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Preface 

As the authors of this book remind us in their introduction, classical descriptive 
epidemiology was long regarded as simply a first, rather crude, step in the exploration 
of an epidemiological problem. Based essentially on comparisons between populations, 
it could do no more than stimulate ideas and hypotheses. Instead, it was up to analytical 
epidemiology, a more precise science since it involves measurements at the individual 
level, to produce firm evidence on risk factors, and it is mainly on the methodology of 
this area that various books have focused over the last thirty years. 

Nevertheless, I can recall a number of major successes of descriptive epidemiology. 
For example, simply mapping the distribution of mortality rates for oesophageal cancer 
and of alcoholic cirrhosis enabled us, with Daniel Schwartz and Odile Lasserre, to de- 
monstrate a relationship between alcohol consumption and oesophageal cancer. Like- 
wise, comparison between the rising curve of lung cancer mortality and that of cigarette 
consumption certainly played a decisive role in focusing the attention of Richard Doll on 
the link between tobacco and cancer. 

In recent years, the establishment of numerous cancer registries has encouraged 
many researchers to attempt to draw the maximum advantage from the data collected 
on cancer incidence and mortality. This has led to many original ideas and raised many 
important questions. Some biostatisticians entered this arena and they have gradually 
been able to lay the necessary statistical and mathematical foundations that were lacking. 
Problems such as those posed by the study of risks when the denominator is unknown, 
competing risks, and autocorrelation have led to the development of solid methodological 
concepts. 

The great merit of this volume is that it brings together and reviews in one coherent 
text the different techniques needed for a modern approach to descriptive epidemiology. 
With the help of this compilation, researchers in this field will henceforth be able to tackle 
the study of their data armed with a methodological arsenal giving them the optimal 
chance of success. Other readers such as doctors and public health specialists will be 
able to obtain guidance, without having to enter into all the mathematical details, o n  how 
to avoid the many pitfalls that confront those who have to interpret collections of nume- 
rical data. The authors make extensive use of examples of analysis of real data sets 
and show how these can be treated and interpreted, so that the reader can follow in 
detail the development of the methods described and better comprehend the range of 
their applications. 

I have known Jacques Esteve, Ellen Benhamou and Luc Raymond for very many 
years, as a productive team with complementary capabilities. I am certain that this book 
that they have co-authored will provide an indispensable guide for numerous researchers 
and for decision-makers in public health who are concerned with epidemiology. Perso- 
nally, as an epidemiologist and oncologist, I have found it  to be of the greatest interest. 

Professor Robert Flamant 
Director of the Gustave Roussy Institute, 

Villejuif, France 



Foreword 

This monograph presents and discusses some methods used in descriptive epide- 
miology which are relevant to cancer research. In presenting the fundamental concepts, 
we have tried to keep the mathematical formulation at a level which is compatible with 
an elementary knowledge of statistics and probability, but which nevertheless enables 
the logical relationships between the concepts currently used in epidemiology to be un- 
derstood. 

With the above objective in mind. Chapter 1 describes briefly the epidemiological 
context in which the methods will be used and devotes some space to their mathematical 
formulation. An elementary knowledge of statistics and probability as well as some fa- 
miliarity with mathematical reasoning is expected from the reader of this chapter. 

Chapter 2 describes how, in practice, the analysis and comparison of incidence 
and mortality can be carried out. Most attention is given to the multiplicative model and 
to the concept of proportional hazards, which is particularly relevant to cancer research. 
The exposition of these notions relies on many numerical examples, but no great ma- 
thematical sophistication is needed. 

Chapter 3 is devoted to geographical analysis, ecological studies and analysis of 
time trends. These fields are at present subjects of interesting methodological research, 
and we have tried to show from several examples how modern statistical tools can consi- 
derably improve the interpretation of geographical and temporal data in epidemiology. 

Chapter 4 describes the methods of analysis of survival probability at an elementary 
mathematical level, and the emphasis is placed on the interpretation of such data when 
they are collected in the context of routine cancer registry operations. Much space is 
therefore given to the concept of relative survival and many examples are presented to 
show the difficulty of interpretation when the procedures for data collection may imply 
several types of bias. 

We have tried to give the reader sufficient understanding to use the methods which 
are presented by giving the details of calculations whenever possible and some examples 
of the use of the GLlM software, which is cheap, widely available and enables many 
methods presented in this book to be readily implemented. 

This text was first written in French and was translated by Mary Sinclair, whom we 
gratefully acknowledge for her careful work. With the exception of the correction of known 
errors and some inevitable adaptation of French to English style, no effort has been 
made to update the content which was essentially written before 1991; this is why some 
recent references which would have been relevant are not included. 

The finalization of the manuscript of this monograph benefited from the careful 
reading of John Cheney. We gratefully acknowledge his help. 
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Chapter 1 

Fundamental concepts 

Introduction 

It has long been acknowledged that descriptive epidemiology is primarily 
characterized by its exploratory goals. It is seen as a first approach aimed at defining 
the scope of a research problem, at best generating hypotheses without aspiring to 
verify them. When descriptive epidemiology is seen in this light, the fact that no 
important developments in methodology had taken place until recently is less sur- 
prising. Its basic techniques were borrowed from demography: mortality and mor- 
bidity rates were seen as the key descriptive tools, with their comparison and 
standardization being the only methodological sophistication required. Statistical var- 
iability was rarely taken into account, sometimes producing serious errors in inter- 
pretation. 

Several factors seem to have inspired the development of the techniques which 
make up modern descriptive epidemiology. The first is probably the proliferation and 
improvement of epidemiological data. In the area of cancer research these develop- 
ments have undoubtedly been greater for incidence data than for mortality data. 
Cancer registries have multiplied and worked to standardize their definitions and 
registration procedures. The collection of demographic data, which provides the de- 
nominators of rates, has also seen a marked improvement, notably in the frequency 
of their publication. 

The accumulation of incidence and mortality data over time has led to a focus 
on the analysis of time series. New techniques, mainly based on mathematical mod- 
elling, have been developed to distinguish between the different factors that underlie 
changes in rates. These methods have had both explanatory as well as predictive 
goals. 

Descriptive epidemiology have also benefited from a more rigorous definition 
of its concepts, and from a more satisfactory incorporation in its methodology of the 
basic ideas developed in the context of stochastic process analysis. Appropriate 
mathematical and statistical methods have been developed, largely due to the con- 
tribution of epidemiologists. These advances follow a similar development of statis- 
tical methods in other areas of medicine. It is significant that published reports of 
epidemiological investigations now have a readership which includes specialists from 
other areas of research. The new approaches have led to better solutions to the 
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problems posed, in particular through more appropriate definition of hypotheses and 
the construction of suitable models for their evaluation. 

The integration into descriptive epidemiology of spatial analysis and a more 
critical consideration of ecological studies are two examples of the increasing inter- 
action between the improvement in data collection and the need for more sophisti- 
cated methods. Thus, the collection of increasingly detailed morbidity and mortality 
data, and the creation of data systems which allow cases and deaths to be located 
in time and space, have provided a basis for evaluating real or supposed en- 
vironmental hazards, requiring in turn the development of appropriate statistical 
methods. 

In the same way, when suspected exposures are easier to define at a group 
level rather than at an individual level, it is the role of descriptive epidemiology to 
assess the relationship between these exposures and the risk of cancer. Techniques 
to better control for potential confounding factors have thus been added to the clas- 
sical methods of geographical correlation. 

Traditionally, epidemiology is defined as the study of the distribution of diseases 
over time and place and according to individual characteristics. For the purpose of 
this book, descriptive epidemiology can be defined by replacing this last term with 
'group characteristics'. This definition encompasses the intended contribution of de- 
scriptive epidemiology to etiologic research, as well as emphasising that data known 
only at a group level are the basis of the discipline. Inference is made from the 
group to the individual, in contrast to analytical epidemiology, in which risk is studied 
in groups formed a posteriori from data collected at an individual level. Throughout 
this text, it will be seen that the formation of groups on which the analysis is ulti- 
mately based is one of the crucial problems confronting descriptive epidemiology. 

Apart from the methods of data collection, both for defining populations at risk 
and identifying risk factors, descriptive epidemiology utilizes exactly the same 
methodology as that of cohort studies in analytical epidemiology. Moreover, it will 
be seen that the concepts used are exactly the same. This resemblance is especially 
obvious when descriptive epidemiology has the task of describing the survival of 
cancer patients according to group characteristics. In this situation, data are avail- 
able for individuals and the distinction between analytical and descriptive epidemi- 
ology becomes somewhat artificial. Survival studies have progressively found their 
place as an activity appropriate to cancer registries, and their goals are mainly 
descriptive in this context. Presentation of the methods of incidence analysis and 
then of survival analysis in the same text is in any case justified both mathematically 
and statistically. These two forms of analysis both concern the occurrence of an 
event (diagnosis or death respectively) in the presence of competing risks which 
lead to incomplete observation (also known as censoring). The estimation and mod- 
elling of the probability of occurrence of such an event leads to analytical methods 
requiring mathematical concepts rarely taught in medical schools. 

In this first chapter, our goal will be primarily to convince the i-eaJer of the 
need for such ideas, then to present them as simply as possible through examples, 
while also providing the appropriate theoretical background. The subsequent chap- 
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ters offer a more user-oriented description of the methods, so that the reader can 
carry out the calculations and tests presented. It should be emphasized that the 
reader who does not wish to become involved in the theoretical-developments of 
the first chapter can by-pass them, without compromising an understanding of the 
rest of the book. 

Basic concepts of descriptive epidemiology 

Time and the concept of incidence 

While no-one would dispute that cancer incidence varies with time, there i s  
less agreement over the causes of its evolution. Public opinion readily seizes upon 
the idea that the disease is a modern-day plague. Some people maintain that the 
increase in the incidence of cancer is simply due to the ageing of Western popula- 
tions and to the fact that the other diseases from which people used to die are 
being controlled. On the other hand, there are others who will state that it is a 
curse, linked to atmospheric pollution, nuclear energy or the use of new chemicals. 
Epidemiology allows us to establish that, in any given age group, the frequency of 
cancer (apart from those associated with tobacco) is remaining almost constant or, 
in some countries, is even decreasing (see Chapter 3, page 174). 

These contradictory statements may seem to be an illustration of the saying 
that statistics are a sophisticated form of lying. In fact, they result from the difficulty 
of differentiating between the effects of many variables which are acting simul- 
taneously on the phenomenon being studied: at the end of the twentieth century, 
the 'educated layman' does not necessarily have available the tools needed to make 
an objective analysis of the effects of these variables. The first step towards a n  
understanding of the problem is an accurate definition of the concept of incidence. 

In epidemiology as in demography, time can be located by two indices: date 
and age. Cancer incidence can only be described properly by taking into account 
both of the indices which play parallel roles and are in fact measures of time with 
respect to two different origins. 

Figure 1 . I  (the Lexis diagram) illustrates this duality: a segment of oblique line 
in this graph represents the observable fraction of an individual's life, that is, the 
interval of time and age during which an event of interest (e-g., incidence of cancer 
or complications of diabetes or AIDS in a seropositive patient) can occur. The left 
extremity of the segment is the start of observation: it is for example the date of 
birth in the descriptive study of cancer incidence, or the date of first employment 
in an industrial cohort aimed at measuring the risk of a suspected exposure. It could 
also be the date of the start of treatment in a study designed to measure the risk 
of relapse after illness or the chance of survival after the occurrence of a serious 
disease. The other extremity is the end of observation, characterized by the date 
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and age at which either the event under study took place or the individual stopped 
being observed. This second possibility can be due to death (when we are interested 
in the incidence of some other event), loss to follow-up o f  the subject or the end 
of the study. In these three situations, it is said that the observation is censored 
because the event had not yet taken place at the end of the observation period. It 
is only known that the time necessary for the event to happen to the individual is 
greater than the duration of the observation period. 

In some studies it is the death from a given disease which is the event of 
interest, either because incidence data are not available or because the probability 
of surviving from this diseases is the subject of the analysis. The censored obser- 
vations comes in this context from subjects who died from other causes, who were 
lost to follow-up or for whom the diagnostic of the disease was too recent. 

Depending on the point of view adopted, we can look at different segments of 
an individual's trajectory on the Lexis diagram. In a study of survival, the origin of 
the time scale is most often the date of diagnosis or of first treatment. The duration 
of time at risk of death is therefore measured as the time elapsed from this date, 
age being considered as an additional prognostic variable. Conversely, in an in- 
dustrial cohort study, the basic measure of time is usually age, the time since the 
first entry being taken as an explanatory covariate. But, in both situations, the time 

" 
1905 1910 1915 1950 1955 1960 1965 

Calendar year 

Figure 1.1 The Lexis diagram 
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origin is specific to each individual in the study; for a correct statistical analysis, we 
must 'synchronize the clocks' governing each individual's life events. 

The aim of the epidemiologist is to draw conclusions about the different levels 
of risk to which groups of individuals are subjected. This requires well defined meas- 
ures of risk in order to make objective comparisons between one situation and the 
next, or between one country and another. These measures might take the form of 
the probability of developing cancer or of dying from it, or they might be the survival 
rate or the probability of relapse. In all cases, the measures are based on a ratio 
between the number of observed events (the numerator) and the number of individu- 
als at risk within a given period of time (the denominator). Alternative choices of 
the latter can lead to widely divergent results. 

A few simple analogies will show how important the problem is. For example, 
if we want to compare the safety of different types of transport, should we measure 
the number of passenger deaths per kilometre travelled, per passenger x kilometre, 
or per passenger x time travelled? It is obvious that the definition of risk depends 
on the method of calculation. To compare the incidence of cancer in two cohorts, 
should we base our results on the observed proportion of cancer in each group, or 
should we take into account the number of years for which each individual was 
actually observed and at risk of developing cancer? If the two cohorts have the 
same average age and have been observed for the same time period and if the 
only reason for stopping observation was the onset of cancer (or, more generally, 
the event under study), the proportion is a good index of comparison. If, as more 
often happens, other events prematurely bring some individual observations to a n  
end and if, in addition, these events do not occur in the same way in the two cohorts, 
it is likely that more cancers will be seen in the group which has, on average, been 
observed for longer. Conversely, if we take the duration of employment as an ap- 
proximate measure of exposure in a study of lung cancer mortality in an  asbestos 
mine, we should be aware that remaining employed for a given duration means 
having survived this number of years. Thus, if we want to assess the risk of people 
employed for more than twenty years, only the period beginning after twenty years 
of employment and the corresponding cases of cancer would be taken into account 
for the evaluation of this risk. 

These examples lead to the following principles: 

the calculation of the denominator should take into account the number of years 
of observation relevant to the proposed study; it should take into account the con- 
tinuous modification of the population actually 'at risk' throughout the duration of 
the study. By definition, a subject is no longer at risk after the occurrence of the 
event or after the censoring time.' 

incidence rate should be defined as the number of events per person-year, that 
is, per person and per year of observation relevant to the risk being analysed. 

Note however that cancer registries record second primary cancers. Strictly speaking, the 
period at risk starts in this situation immediately after the first tumour as if a new subject was added 
to the population at risk at this point. 
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A given period of observation of a subject will contribute to the person years in 
the denominator only if this subject would have been counted in the numerator had 
he experienced the event being studied over that period of-time. 

Here it is appropriate to introduce the instantaneous rate, a concept which is 
crucial to epidemiology. Intuitively, this parameter measures the probability that an 
individual in a defined population becomes a victim of the event at a specified time 
point, given that the individual is still living and under observation at that time. In 
the same way that the speed at a given moment can be approximated by an average 
speed, so an instantaneous rate can be approximated by an average rate. In 
Figure 1.1, the squared cell shows individuals who were 50 to 55 years old between 
the years 1960 and 1965, that is, individuals who were born between 1905 and 
1915. If the asterisk represents the end of observation due to the occurrence of 
cancer and the point represents the termination of observation for all other reasons, 
the risk of developing cancer between 50 and 55 years of age for individuals born 
around 1910 is then measured by the number of asterisks observed in the square 
divided by the number of years accumulated in the same space by the individuals 
born between 1905 and 1915. Only individuals born in 1910 will be able to accu- 
mulate five years of observation; the further the birth date is from this date, in  either 
direction, the smaller the individual's contribution to the calculation of the denomi- 
nator in this square. The resulting ratio, generally called the average annual rate of 
cancer between 50 and 55 years for the generation born around 1910, or else the 
specific rate for the age group 50-55 years, is an approximation to the instantaneous 
rate. 

Figure 1.2 shows the evolution with age of lung cancer mortality in France; it 
can be seen that, for successive generations, those born more recently have 
suffered the highest lung cancer mortality. In such a situation, the cross-sectional 
curve obtained by plotting age-specific rates at a given time point (for example, the 
curve obtained by joining the points corresponding to the period 1950-1954) would 
be an incorrect description of the phenomenon if it was interpreted as a repre- 
sentation of the effect of age. Actually, the observed decrease in risk for higher 
ages corresponds to a generation effect: it has been shown that the lung cancer 
risk in the older French population is lower only because the corresponding genera- 
tion has had less exposure to tobacco. The phenomenon is clearly seen in 
Figure 1.3, where the evolution of mortality from cancers of the lung, the oeso- 
phagus and the larynx in France is shown for successive generations. The lung 
cancer risk increases regularly with date of birth, whereas the risk of cancers of the 
oesophagus and larynx, which are much more dependent on alcohol consumption, 
have both been smaller for those generations subjected to rationing related to the 
second world war. 

Group characteristics and place 

By revealing the large variability in cancer incidence throughout the world, 
descriptive epidemiology has shown that the prevention of cancer is, at least par- 
tially, possible; differences observed, particularly within the same ethnic groups, have 
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Figure 1.3 Relative risk of death from lung, larynx and 
oesophageal cancers for successive male birth cohorts 

in France compared to the cohort born around 1897 
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unambiguously established that environmental factors play a determining role in the 
development of cancer. The most striking example is probably that of oesophageal 
cancer for which the risk is 300 times more elevated in the-north-east of Iran than 
it is in Nigeria. The reasons for this difference have only been partially identified, 
and it is quite likely that multiple factors are responsible [ I ] .  In Europe, the risks in 
the regions most affected by oesophageal cancer are about a factor of 30 greater 
than in the regions least affected; the incidence of this cancer is highest, where the 
highest average alcohol consumption is reported, notably in the west of France. 

Given this large variability, it is extremely tempting to try to establish causal 
relationships by analysing the correlation between the variation of incidence and 
environmental factors in different populations, and in fact many such analyses have 
been attempted. On the whole, however, these attempts have been rather un- 
successful: on an international scale, no substantial correlation has been demon- 
strated between oesophageal cancer and alcohol consumption. Undoubtedly, one of 
the reasons for this failure is that cancer is a multifactorial disease and that the 
determining factors need not be the same in two regions with very different cultural 
traditions. Another reason is that the degree of exposure to the factor can be  dis- 
tributed unequally among the individuals in the regions being compared, even if the 
average rate of exposure in the regions is similar. For example, it is conceivable 
that a country with a minority of heavy drinkers and a majority of teetotallers would 
report more cancer than another area with more widespread consumption at a lower 
level. 

