding variables (Day et al., 1980). Results
using this approach restricted to the case of two dichotomous variables are also given in
Table 7.10; for values of R near to one, the approximation is close to the approach
given above. For several confounding variables that are jointly independent, condi-
tional on E, as a rough guide one could add the extra sample size requirements for
each variable separately.

7.9 Change in sample size requirements effected by matching

If a matched design is adopted, then equal numbers of cases and controls are
included in each stratum. Usually, the numbers in each stratum would be determined
by the distribution of cases rather than of controls (i.e., one chooses controls to match
the available cases), so that they would be given by n times the W,; of the preceding
section. The computation then proceeds along similar lines to that of the previous
section, and the sample size is given by

log RE = th \/ V%N,N+ Zl—-ﬂ V V%N,A:

where Vi, » and V3, 4 correspond to Vi, and Vi n but with the constraint of
matching. Alternatively, one can compare the relative efficiencies of matched and
unmatched designs, in terms of the variance of the estimates. Table 7.11, from Smith
and Day (1981), compares the efficiency of the matched and unmatched designs. The
main conclusion is that unless C is strongly related to disease (odds ratio greater than
5) there is little benefit from matching. A similar derivation is given by Gail (1973).
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Table 7.10 Increase in sample size required to test for a main effect if the analysis must incorporate
a confounding variable. The ratio (x100) of the sample sizes, n. and n, required to have 95% power to
detect an odds ratio associated with exposure, R, at the 5% level of significance (one-sided) where
n. =sample size required allowing for stratification on confounding variable C and n =sample size
required if stratification on Cis ignored

P Py [ o2 Reg 2 R =20 R: =5.0 Rz =10.0
R = R.= R =
1. 20 50 100 1.0 20 5.0 10.0 1.0 20 5.0 10.0

01 05 05 1.0 100 100 102 113 124 100 102 113 124 100 102 114 125
06 04 23 102 101 100 105 112 102 103 111 119 103 106 116 126
07 03 5.4 107 109 103 103 107 112 111 117 123 116 119 130 139
08 0.2 16.0 120 126 115 112 113 138 135 140 146 148 153 167 177
09 0.1 81.0 164 185 164 154 154 223 218 225 234 256 269 297 315
05 05 05 1.0 100 100 102 114 125 100 102 114 125 100 102 113 123
06 04 23 104 104 109 124 138 103 112 131 146 103 113 133 150
07 03 54119 118 127 149 166 117 133 163 187 115 135 170 197
0.8 0.2 16.0 166 155 171 204 230 151 180 232 270 145 182 245 290
09 0.1 810278 275 310 378 431 264 331 443 523 248 330 465 561
09 05 05 10100 100 102 113 124 100 102 111 121 100 101 109 117
06 04 23 102 101 110 132 151 100 111 131 149 100 111 131 148
07 03 54107 105 123 159 192 103 123 161 193 102 124 162 194
08 02 16.0 120 115 145 207 265 110 143 211 271 107 143 214 275
09 0.1 810 164 148 203 327 456 134 193 328 466 125 187 328 470

P P P R Rg =05 Re =02 R =0.1
Re= Re = A=
1.0 2.0 5.0 10.0 1.0 2.0 5.0 10.0 1.0 2.0 5.0 10.0

01 05 05 1.0 100 100 102 113 124 100 102 111 121 100 101 109 117
06 04 23102 101 97 100 106 100 96 97 101 100 94 93 96
07 03 54107 105 95 92 94 103 92 86 87 102 89 81 80
08 02 16.0 120 115 98 89 87 110 91 80 77 107 86 73 69
09 01 810164 148 118 100 94 134 101 81 75 125 91 70 64
05 05 05 10100 100 102 114 125 99 102 114 125 100 102 113 123
06 04 23 104 104 104 113 123 103 101 107 114 103 99 102 108
07 03 54119 118 116 123 132 - 117 109 109 114 115 104 100 102
08 0.2 16.0 156 155 149 153 162 151 134 127 128 145 122 109 107
09 0.1 81.0 278 275 258 269 270 264 221 196 192 248 194 159 149
09 05 05 10100 100 102 114 125 100 102 113 124 100 102 113 124
06 04 23 102 101 109 128 145 102 107 123 138 103 106 119 133
0.7 03 54 107 109 122 152 180 112 120 142 165 116 119 135 154
0.8 0.2 16.0 120 126 148 197 245 138 150 184 221 148 151 173 201
09 0.1 810 164 185 224 319 421 223 244 307 . 381 256 259 296 349