An absence of correlation can also be observed for less obvious methodological 
reasons. For example, studies on individuals show that tobacco is responsible for 
85% of the lung cancer observed in populations where smoking is widespread [ 2 ] .  
However, if we restrict ourselves to Europe, a group of seventeen countries that is 
reasonably homogeneous for other factors, the correlation for the period 1970-74 
between lung cancer risk (cumulative up to 80 years) and the consumption of cig- 
arettes for the same period is only 0.56. A correlation of this size means that the 
variation in the consumption of tobacco explains barely a third of the variation in 
mortality, which is hardly compatible with the above number of 85%. 

In fact, the correlation between tobacco consumption and lung cancer is slightly 
more impressive if we look at it correctly [3]. The first mistake in the preceding 
discussion is to have considered the cumulative risk cross-sectionally, thereby 
adding together risks over generations that had radically different tobacco exposure. 
The second mistake is to have considered the consumption of tobacco contem- 
poraneously with the mortality when the latent period between exposure and the 
occurrence of cancer should have been taken into account. Comparing the cumu- 
lative risk for lung cancer for the seventeen countries between the ages of 35 and 
50 years for people born around 1925, and cigarette consumption between 1955 
and 1964 (Table 1.1 and Figure 3.9), we obtain a correlation between the two vari- 
ables equal to 0.75, a much more reasonable value for data limited by substantial 
imprecision. 

Conversely, these remarks hold true when a factor is correlated positively with 
a disease on a geographical level; the correlation is not always found in studies 
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Table 1.1 National cigarette sales and mortality from lung cancer 
in selected European countries 

Cumulative risk from 35 to 50 years Number (b) of cigarettes 
Generation born in 1925 (a) (Rank) - 1955-64 

Portugal 
Sweden 
Norway 
Spain 
Germany (') 
France 
Iceland (d) 

Greece 
Austria 
Switzerland 
Denmark 
Netherlands 
Finland 
Ireland 
Italy 
Belgium 
UK 

(a) Average risk (per thousand) for both sexes combined; source: WHO (WHO Mortality Data Bank). 
(b) Average annual cigarette sales per adult above 15 years (1955-1964) [8]. 
(') Former Federal Republic of Germany. 
(d) Risk estimated from 14 cases, and therefore of limited reliability. 

involving individuals. This situation can be illustrated by the correlation found be- 
tween beer consumption and mortality from cancer of the rectum [4,5] and also the 
correlation between consumption of fat and breast cancer mortality [ 6 ,7 ] .  

A technical presentation of this approach and other examples will be given in 
Chapter 3 (see page 141), where the usefulness of this methodology will be dis- 
cussed. The above examples were presented to show that the interpretation of de- 
scriptive data requires the same attention as data coming from an analytical study. 
Only a combined analysis of results obtained at a group and an individual level will 
provide the correct scientific interpretation. 

Epidemiology is a science of observation, which means that it is limited to 
making use of natural events which simulate an experimental design. Seen from 
this point of view, studies of migrants and religious groups have been extremely 
successful. Table 1.2 provides a particularly attractive example based on the inci- 
dence of certain cancers observed in various lsraeli communities and in selected 
western populations. The figures show that, for the given cancer sites, the incidences 
observed in lsrael are consistently lower than those observed in the western coun- 
tries used as reference, but their basic interest lies in the differences that they 
reveal between the lsraeli communities. In fact, Jewish people not born in Israel 
have a risk half way between the risk of their country of origin and that of their 
adopted country. This tends to confirm that the observed change in risk was linked 
to a change in environment. 



10 FUNDAMENTAL CONCEPTS 

Table 1.2 Cancer and migration (a): lncidence rates (b) for selected cancer s i t e s  
in lsrael (1972-76), in Geneva (1973-77) and in Connecticut, USA (1973-77) 

Population Males Females 

All cancers Respiratory Digestive All cancers Respiratory Digestive 
except skin ICD8: ICD8: except skin ICD8: ICD8: 

160-1 62 150-1 57 160-1 62 1 50-1 57 

Non-Jews born 
in Israel 11 7.3 35.7 22.9 62.8 12.3 9.0 

Jews born 
in Africa 
or in Asia 167.1 32.0 42.2 137.3 30.4 18.5 

Jews born 
in Israel 183.7 22.9 51.3 187.1 35.5 30.1 

Jews born 
in Europe 
or in America 21 1.4 34.9 66.7 226.6 55.2 32.3 

Connecticut 303.0 69.7 80.4 257.3 54.3 43.6 
Geneva 328.6 81.2 88.8 225.2 46.3 42.5 

( a )  Source: Cancer lncidence in Five Continents [9]. 
(b) Rates standardized on world population. 

Table 1.3 Standardized (a) incidence rates (T) and standardized incidence ratio (SIR)  (b) 
for selected cancer s i tes  in Utah, U S A  (1967-1975) (') 

Mormons Non-Mormons 

Urban Rural Urban Rural 

Males 

Tobacco-related sites (d) 

Lung (ICD8: 162) 

Females 

Breast 

Uterus 
Cervix, invasive 

Cervix, in situ 

Corpus 

T 
SIR 
T 

SIR 

T 
SIR 

T 
SIR 
T 

SIR 
T 

SIR 

(a) Standardized on 1970 US population, * significantly different from the urban rate. 
(b) TNCS Standard (Third National Cancer Survey), - significantly lower than the national rate, + significantly 
higher than the national rate, -- data not available. 
(') Source: Utah Cancer Registry (1967-1975) [ lo ] .  
(d) 1CD8: 140 (lip), 143-150 (buccal cavity, pharynx and esophagus), 161 (larynx), 162 (lung), 188 (bladder). 
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Table 1.3 reproduces some results from the Utah cancer registry. A significant 
proportion of the population comprises Mormons, who do not consume alcohol or 
tobacco and who individually have less sexual partners and on average more child- 
ren than the rest of the population. Taken together, this behaviour has noticeable 
consequences on the incidence of cancer at several sites, as shown in the Table. 
As these figures were not derived from a controlled experiment, it is likely that the 
Mormon population group differs from the non-Mormon group for other characteristics 
which can be associated with cancer development. Nevertheless, it is noteworthy 
that the classic excess of incidence in urban populations, seen here in the non-Mor- 
mon group, disappears in the Mormon community. The urban-rural difference is thus 
very likely to be due to differences in individual behaviour between urban and rural 
inhabitants, rather than being explained by one of the urban risk factors (such as 
pollution) usually invoked as explanatory. 

In practice, the possibility of establishing relationships such as those which we  
have just described largely depends on the use of the appropriate statistical 
methodology. In particular, the methodology should provide the means of evaluating 
the variability attributable only to chance, so that it can be taken into account i n  
the interpretation of observed differences. The remainder of this chapter will b e  
devoted to a discussion of mathematical concepts which are the basis of the ana- 
lytical methods. A discussion of practical applications will be kept for the subsequent 
chapters. 

Statistical concepts for the analysis of incidence data 

Formal definition of the incidence rate 

We have seen above that the identification of factors favouring or causing the 
occurrence of a disease or a death requires the measurement of the risk of develop- 
ing the event. In other words, we need an unbiased estimate of the probability that 
an individual, in a given environment, might develop the event under study. Besides 
the factors under study, this probability depends on temporal variables such as age, 
in incidence and mortality studies, and duration of observation in survival studies. 
The mathematical concept which is fundamental to risk and survival assessment is 
the distribution of the time separating the beginning of observation from the occur- 
rence of the event. From a knowledge of this distribution we can measure, for ex- 
ample, the risk of cancer before age t, or the risk of death t years after diagnosis. 
The date of the development of the event under study is often unknown because 
observation is interrupted before the event occurs; in this case it is necessary to 
use specific techniques to estimate the distribution from incomplete observations. 

As we noted previously, the period for which an individual is followed is the 
result of two competing mechanisms, which results in two different types of obser- 
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vation; one produces the event under study and the other includes all the other 
causes which might be responsible for terminating observation. Our aim is now to 
show how, by taking into account these two types of observati-on, we can reconstruct: 
the distribution that would have been seen if all observations had been completed. 

In this way people dying, for example from a cardiac disease, before age t will 
contribute to the calculation of the probability of having cancer before this age; 
similarly the follow-up of patients who were only diagnosed 1, 2, 3 or 4 years ago 
will contribute to the calculation of the survival probability at 5 years. 

The mathematical concept used for this reconstruction is the instantaneous 
rate, which was defined intuitively above. We now adopt a more formal approach, 
which will allow further mathematical developments. 

Let T denote the time period between the start and the end of observation for 
an individual, whether terminated by the end-point under study (for example, the 
occurrence of cancer) or by any other circumstance which might interrupt the fol- 
low-up. Furthermore, let 6 be the indicator function of the end-point: 6 = 1 when 
the event has taken place and 6 = 0 when the observation is censored. 

The following definitions characterize the random distribution of the couple of 
variables (T,6). Let 

R(t) = Prob (T < t) be the probability distribution of T 

S(t) = 1 - R(t) denote the probability that the subject is still under observation 
(surviving) at the time-point t without the event having taken place, 

pl = Prob (6 = 1) be the probability that the event take place and 

Rl(t) = Prob (T < t 1 6 = 1) be the conditional distribution of the event, that is the 
probability that the event takes place before the time t, given that it has taken place. 

Thus, the probability that the event occurs before the time t may be written 

n(t) = Prob (T < t, 6 = 1) = plRl(t). 

The probability that the event occurs on a given date, while the subject is still 
being followed-up, defines the force of incidence (or mortality) at this point in  time. 
The following expression, which is directly derived from this probability, will be re- 
ferred to as the instantaneous rate, 

1 
h(t)= lim - P r o b ( t < T < t + A t , 6 = 1  I T > t )  (1.1) 

A t 4 0  At 

It should be noted that h(t) is not, strictly speaking, a probability, but a proba- 
bility per unit of time, also known as a probability rate. Application of the rules of 
probability immediately gives 

1 PI Rl(t + At) - PI Rl(t) h(t)= lim - 
A t 4 0  At 1 - R(t) 
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The numerator is the probability that the event occurs at time t of the subject's 
follow-up; the denominator indicates that only the subjects who have been followed- 
up at least until t are taken into account. Furthermore, 

Rl(t + At) - Rl(t) 
h(t) S(t) = pl lim 

At = PI R'l(t) 
At+O 

where R'l(t) is defined as the conditional probability density of T, derivative of Rl(t). 

In this way we obtain the relationship between h(t), S(t) and the distribution 
function of T when the event occurs. The probability that the event occurs before 
time t can be written 

that is, 

In the situation where there are no censored observations, pl = 1 and 
Rl(t) = R(t); this would be the case for example in a study of mortality from all 
causes, if every individual in the cohort was under observation until death. In this 
situation, formula (1.3) leads to 

which is a differential equation with solution 

A(t) = - Log [SO)] and R(t) = 1 - e-"(') 

where 

When there are censored observations, the distribution function defined by 
formula (1.6) is in fact that which would govern the observations if they were all 
complete, that is, if none was censored. The probabilities generated by this distribu- 
tion are called net probabilities as opposed to crude probabilities defined by n(t) in  
formula (1.4). 

If T is age and if  the end-point is the occurrence of cancer, the following 
terminology is used: 

h(t) is the force of incidence, 

n(t) is the crude probability of developing cancer by age t, 

A(t) is the cumulative incidence rate at age t. 

The net probability of developing cancer by  age t, R(t) = 1 - e-"('), is a 
measure of cancer risk when there are no censored observations, that is, in the 
absence of mortality. Therefore, the net probability is not affected by the structure 
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of the mortality pattern in the population under study and it can be used to compare 
several populations. This measure of risk is known as cumulative risk; its properties, 
and methods for its calculation are presented in Chapter 2 -(page 66). 

If T is the interval between diagnosis and the end of follow-up, the censored 
observations are essentially those for which the diagnosis is too recent; in this case, 
~ ( t )  is of little interest. The net probability of survival given in formula (1.6) is usually 
the parameter of interest in survival analysis. 

Estimation of the instantaneous incidence rate 

Having established a framework in which incidence can be defined, we  must 
now consider methods for its calculation, or rather, for its estimation. The age- 
specific rates are usually calculated from the number of cases observed in the differ- 
ent age groups and from demographic statistics which enable the person-years of 
observation in each age group to be evaluated. Only the justification of the method 
will be given at this stage; the practical details will be left until Chapter 2. 

In the case of a cohort of limited size in which each individual history is known 
and stretches over a long time period, the estimation of the age-specific rate requires 
an exact calculation of the person-years of observation. The estimation would be 
straightforward if the rate were independent of time and if each individual observation 
were complete; this situation is described on page 15. When instead some obser- 
vations are censored, this fact has to be taken into account in the calculation (see 
page 18). The discussion will lead us to explain why the random fluctuations in the 
number of observed cases can be described by the Poisson distribution. 

An approximation useful in descriptive epidemiology 

We saw in formula (1.4) that the crude probability TC of developing cancer be- 
tween age to and age tl depends on the age-specific rate h(u) and the probability 
of surviving without cancer S(u), that is 

In principle, this probability can be easily estimated from data on a population 
with a given date of birth (a birth cohort). In this situation, the birth date is the 
natural time origin for all individuals in the cohort and the variable t is simply their 
age. Therefore, to estimate TC we simply divide the number of cases occurring be- 
tween age to and tl by the initial size of the cohort. However, the survival to age 
to will influence the result more than the value of the age-specific rate between to 
and tl. Thus, this probability is of no use in estimating h(u); in contrast, the condi- 
tional probability nc of having the disease between age to and tl, given that the 
subject was still at risk at age to, is obviously not influenced by survival up until 
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that age and is very little influenced by survival between to and tl i f  this interval is 
short. We can write 

If ti - to is sufficiently small so that h(u) can be considered constant in [to,tl] 
and S(u) roughly equal to S(to) in the interval, then 

zc =: %to) (f 1 - to) 

If on the other hand, nto denotes the number of subjects at risk at to, and k is 

the number of cases observed between to and tl, then the estimate of n, is 

and, therefore, the estimate of h is 

In other words, the instantaneous rate estimated at to is obtained by dividing 
the number of cases observed by the number m of person-years of observation for 
the cohort between to and tl, where m = nto (tl - to),that is 

Formula (1.8), which is simply the application of the definition of h in 
Formula (1 . I )  above, shows that the approximation will not be good if h(u) varies 
sharply within the interval [to, ti] or when a large number of subjects die from other 
causes or are lost to follow-up between to and tl; in this situation, the ratio S(u)/S(to) 
would become too far from unity for the approximation being valid. If there is a 
substantial proportion of censored observations, survival time must be explicitly 
taken into account for each of the nto individuals in the interval [to t,]. In other 

words, the number of person-years of observation appearing in the denominator of 
formula (1.9) must be calculated exactly, by taking into account the date of the end 
of follow-up for each individual. 

In order to understand the procedure to be used when individual observations 
are available, we shall first study the situation where h(u) remains constant and all 
observations are complete. Although this is rarely the case in practice, it will help 
us to understand the more complicated situation where observations may be cen- 
sored. This simple example will also allow the principle of the maximum likelihood 
estimation to be introduced. 

When individual observations are available and complete 

Let tl, t2... tn be the time elapsed between the start of the observation and 
the occurrence of the event under study for a random sample of n individuals subject 
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It is therefore possible to state that this difference will rarely (less than 1 in 
20 times) exceed the critical value 3.84 of a X2 with one degree of freedom. More 
generally using the result (1.15) allows the construction of a (1 - a)% confidence 
interval for ho 

In order to illustrate this method, 20 observations ti of an exponential distribu- 
tion with mean ho = 1 were simulated. The sum of the observations was 
20 

A 
ti = 19.36. Thus = 0.9680 and h = 1.033. Figure 1.4 shows the function 2L(h) in 

i =I 

the neighbourhood of nh and the 95% confidence interval obtained from the above 
method. The quadratic approximation of 2L(h) is also shown on the same graph as 

d~(nh) 
a dotted line. Since ----- - 

dh 
- 0, this approximation may be written according to Taylor's 

formula: 

From this expression, it can be seen that the horizontal line z:,~ units (3.84 

units if a = 0.05) below the maximum of the curve will intersect the dotted line at 
two points defined on the x-axis by: 

This interval provides an approximate (1 - a)% confidence interval for Lo. 

A 
It may in fact be shown that, when n is large, the probability distribution of 

h is normal with mean ho and variance equal to the quantity under the square root 
sign in formula (1.18). This result, which can be generalized to more complex sit- 
uations, will be used later in this book. In the simpler context of the exponential 
distribution presented here, the derivation of (1.13) gives: 

which is equal to -18.74 in the present numerical example. Then: 

which is equal to [0.58 ; 1.491 as shown in Figure 1.4. 

The above method provides a simple means of constructing a confidence in- 
terval for an exponential distribution using a sample of independent observations. 
The negative of the second derivative in (1.19) may be considered as a measure 
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Figure 1.4 Maximum likelihood estimate of a parameter (P) 
and its confidence intervals (CI) 

of the information provided by the sample with respect to the parameter h: the larger 
the information, the more precise the estimate will be. 

When individual observations are available but possibly censored 

Let us now consider a cohort in which n individuals undergo the same force 
of incidence h(u) and the same survival S(u) in the interval of observation 0, t (where 
the origin, 0, represents the beginning of observation, which may be, for example, 
the start of a five-year age interval for subjects born around the same time, see 
Lexis diagram Figure 1 . I ) .  Each individual observation is characterized by the value 
of two variables ti and 6i, where 6i = 1 if  the event has taken place at the time ti 
for individual i, and 6i = 0 if the event has not taken place at the time-point ti when 
individual i ceases to be under observation, either because he has not survived or 
because ti = t, i.e., the subject is alive at the end of observation. 
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If the function h(t) is defined by a finite number of parameters, these can be 
estimated from the sample of observations by choosing as previously values for the 
parameters which maximize their likelihood. Although the principle is the same, the 
situation becomes more complicated because of the presence of censored obser- 
vations. The random variable (T,6) does not have a probability density, therefore the 
density of complete observations (6i = 1 )  and that of censored observations (6 = 0) 
should be written separately. 

When = 1 ,  the contribution of the individual to the likelihood is given by formula 

( I  .4), 

P(ti < T < ti + dt, 6 = 1) h(ti) S(ti) dt 

When 6i = 0, the contribution is: 

P(ti < T < ti + dt, 6 = 0) = c(ti) S(ti) dt, 

where c(u) is the analogue of h(u) for censored observations. 

Thus, the likelihood may be written 

where S(t) is the probability of still being followed up at time t without the event 
having occurred. Writing this probability as a function of incidence and censoring 
rates, we have 

t 
where C(t) = c(u) du 

0 

If the mechanism which leads to censored observations is independent of in- 
cidence, c(t) does not depend on the parameters that determine h(t). To maximize 
V with respect to these parameters, we can therefore ignore the last two factors. 
In fact the contribution of a censored observation to the likelihood becomes the 
probability that T is greater than ti in the absence of risks other than the one under 
consideration. Therefore, the logarithm of the function to be maximized is 

L(h) = Log d t i )  h(til6i 
[i: ] 
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As an example, if h(t) is constant, this function becomes 

n 

L(h) =- h C ti + k LO@) = - hm + k Log (h) (1.23) 
i=l 

n n 

where k = C  Zi is the number of events observed in the interval [O,t], and m = ti 
i=l I 

is now the exact number of person-years of observation of the cohort within the 
interval [O,t]. The quantity m may also be written n f  where T is the mean duration 
of observation. 