a Approximation to (n./n}x 100 based on the normal approximation to logistic regression=1/{1— g2, where g = correlation
coefficient between E and C, g2 = P(1.— P)(p, — p,J2/{{Pp, + (1 — P)p,}(1 = Pp, — (1 — P)p,)}. See Smith and Day (1984).
P = proportion of controls exposed to E;
p, = proportion exposed to E who were also exposed to C;
p, = proportion not exposed to E who were exposed to C;
Re = odds ratio measure of association between Eand C
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Table 7.11 Relative efficiency of an unmatched to a matched design, in both cases with a stratified
analysis, when the extra variable is a positive confounder. The body of table shows the values of
100 X V,,s/ Vs® (where MS = ‘matched stratified’; S = ‘stratified’)

P P P Ree  Re=20 Re =5.0 Re =10.0
Re= Rc= Re=
10 20 50 100 1.0 20 50 100 1. 20 50 100

01 05 05 1.0 100 97 87 79 100 98 88 79 100 98 89 80
06 04 23 99 91 78 69 98 90 78 70 98 91 79 N
04 0.2 27 99 90 73 60 98 90 74 62 98 90 76 64
08 0.6 27 99 92 84 80 98 91 84 79 97 91 84 79
07 03 54 98 84 69 60 93 82 68 61 92 82 N 63
09 01 810 89 69 51 43 79 66 53 47 80 71 62 57
03 05 05 1.0 100 97 87 79 100 97 87 80 100 97 88 81
06 04 23 100 95 84 77 101 97 88 80 102 100 9 84
04 0.2 27 100 96 83 71 1M 99 88 76 102 102 92 82
08 0.6 27 100 96 89 85 100 97 91 87 102 100 94 90
0.7 03 54 99 93 82 74 102 99 89 81 107 106 96 88
09 01 810 96 88 76 69 108 105 94 85 130 129 115 102
05 05 05 1.0 100 97 88 8 100 97 89 83 100 98 9 87
06 04 23 100 99 90 82 101 100 93 87 102 101 96 N
04 0.2 27 101 100 90 79 101 102 94 84 102 102 97 89
08 0.6 27 100 99 93 89 101 100 96 93 102 101 98 95
0.7 03 54 101 100 92 84 105 106 99 92 107 108 102 96
09 0.1 81.0 106 107 98 90 129 133 121 108 152 157 139 122
07 05 05 1.0 100 97 88 82 100 98 91 87 100 99 94 N
06 04 23 101 101 93 87 101 101 9% 91 101 101 97 94
04 0.2 27 101 102 95 84 101 102 97 89 101 102 98 93
08 0.6 27 101 101 9% 93 101 101 98 96 101 101 99 97
07 03 54 102 105 99 92 104 106 102 96 103 105 102 98
09 01 8.0 12 122 117 107 131 141 133 120 138 146 137 124
09 05 05 1.0 100 97 89 83 100 98 93 89 100 9 96 94
06 04 23 100 102 96 90 100 101 97 94 100 100 98 96
04 02 27 100 103 98 83 100 101 97 92 100 101 98 9%
08 06 27 100 102 98 95 100 101 99 97 100 101 99 98
0.7 0.3 54 101 106 103 97 101 104 101 98 101 102 101 99
09 01 810 109 126 128 120 112 122 122 116 109 115 115 111

8 From Smith and Day (1981)

7.10 Interaction and matching

Occasionally, the major aim of a study is not to investigate the main effect of some
factor, but to examine the interaction between factors. One might, for example, want
to test whether obesity is equally related to pre- and post-menopausal breast cancer, or
whether the relative risk of lung cancer associated with asbestos exposure is the same
among smokers and nonsmokers. The basic question of interest is whether two relative
risks are equal, rather than if a single relative risk is equal to unity. For illustrative
purposes, we consider the simplest situation of two 2 X 2 tables, with a layout as before
but restricted to two strata and with an interaction term, R,;, added.
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Exposure  Proportion of =~ Confounder Proportion of  Relative risk

population population of disease
E+ P C+ Pp, RgRcR,
C— P(1—-py) Rg
E— 1-P C+ (1-P)p, Re
C— (I-P)1-p) 1

If 4, is the odds ratio associating E with disease in the stratum with C+, and ¥, the
corresponding estimate in the stratum with C—, then

Var(log R;) = Var{log (1/,)} = Var(log 9,) + Var(log ¢,),

and the required sample size is given by the solution of

(log R,)> = (Z,NVn+ Z,_gVV,),

where Vy is the expected value of Var(log R,) in the absence of interaction, and V, is
the expected value of Var(log R;) at the value R,. Some results are shown in Figures
7.2,77.3 and 7.4. The most striking results are perhaps those of Figure 7.4, in which the

Fig. 7.2 Sample size for interaction effects between dichotomous variables. Size of
study required to have 95% power to detect, using a one-sided test at the 5%
level, the difference between a two-fold increased risk among those exposed
to E and C and no increased risk among those exposed to E but not to C
(Rg=1; R;=2). The variable C is taken to be not associated with exposure
(p1=p.=p) and not associated with disease among those not exposed to E
(Rc =1). From Smith and Day (1984)
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Fig. 7.3 Sample size for interaction effects between dichotomous variables. Size of
study required to have 95% power to detect, using a one-sided test at the 5%
level, the difference between no increased risk among those exposed to E but
not to C (Rg = 1) and an R;-fold increased risk among those exposed to both
E and C. It has been assumed that 50% of the population are exposed to C
(p1=p>=0.5) and C is not associated with disease among those not exposed
to E (R¢c=1). From Smith and Day (1984)
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sample size required to detect an interaction of size R; is compared to the sample size
required to detect a main effect of the same size. The former is always at least four
times the latter, and often the ratio is considerably larger. This difference can be seen
intuitively, for, whereas

Var(log R)) = v, +v,,
we have

Var(log Rg) = v,v,/(v, +v,), approximately,

and the ratio (v; +v,)*/v,v, is always greater than or equal to 4, increasing the greater
the disparity between v, and v;,.

One might imagine that matching, by tending to balance the strata, would improve
tests for interaction, but in general the effect is slight (Table 7.12). Matching can, on
occasion, have an adverse effect.
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Fig. 7.4 Ratio of sample sizes required to have 95% power to detect, using a
one-sided test at the 5% level, (i) an interaction of strength R, and (ii) a
main effect of strength R, (relative risk of R for exposure to E for both

~ levels, assuming 50% of the population exposed to E, p; =p,=p and C not
associated with disease among those not exposed to E (R = 1)). From Smith
and Day (1984)
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7.11 More general considerations

The previous sections have considered the simple case of dichotomous variables and
power requirements for essentially univariate parameters. A more comprehensive
approach can be taken in terms of generalized linear models. If interest centres on a
p-dimensional parameter 0, then asymptotically the maximum likelihood estimate of 0,
0, say, is normally distributed with mean 0,, the true value, and variance covariance
matrix given by the inverse of 1(0), the expected information matrix, the i,jth term of

which is given by
| 3%€(0)
—-E [ ], i=1,...,p,
26,00, T=h-op
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Table 7.12 Effect of matching on testing for a non-null interaction. The ratio (x100) of the
sample sizes, n(MS) and n(S) required to have 95% power to detect a difference at the 5%
level of significance between an odds ratio associated with exposure E of Rz among those not
exposed to C and an odds ratio for E of RcR, among those exposed to C, where
n(MS) = sample size required in a matched stratified study and n,(S) = sample size required in
an unmatched study?®

P R =20 R =05
Re=10 Re =20 Re = 1.0 Re =20
p=p)  Rc=10 20 50 10 20 50 10 20 50 10 20 50
0.1 0.1 96 72 57 92 67 52 87 67 60 78 62 59
0.3 98 93 107 96 93 112 96 102 135 96 109 158
05 100 112 147 101 118 165 106 134 197 115 155 246
0.7 102 128 176 106 141 207 116 164 244 133 200 315
0.9 105 145 197 110 163 240 126 191 279 151 243 368
05 0.1 84 64 53 8 65 55 64 53 53 65 57 61
0.3 93 92 107 93 93 109 92 101 126 95 106 125
0.5 102 114 140 102 114 135 113 131 149 114 126 134
0.7 © 109 130 158 110 128 148 128 144 154 124 130 131
0.9 116 143 168 117 137 154 137 149 155 125 128 128
09 0.1 76 59 50 82 68 60 54 47 52 67 61 70
0.3 90 91 107 94 95 107 91 103 120 99 110 121
0.5 102 113 132 102 110 120 112 120 121 112 116 114
0.7 111 126 144 108 116 123 117 118 115 112 111 107
0.9 118 132 144 111 118 123 113 112 110 105 104 102
P A =05 R=02
Re =20 Re = 4.0 RAg =5.0 Re =10.0
p=p) Rc=10 20 50 10 20 50 10 20 580 10 20 50
0.1 01 105 73 48 110 72 46 126 77 43 151 89 46
0.3 102 88 89 106 87 86 116 87 76 133 93 74
0.5 100 102 123 101 101 125 106 97 111 115 98 106
0.7 - 98 114 145 96 115 156 96 107 137 96 102 134
0.9 96 124 158 92 127 178 87 115 1562 78 106 156
05 0.1 116 88 62 117 93 67 137 115 80 125 115 90
0.3 109 95 92 110 97 92 128 109 92 124 1M 95
0.5 102 101 116 102 100 112 113 101 103 114 103 100
0.7 93 106 134 93 103 126 92 93 112 95 93 105
0.9 84 111 147 82 106 137 64 84 119 65 81 109
09 0.1 118 98 74 111 99 81 113 111 98 105 106 99
' 0.3 11 9 94 108 99 95 117 111 99 112 108 99
0.5 102 100 112 102 100 106 112 103 100 112 104 100
0.7 90 101 126 94 100 115 9N 89 101 99 94 100
0.9 76 102 138 82 100 123 54 71 103 67 79 100