The function reaches a maximum for 

The comparison of formulae (1.9), (1.14) and (1.24) shows that the principle 
governing the estimation of h is unique. The only variation is in the way in which 
the mean observation time is calculated. Furthermore, as above, the precision of 
A 
h obtained from the second derivative of the likelihood (1.23) is: 

At this point, it should be noted that the function to be maximized in formula 
(1.23) is, to within a constant, the logarithm of the likelihood of a single observation 
k having a Poisson distribution with parameter hm: 

where M(k,m) = - Log(k!) + k Log(m) refers to all the constant terms independent 
of h. 

Consequently, when estimating an instantaneous rate, although the numerator 
and denominator are both random variables, we are led to the same estimation 
procedure as if the numerator alone were random and followed a Poisson distribu- 
tion. Therefore, the precision of the estimate of the incidence (or mortality) rate is 
judged exclusively from the variability of the numerator described by a Poisson dis- 
tribution. We will use this equivalence throughout Chapter 2. The distribution of k 
is actually more complicated; however, there are no disadvantages and many bene- 
fits in making this approximation as long as the analytical methods are based on 
the likelihood. It is often stated that the true distribution of k is binomial; this would 



STATISTICAL CONCEPTS IN SURVIVAL ANALYSIS 21 

only be the case if each of n individuals exposed to a given constant risk where 
observed for the same duration t defined a priori (see formula (1.9)). In this situation, 
the probability that the event (disease or death) occurs in a given-individual would 
be R(t) = 1 - e-" (see formula (1.10)) and the number of observed events would 
follow the binomial law with parameters n and R(t). Actually, when R(t) is small, this 
distribution is close to the Poisson distribution of parameter n ( l  - e-lt) = nht = Am. 
However, the argument for the binomial law has little weight in practice since the 
contribution of the individuals to person-years is random and varies widely from 
subject to subject. We shall therefore consider that the Poisson distribution is the 
best compromise to describe the random fluctuation of the number of cases and 
that it remains adequate as long as the number of events (k) is small compared to 
the number of individuals at risk (n). 

In practice, formula (1.24) is mainly used in cohort studies [ I l l ,  since its use 
requires knowing the time ti for each individual in the population under study. This 
information is available in a survival study and the terminology traditionally used in  
this context will be presented in the following sections. 

Conversely, in a descriptive study, individual dates are never available and, as 
we have previously stated, the denominators of the age-specific rates must be esti- 
mated from demographic data. The most simple method of calculation is to multiply, 
for each age group x, the number of individuals recorded at the mid-point of the 
case-registration interval, by the number of years in the interval. If the local statistical 
office provides annual population data, the calculation of the denominators can b e  
made in a way which is more precise. If we know the number of cases k, which 
arise in the age group x during the year t and the total number of individuals nx(t) 
in the age group on the 1st January of the years t and t + 1, then we can estimate 
h, by using the average of these two totals for the number of years lived during 
the year t by the individuals in the groups: 

When the cases have been recorded between 1 January of year t and 31 
December of year t + h, the sum of the annual average totals (the denominator of 
(1.26)) can be used to estimate the years lived for the period (see also page 27). 

Statistical concepts in survival analysis 

Follow-up studies 

In the preceding section, basic principles for the analysis of event occurrence 
in the presence of censoring were discussed. These principles were illustrated by 
the examples of incidence or mortality where time is explicitly accounted for only in  
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the form of age. In this context, the observation of a large number of individuals 
over a short period is the basis for the analysis, but it could also involve a cohort 
in which the individual follow-up extends over several decades; therefore the ageing 
of the individuals is the principal factor which modifies the instantaneous rate of 
occurrence of the event under study. In survival studies, on the other hand, the rate 
is suddenly modified by the occurrence of the disease and tends to return to normal 
as the time since diagnosis increases; age becomes simply a covariable which can 
if necessary be taken into account in comparisons of the survival of several groups. 
Despite the similarities of the underlying principles, each of these situations has 
generated its own terminology and sometimes requires specific approaches; those 
used in the framework of survival studies will be reviewed below. 

There are three fundamental notions on which the calculation of survival de- 
pends. The first is the group (or cohort), defined by a common event whose date 
marks the beginning of the observation period. In the context of cancer epidemiology, 
this date is usually the time when the risk of death is considered to be increased 
by the existence of the tumour, that is, the date of diagnosis. In clinical trials, as a 
general rule the point chosen is the date of randomization when the force of mortality 
should start to decrease as a result of treatment. 

The second notion is the follow-up of each of the individuals in the cohort, 
from the date of the common event which defines the cohort; this procedure enables 
the status (living or deceased) of cohort members to be ascertained. It ensures in 
particular that those for whom death has not been notified are still living and under 
observation. 

Finally, we require the follow-up time of each subject, defined as the time 
between the date of the common event characterizing the cohort and the date at 
which observation ends (the variable T of page 12). There are three ways in which 
observation of a subject ceases: by death; by the subject's being lost to follow-up, 
in which case the end of observation is considered to be the date of the last infor- 
mation on vital status; and by withdrawal from the follow-up of patients who have 
been diagnosed recently and therefore have a duration of observation shorter than 
the maximum time for which survival probability will be calculated. 

Any observation that terminates by death is a complete observation. All others 
are censored observations. Two further terms will be defined. A closed group con- 
sists of a group of individuals in which there are only complete observations. An 
open group is a group where observations may be incomplete. In practice, it is rare 
to find a closed group except in the artificial situation of the construction of a life 
table. In most real situations, the group is open because there are subjects either 
lost to follow-up or withdrawn from follow-up. 

When only one cause of mortality is taken into consideration, the group should 
also be treated as an open group. Observations which are interrupted by death from 
other causes can in fact be considered, under certain conditions, in the same way 
as other censored observations. 

A further possibility which would imply an open group is the entry into the 
study of subjects subsequent to the occurrence of the disease which characterizes 
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the cohort. Such patients are by definition those who have survived at least up to 
their date of entry; their inclusion in the cohort would clearly lead to an overesti- 
mation of survival if this possible bias is not appropriately taken into consideration. 
In fact, the situation of a study cohort that accepts such subjects after the original 
group has been defined is rather uncommon and will not be considered further here. 

In Chapter 4, we will discuss in detail different methods of follow-up which are 
being used at present in cancer registries. 

Survival probability 

If the group is closed, survival at time-point t can be calculated directly by the 
ratio between the total number of living subjects at time-point t and the original 
number of subjects, that is, nilno. In this context, the probability of survival has been 
termed direct survival probability. In this situation, survival can be estimated by the 
above ratio, and the statistical precision of this estimate can be assessed by noting 
that the numerator nt obeys a binomial probability distribution law with index no, 
size of the cohort, and parameter S(t), survival probability at time t. 

In practice, as previously explained, it is rare to find a closed group for several 
reasons. Diagnoses occur gradually over time and information brought to the study 
by cases which recently join the study is useful. Alternatively, there may be a number 
of subjects lost to the study whose observations could contribute to the final analysis. 
In these circumstances, survival probability can only be properly estimated by util- 
izing the idea of instantaneous rate. An alternative approach, especially appropriate 
in dealing with discrete data, is based on the concept of conditional probabilities of 
death. 

If s(t) is the conditional probability that the subject is living at date t + At, given 
that he or she was living at t, then the probability that this subject is living at date 
t + At is 

S(t + At) = S(t) s(t) 

Therefore, the calculation of survival depends on dividing the observation time 
into successive intervals (0, t,, t2... tk), and on making a separate calculation of the 
conditional probabilities s(ti) for each one of them. 

If we know for each interval [tj, ti+,] the number of subjects nt, who are at risk 

at the beginning of the interval t,, as well as the number of deaths dt occurring in 

the interval, we can estimate the values of s(tj) by 1 - dt, /nt,, and, from them, we 

can deduce S(t,+,) for successive intervals. Thus the probability of surviving until 
the end of the ith interval is 

with to = 0. 
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The actuarial method and the Kaplan-Meier method described in detail in Chap- 
ter 4 are both based on this principle. These two methods actually differ only in the 
definition of the intervals used for calculating s(tj). The choice of intervals is linked 
to the assumption that we make about the instantaneous death rate. For the actuarial 
method, we assume that the instantaneous rate is constant in the intervals which 
are defined a priori; in the second situation, no assumption is made about the in- 
stantaneous rate, which leads us to assume that it is zero in the interval between 
two deaths; the dates of death are then the end-points of the intervals (Kaplan-Meier 
method). 

Suppose that h is constant in the interval (t, t + At) and that dt deaths have 
been observed among nt subjects under observation at time t. Then the estimate 

A dt of the instantaneous rate is h = - where mt is the number of person-years of survival 
m t 

of the nt subjects in the interval (see (1.24)). If we assume that dt deceased in- 
dividuals and rt subjects with censored observations had been living on average for 
half of the interval, the estimate of h is 

where 

Therefore, we make the calculation as if Nt subjects were at risk at the begin- 
ning of the interval and that dt deaths were observed among them. The probability 
of death is then 

The above formula (1.31) which links rate and probability has been used in 
the context of the construction of the life table (see page 26). The assumption that 
h(t) = h remains constant in the interval should in fact imply 

A 
q t = l  -e- t ~ t  (1.32) 

The expressions (1.31) and (1.32) differ only by a term of the order of 
which is usually negligible. 

In the actuarial method, it is the number Nt (effective number at risk), which 
is used as the denominator to calculate the probability of death. Therefore, the 
survival probability is calculated at the end of each interval by the formula 
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and, furthermore, by using the approximation 

in each interval, the function is linear between t and t + At. 

The Kaplan-Meier method is much simpler as no assumption is made about h; 
the dates of death are now the only information available to estimate the survival 
probability and it cannot be excluded that h is zero in the interval between two 
deaths. Accordingly, survival probability is estimated as constant between two 
deaths. In other words, if all the dates of death are distinct and i f  ti and ti+l are the 
dates of two successive deaths, survival probability just after ti+l is 

where ni+l = ni - 1 - ri is the number of subjects remaining under observation just 
before ti+1 if ri observations are censored between ti and ti+l (inclusive); function S 
is now constant between ti and ti+l and changes its value at the time of each death. 
Furthermore, it can be shown that S is the maximum likelihood estimate of theoretical 
survival. In practice, if several deaths occur on the same date, we use the formula 

where di+, is the number of deaths observed on date ti+,, and n i + ~  = n. I - d. I - r. I- 

When censoring and death occur at the same time, it is considered that death occurs 
first; in other words, the censored observations at time ti+l are counted in the de- 
nominator ni+, . 

Note that, in the actuarial method, the exact dates of death or loss to follow-up 
are not necessarily needed in the calculation; in fact, it is sufficient to know the 
subjects' status at the limits of the intervals. In the Kaplan-Meier method, the date 
of each death needs to be known but not the dates when subjects are censored, 
as only the number of censored observations between two deaths plays a role in 
the calculation. 

Theoretically, the actuarial method could be improved if the exact dates of 
death and censoring were known; this information would enable the exact computa- 
tion of the person-years of observation mj in each interval [tj,tj+l] to be carried out. 
If the death rate is constant in each interval and if Atj is the length of the interval 
[tj, tj+l], survival would be estimated by the function 

The argument of the exponential is the estimate of the cumulative rate, which 
we defined above (see page 13); each dj/mj is the estimate of the instantaneous 
rate in the interval [tj, tj+,]. 
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If dj is the number of deaths from a given cause, all the methods estimate the 
net probability of survival from this cause, to the extent that risks which are related 
to other causes are independent. In practice, the possibility-of estimating this proba- 
bility presents several problems which will be discussed in Chapter 4; in particular, 
in the situation which arises when we are interested in deaths due to the disease 
under study among individuals diagnosed with the disease. The related concept of 
competing risk will be discussed on page 34 after we have introduced the necessary 
tools to construct a life table for a given population and discussed a few classical 
models for survival distributions (see page 29). 

The life table 

The life table is an example of calculating survival in a closed group. It de- 
scribes, for each sex, the survival of a fictitious cohort of new-borns from one birth- 
day to the next up until the complete extinction of the group, under the hypothesis 
that it is subject to the force of mortality of the population for which the table is 
constructed. As only one risk is operating, the group is closed, that is, subjects 
cannot leave the group for other reasons (such as departures or loss to follow-up); 
likewise, the group is closed to new entries (new arrivals) and the total number of 
subjects at each birthday is consequently the same as the number of surviving 
subjects at the preceding birthday minus the deaths which have occurred between 
the two birthdays. 

The construction of the table is based on mortality rates by age; the rates are 
calculated from counts of deaths and census results, which explains why most of 
the tables refer to a period around the census date. The annual mortality rate is in 
fact often calculated over several calendar years in order to avoid large random 
fluctuations. 

The table is built from a fictitious cohort whose initial total membership is ar- 
bitrarily fixed at 100 000 or 10 000 individuals (the radix of the table); it gives the 
number of surviving individuals at each birthday until a terminal age w at which, by 
convention, all members of the cohort have died (i.e., the number of cohort survivors 
at age w + 1 is zero). 

The following terms, referred to as biometric functions, describe the principal 
information which is tabulated on a life table (see Appendix 1) 

x (column 1) indicates -the beginning of the age interval, that is, birth and then 
successive birthdays. For most tables, x is used for males and y for females. 

6, (column 2) is the proportion of individuals who die during the interval out of 

those who were living at the beginning of this interval. This proportion is the estimate 
of the probability of dying in the interval; it is obtained from vital statistics as de- 
scribed in (1.42). In the Swiss table given in Appendix I, 425=0.001532 is the pro- 
portion of those who died between their 25th and 26th birthdays. 
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A A 
a The quantity px = 1 - q, is the estimate of the conditional probability of survival 
between x and x + 1 given that the subject was alive at age x (column 3). 

i\h, (column 4) is the estimate of the mortality rate (see page 12): 

4, (column 5) is the number of survivors at the xth birthday, when the mortality 
at each age is defined by the series q,. The series ex is called the survivor function. 
For example, the cohort of I 0 0  000 births still includes e25 = 97 155 survivors at the 
25th birthday; the probability of survival which corresponds to this age is equal to 
0.97155. As the group is closed, the probability of survival between x and x + h is  
given by the ratio of the number of survivors at these two birthdays: 

L, (which is not shown in the Table in Appendix 1) denotes the total number of 
years lived by the members of the cohort between x and x + 1 (the person-years), 
taking account of the fraction of years lived by those who died between the two 
birthdays. If the ages at death are spread uniformly over the interval, it may be 
written 

showing that L, is equal to the average number of individuals of age x. 

d, (column 6) is the number of deaths which occurred in the cohort between age 
x and age x + 1. 

0 
ex (column 7) is the life expectancy (or average number of remaining years of 

life) at the beginning of each age interval, that is, at each birthday x. (The O symbol 
above e indicates that deaths occurring at age x did not take place on the day of 
the xth birthday but, on average, between birthdays). Life expectancy is calculated 
by adding the remaining years of life of the ex survivors up to the terminal age of 
the table (age w) and by dividing this total by ex: 

From formula (1.38), we obtain 

where ex is obtained directly from the survivor function ex. 
From the table in Appendix 1, the life expectancy on the day of the 25th birth- 

day is 
0 
e 2 ~  = 49.28 years 
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From the preceding definitions, the estimate of the mortality rate at age x is 

The equation is classically used to pass from the annual observed mortality 
rate to the annual probability of death on which the table is based. However, some 
authors prefer to calculate the annual probability of death directly without first esti- 
mating h,. This latter parameter is in fact obtained from tx using ( 1 . 4 1 ) ~  In this 

approach, the estimate of 8, is obtained by dividing the number of deaths at age x 
observed in a given birth cohort by the number of persons at risk at the beginning 
of year t. 

Figure 1 . 5  presents the various elements required to calculate the annual 
probability of death on a Lexis diagram where d't is the number of deaths which 

have taken place in year t, and drft+, is the number of deaths which have taken 
place in year t + 1  in a cohort whose members have their xth birthday in year t; 
n,(t + 1 )  is the number of persons of age x in the population alive on 1  January of 
year t + 1.  

In published tables, probabilities of death are usually smoothed, by using 
various analytical and graphical procedures, in order to attenuate the effect of ran- 
dom fluctuation [I 21. 

Age  x+ 1 

Age x 

Figure 1.5 Representation of the data needed 
for the calculation of the annual probability of death on a Lexis diagram 

In the life table provided in Appendix 1 ,  this formula gives a result which is correct only up 
to the first two decimal places as the published results have been smoothed. 
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National or regional tables made by statistical bureaux consider mortality over 
a short period of time (current life table), that is, as it is observed at a given time 
(or over one short period) across a range of ages. Mortality at various ages is 
estimated from different birth cohorts and the table which is constructed in this way 
thus refers to a fictitious force of mortality made up of the mortality experience of 
several successive birth cohorts. Cohort life tables can sometimes be constructed 
retrospectively; they describe the actual mortality experience for successive ages of 
a given birth cohort by combining the mortality information from several censuses. 
In the calculation of expected survival of a cohort which is followed for a relatively 
long time, the change of mortality of the general population must be taken into 
consideration. It is then advisable to apply the proper mortality rate to the different 
cohorts instead of using the cross-sectional force of mortality. 

Classical models for survival distribution 

It was seen on page that a survival distribution may be completely specified 
by the instantaneous mortality rate. There are several families of distributions which 
have played an important role in medical applications and whose definition depends 
on a parametric expression of h(t). Two of these families lead to a simple expression 
for the survival distribution S(t): 

The Weibull distribution, for which 

The log-logistic distribution for which 

It is simple to estimate the parameters 8 and a that define respectively the scale 
and the shape of the survival distribution by using the maximum likelihood method. 
The log-likelihood may be written 

Note that the exponential distribution discussed on page 16 is a particular case 
of the Weibull distribution with a = 1. In fact, h(t;1,8)= 8 and S(t)= e-". The Weibull 
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hazard rate may also be used to describe cancer incidence rate and could in par- 
ticular be used in the framework of the multistage theory of carcinogenesis. In this 
context, a would be the number of stages needed for a cetl to become malignant. 
The Weibull distribution is in fact the paradigmatic survival distribution and the 
starting point for the definition of more complex models which include prognostic 
factors z = (zl, ... z,). 

First, by writing p = -Log(O) and o = l l a ,  it can be shown that the logarithm 
of survival duration Y = Log(T) is p + OW, where W has the same distribution as 
the minimum of a sample of continuous variables (extreme value distribution [13]). 
An analogous property holds for the log-logistic distribution, with W having in this 
case a distribution defined by the logistic probability density ew/(l + eW)'. A natural 
extension is to model the expectation p of Log(T) with a linear function of the prog- 
nostic factors z (p = Pz). This model supposes that the factors z act on survival by 
multiplying (or dividing) the mean duration of survival by a constant (ePZ). 

A second approach more commonly used in medical applications starts from 
the observation that the hazard rates defined by the Weibull family are proportional. 
Writing p = Oa, the hazard rate of the Weibull distribution becomes 

Considering that each prognostic factor acts on the instantaneous rate by mul- 
tiplying (or dividing) it by a constant (p = ePZ), we obtain an example of a propor- 

a-1 pz tional rates model h(t) = at e . The most general model of this class is the Cox 
model [I41 defined by the relation 

where hO(t) is left unspecified. 