2 From Smith and Day (1984)
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where €(0) is the logarithm of the likelihood function. An overall test that 0 = 0, is
given by comparing

(8 — 65)'7(85)(8 — 6;) (7.16)

with a x? distribution on p degrees of freedom.

Power and sample size considerations are then approached through the distribution
of the quadratic form (7.16) under alternative values for the true value of 0. In the
general case, for an alternative 0,, 0 will ha’e mean 0, and variance—covariance matrix
17(8,), which will differ from I7'(8,). Power calculations will then require evaluation
of the probability that a general quadratic form exceeds a certain value, necessitating
direct numerical integration. Some special situations, however, give more tractable
results. Whittemore (1981), for example, has given a sample size formula for the case
of multiple logistic regression with rare outcomes. In the univariate case, expression
(7.16) leads directly to the following relationship between sample size N and power f:

N= {Za'I_l/z(GO) + Zl—ﬁl_llz(gl)}/(gl - 00)2)

where now [ refers to the expected information in a single observation.

Table 7.13 Degree of approximation in sample size
calculation assuming that the test statistic has the
same variance under the alternative as under the null
hypothesis — example of an unmatched case-control
study with no continuity correction in the test statis-
tic; equal number  of cases and controls.
Significance = 0.05; power = 0.80

(a) Sample sizes calculated using expression (7.7),
without the continuity correction

Proportion exposed in Relative risk
control population -

15 2.0 25 5.0 10.0
0.1 717 223 119 32 1356
0.3 334 111 62 20 106
0.5 305 107 63 24 143
0.7 393 146 90 38 25
09 992 387 247 114 81

{b) Sample sizes calculated using expression (7.17)

Proportion exposed in Relative risk
control population

15 2.0 25 5.0 10.0
0.1 764 247 136 40 19.0
0.3 357 124 72 26 15.4
0.5 325 120 73 30 20.0
0.7 420 163 103 74 33

0.9 10566 430 282 140 103
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More generally, in the multivariate situation, asymptotically only alternatives close to
0, are of interest, since power for distant alternatives will approach 100%. One can
then take 1(0,) to be approximately the same as I(0,). Under the alternative
hypothesis, the statistic

(0 — 80)'1(8,)(B — 8,)

will then follow a noncentral yx* distribution on p degrees of freedom, with
noncentrality parameter

(0, — 80)'I(8:)(8; — 0,),

and the power will be given by the probability that this noncentral x* distribution
exceeds the a point of the central x? distribution on p degrees of freedom. Greenland
(1985) discusses this approach in a number of situations.

An example of the degree of approximation used in this approach is given in Table
7.13, for unmatched case-control studies without the continuity correction. The
relationship between power and sample size provided by this approach is, using the
notation of expression (7.7),

h= (Za\/%UTq + Zl—ﬁ\/ZP__q)/(Pl — pa)”. (7.17)

In Table 7.13, the results of using this expression in place of (7.7) are compared, no
continuity correction being used in the latter. For moderate values of the relative risk,
the difference is some 5% to 10%; for values of the relative risk of 5 or greater, the
approximation can overestimate the required sample size by as muth as 50%.

Since, on many occasions, the likelihood function and its derivatives take relatively
simple values under the null hypothesis, this approach clearly has considerable utility
when interest centres mainly on detecting weak or moderate excess risks.