Estimation of the parameter vector f3 in the model (1.46) is made difficult by 
the presence in its equation of the arbitrary function ho(t). The likelihood of the 
observations given by formula (1.22) depends explicitly on ho and is impossible to 
maximize without parameterizing ho(t). However, as one of the goals of the Cox 
method is to specifically avoid such a parametric distribution, this approach would 
not be satisfactory. Full mathematical development of the likelihood function under 
the Cox model is beyond the scope of this text. It is however useful to understand 
the principles underlying its development in simple situations. In the framework of 
this model, only the ranks of the observed survival times are informative for the 
estimation of P: as the rate ho(t) is a priori an arbitrary function, it could b e  zero 
between two deaths. Another set of values of survival times with the same rank 
order should provide the same estimate of P. More precisely, it is simple to check 
that a change in time scale defined by a monotonic function .r = u-'(t) would give 
survival time zi with a distribution specified by the same model. The background 
hazard rate would simply be replaced by ho[u(~)u'(.r;)]. As a result, the estimate of 
p will be the vector of numerical values which maximize the probability that the 
ranks of the survival time are as observed. 
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Consider first two complete observations tl and t2 for which z equals u and v 
respectively. The probability that the death of the subject having covariate value u 
comes first is - 

This intuitive result can be checked from the joint probability distribution of 
tl,t2. This principle may be generalized easily to m complete observations. If ui ... um 
are the values of z for the m - i + 1 subjects still alive just before the ith death, 
the probability that the death of the subject with covariate value ui comes first is 
given by 

The extension of this approach to n observations among which n - m are cen- 
sored leads to the likelihood 

V(P) = Pr[(tl< ... 4,) and (ti < censored observations in ti, ti+l ; 15  i I m)] 

that is 

where 

i indexes the m dates of death ti ranked in increasing order; 

ui is the covariate value of the subject who died at time ti; and 

Ri is the set of subjects still at risk at time ti of the ith death. 

The log-likelihood is 

A 

The estimate of P is the value P which maximizes L(P), obtained by equating 
to zero its derivatives with respect to the coordinates Pk of p: 

where 
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is the average of the covariate values of the subjects still at risk just before time ti 
weighted by their respective relative rates. Ck is known as the score function and 
is used to construct the score test described below. 

The observed information matrix having as elements the negative of the second 
derivatives of the log-likelihood L(P) (see page 17) 

where 

will be used to carry out the maximization using the Newton-Raphson method. This 
algorithm cnonstructs a sequence of p values which lead by successive iterations to 
the value p where C(P) = 0:  

This method is used by most computer programs, yhich estimate the Cox 
model. The inverse of the observed information matrix I-'(P) provides an estimate 
of the covariance matrix of the maximum likelihood estimates of the parameter vec- 
tor p. 

The application of these principles leads to unmanageable formulae w h e n  the 
number of deaths di occurring at time ti exceeds more than a few. The likelihood 
may then be approximated [I51 by 

where : 

m e Psi 
vcp, = n 

'=I / c e ~ u i  jdi 

is the sum of the covariate values of the di subjects dying at date ti. Expressions 
(1.49) (1.50) and (1 52)  then become 
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It is worth noting that the above approximation may be obtained directly from 
the assumption that the hazard function is constant within intervals, as is the case 
with the actuarial method. The estimation of the nuisance parameters hi, 1 I i r m 
and their substitution in the likelihood lead to (1.54) [16]. 

Several tests for comparison of survival distributions may then be obtained 
from the likelihood or from the score function [17]. The practical aspects of these 
methods are described in detail in Chapter 4. Here, we simply note that the test of 
the hypothesis p = 0 by the likelihood ratio test is based on the statistic 

which has a X2 distribution with r degrees of freedom, dimension of p, under the 
null hypothesis P = 0. The score test is based on the evaluation of the score function 
at p = 0 which should be close to zero under the null hypothesis since, at the true 
value of p ,  the derivative of L should be close to zero, its value at the maximum 
likelihood estimate. After standardization by its variance, the score statistic is written 

and also has a X2 distribution with r degrees f f  freedom under the null hypothesis. 
The Wald test is based on the evaluation of P itself which should be close to zero 
under the null hypothesis. After standardization by its variance, we obtain the statis- 
tic 

A A 

T3 = @ I 0' (1.61) 

which also has the X2 distribution with r degrees of freedom under the null hypothe- 
sis. 

Similar tests exist when the null hypothesis does not completely specify the 
value of p. In this context the null hypothesis is usually defined by one or several 
constraints on the coordinates of p (e.g., pi = 0). TI and T2 are then calculated b y  
replacing zero in (1.59) and (1.60) by the maximum likelihood estimate of j3 under 
the null hypothesis. When the null hypothesis specifies that some coordinates of P 
are zero, this approach is equivalent to setting the other coordinates to their max- 
imum likelihood estimates under the null hypothesis. In this case, the test Tg is 
restricted to the coordinates being tested. The number of degrees of freedom of 
these three tests is equal to the number of coordinates of p which specify the null 
hypothesis. Applications of this methodology are presented in Chapter 4, page 268. 
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In the preceding discussion, we have concentrated on the properties of the 
proportional hazards model which enable group comparisons to be carried out. In 
other words, the problem of estimating f3 has been seen as more important by 
considering lo as a nuisance function. In practice, it is often necessary to provide 
an estimate of the survival distribution for some given value of the covariate z .  The 
same principle as used previously for the Kaplan-Meier procedure (1.34) may be 
used here, taking into account the fact that the subjects are not at the same risk 
of death at the time when one of them dies. For a subject with covariate zi, this 

A 
risk is characterized by the relative rate of mortality aj = e 4 where P is the maiimum 
likelihood estimate of f3. Thus, in estimating ho(ti), each subject at risk at that time 
will account for Bj units instead of one. Therefore the cumulative rate and survival 
distribution will be given by: 

The estimate of the survival distribution for a given value of z is then obtained 
from the fact that the hazard rates are proportional. Therefore 

Interactive risks 

Competing risks 

We can see from the preceding sections that it is relatively simple to estimate 
the distribution of survival times while taking account of information provided by 
incomplete or censored observations. The method which has been discussed de- 
pends on the assumption of independence between risk of death and the mechanism 
which leads to censored observations. In Chapter 4, we will discuss situations in 
which this assumption can be questioned, most notably when not all the members 
of the cohort are followed up in the same way. However, the assumption is usually 
quite reasonable. In fact, the survival time which corresponds to z x::it3drawal is 
clearly defined. It could be observed by prolonging the study; it would then be 
possible to check statistically that censored observations are not associated with 
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either longer or shorter survival times, or equivalently, that survival does not change 
with time of diagnosis. 

The problem presents itself in different terms when our aim-is no longer to 
measure overall mortality but to establish the impact of a specific cause of death, 
usually corresponding to the diagnosis by which the cohort is defined. Therefore, 
we should consider that the individuals under observation are subject to other risks 
of death besides the one which forms the basis of the study. Since the realization 
of one of the risks excludes the possibility of the realization of the others, the risks 
are then said to be competing. It is tempting to consider deaths due to other causes 
as censored observations; survival related to the cause under study could then be  
estimated by simply using the method described earlier. Discussion of the practical 
problems raised by this approach will be left until Chapter 4; in this section we will 
treat succinctly the theoretical aspects of competing risks and problems raised by  
the definition and especially by the evaluation of the independence of risks. 

The crude probability of death from a given cause is the probability of death 
from this cause in the presence of other risks. 

The net probability is the probability of death from the given cause when all 
other risks of death have been eliminated. 

The partial crude probability is defined as the probability of death from a given 
cause when the potential effects of another cause (or group of causes) are elimi- 
nated. 

The third concept is obviously crucial to competing risk theory. Its recognition 
probably goes back to the controversy over the efficiency of the smallpox vaccina- 
tion; in 1760, Bernouilli [18], d'Alembert [ I  91 and other authors were each attempting 
to evaluate the consequences of eliminating the risk of death from smallpox on the 
composition and life expectancy of the population. Today, it is relatively straightfor- 
ward to construct life tables based on probabilities of death after a cause has been 
eliminated, in order to estimate the cause's impact on life expectancy [20]. For 
example, it has been calculated that, if mortality from cancer (all sites combined) 
was totally eliminated, the consequent lengthening of the expectation of life would 
be about two years. However, these statistics only tell part of the truth: the improve- 
ment in survival for patients who suffer from the disease is much more significant 
both qualitatively and quantitatively. Our goal is to define the survival probability as  
a measure of the consequence of a specific disease. This concept corresponds 
better to the net probability, that is, the survival probability from cancer in the ab- 
sence of mortality from other causes. 

The data which are generally available for the study of mortality by cause can 
be summarized by the three variables T, A and z, where T is survival time, A the 
indicator of the cause and z the vector of covariables which influence the risk of 
death. A varies between 1 and m + 1 when m causes of death are studied and the 
number m + 1 indicates withdrawals other than those due to death. If the with- 
drawals are independent of death, the same argument that was used on page 19  
shows that the contribution of observation ti, Zi of subject i to the likelihood may b e  
written 
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hj(ti, Zi) S(ti, zi) if death resulted from the jth cause, 

S(ti,Zi) if the observation is censored at ti, 

where 

m 

- c A, (ti, Zi) S (ti, ~ i )  = e i=l 

formulae in which hj and Aj are the instantaneous and cumulative rates of death for 
the jth cause. The likelihood is thus a product of m terms of the form 

where 6j = 1 if death results from the jth cause (A = j) and tij = 0 otherwise (A # j); 
each of these terms represents the likelihood which would be obtained in the study 
of the jth cause of death if all deaths from other causes could be considered to be 
independent censored observations. 

From this discussion it is clear that the methods previously described for esti- 
mating h and assessing the effect of covariates z on mortality are appropriate in 
the presence of competing risks. It is also clear that they are describing a particular 
risk of mortality within a complex of risk interactions, rather than the risk that would 
prevail if one or several causes of mortality were eliminated. It was previously stated 
that it is generally valid to assume that the instantaneous rate of death observed 
in the presence of censored observations is that which would prevail if the censored 
observations were eliminated (or completed). However, this assumption may well be 
questionable when a specific cause of death is being studied in the presence of 
other risks of death. Indeed, it is very likely that the removal of one cause of death 
would have noticeable consequences for the risk of death from one or several other 
causes. We should remember that some individuals can be subject to increased risk 
of death from several diseases, either because the diseases have similar etiology 
or because they are linked to the same innate susceptibility. When one of these 
diseases tends to occur earlier in life or to be associated with a shorter survival 
probability, it will more often be the cause of death. Any action taken to eliminate 
one disease or to reduce its associated mortality will tend, therefore, to modify the 
instantaneous mortality rate of associated competing diseases. For example, it has 
been suggested that coal miners who survived pneumoconiosis were subject to a 
reduced risk of lung cancer, as a result of the selection of the most resistant. If this 
assumption is true, an improvement in the treatment for pneumoconiosis resulting 
in better survival could lead to an increase in the lung cancer mortality rate. On the 
other hand, a measure aimed at reducing exposure to coal dusts might result in a 
decrease in the two risks under consideration. 

This example shows that the probabilities of death that are calculated in a 
given context of risk interaction need not correspond to the instantaneous rates 
which would prevail i f  other causes of death were eliminated; it also shows that the 
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direction of the interaction between risks can be modified by the intervention used 
on one of the risks. 

In practice, the existence of a statistical link between competing risks is difficult 
to identify, and the strength of a link is hard to measure. Independence of risks 
cannot be verified simply from survival data, since, by definition, the occurrence of 
death from cause j excludes the possibility of death from all other causes. In fact, 
data of the type (T, A, z) do not contain the information necessary to assess risk 
interaction. Moreover, it has been shown that, for a given set of such observations, 
a compatible model of independent risks can always be constructed [21-231. Some 
empirical models have been proposed to assess the interaction between risks of 
death using additional information such as concomitant causes of death [24]. It is 
however possible that the concomitant causes of death have a direct link with the 
disease primarily responsible for death or are a consequence of its diagnosis or 
treatment. In such a situation, information on concomitant causes is of little use in 
assessing risk dependence and may even lead to a biased evaluation. So far, these 
models have not proved to be usable. By definition, there is absolutely no information 
which could allow the correct estimation of the joint distribution of potential survival 
times for multiple causes. Consequently, the formal specification of this joint dis- 
tribution cannot be verified and is therefore of little practical value. 

For lack of a better alternative, we therefore restrict our discussion to the net 
probabilities of mortality (and consequently the net survival) with respect to a given 
environment of risks, while remaining aware of the limitations in their interpretation 
(see Chapter 4). These difficulties probably explain why life tables routinely pub- 
lished by official statistical services only rarely present net probabilities, and gener- 
ally restrict themselves to crude probabilities by cause or group of causes. 

Relationship between incidence, mortality, survival and prevalence 

The most widely available information describing the risk of cancer as a func- 
tion of space and time are age- and sex-specific mortality statistics. In many coun- 
tries, these data have been recorded systematically over long time periods for most 
cancer sites. In some countries, they may even be available for small geographical 
areas such as census or administrative districts. However, mortality data are 
frequently of uneven quality and inadequate for the descriptive study of site-specific 
cancer occurrence. 

Information on cancer incidence is provided by the number of new cases of 
cancer occurring each year, and is generally available from cancer registries. This 
information is much more reliable than mortality statistics but, except for Nordic 
countries, it is limited in space and time. Cancer registries may also have information 
on survival of cancer patients when they have established routine procedures of 
follow-up (see Chapter 4). Thus, in a region where cancer incidence is recorded, it 
is possible to estimate the empirical relation which links incidence, mortality and 
survival and then use this observed relation to estimate cancer incidence in regions 
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where cancer registries do not exist [25-281. The goal of the present section is to 
give some insight into the theoretical relationships which link incidence, mortality 
and survival and to assess the feasibility of estimating one of them from the other 
two. 

This discussion will also introduce the concept of prevalence, the number (or 
proportion) of subjects with a specific condition in a population at a given time. This 
measure of disease frequency depends on incidence and duration of disease, that 
is, on survival probability, in the case of a 'non reversible' disease such as cancer, 
for which an incident case is considered prevalent up to death, even if treatment is 
effective. In contrast to incidence, which is a concept with a natural link to age and 
therefore logically described in the context of birth cohorts, prevalence is related to 
the time period of observation. Incidence is better assessed in a longitudinal study, 
whereas prevalence is measured on a cross-sectional basis. For this reason, the 
relations between incidence, survival and prevalence are simple only in stationary 
populations in which longitudinal and cross-sectional measures are identical. In this 
section, the meaning of the term 'stationary' will be explained and the usage of the 
relationship 'prevalence is the product of incidence and the duration of the disease' 
will be discussed. 

Although it is rarely estimated in cancer registries, prevalence is important to 
public health planning. When incidence data are not systematically recorded (as for 
HIV and diabetes), it is often from prevalence surveys that incidence will be esti- 
mated. 

In order to understand the relationships between these concepts, a fictitious 
cohort of size to born in year t = uo and subject to cancer incidence rate A,,, is 
described in Table 1.4. We assume that the number of years Ly lived without cancer 
by each individual of the cohort is known for each age y. 

In the absence of migration, the number of cancer deaths at age x occurring 
in year t = uo + x among incident cases in the cohort is given by the formula 

where S,(x) is the probability that a subject diagnosed at age y survives to age x; 

S,, x -  - - S x + - is then the probability that death occurs at age x. Similarly i :'i y i  $1 
( j ( j 

the cases of age x prevalent in the population during year t = uo + x come from 
the cohort born in year uo. Their number is given by the formula 

which shows that they are calculated from the cases in the cohort diagnosed before 
age x and still surviving at age x. 
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Table 1.4 Incident cases, deaths and prevalent cases 

Age Time period 

If 4, is equal to 100 000, the figures are obtained per 100 000 births in year 
uo. The numbers of deaths and cases (incident or prevalent) actually observed are 
obtained by multiplying the figures in Table 1.4 by the actual number of births B(uo) 
in year uo. 

The figures in column uo + x of Table 1.4 are generated by successive birth 
cohorts and depend on factors which change with time, either period- or cohort-wise. 
Most often, survival probability changes with period, whereas age-specific incidence 
depends substantially on birth cohort. Each line in column uo + x must therefore be 
calculated from the parameters Ly, hy and Sy(x) by taking their evolution over time 
into account. 

The prevalence at age x or age-specific prevalence is the proportion 
nx(t) 

Px(~> = p where tX(t) is the number of survivors at time t among the individuals 
4x0) 

of the cohort born in uo. This figure depends only on the risk environment ex- 
perienced by this cohort up to age x while the overall prevalence depends on the 
experience of several successive cohorts: 

where each term in the above sums is generated by different birth cohorts for each 
of the g age groups. 
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A deeper understanding of the relationship linking the survival, incidence and 
prevalence requires more detailed modelling which involves explicit mathematical 
definitions. Let 

- 

h(t,x) be the incidence rate at age x and time t for the disease under study, 

p(t,x) be the mortality rate at age x from causes other than the disease, for in- 
dividuals without the disease, 

vY(t,x) be the mortality rate at age x of patients diagnosed with the disease at 
age y and time t, 

P(u) be the average annual number of births, considered to be a Poisson process 
and depending on year u. 

It is then possible to write formulae similar to (1.65) and (1.66) as well as 
formulae for the number of individuals with and without a particular health condition 
living in the population at time t. 

The probability of being alive and free of cancer at age x and time t for an 
individual born in year u = t - x can be written 

This expression shows that to be alive and without cancer, an individual must 
escape both the force of cancer incidence and the force of mortality in the interval 
between birth and age x. Therefore, the number of individuals of age x without 
cancer at time t is on average 

In the same way, the probability that an individual with cancer is alive at age 
x and time t may be written 

where : 

is the probability of surviving up to age x when diagnosed at time u+y and age y. 
The number of individuals of age x who have been diagnosed with the disease in 
the population is therefore at time t 

The prevalence p(t), the proportion of individuals with the disease living in the 
population at time t, is then obtained in a simple way from the ratio of the number 
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of individuals diagnosed with the disease to the number without the disease (prev- 
alence odds). This ratio can be written from (1.69) and (1.72): 

In a stationary population where h, p and P are all independent of t, the above 
formulae lead to simple relationships. It is however important to realize how restric- 
tive the stationary hypothesis is; it implies that the birth rate, the cancer incidence 
rate, the cancer survival probability and mortality rate from other causes all remain 
constant with time. We will nevertheless give the main results which are obtained 
under the stationary hypothesis, since most epidemiological textbooks define prev- 
alence in this situation. 

In a stationary population, the various rates do not depend on time so that 
formulae (1.68) and (1.70) simplify to 

The integrals of these functions which no longer depend on t are respectively 

which is the mean duration of life for individuals who remain without the given dis- 
ease over their lifetime, since H(x) is their survival distribution. By exchanging the 
order of integration 

M 

which is, except for division by R =I H(y) h(y) dy, the mean duration of disease for 
0 

those who have contracted it. In other words 

is the product of the crude risk of disease [see (1.41)] and the mean survival of the 
patients which, in the case of a 'non-reversible' disease (see above), is the duration 
of the disease. 

Since p is constant, formula (1.73) simplifies to become the ratio of (1.78) and 
(1.76), that is 
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Furthermore, the ratio of R/Eo(X) may be written as a function of H and h, using 
their respective definitions: 

This last result leads to the classical statement that 'prevalence is the product of 
incidence and the duration of the disease' since we can write from (1.79) and (1.80) 

The above approach to the concept of prevalence is taken from a paper by 
Keiding [38]. We will also describe the method of Verdecchia and Capocaccia [39], 
who showed that under certain conditions the information needed to carry out the 
various calculations is contained in the net probability distributions of age at the 
occurrence of cancer and at death from cancer. 

Let X, Y and V be respectively the age at death from the disease of interest, 
the age at diagnosis and the survival time up to death from cancer. We may then 
write 

Consequently, the age at death from cancer has the probability density 

where i and s, are the probability densities of Y and V. As explained previously, 
this function is known only from the corresponding incidence rates because of cen- 
soring. (1.82) must therefore be written 

where 

v,(v) is the mortality rate from the disease v years after diagnosis for a patient 
diagnosed at age y; and 

p.;(u) is the mortality rate from causes other than the disease at age u for a patient 
diagnosed at age y. 

Denoting by $(x) the difference p;(x) - p(x) which represents the excess death 
from other causes for a patient diagnosed at age y, we can write 
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The rate v;(u - y) = vy(u - y) +T~(u) is the mortality rate experienced by patients after 
diagnosis taking into account the excess (or the reduction) of the hazard of death 
from other causes. This rate is connected to the relative survival rate (see Chapter 4, 
page 231), whereas v, corresponds to net survival. If most deaths of cancer patients 

are in fact certified as due to cancer, we can replace v y  by v; in (1.84) and obtain 

where 6 is the mortality rate for the given cancer and D, A and N* denote the 
cumulative rates associated respectively with 6, h and v*. Formula (1.85) results 

X 

from the fact that d(x) = 6(x) epM(') since M(x) = D(x) + 1 p(y) dy is the cumulative 
0 

mortality rate from all causes. 

The relationship initially given for the crude probability density in (1.82) there- 
fore remains true for net density in (1.85) if net and relative survivals are identical. 
However, this relationship is only simple when survival probability does not depend 
on age at diagnosis or depends on it according to a simple model. In this situation, 
the relationship between mortality, incidence and survival distribution can be written 
as a convolution and corresponding mathematical tools are available to carry out 
its analysis. 

The probability ~ ( x )  of having cancer and still being alive at age x may be 
calculated in the same way. Thus 

The number of cancer cases of age x in the corresponding birth cohort is n(x) = 
B n(x) where B is the number of births in this cohort. Furthermore, the number of 
survivors without cancer of age x is h(x) = B H(x), where H(x) is obtained from 
(1.74). Therefore the age-specific prevalence is given by 

where n,(x) is the first integral of the right-hand side of formula (1.86) and Ri(x) is 
the net risk of disease before age x. 

Denoting the net probability densities of age at death, age at diagnosis and 
survival time by d, i and s,, the following two equations can be written: 



44 FUNDAMENTAL CONCEPTS 

The derivative with respect to x of n,(x) is by definition 

1 
n',(x) = lim - [x, (x + Ax) - n, (x)] 

A x 3 0  AX 

S y ( x + A x - y ) - S y ( x - y )  
= lim 5 i(y) 

Ax AX --to O X 

which may be written, using the rules of calculus and the fact that the derivative of 
Sy is -sy: 

and therefore 

which expresses the fact that the numerator of the prevalence odds in (1.87) is the 
difference between the net risk of having cancer before age x and the net risk of 
dying from this cancer before age x. Thus the age-specific prevalence of cancer 
may be obtained from: 

where Rd(x) denotes the net risk of dying from the given cancer. 

This result is obtained under some fairly general assumptions about the inter- 
actions between the risk of dying from the given cancer and the risk of dying from 
other causes. When the cancer risk is not stationary, the formula 1.91 must be used 
in conjunction with the modelling of the time trend in incidence and mortality by 
birth cohort (see page 189) 

Preston has provided a useful and intuitive approach to calculate prevalence 
when the population is not stationary [40]. 

Bi bliographical notes 

Mathematical arguments used in basic epidemiological texts, and in particular 
those which form the theoretical basis of descriptive epidemiology, are often ap- 
proximate, and for a good reason: a satisfactory mathematical approach, based on 
the statistical analysis of stochastic processes, quickly leads to advanced mathe- 
matics [29] in even the simplest situations. Moreover, this level of sophistication is 
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rarely required to meet the real problems of descriptive epidemiology, which are 
more often of a different kind. The approach we have taken in this first chapter is 
similar to that used in demography [30], where data of this type were first analysed 
rigorously. The modern trend in mathematical statistics is to treat the analysis of 
censored data using the concepts of stochastic processes, which provide very 
general results on the convergence and the speed of convergence of the estimates. 
It is not surprising that, in medical research, most effort in this direction has been 
in the context of clinical trials, because these often have relatively few subjects and 
the validity of the statistical conclusions is a paramount requirement. Readers inter- 
ested in this approach can find the necessary concepts in Hill et al. [31], particularly 
the appendix. Anderson [32] has published a fairly complete and non-technical in- 
troduction to this method. To the extent that the fundamental principles of descriptive 
epidemiology do not differ from those of cohort studies, several sections of chapters 
2, 3 and 4 in the book by Breslow and Day [ I l l  make profitable reading, and give 
a more complete bibliography of the various formalizations. 

Chapter 9 in Pressat [30] provides a complete presentation of the concepts 
involved in the life table. The estimation of the life table is discussed in depth by 
Chiang [20] in chapter 9. Classical survival models are described in detail in Kalb- 
fleisch and Prentice [33] [see pages 21-30] and in Cox and Oakes [34] [see pages 
13-28]. Since Cox [I41 was first published, the proportional hazards model has had 
so many applications, that even an abridged list would be difficult to provide. Ref- 
erences [35,36 and 371 provide a clear discussion of its application in epidemiology. 

The theory of competing risks is discussed in Chiang [20], chapter 2; a mon- 
ograph has also been written on this subject [41]. Makeham [42] is generally rec- 
ognized as having originated the concept of multiple decremental forces, from which 
the essentially similar idea of latent survival time was largely derived. In this ap- 
proach, the observed survival of a subject is the smallest of the [unobserved] latent 
survival times, with each of these times corresponding to the causes of death under 
study. This approach is described in the monograph by David and Moeschberger 
[41], and discussed in reference [23]. The problem of estimating mortality when the 
competing risks cannot be assumed to be independent is reviewed in an article by 
Duchene [43]. 

The concept of prevalence and its calculation has been discussed by many 
authors. The texts by MacMahon and Pugh [44], and Kleinbaum and co-workers [45] 
can be consulted, and an article by Freeman and Hutchison [46] gives a detailed 
overview. Reference [38] also provides a full bibliography on the subject. 
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Chapter 2 

Techniques for the analysis of cancer risk 

Measurement of the risk of cancer 

Age- and sex-specific rates 

The annual incidence rate for a specific tumour, for a group and for a given 
time period is equal to the ratio between the number of new cases of the tumour 
observed in the group over the given time and the number of person-years accu- 
mulated by the members of the group in the same time interval. 

The calculation of an incidence rate is more meaningful when the group is 
homogeneous and when there is a constant risk during the time period. Moreover, 
it is only under these conditions that the observed incidence rate can be considered 
as an estimate of the underlying instantaneous rate which plays a key role in the 
definition of the risk of cancer (see Chapter 1, page 11). The homogeneity condition 
justifies the calculation of rates separately by age and sex, known as specific inci- 
dence rates because they refer to subgroups of the population and not to the popu- 
lation as a whole. 

In the following, we first describe methods for calculating specific incidence 
rates, and then examine techniques of estimating their precision since, like all in- 
dexes calculated from observed data, the incidence rate is subject to random var- 
iation. Finally, we describe some typical incidence curves. 

The calculation of a specific rate 

The only problems involved in the determination of the numerator are the 
completeness of registration and respect for whatever guidelines have been adopted 
to define new cases. We will return to this point later in detail with the study of time 
trends, which are particularly vulnerable to changes in the definition adopted (see 
Chapter 3, page 176). 

The determination of the denominator depends on available demographic statis- 
tics. In theory, the calculation of the exact number of person-years of observation 
requires individual data, but statistical offices provide at best reports including cross- 
sectional characteristics of the population at periodic intervals, obtained from cen- 
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suses or other population estimates. Thus, the denominator can be estimated only 
by making assumptions about the evolution of the population between two of these 
points, that is, about the way in which individuals traverse theage x time rectangle 
of the Lexis diagram (see Figure 1 . I ) .  Let us suppose, for example, that we wish 
to estimate the annual incidence of breast cancer for women aged 45 to 49 years 
in Zaragoza (Spain) between the beginning of 1973 and the end of 1977. Theoreti- 
cally, we should add up the number of years lived in this age group by each woman 
of the population of Zaragoza during the period 1973-1977: thus, a woman who 
turned 45 years of age on 1 January 1977 will contribute one year to the person- 
years, in the same way as a woman who turned 49 on 1 January 1973 will contribute 
one year. In reality, it is known only that 27699 women were between 45 and 49 
years of age in 1975, the year of the census. It is supposed that there are as many 
women each year joining the age group as there are leaving it and that the number 
counted at the mid-point is consequently an estimate of the average number 
throughout the interval. Therefore, the estimate of the number of person-years ac- 
cumulated between 1973 and 1977 is obtained by multiplying the number at the 
mid-point by five (27699 x 5). Then, as the Cancer Registry recorded 109 cases of 
breast cancer for women between 45 and 49 years of age in the interval under 
consideration, the specific rate of breast cancer in this age group is 

109/(27 699 x 5) = 78.7 cases per 100000 women per year 

In most situations, this method for approximating the denominator is accep- 
table. However, the example below shows that the method can sometimes lead to 
aberrant results. 

In Calvados, France, the resident population in the age group 60 to 64 years 
at the first of January evolved as follows from 1977 to 1982: 

Number in age group 60 to 64 years 
at 1 January 

To calculate the incidence rate in the interval between 1 January 1977, and 
31 December 1981, using the previously described method, we would take as the 
denominator five times the average population for the year 1979, that is 

5 x 
(16 886+ 15 643) 

2 
= 81 323 person-years 

However, a careful examination of the annual figures reveals fluctuations due 
to the effects of the decline in the birth rate during the first world war. Therefore, 
the calculation of incidence rate should take the figures for each year of the interval 
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Figure 2.1 Influence of the denominator estimates on the age-specific incidence 
curve. All cancer sites, Calvados (France), males, incident cases 1978-1982 

Source : Robillard [I] 

into consideration; supposing that, on average, the number of individuals at risk in 
the group under study can be estimated each year by the arithmetic average of the 
number of individuals in the age group at the beginning and the end of the year, 
then we have 

that is, a total of 91 326 person-years [ I ] .  

In this example, the previous approximation under-estimated the calculation of 
person-years accumulated in the interval by 11%. The solution which takes as de- 
nominator a demographic estimate that does not correspond to the mid-point of the 
interval being considered can lead to even more serious inaccuracies. Figure 2.1 
shows, again in Calvados, biases in the age-specific incidence curve when the num- 
ber of cases observed for the interval 1978-82 (males) is related to data from the 
1975 census. Even if variations from one year to the next are rarely as marked as 
those in our example, successive annual estimates should be used in the calcula- 
tions when they are available. 

The accuracy of the estimate of a rate 

Regardless of the bias that a wrong evaluation of the denominator causes, we 
should question the accuracy of the estimate of the rate being calculated. 

For reasons that were discussed earlier (see Chapter 1, page 20), the denom- 
inator can be considered as a non-random quantity; thus, the accuracy of a rate 
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only depends on the variability of the number of cases observed (K). We can there- 
fore suppose that K is a variable that follows a Poisson distribution whose expec- 
tation and variance are equal to the theoretical rate (h) that we are attempting to 
estimate, multiplied by the number of person-years (m) accumulated within the period 
of the study: 

K -+ P(hm) 

Therefore, the variance of the rate estimator (Klm) is 

Its estimate is obtained by replacing h by klm in the above formula, k being the 
observed value of K; it is given by 

A 

an expression which has already been obtained in Chapter 1, page 20. It is then 
possible to construct a confidence interval of level 1 - a for h. When k is large, we 
can consider that the distribution of Klm is normal with mean h and standard de- 

dE 
viation --, therefore 

m 

hence the confidence interval: 

The usual value of a is 0.05 and Za/2 = 1.96. AS an example, if nine cases have 
been observed in a population of 10 000 persons followed up during three years, 
the incidence rate is 30 per 100 000; its variance is 91(30 OOO)~ ,  and its standard 
error is 1011 00 000. Therefore, the confidence interval may be written: 

It is also possible to use directly a confidence interval for the expectation of 
K as calculated from the Poisson distribution (see page 64). Table 2.3 below gives 
the values [:.I2 ; 17.08], which leads to a confidence interval for the rate equal to 
[I 3.7011 00 000 ; 56.9311 00 0001. This exact interval is fairly different from the above 
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conventional interval. It is therefore recommended to use the Poisson distribution 
when the number of cases observed is less than 50. 

In practice, it is usual to assess the accuracy of the rate on a relative scale. 
The relative error in the estimation of a rate is given by the coefficient of variation 
of the estimated rate, which is defined as the ratio between its standard error and 
its mean: 

The expected value of K being hm, l/u'i; provides a simple estimator of the 
accuracy of the rate measured on a relative scale. In the previous example, the 
relative error in the calculated rate is 1/$9 = 33%. If we had observed four cases, 
the relative error would have been I/& = 5O0/0. These examples reveal the sub- 
stantial inaccuracies which can affect measures of rare cancers. 

The coefficient of variation that we defined above has a natural interpretation 
when it is appropriate to consider the rates after logarithmic transformation (see 
next page). In fact, in this case, variability is measured by the standard error of the 
logarithm of the specific rate which can be calculated in the usual way: 

Var Log - = Var[Log(K)- Log(m)]= Var[Log(K)] [ [:)I 
- i" ' O ~ f ( ~ ) l ~  x Var (K) = x Var (K) 

Var Log - - -- [ [:)I A 
Thus, not surprisingly, the standard error of the logarithm of the rate is equal 

to the coefficient of variation. Using the same principle as before and the data from 
the previous example, the confidence interval of the logarithm of the rate is 

Log (3011 00 000) k (1.96 x 0.33) 

which leads, by taking the exponential of the interval end-points to a new confidence 
interval for the rate itself 

It is worth noting that, by improving the required normality, the logarithmic 
transformation has led to a result which is closer to the exact interval than the 
conventional interval based on the rate itself. 

As the accuracy of the estimate depends only on the number of observed 
cases, it can theoretically be increased by lengthening the observation time. How- 
ever, if incidence is not constant over time, the accumulation of cases over several 
years can only lead to a less meaningful result. In practice, the choice of interval 
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is a compromise between these two requirements. The situation is similar when we 
consider that a region covered by a registry is too heterogeneous to give only one 
estimate of the rate. If we decide to divide the area into subgroups which are more 
homogeneous, the accuracy of the rate estimates in each subregion is lower. There- 
fore, a compromise between interpretability and accuracy has to be found (see Chap- 
ter 3). 

The incidence curve 

Age-specific rates are usually calculated for seventeen five-year age groups 
between the age of 0 and 85 years, with an eighteenth group for 85 years and over. 
As a rule, the rates should be represented on a graph by a step-function with five- 
yearly increments. However, it is customary to join the points that mark the mid-point 
of each age group; the line obtained by doing so is called the incidence curve. In 
a population where the age-specific incidence might remain constant over a period 
of time, such as would occur in the absence of a cohort effect, the curve could be 
seen as an estimate of the function h(t) which we defined in Chapter 1.  However, 
as incidence does tend to change with time, the shape of the curve is a result of 
the combined effect of age and observation time: incidence rates for older age- 
groups describe a relationship between risk and age that does not necessarily 
correspond to that described by incidence for the youngest individuals living at the 
same time. In other words, when older people today were young, they did not have 
the same risk as the young people of today. 

As we stated previously, incidence according to age is sometimes shown after 
logarithmic transformation of age-specific rates. This sort of representation is used 
firstly for practical reasons. Rates of very different orders of magnitude can be rep- 
resented on the same graph, allowing a clear visualization of incidence levels for 
ages where rates are low. It is also worth noting that a constant ratio of age-specific 
incidence rate between two populations will produce, on a logarithmic scale, two 
parallel incidence curves. 

A logarithmic scale may also be used on the age axis. Thus, a log-log graph 
is designed to place the observed data in the context of the multi-stage model of 
carcinogenesis [2,3]. According to this model, incidence is a power function of age 
and should therefore be represented by a straight line on a log-log scale. However, 
such a model can only be identified by this procedure in the absence of a cohort 
effect [4]. 

The mortality from colorectal cancer in France for the period 1978-1 982 is 
represented in Figure 2.2 by using various scales. In this case it is clear that 
Figure 2.2(c) provides a remarkably concise description of the increase in risk with 
age. However, other more complex incidence curves are often seen (Figures 1.2 
and 2.5). In particular, the incidence curve for breast cancer shows a characteristic 
drop in the rate of increase around 50 years of age; Clemmesen has demonstrated 
the universality of this phenomenon. [5] 
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Figure 2.2 Influence of the choice of scale on the shape of age-specific incidence 
curves. Mortality from colorectal cancer in France, 1978-1982 
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Standardized rates 

One of the principal aims of collecting incidence data is the investigation of 
etiological factors for the disease being considered. In order to compare observed 
incidence for different regions or groups or years, we should be in a position to 
take account of the factors which are already recognized as possible explanations 
of observed differences in rates. Among these factors, age is the first candidate. 
The effects of age are large and, in general, the various populations being compared 
differ in their age structures. The control of the confounding effect of a factor, by 
methods to be discussed below, implies that we know its distribution in the popu- 
lations that we wish to compare. This is the reason why the following methods 
cannot be applied to biasing factors such as the quality of registration or the ac- 
curacy of diagnosis. On the other hand, when denominators are not available, the 
method described on page 95 could be used. 

Direct standardization 

The principle of this method is to determine the annual rate that would be 
observed in a standard, or theoretical, population of a given age structure, were it 
subjected to the force of incidence of the population under study. The procedure is 
based on the calculation of the expected number of cases in each age-group of this 
standard population by applying to the corresponding person-years the estimated 
rate of the population under study. The total number of expected cases is then 
divided by the total number of person-years in the theoretical population. 

Let: 

g be the number of age groups under consideration, which is usually 18 but can 
change if we are calculating a truncated rate for a subset of adjacent age-groups, 
for example, 35-64 years; 

L be the size of a standard population, 

L, be the number of individuals in the xth age-group of this standard population, 

k, be the number of cases observed in the xth age-group of the population under 
study 

m, be the number of person-years accumulated in the xth age-group of the popu- 
lation under study 

t, = k,/n, be the specific rate of the xth age-group of the population under study. 

L,t, is thus the number of expected cases that might be observed in one year 
in the xth age group of the standard population if it were exposed to  a level of risk 
defined by the rate t,. The standardized rate is then: 
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It may also be written 

where wx = L,/L is the proportion of individuals in the xth age group in the standard 
population with 

This expression shows that the rate 7 is a weighted average of age-specific 
rates, with the weights being the proportion of individuals in the various age groups 
of the standard population. 

We should note that the calculation presumes that the number of person-years 
of observation and the number of observed cases in each age-group of the popu- 
lation under study (or at least the age-specific rates) are known. Furthermore, the 
calculation requires the choice of a standard population. In practice, this choice 
depends on our objective and it influences the numerical result that we obtain. The 
principal standard populations that have been suggested are presented in Table 2.1. 
For routine comparisons, it is preferable to use the world population as a standard. 
The European population figures are suitable when we are comparing observed 
incidences in countries where the age structure is similar to that usually observed 
in developed countries. In the same way, the African population can be used as a 
standard for developing countries. A truncated population is used to restrict the 
comparison to the adult age groups where the most interesting differences appear. 
It also has the advantage of eliminating from the standardized rate the contribution 
of the oldest age groups that are particularly subject to the risk of being under-reg- 
istered. When we are not dealing with routine comparisons, other standards are 
sometimes adopted; for example, if we wish to describe the risk in several subsets 
of a region or a country, it is reasonable to take the total population of the region 
or the country as the standard population. In the particular case where we are 
interested in two regions or countries, the sum of their populations is sometimes 
taken as the standard. 

Table 2.2 presents the calculation of the standardized rate of stomach cancer 
for males in the French region of the C6te-d'Or from 1976 to 1980, using the 
European population as a standard. 

The calculation of a directly standardized rate uses age-specific rates that have 
been estimated from observations which are subject to a certain amount of random 
variability. This variability affects the estimate of the standardized rate and can lead 
to spurious conclusions if  the observed difference between standardized rates is in 
fact mainly due to random variation. In order to evaluate the importance of this kind 
of variation, the standardized rate (t) should be presented with its standard error or 
its confidence interval. 
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Table 2.1 Age structure of commonly used standard populations [6] 
(valid for either sex) 

Age group World African European - World truncated 

Total 100 1 00 100 31 

As we saw previously when discussing the estimation of h,, from K, observa- 
tions resulting from m, person-years in age group x, 

E(Kx) = Var (Kx) = hxmx 

The variance of the specific rate t, = K,/m, is then obtained using the classical 
method 

Var (t,) = 
Var (Kx> - -  Ax 

- 

m: mx 

Therefore, the variance of the standardized rate is, from formula (2.3) 

g 

Var (f) = x w: Var (t,) 
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h, being unknown, var(T) must be estimated by replacing h, by its estimate kx/mx 
in the above expression. Then 

- 

If the theoretical standardized rate is denoted by p = wxhx and if s is the estimate 
X 

of its standard error, then we can consider that 6- p)/s is approximately a standard 
normal variable; the confidence interval at level 1 - a for p is then obtained as 
explained previously: 

In practice, rates are given per 100 000 person-years ( l o 5  t f,; the variance that 
is calculated is therefore in the form loi0 ~ a r ( t ) .  

Table 2.2 also gives the data required to calculate the variance of the stand- 
ardized rate, from which we obtain a standard error of 1.55 and its 95% confidence 
interval f20.49 ; 26.581. 

We should note again that the procedure which enables the confidence interval 
to be constructed from the standard error of the estimator implies that the distribution 
of this estimator is reasonably close to normal. This is in fact only true in the present 
situation if the total number of cases is sufficiently large. It is however difficult to 
tell what 'sufficiently' means in the present context because the numerator of a 
standardized rate is no longer a Poisson variate. Its variance depends not only on 
the total number of observed cases but also on the weighting scheme w and the 
accuracy of the age-specific rates. This may be seen by writing the formula (2.4) 
in the following way: 

where K, = Lxhx and L,, the numerator of w,, is chosen in such a way that: 

This expression shows that the variance may be badly assessed from the total 
number of expected cases especially if the majority of them (K,) originated from an 
age group where m, is low (see page 100). 

The quotient of two standardized rates calculated from the same standard 
population is known as the comparative incidence figure (CIF). It is a measure of 
the relative risk of a population compared with another population and is generally 
expressed as a percentage. The standardized rate in a subgroup of a population 
that is itself used as the standard, divided by the crude rate in the whole population 
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Table 2.2 Calculation of a directly standardized rate (stomach cancer in C6te-d'Or, 
France, males, 1976-1 980, European standard) 

Total 237 1 146 371 1 .OO 23.537 2.4155 

Columns 1 to 4 and 6 are given and columns 5, 7 and 8 are calculated. 
kx : observed number of cases of stomach cancer in CBte-d'Or from 1976 to 1980 for the xth age group. 
mx : estimate of the number of person-years for males in each age group x, obtained by summing the 
numbers of the CBte-d'Or population from 1976 to 1980 (INSEE, PRUDENT). 
tx : age-specific rate per 100 000 persons per year. 
wx : structure of the standard population by age. 

(which in this case is equal to the standardized rate with respect to itself) is also 
a CIF. 

The value of a CIF is independent of the standard population used only if the 
ratio of the age-specific incidence rates is constant, in other words, only when the 
two incidence curves that are being compared are parallel when the log scale is 
used on the rate axis. This property often holds for incidence curves (see Figure 2.3) 
and can be checked with a statistical test which evaluates the assumption of the 
homogeneity of age-specific relative rates (see page 80). 

Cumulative rates 

The overall incidence observed in a population can also be described by the 
cumulative rate [7] which provides, as we shall see below, an approximation of the 
risk of developing a disease before age b (or between two ages a and b) in the 
absence of mortality (see the concept of net risk in Chapter 1, page 34). The cu- 
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Figure 2.3 Age-specific incidence of colon cancer in Zaragoza (Spain) and Geneva 
(Switzerland) males, 1973-1977 
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mulative rate over a whole lifetime is an integral of the function represented by the 
incidence curve. This rate can be estimated by adding up the age-specific incidence 
over each year of age. Assuming that the incidence is constant within an age group 
(x) of five years, we will write 

to estimate the cumulative rate from zero to the upper limit b of age group j, and 

to estimate the cumulative rate from the lower limit a of age group i to the upper 
limit b of the age group j. 

For example, the cumulative rate of stomach cancer between 35 and 65 years 
of age can be calculated from the data in Table 2.2 by adding up the numbers in 
column 5 from line 8 to line 13 and multiplying the result by 5/100 000, i.e. 



62 TECHNIQUES FOR THE ANALYSIS OF CANCER RISK 

Estimation of the cumulative rate over a whole lifetime presents a problem 
because the last age group is open and, unlike the other age-groups, does not 
contain five years. If the last age-group is 80 years and over, we can suppose that 
the estimate of the rate in this age-group is almost identical to the rate in the age 
group 80-85 years, and consider that the value we obtain is the cumulative rate up  
to 85 years. With this convention, the cumulative rate over life of stomach cancer 
can be estimated by 

In practice, it is preferable not to calculate the cumulative rates beyond the 
upper limit of the last closed age group. In fact, cumulative rates are rarely published 
above 75 years, the age at which competing causes of death begin to play a major 
role (see Chapter 1 ,  page 34). 

Note that the cumulative rate is proportional to the arithmetic average of the 
age-specific rates, that is, to a rate that would be standardized to a population in 
which every age-group contained the same proportion of individuals ('rectangular' 
population). Note also that the probabilistic interpretation mentioned above assumes 
that the cross-sectional incidence curve, constructed for a given time period from 
different cohorts, correctly represents the force of incidence applicable to an in- 
dividual for whom we wish to evaluate risk; in fact, the risk obtained in this way is 
that of a 'fictitious' individual who synthesizes the experience of several cohorts. 

The standard error and confidence interval of a cumulative rate are obtained 
in the same way as those for a direct standardized rate; the application of formula 
(2.4) with w, = 5 gives 

for example, the standard error of the cumulative rate of stomach cancer between 
age 35 and 65 years is 

4 Var (t3,,$,) = 0,0009 

from which we derive a confidence interval of [0.51% ; 0.85%]. 

Indirect standardization 

While direct standardization could be called the method of the standard popu- 
lation, the procedure described in this paragraph could be called the method of 
standard incidence. The principle is based on the comparison between the total 
number of cases observed in the population under study and the number that could 
be expected if  the population was subject to a given force of incidence (A,), the 
standard incidence. 
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The number of expected cases in the population under study is 

where h, is the incidence rate of group x in the standard population, and m, is the 
number of person-years accumulated by group x in the population under study. 

The ratio between the total number of cases observed in the population under 
study (0) and the expected number (E) is called the standardized incidence ratio 
(SIR). Like the CIF, it is a measure of relative risk of the population under study 
compared with the standard population. It is usually expressed as a percentage, 

Therefore, a value of 150 for this index means that 50% more cases were 
observed in the population under study than if the incidence was that of the standard 
population. 

For reasons already discussed, the variability of the SIR depends only on the 
numerator, whose distribution can be considered to be Poisson. The estimate of the 
SIR variability can be obtained accurately from Table 2.3 which gives the 95% con- 
fidence interval of the expectation p of a Poisson variable given an observed number 
of cases 0. 

The results in Table 2.3 are obtained by defining the lower and upper limits of 
the confidence interval )I.,, and 1-1, according to the formulae: 

such an interval will contain the true value )I. with probability 1 - a. On the other 
hand, the Poisson distribution is related to the X2 distribution by the relation: 

in other words, if F2k is the distribution function of X2 with 2k degrees of freedom, 
we can write: 

therefore, if F-' denotes the reciprocal function of F: 
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Table 2.3 Exact 95% confidence interval for the expectation (p) 
of a Poisson distribution according to the number of observed cases (0) 

Observed 
cases 

(0) 

95 O/o Confidence 
interval 

Observed 
cases 
(0) 

95% confidence 
interval 

When the number of observed cases is zero, X is greater than the observed number 
with probability 1 whatever po may be. To keep the correct level of confidence 1 - a, 
we construct the interval [0 ; pl] such that P[X = O1pl] = e-" = a. This interval 
covers the theoretical value p with probability 1 - a. For example, when a = 5%, 
p1 = -Log (0.05) = 3.00. 

When 0 is greater than 50, we can assume that Log (0 )  follows a normal 
distribution with expectation Log@) and variance 1/p. Thus, to obtain a 95% confi- 
dence interval we make use of the inequality 
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which gives after replacing p with its estimate 0 

for example, when 0 = 50 and E = 45.6, the 95% confidence interval of p is 

therefore, the interval of the corresponding SIR is [83.1 ; 144.71. If instead we use 
Table 2.3, the confidence intervals are respectively 

E37.1 ; 65.91 and [81.4 ; 144.51. 

Another more reliable approach is based on the approximation of the distribu- 
tion of by a normal distribution with mean 6 and variance 114 [8]; the confidence 
interval is then 

for 0 = 50, this method gives [37.1 ; 66.01. 

The calculation of the SIR requires only the number of person-years accumu- 
lated in each of the different groups x in the population under study and not the 
number of cases occurring in these groups. It requires the choice of a standard 
distribution which, in practice, is dictated by the use that we intend to make of the 
SIR, as will be shown subsequently. 

As the SIR is an estimate of relative risk with respect to a reference force of 
incidence, the product of the SIR and the crude rate in the standard population 
which provides the standard incidence rates is in fact a form of standardized rate 
known as the indirectly standardized rate. 

Table 2.4 provides the data required to calculate the standardized incidence 
ratio of colon cancer for males in the French city of Dijon between 1976 and 1980, 
using rates observed in the whole region of the Gate-dlOr as a standard. We obtain 

and the 95% confidence interval of the SIR is [104.5 ; 148.91 obtained using the first 
normal approximation above. We can calculate the indirect standardized rate from 
the crude rate of 24.3 (see Table 2.4) and we can obtain the indirectly standardized 
rate 
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Table 2.4 Calculation of a standardized incidence ratio (SIR) 
for colon cancer in the town of Dijon for the period 1976-1980 

with the overall incidence in the French departement of C6te-d'Or as a standard 

Total 

kx : observed number of cases in age group x in Dijon. 
mx : person-years of observation in age group x in Dijon. 
hx : observed colon cancer rate in age group x in C6te-d'Or. 
ex : expected number of cases in age group x in Dijon if the incidence rates were hx (i.e., that of C6te-d'Or). 

Probability of developing a specific form of cancer 

The cumulative rate discussed previously is an approximation to the net cancer 
risk, that is, of the probability of developing cancer in the absence of mortality. In 
fact, we may also be concerned with the crude probability of developing a particular 
form of cancer; in other words, the risk actually incurred by an individual subjected 
not only to the risk of cancer but also to the risk of death. For a given level of 
incidence, this probability will be higher when the general mortality is  low and vice 
versa. 

The method of calculation of this probability is derived directly from formula 1.4 
of Chapter 1. It was shown there that the raw probability of developing cancer is 
the sum for all ages of the product of the age-specific rate and the probability of 
survival without cancer up to this age. In practice, we shall estimate the probability 
of cancer from the life table neglecting the probability of not having cancer at age 
x which is close to 1 for most cancer sites. 

Let: 

tx be the incidence rate in the age group x; 
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Q L, be the number of years lived by the survivors of age x during the age interval 
starting at x if they are subject only to the force of mortality of the general population. 

0 eo be the size of this population at the beginning of the first age interval under 
consideration ( t o  and the Lx are provided by the life table, see Chapter 1, page 26). 
Then the probability of developing a given cancer is 

In fact, the summation in formula (2.11) gives the number K of expected 
cancers between the beginning of the first age interval and the end of the last if L, 
is an acceptable approximation of person-years lived in each age group by cancer- 
free survivors. 

When the probability of cancer (all sites) is being calculated, it might be better 
to construct a life table giving at each age the number of cancer-free survivors. The 
improvement obtained in this way is, however, somewhat illusory, as we shall see 
below. 

When the current life table (see Chapter 1) is used in this calculation, the 
predictive value of this parameter should be viewed with caution. The actual mortality 
that will be experienced by cohorts for which the prediction is carried out may differ 
substantially from the reference mortality which has been used in the standard life 
table. This is why it is important to clarify the concept and to refer to it as being 
the current probability of developing cancer. 

If we wish to compare probabilities in several regions or from several time 
periods, we can use the same life table; in this way, we obtain adjusted probabilities 
that play the same role as standardized rates. Note, however, that the stand- 
ardization refers to mortality and not age, for which control is implicitly assured by 
the very definition of the parameter. For comparisons of this kind, it is much more 
simple to use the cumulative rates defined previously which provides the same type 
of information. When they are low, they actually provide a good approximation to 
the net probability Rb of developing a disease before a given age b, also known as 
the cumulative risk. 

We shall give below a simple proof of this result that has previously been 
discussed in Chapter 1. First of all, consider an age group [x, x + Ax] in which the 
incidence rate is constant, and subdivide this interval into n equal parts; the proba- 
bility of not developing the cancer under consideration at age x + Ax is the product 
of the probabilities of remaining healthy throughout each of the successive intervals 
thus defined. This probability is approximately 

the smaller the interval Axln, the more accurate the approximation will be. Now, it 
is known that the limit of s, when n tends to infinity is e-"". In other words, the 
probability of developing cancer between x and x + Ax is equal to (1 - ephAX). 



68 TECHNIQUES FOR THE ANALYSIS OF CANCER RISK 

Secondly, suppose that the age interval [0 - b] can be subdivided into j age 
groups of length Axi in which the rate Xi is considered to be constant; the probability 
of not developing cancer before age b is obtained using the same principle as 
before: 

If the Ax correspond to five-year age groups, the argument of the exponential is, 
except for the minus sign, the cumulative rate. 

In practice, we calculate the estimate tO,b of the cumulative rate as was shown 
on page 61 and the estimate of the cumulative risk Rb according to the formula: 

Up to a cumulative rate of 10°/~, the two numbers and Rb are very close: 
the approximation of the cumulative risk Rb by the cumulative rate is therefore 
good for most cancer sites. As an example, the cumulative risk of stomach cancer 
between 35 and 65 years for the CGte-d'Or is 0.68%, while the life-time cumulative 
risk for the same region is 3.83% (the corresponding cumulative rates are respec- 
tively 0.68% and 3.90%; see Table 2.2). 

Table 2.5 presents the three indexes that have been discussed, to evaluate 
the overall life-time cancer risk from data from New York State between 1969 and 
1971 [9,10]. Note that the values of the two indexes defined by probabilities (cu- 
mulative risk and current probability) are relatively close to each other before 65 

Table 2.5 Cumulative rate, cumulative risk, and current probability of cancer 
in New York State, USA (1 969-1971) [6] 

Males Females 

All Lung All Breast 
sites sites 

Cumulative rate (%) 
0-65 years 12.3 3.0 12.8 4.0 
0-75 years 28.8 7.0 22.6 6.2 

Cumulative risk 
0-65 years 
0-75 years 
0-85 years 

Current probability 
0-65 years 
0 + (") 

(") In this instance, the probability is calculated up to the terminal age of the table (see page 27). 
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years, particularly for females. Beyond this age, mortality has played a greater role 
effectively preventing incidence to manifest itself. In addition, we can see that the 
approximation of the cumulative risk by the cumulative rate is not-very satisfactory 
when incidence is high, such as occurs when all cancer sites are combined. 

As an index of comparison between populations, the cumulative risk has two 
main advantages over the standardized rate; it avoids the arbitrary choice of the 
weighting and it expresses the risk on a probability scale which is interpretable 
immediately. 

The number of years of life lost 

Descriptive epidemiology is fundamental to etiologic research. In this capacity, 
it attempts to link characteristics of time and place to cancer development. It is 
therefore natural that the measurement of incidence or, failing that, the measurement 
of mortality will be the key instrument of the epidemiologist. But descriptive epidemi- 
ology should also provide information that could be useful in the establishment of 
public health priorities and policies, by addressing the consequences of cancer, the 
main one from a public health perspective being the amount of human life lost from 
the disease. This objective is already partially achieved by the determination of 
survival rates, but they do not provide an overall picture of the impact of cancer on 
the general population. In order to obtain this picture, we must measure the impact 
of cancer on the potential duration of life that individuals of the given population 
should have, on average, in the absence of the disease. The concept of potential 
years of life lost (PYLL) has exactly this objective, since it measures the average 
reduction of duration of life due to premature death caused by the given disease. 

in order to assess the reduction in duration of life, two conceptual approaches 
have been proposed. The first suggests that the years lost from death due to the 
cause under study should only be taken into consideration up to an age limit that 
is arbitrarily fixed to mark the normal end of life; only deaths occurring at ages lower 
than this limit are then taken into account in the estimation of the reduction of 
duration of life. The second approach assumes that the reduction in potential life is 
equal to the number of years which the individual would otherwise have expected 
to live at the age of death. Thus this approach takes into account the force of 
general mortality exerted on the population under consideration. The two concepts 
differ in the same way as do the net and crude probabilities of dying from a certain 
cause of death,since the parameter is calculated respectively without and with taking 
other causes into account (see Chapter 1 ,  page 34). 

Several upper limits have been proposed in the context of the fixed age limit 
method. It has also been suggested to adopt a lower limit in order to exclude infant 
mortality from the definition of premature death. The approach based on life expec- 
tancy also has several variants. We will, however, only discuss the most common 
ones here. 
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Years of life lost with respect to a fixed age limit 

If h is the fixed age limit, then the number of years potentially lost for an 
individual in age group x dying from a certain cause can be denoted by 

where a, is the average age of death in age group x, which is, in practice, taken 
as the centre of the age interval. If d, denotes the number of deaths in age group 
x, then the total number of years of life lost in the population may be written 

and, consequently, the number of years of life lost per death on average is 

PYLL 

which is simply h -a, where S is the average age of death from the cause under 
consideration. 

Rather than calculating this number of years per number of deaths, some 
authors prefer to compute years lost per number of person-years M which has pro- 
duced these deaths. The number ( lo5 x PYLL)/M then measures the number of 
years of life lost in a year per 100000 people who have the same age structure 
and mortality as the population under consideration. This ratio is described as the 

C dx 
PYLL x 

- rate of years of life lost. Note that the index -- --- 
M M 

(h - a) is in fact the 

product of the crude mortality rate and the average number of years lost by the 
individuals who have died from the given cause. 

The rate of life years lost can be standardized for the purpose of comparison 
between groups. Let m, be the number of person-years of age x in the given group, 
and L, be the number of person-years of age x in the standard population and 

L =  Lx; the standardized rate of years of life lost may then be written 
X 

where d', and a' are, respectively, the age-specific number of deaths and the average 
age of death which would be observed in a population with the age structure of the 
standard population, and the mortality rate of the given group. 

d x 
d', = L, --- 

mx 
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Table 2.6 Calculation of number and standardized (a) rate of potential years 
of life lost with a fixed limit at age 70 

(male, lung cancer, canton of Neuchitel, Switzerland, 1974-1976) 

PY LL, 

Total 108 990.0 1 .OOO 1 228.5 

Columns 1, 4, 5, 7 are given and columns 2, 3 ,  6, 8 are calculated. 
(a) World population 40-69 years. 

Formula (2.14) is therefore the product of the standardized mortality rate and the 
average number of years of life lost in a population that would have the standard 
age structure and experience the mortality of the given group. 

When they are calculated in this way, the rates from different causes have the 
advantage of being additive. In other words, the sum of the rates corresponding to 
several given causes is equal to the rate which is calculated from the sum of deaths 
due to these combined causes. 

As an example, Table 2.6 presents the calculation of the years of life lost from 
lung cancer for Neuch5te1, Switzerland; only deaths occurring after 40 years are 
taken into consideration and the age limit is 70 years. Years of life lost are also 
expressed as rates, standardized to the European population. This example shows 
the weight that is given to deaths, however few in number, occurring long before 
the age limit. 

Years of life lost with respect to life expectancy 

In this situation, potential life is the number of years which would theoretically 
be left to live at the time of death, according to the life table. 

If we let $ (see Chapter 1 ,  page 27) be the life expectancy at the mid-point 

ax of age group x, then, as previously explained, the years of life lost from a given 
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cause are the sum of the potential duration of life of all those who have died from 
this cause 

For comparisons between populations, rates and standardized rates can of 
course be calculated, although the justification for doing so is not obvious when the 
life expectancy differs among the populations being compared. Table 2.7 shows the 
calculation of the rates and standardized rates from data for lung cancer in Neu- 
ch$tel, taking values of life expectancy from the life table for the whole of Switzer- 
land (see Appendix 1). 

The rate obtained (2395 years per 100000) is twice that given by the fixed 
limit method. The difference arises partly from the fact that deaths are taken into 
account at whatever age they occur, including those well after the fixed age limit. 
However, it also results from the fact that, for all ages less than 70 years, the life 
expectancy is greater than that which would be obtained with a life potential limited 
to 70 years. A higher fixed limit could possibly have led to the opposite conclusion. 

We have stated that life expectancy implicitly took into account competing risks 
due to other causes that could manifest their effects at any age, including the years 
before the arbitrarily fixed age-limit. From this perspective, it would be more appro- 
priate to recalculate the life expectancy at each age from a life table that excludes 
the deaths for which the years of life lost are calculated. This approach has some 
connection with the concept of additional years of life due to elimination of a cause 

Table 2.7 Calculation of number and standardized rate of potential years 
of life lost compared to life expectancy (a) at age of death 

(male, lung cancer, canton of Neuchstel, Switzerland - 1974-1976) 

Age (x) 
0 

d, PYLL;, 
w x 

ex m x w x 1 05 PY LL, - 
mx 

(1) (2) (3) (4) (5) (6) (7) 

Total 2 432.4 1 .OOO 2 395.0 

(a) Swiss life table, 1978-1983. Office federal d e  la Statistique, Berne, 1985; see Annex 1. 
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of death (see Chapter 1, page 35).  In practice, this subtlety is only necessary for 
the causes of death that themselves play an appreciable role in the life table, and 
besides, it has the disadvantage of making the procedure lose its additive property: 
the estimate of the years of life lost from a combination of causes could then be 
less than the sum of the individual estimates [ I l l .  

Methods for comparison 

When we wish to compare incidence in several populations, the first step is 
to examine standardized rates. However, as explained in the previous section, these 
rates are affected by random variability. It is therefore important to know if an ob- 
served difference between two incidence curves described in this way is real or only 
due to chance. Knowing the confidence intervals of the rates being compared is not 
always sufficient to make a judgement about the difference: there exist situations 
in which incidence curves are significantly different even when the confidence in- 
tervals of the rates overlap. 

The statistical significance of an observed difference between two rates can 
be roughly estimated by a method that requires only the total number of cases in 
both populations in addition to the two rates under study. Because it is not precise, 
this method, described in the next paragraph, should be reserved for use in situa- 
tions in which age-specific data are unavailable. We discuss therefore in a following 
section the methods that are appropriate when age-specific data are available (see 
page 77). 

Finding a statistically significant difference generally leads us to attempt to 
define the nature of the difference. Although age-specific rates are obtained from 
cross-sectional data, it is not unusual for them to differ in a constant ratio between 
the two populations (the proportionality assumption). When such a model (known 
as the multiplicative model) is acceptable, it is reasonable to estimate the constant 
factor, that is simply the relative rate of one population compared with another (see 
page 79) When it is not acceptable, the incidence ratio varies with age; this situation 
is known as interaction between group and age. On page 81, we present a general 
test to decide wether the assumption of proportionality is acceptable and in a fol- 
lowing paragraph a test against the more specific assumption of increasing or 
decreasing trend of the incidence ratio with age; the test against the existence of 
a linear trend, which is the model most frequently considered, is discussed. Lastly, 
we give an example on page 83 to show the practical use in a complex situation 
of the tests that have been discussed. 

In the second part of this section we deal with the problems that arise from 
the comparison of incidence in several populations or in different subgroups of the 
same population. A series of pairwise comparison of rates can actually produce 
contradictory results, as well as being inappropriate: by multiplying the number of 
comparisons that have been made, we increase the risk of concluding wrongly that 
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a difference is significant. We first consider an approximate method which involves 
the comparison of the incidence of all the subgroups of a population with a standard 
incidence, which is usually that of the whole population. Then-the correct test for 
deciding wether several forces of incidence can be considered identical is introduced 
on page 87. In a final paragraph of this section we briefly introduce the analysis of 
incidence using the log-linear model which allow this type of problem to be ap- 
proached in a more systematic fashion (see page 90). 

Comparison of incidence of a disease in two groups 

The approximate method 

We can obtain a rough idea of the significance of the difference between two 
standardized rates when we only have these rates and the total number of individu- 
als in the populations in which the incidence was measured. 

If we were comparing crude rates, it would be sufficient to know their variances 
(page 51). Let ti and t2 be the rates to be compared and mi and m2 the person-years 
of observation. Since the variance of a difference of independent variables is equal 
to the sum of their variances, we may write 

where h is the theoretical common rate in the two populations and h the harmonic 
mean of mi and m2. Then if we replace h by its estimate under the null hypothesis 

we can write 

Var (tl - t2) = 
ml t l  + m2t2 

"'1 1712 

Thus, the variable 

has a standard normal distribution and we shall reject the hypothesis of equality of 
the rate in the two populations at the a = 5% significance level when IZI is greater 
than 1.96. 

When the rates to be compared ti and t2 are standardized, the variance of the 
denominator calculated in this way is only an approximation to the variance of the 
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difference of the two rates. Writing tl and t2 as an explicit function of the age-specific 
rates ti, and t2x, the expression (2.17) becomes 

where is the mean of ti, and t2, weighted by mi and m2, the size of the groups 

to be compared. 

The average of the & in (2.18) gives only a partial description of the variability 

of ti - t2. Its exact variance is slightly different and is obtained from the variance 
of the differences of the specific rates; using formula (2.16) in each age group and 
replacing h by its estimate, we get 

A 
where hx is the estimate of the common rate hx and hx the harmonic mean of ml, 

and m2,. Writing wx = L, / h, we get 
A 

a formula which suggests that the values V, and V, may be close together if the 
structure of the standard population is not too different from that corresponding to 
the harmonic mean of the populations being compared. 

As an example, consider the rates of stomach cancer for males in Zaragoza 
and Geneva, standardized to the world population restricted to the age range 35 to 
74 years (see Table 2.8 and Figure 2.4). We obtain respectively ti = 56.821100 000 
and t2 = 43.521100 000. The approximate variance of the difference between the 
rates is thus (see (2.17)) 

whereas the exact variance calculated using formula (2.18) above is 

V, (tl - t2) = 2.11 I O - ~  
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Table 2.8 Cases of stomach cancer in males and population size by age group 
in Zaragoza, Spain, and Geneva, Switzerland. 

lncident cases 1973-77 [6] 

x Age Incident cases Population size 1975 

Zaragoza Geneva Zaragoza Geneva 
k l  x kx m 1 x/5 m2,/5 

- 

Total 

k l x  : Observed cases in age group x in Zaragoza between 1973 and 1977. 
mix  : number of person-years of observation in age group x in Zaragoza between 1973 and 1977 
k2x and m2x : similar definition for Geneva. - - 

- - I - Geneva 

Figure 2.4 Age-specific incidence of stomach cancer in Zaragoza (Spain) and Geneva 
(Switzerland) males, 1973-1 977 

G) 
-4 
ld 

P: 10- 

In this case, we see that the two values calculated from the variance are almost 
identical. The comparison of the two standardized rates by this method leads us 
to conclude that the incidence rate of stomach cancer observed in Zaragoza 
(56.821100000) is significantly greater than that observed in Geneva 

(43.521100 000). It could, however, happen that & and tz have different mean values. 

- - Zaragoza 

I I I I I I I I I I I I 1  

35 40 45 50 55 60 65 70 75 80 85 90 

Age (years) 
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Therefore the approximate method is not recommended when the data permit the 
correct calculation to be carried out. 

Mantel-Haenszel test 

Standardized rates have a descriptive function and the method of comparison 
previously proposed above is essentially aimed at avoiding gross errors in inter- 
pretation. When a comparative study of incidence is envisaged, the comparison 
problem should be approached in another way that requires knowing the age-specific 
rates and the number of person-years from which they were calculated. 

Cochran [I21 has shown how the performance of the X2 test could be improved 
by explicitly taking into account alternatives to the null hypothesis that we are trying 
to test. He proposed a method for the combination of 2 x 2 tables that was adapted 
by Mantel and Haenszel [I31 in the context of case-control studies. It can also b e  
applied with little change for the comparisons of incidence. The numerous applica- 
tions of the Mantel-Haenszel method justify the amount of attention that we will give 
to its presentation. 

Often incidence curves are approximately parallel when they are represented 
on a logarithmic scale. This overall shift in the curve corresponds to the fact that 
the ratio of the age-specific rates in the two populations being compared is more 
or less constant. The Mantel-Haenszel test basically involves testing the alternative 
assumption of proportionality of age-specific rates against the null hypothesis of 
equal rates. 

The method involves summing the ob'served differences in each age group; if 
the differences tend to be of the same sign, as is supposed under the alternative 
hypothesis, their cumulative value will not be compatible with the null hypothesis of 
equality of age-specific rates. Small differences can thus be identified more easily 
whereas, if they were considered individually or incorporated into a sum of squared 
differences, no conclusions could be drawn. 

Suppose that the hypothesis of equal rates is true. Then, apart from random 
variation, the total number of observed cases in each age-group is divided between 
the two populations in proportion to the number of person-years accumulated in  
each one. Summing these expected numbers over all age groups will provide the 
overall expected difference between the two populations which must be compared 
to the overall observed difference. Since the total number of expected cases is made 
equal to the total number of observed cases, it is sufficient, in practice, to calculate 
the difference between the total number of cases observed and the total number of 
cases expected under the hypothesis of equal rates in just one of the populations. 
We illustrate this method using data presented in Tables 2 .8  and 2.9. 

If we use data for the second population, that is, in Geneva (Table 2.8), the 
number of cases expected in age group x is 
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where Mx = mlx + m2, and Kx = klx + k2,. The test is then based on the overall differ- 
ence between observed and expected cases in the second population, that is, if g 
age groups are used: - 

It is then evident from this latter formula that the statistic T is designed to 
detect systematic differences of the same sign between the observed and expected 
numbers in the different age-groups. In order to find out if the value of the statistic 
is significantly different from zero, we need to know its variability under the null 
hypothesis. Under this hypothesis, the total information available on the common 
rate hx in age group x is contained in the variable Kx. Therefore, Kx being fixed at 
its observed value, the statistical distribution of the number of cases in the age 
group x of the second population is independent of h,; it may be described as the 
result of K, independent choices between the two populations with probability m,,/M, 
that the second population is chosen. In other words, k2, has a binomial distribution 
with mean e2, and variance 

and consequently, the variance of the statistic T is 

g g 

Var (T) = Var (k2x - e2x) = Kx m2x X m1x 

x=l x=l M; 

Z = ~/liVar(T) approximately follows a standard normal distribution; thus, if we  ob- 
serve an absolute value of Z greater than 1.96, we can reject the null hypothesis 
of equality of rates at the 0.05 level (two-sided test). 

This statistic has low power if the alternative hypothesis is not the one specified 
above; for example, an incidence that is clearly higher at young ages and clearly 
lower in older age groups might give a result which is not statistically significant, 
even though the null hypothesis is not true. The test is actually much less effective 
the further one moves away from the assumption of proportionality of rates. We 
examine its use in particular situations, notably when curves cross over, on page 83. 

Table 2.9 gives the various steps of the calculation of the Mantel-Haenszel 
test, using the data presented in Table 2.8. 

The value of the statistic Z is therefore: 

The differences observed cannot therefore be attributed to random variation 
and we can conclude that the incidence of stomach cancer is higher in Zaragoza 
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Table 2.9 Comparison of incidence rates in two populations; 
Mantel-Haenszel test. Data from Table 2.8 

Total 238 320 670 0 2  = 155 E2 = 188.7 135.3 

than in Geneva. Note that in this case the value of IZI only differs slightly from that 
obtained by the approximate method (see page 75). 

Overall measure of incidence ratio 

When the multiplicative model is acceptable, the rate ratio of the two popula- 
tions is independent of age: 

It is therefore natural to try to estimate p. Mantel and Haenszel have proposed a 
weighted average of the ratio of the age-specific rates which proved to be very 
efficient: 

From data in Table 2.8 and from intermediate calculations presented in the 
first two columns of Table 2.1 0, we obtain 

which means that the risk of stomach cancer is 1.3 times (I/$) greater in  Zaragoza 
than in Geneva. We can easily calculate a confidence level for p, although it would 
mainly be of theoretical interest in the context of most descriptive analysis. 
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Table 2.10 Calculation of the relative risk of stomach cancer in Geneva, Switzerland, 
with Zaragoza, Spain, as baseline. Data from Tables 2.8 and 2.9 

Total 11 0.73 144.47 221 636.27 144.93 

In fact, the variance of  LO^($) is approximately [14-161: 

which, using the data in Table 2.9 (column 5) and 2.10, gives 

from which we obtain the standard error @=0.0917. 

Considering that Log (S) has a normal distribution with mean Log(p) and vari- 
ance V, a confidence interval [pl ; p2] at the (1 - a) level can then be derived as 

which gives, for a = 0.05, the lower and upper confidence bounds, respectively: 

in the above example 

p l  = 0 . 7 6 6 ~  0.835= 0.64 

and 
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Test of a multiplicative model 

The assumption of proportionality also can be tested using the same principle 
as before. Under the hypothesis of a constant relative risk regardless of the age 
group, the means of the Poisson distributions in the two populations for age group 
x are respectively hxmlx and phXm2,, where hx is the age-specific rate in the first 
population and p is the rate ratio. The Kx cases observed will tend to be distributed 
among the two populations in proportion to these values, so that,using the same 
principle as in the previous paragraph, 

k2x -> Binom (Kx,px) 

where 

Therefore, under the assumption of proportionality, the expectation and variance of 
the number of cases in age group x of population 2 are now dependent on p and 
are respectively: 

and will be estimated by replacing p in (2.24) by 6 given by (2.22). 

If the hypothesis of a constant risk ratio is not true, we will observe substantial 
differences between the observed and the expected numbers of cases in some age 
groups; overall, these differences will be detected by the sum of standardized 

squared differences dz in each age group, 

Table 2.11 Calculation for interaction tests. Data from Tables 2.8, 2.9 and 2.10 

Total 155 154.82 11 8.88 9.90 -33.64 71 2.94 4 701.46 
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which is approximately distributed as a X2 with g-1 degrees of freedom. This test is 
also known as the homogeneity test. 

In the above example, its value can be calculated from Table 2.11 (column 5): 

as this value is lower than the critical value 14.07 at the significance level a = 0.05 
for a X2 with seven degrees of freedom, we cannot reject the null hypothesis of 
proportionality. 

Trend test 

The test with (g - 1) degrees of freedom described above is not very sensitive 
to small departures from proportionality; nevertheless, even small differences can 
be interpretable if they increase or decrease systematically with age. If such a sit- 
uation is expected, it is preferable to use a trend test (with one degree of freedom) 
which is aimed more specifically at this alternative hypothesis. The relevant statistic 
is given by the weighted sum of the differences between observed and expected 
numbers 

where u, varies with age according to a specified structure; for example, it could 
be assigned the age group's number if  one was allowing for a linear divergence of 
the two curves with age. 

We can show that 

Z = ~/-\rVar(T) is a standard normal variable that we will use to test for the alternative 
hypothesis specified by the series of coefficients u,; this test is also known as the 
Armitage test [17]. Details of the calculations are presented in Table 2.11 (columns 
6 to 8); from these data we obtain 

The hypothesis of proportionality can therefore not be rejected even when the 
alternative hypothesis is more narrowly specified. However, the value of Z is rela- 
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tively high; this can be understood well enough by examining Figure 2.4 where we 
can see that, because incidence is initially higher in Geneva, there is a slight de- 
parture from the null hypothesis of proportionality. 

Example : Hodgkin 's lymphoma 

The methods that we introduced above might seem unnecessarily sophisticated 
for estimating differences as obvious as those which appear between Zaragoza and 
Geneva with regard to stomach cancer. Their usefulness does not appear in routine 
contexts, but is apparent in borderline or complex situations. For example, a more 
precise method is needed to interpret population differences when incidence in differ- 
ent periods of life is described by different models. The above approach may then 
be extremely useful. To illustrate this idea, consider the comparison of incidence of 
Hodgkin's disease for males in Connecticut and the province of Zaragoza for the 
time period 1973 to 1977 [7] (see also Figure 2.5). 

If we use the method described on page 76, we obtain a value Z = 0.56 for 
the Mantel-Haenszel test, which tempts us to conclude that there is no difference 
in incidence between the two populations. Note also that the standardized rates 
(respectively 3.8 and 4.0 per 100000 in Zaragoza and Connecticut) yield the same 
interpretation. On the other hand, one should be warned by the high value (53.65 
with seventeen degrees of freedom) obtained with the homogeneity test, suggesting 
that the incidence curves very likely cross; this phenomenon, which can be clearly 

- Zaragoza 
- - - Connecticut 

- I , I I I I I I I 

0 10 20 30 40 50 60 70 80 90 

Age (years) 

Figure 2.5 Age-specific incidence of Hodgkin's disease in Zaragoza (Spain) and 
Connecticut (USA) males, 1973-1977 
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seen on the graph in Figure 2.5 is not a priori surprising since we know that Hodg- 
kin's disease has at least two forms with different etiologies. It is then natural that 
we should look separately at differences in younger age groups and in older age 
groups. 

If we use the Mantel-Haenszel test on the age groups from one to 24 years, 
we obtain 85 observed cases as opposed to 83.22 expected in Connecticut and a 
value of $ = 1 .I 3 with Z = 0.45. Although the test is not significant, given the ap- 
pearance of the two incidence curves, it is still advisable to continue the analysis 
using the methods presented page and ; the homogeneity test gives a value of 
38.85 with four degrees of freedom (p < 0.001), and the linear trend test gives 5.65 
for one degree of freedom. This last value means that the difference between ob- 
served and expected numbers increased significantly with age. The observed and 
expected values under the hypothesis of parallel curves with $ = 1.13 are shown in 
Table 2.12 and, from close examination, it can be clearly seen why the hypothesis 
of proportionality is not justifiable. Actually, the disease is significantly more frequent 
in children in Zaragoza (Z = -5.40 with the Mantel-Haenszel test performed on the 
first two age groups); a reversal of risk takes place at adolescence. In Connecticut, 
the risk is significantly higher for young adults: if we restrict our analysis to age 
groups 20-34 years, the disease is three times more frequent in  Connecticut 
(($ = 3.06, Z = 3.41). On the other hand, differences between the two countries are 
no longer observed after 35 years: the homogeneity test gives values of Z = -1.05 

and x:0=6.59. These diverse results force us to suspect that Hodgkin's disease 
might involve a group of three pathological entities with different etiologies and not 
two as was previously assumed [18]. The observed difference could also originate 
in different definitions of the disease in the two countries. 

The example demonstrates that the procedures introduced in this section can 
be valuable tools to help avoid erroneous interpretations when random variation are 
substantial and when the pattern of incidence deviates markedly from the simple 
shapes observed for epithelial tumours. They must nevertheless be applied with 
caution and their use be motivated by biological hypotheses defined a priori. 

Table 2.12 Hodgkin's disease in Connecticut (USA) 
and Zaragoza (Spain). Male, 1973-1 977 [7] 

Connecticut Zaragoza 

Age 0 bserved Expected Rate Rate 
cases c2ses 

for p = 1.13 
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Comparison of incidence among several populations 

Often in descriptive epidemiology we have to interpret differences in incidence 
among a series of populations, or subgroups of the same population. This is a 
standard procedure when routinely published data are studied. Therefore, the analy- 
sis has no longer the goal of studying specific differences between a few given 
groups. Its objective is instead to find all differences which may exist. We present 
below the standard methods that can evaluate whether each incidence rate in a 
series of groups or populations is significantly different from an overall expected 
value. The problem with these methods, like all those which involve multiple com- 
parisons, is that they are bound to identify some differences produced by random 
fluctuations as being significant. It is therefore preferable to use a test that provides 
an overall assessment of the homogeneity of incidence. This is introduced on 
page 87. We shall also discuss in Chapter 3 (see page 134) other methods which 
are appropriate in this context. 

Comparison with an overall expected value 

If the total number of cases is available in a subpopulation whose age structure 
is known, then it is possible to check if this observation is compatible with a given 
incidence rate, such as the incidence rate of the whole population. It is straightfor- 
ward to use this incidence rate to calculate the number of expected cases in each 
age group, their total E, the SIR and its confidence interval in the subpopulation. 
We will take it that the SIR is different from 100 when its confidence interval does 
not include 100 (see page 64). When the total number 0 of observed cases is 
sufficiently large, the normal approximation to the Poisson distribution can be used. 
In other words, we consider that 0 is a normal variable with expectation E and 

variance E; accordingly, we can calculate the quantity: x2 = (O - ')* which follows 
E 

a X2 distribution with one degree of freedom. 

Because of its simplicity, this method is often used systematically to find out 
if the incidence rate in selected subpopulations deviates significantly from the total 
population incidence rate, as though this incidence were known a priori and not 
calculated from the observations themselves. 

To illustrate the method, let us consider the regional subdivisions of the French 
departement of C6te-d'Or that is covered by the Burgundy Registry of digestive tract 
tumours. The number of cases of colon cancer observed in each five-year age group, 
from 1976 to 1980, as well as the number of person-years accumulated in each 
age-group for the same period are summarized in Table 2.13. The total number of 
observed cases in each region, and the calculations of expected value under the 
hypothesis that the rates in the whole departement of CBte-d'Or apply to each region 
of the departement, are given in Table 2.14. 
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Table 2.13 Colon cancer cases and person-years (a) in C6te-d'Or, France, 
Male, incident cases 1976-1 980 

Dijon 

x kx mx 

0-4 0 45 626 
5-9 0 41145 

10-1 4 0 39 284 
15-19 0 43 469 
20-24 0 52 794 
25-29 0 54 321 
30-34 0 40 848 
35-39 2 31 559 
40-44 2 30 703 
45-49 3 29 875 
50-54 10 27 228 
55-59 17 21 808 
60-64 7 15 002 
65-69 17 14 556 
70-74 33 11841 
75-79 20 7 762 
80 + 12 6 112 

Total 123 513933 

C6te ch5tillonnais 1 Plaine de 1 Auxois 
Viticole la Sa6ne 

(a) Person-years of observation were calculated by summing the mid-year populations from 1976 to 1980. 

Table 2.14 Calculation of the SIRS in the different regions of C6te-d'Or (France) 
with the overall incidence in the departement 
as standard, males, colon cancer, 1976-1 980 

Region Observed Expected SIR 95% confidence 
number number interval (a) 

Dijon 123 98.7 1 24.6 [I  03.6 ; 148.71 
C6te viticole 27 30.6 88.2 [ 58.1 ; 128.41 
Ch8tillonnais 2 5 36.0 69.4 [ 44.9 ; 102.51 
Plaine de Sa6ne 6 2 62.8 98.7 [ 75.7 ; 126.61 
Auxois 3 6 41 .O 87.8 [ 61.5 ; 121.61 
Morvan 5 8.9 56.2 [ 18.2 ; 131.11 

(a) Exact method (Poisson distribution) 

As the confidence interval of the SIR for Dijon excludes 100, we conclude that 
the incidence of colon cancer is higher here than in the whole departement. We 
could also have tested the observed difference by calculating X2 with one degree 
of freedom; its observed value (1 23 - 98.7)*/98.7 = 5.98 leads to the same conclu- 
sion. However, observations in the other cantons of C6te-dlOr are compatible with 
the overall incidence in this departement. 
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Note that an analysis of the SIR without an indication of its precision would 
not be sufficient to provide the correct conclusion about the variation of incidence 
in the region. For example, the value of 56.2, that appears to indicate that Morvan 
is a low-risk area, is actually only due to the low value of the expected number 
which, in turn, implies large random variation in the observed number. In this case, 
the probability of obtaining five or fewer cases simply by chance, when the expected 
number is E = 8.9, is actually 13%, therefore too high to reject the null hypothesis 
of equality of the incidence rate in Morvan and in the whole departement. 

Although interpretation of the values obtained for the different SIRS is much 
more convincing when their confidence intervals are taken into account, the method 
is still approximate. In fact, the incidence for the whole of the C6te-d'Or that is used 
as a standard is calculated from observations made in the different subgroups; the 
SIR obtained for each of the subgroups is by definition systematically closer to unity 
than it would be if the standard incidence had been defined a priori. To avoid this 
problem, which is more significant when the subpopulation consists of a larger pro- 
portion of the total, some authors have proposed taking as a standard the incidence 
in the population complementary to the subpopulation for which the SIR is calculated. 
In other words, to use the incidence in all of the other populations as the standard 
incidence. As the variability of the rates in the complementary population is not 
taken into account, this approach is unfortunately not much more satisfying. The 
first approach is conservative, as it too often tends to favour the null hypothesis, 
while the second method is too liberal as it often wrongly rejects the null hypo- 
thesis. 

Homogeneity test for incidence 

The appropriate method is actually quite similar in conception to that previously 
described for the situation of two populations (see page 77). Its principle has been 
mainly applied to survival analyses (log rank test, see Chapter 4, page 247) and 
case-control studies, but its application to descriptive incidence or mortality data is 
also straightforward. 

If the theoretical incidence is the same in all groups, the total-number of ob- 
served cases K, in each age group x would be divided among the different groups 
in proportion to the person-years accumulated in each of them. It can then be shown 
that the distribution of observed cases follows a multinomial distribution. To be de- 
fined completely, the distribution should be specified by the expected number in 
each group and by the variance-covariance matrix which quantifies not only the 
variability but also the correlation of the observed numbers in these groups. 

Letting 

I be the number of subgroups to be compared ( I S  i r I), 

kix be the number of observed cases in the xth age interval of the ith subgroup, 
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a mi, be the number of person-years accumulated in the xth age interval of the ith 
subgroup, 

I I - 

K x = x  kix and M x = x  mix the total number of cases and person-years in age- 
i=l i= 1 

group x, 
the mean and the variance of the observed number of cases in each age interval 
of each subgroup may be written (1 I i I I and 1 5 x 5 g): 

and 

Var (kix) = 
Kxmix (Mx - mix) 

M: 

Furthermore, the covariance between observations in two subgroups is 

As was done in the situation of two populations, we sum the quantities eix over 
all age groups to obtain the expected numbers Ei in subpopulation i. The variance 
and covariance of the observed numbers calculated under the assumption of equality 
of incidence are also summed over the age groups in order to obtain the variance- 
covariance matrix of the total number of cases in the subpopulations. The expected 
numbers are obviously the same as those given in Table 2.14, which were also 
defined by the overall incidence rate in the departement of the CGte-d'Or: 

Table 2.15 gives the variance-covariance matrix V of the observed numbers 
Oi; it shows on the one hand that the variances are lower than the expected num- 
bers. In other words, they are lower than the variance under the Poisson distribution; 
on the other hand, the table shows that all the covariances are negative, a predict- 
able result since the total observed number in age group x is fixed at its observed 
value Kx (see (2.29)). If the observed numbers had themselves been allocated in 
the various populations according to a multinomial distribution, we would have the 
classic X2 test obtained from the normal approximation to the multinomial. Thus, we 
would calculate the test statistic 
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Table 2.15 Variance-covariance of the observed numbers of colon cancer cases 
in C6te-d'Or, France, under the hypothesis of risk homogeneity (a) 

within the departement. Data from Table 2.13 
- 

Dijon 63.03 
C8te viticole - 10.85 27.24 
Chgtillonnais - 12.59 - 3.97 31.27 
Plaine de la Sa6ne - 22.22 - 6.92 - 8.15 48.6 
Auxois - 14.30 - 4.52 - 5.38 - 9.29 34.83 
Morvan - 3.09 - 0.99 - 1.17 - 2.02 -1.34 8.61 
- 

(a) The variance of observed numbers is on the diagonal. The covariance of one region with the regions 
preceding it in the first column is under the diagonal. For example, in Auxois, the variance is 34.83; the 
covariance of observed numbers in Auxois and Morvan is -1.34. 

which, in the present example, is 12.10, a value that is greater than 11.07, the 5% 
critical value of X2 with five degrees of freedom. This leads us to reject the hypothe- 
sis of homogeneity of the incidence rates in the six cantons of C6te-d'Or. 

However, as the total number of cases K, is fixed, the Oi are distributed as 
the sum of multinomial variables and T, is on average smaller than X2 with 1-1 
degrees of freedom. The appropriate calculation is based on another quadratic func- 
tion T2 of the (Oi - Ei) where these differences are weighted inversely to their var- 
iances. Calculation of this statistic therefore requires the inverse of the 
variance-covariance matrix of the differences Oi - Ei; the elements wij of this in- 
verted matrix provide the necessary weights. The statistic can thus be written: 

Note that the restriction of the sum to the first 1-1 populations is related to 
the same principle involved in the Mantel-Haenszel test where only one group is 
used for calculating the test statistic. Because the sum of Oi is fixed, the last region 
does not contribute any further information to the test. The matrix inversion can be  
computed with readily available software. In the present example, the weights are 
provided by the inverse of the matrix in Table 2.15 and the statistic T2 has a value 
of 12.25 which follows a X2 distribution with five degrees of freedom and, like TI, 
leads us to reject the homogeneity hypothesis. In this situation, the calculation of 
TI would have been sufficient. 

In practice, we often need to find the basis for this demonstrated heterogeneity, 
particularly to determine whether one or a few regions are responsible for the statis- 
tical significance of the test. The appropriate tool to answer the question is similar 

to a trend test with one degree of freedom; uiOi is compared with its expectation 

uiEi where the coefficients ui which equal + 1, -1 or zero are chosen such that 
I 
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the statistic will enhance the contrast between the regions which are suspected to 
be different for a priori reasons. We thus calculate the statistic 

where the denominator, which is U'VU in matrix notation, is the variance of 

For example, for comparing Morvan (i = 6) with the rest of C6te-d'Or, we set 
u6 = 1 and ui = -1 if  i is different from 6. We obtain T3 = 1.77, a value which is 
not significant. The use of the same principle to compare the city of Dijon with the 
rest of the departement gives T3 = 9.4, a highly significant value for with one 
degree of freedom (p = 0.002). For ChZitillonnais, we obtain a borderline value, that 

is, X: = 3.86. Although formally significant, a value of this kind should be treated with 
caution because the multiplicity of the tests carried out increases the chance of 
wrongly rejecting the hypothesis of equality. Strictly speaking, the test has one 
degree of freedom only if the comparisons result from hypotheses defined a priori. 
For example, if the subgroups could be characterized according to a socioderno- 
graphic variable, such as the average income, a test with a single degree of freedom 
could be carried out by choosing for the ui the rank of the regions after ordering 
them according to the value of this variable. In the same manner, if we wanted to 
compare northern and southern areas of a region, we could perform the test choos- 
ing ui = 1 for the north and ui = -1 for the south. 

A further hypothesis which could be considered in the context of this example 
is whether the rural regions (all except Dijon) are homogeneous with respect to the 
incidence of colon cancer. The above approach would lead to a X2 with four degrees 
of freedom with the value 3.26 for the test of homogeneity of incidence in rural 
areas. The conclusion of the analysis is therefore that the incidence is different in 
the rural and urban regions of the departement (see below). 

Use of the log-linear model 

The analysis of descriptive incidence data can also be conducted with model- 
ling techniques that allow for greater flexibility in interpretation. As a rule, the idea 
is to look for a model which provides the estimate of the parameters of interest i n  
particular the relative rate and to select the simplest among those that are statisti- 
cally compatible with the observations. This approach is particularly easy with access 
to modern computer software. 
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The linear regression, a widely used statistical tool, consists of modelling the 
expectation of a normal variable, using a linear function of the covariates that in- 
fluence its value (see Chapter 3 ,  page 158). it has been proposed to generalize 
this technique to other probability distributions, including the binomial distribution 
and the Poisson distribution. It can be shown that, in order to obtain the optimal 
statistical properties, it is more effective to model a function of expectation rather 
than expectation itself; thus, for a binomial distribution, the logit of the probability 
is modelled, and for the Poisson distribution it is the logarithm of the mean which 
is modelled as a linear function of the relevant covariables. 

The observations in the context of this manual are most often Poisson varia- 
bles, whose expectation depends on the unknown incidence rate and person-years 
of observation according to the formula 

E(Kix) = mixhi, 

that is 

Log [E(Kix)I = Log (mix) + Log (hix) 

The aim of this section is to show how Log(hiX) can be modelled linearly to 
provide most of the results which have been previously presented. The hypothesis 
of proportional incidence rates that has been introduced on several occasions may 
be written 

h 2 x  = ~ h l x  

thus 

Formula (2.33) is therefore a particular log-linear model which describes the inci- 
dence rate in group 1 (Alx) and the relative rate p of group 2 with respect to group 
1.  It can easily be generalized to more than two groups in the following form: 

where pi is the relative rate of group i with respect to group 1.  In practice, 
px = ,log (Ilx) and Oi = Log(pi) are estimated by the maximum likelihood method, 
then hlx and Ci are derived by exponentiation. In the present situation involving two 

A A 
factors, age and subgroups hlx and pi are in fact given by close formulae 

A I 
h l x  = 

~ I X +  C Si mix 
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where Oi is the total number of observed cases in group i and Ei is the expected 
A 

number, taking hlx as a standard. It can be seen that this method provides a statistic 
related to the SIR; it serves the same purpose of locating the-subpopulation on the 
risk scale. It is known as the internal method of standardization [19,20]. The special 
role given to the first subgroup is obviously the result of an arbitrary choice. An 
appropriate computer programme is required to estimate the parameters by the max- 
imum likelihood method; the calculations reported below have been carried out using 
the program GLlM [21] and are described in detail in Appendix 2. 

When the rates of stomach cancer in Geneva and Zaragoza are compared, 
the value of the parameter $ is found to be 0.77 which means that there is about 
30% more stomach cancer in Zaragoza. This value can be compared with results 
obtained from other methods previously presented in this chapter: 

0 SIR, using the marginal incidence rate as standard is 

$ according to Mantel-Haenszel formula: 0.77 

Ratio of cumulative rates: 2.3813.20 = 0.74 

Ratio of rates standardized to world population: 

CIF = 43.52156.82 = 0.77 

When the two incidence curves are parallel, as in this example (see Figure 
2.4), these various estimates are close together. It is however recommended to use 
the internal standardization, i.e., the log-linear model, which has optimal statistical 
properties in this context or to use the Mantel-Haenszel estimate which has been 
shown to be particularly robust. 

The validity of the model (2.34) may be judged by comparing observed values 
kix and valuesPi, calculated from the model itself. The ordinary goodness of fit statistic 

(kix I i x l 2  T = C - *  may be used for this purpose. The measure of goodness of fit may 
i,x kix 

also be based on the ratio between the likelihood of the accepted model and the 
likelihood of a model that would describe the observations exactly; this latter is 
known as a saturated model. This statistic 

D = -2 Log[V(model) I V(saturated model)] 

is referred to as the deviance. In the context of the classical linear model with 
normal error, it coincides with the above X2 for goodness of fit T. In the present 
situation, both T and the deviance D have a chi-squared distribution whose number 
of degrees of freedom is the number of observations h less the number of estimated 
parameters v 
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When testing the goodness of fit of the proportional hazards model to the data 
from Geneva and Zaragoza, we obtain D = 9.392. The corresponding number of 
degrees of freedom is 7: 16 observations minus 9 fitted parameters (eight age 
groups + the relative risk). This value suggests an acceptable fit (p = 0.23): the 
difference between the values estimated by the model and the observed values is 
of an order of magnitude compatible with the random fluctuations allowed for by the 
Poisson distribution. 

An hypothesis about the value of a parameter, for example, p = 1, can be 
tested by evaluating the significance of the increase in deviance which results from 
giving the tested value to the parameter of interest. When the increase is too large 
the proposed value is rejected. Thus, the comparison of deviance between the two 
models: (1): h2x = phlx and (2): h2x = XI,  is equivalent to the test of the hypothesis 
p = 1. In practice, the more general model is fitted (model 1) and the increase in 
deviance evaluated by fitting the restricted model (model 2). The calculations for 
the above examples are listed in Appendix 2. 

When fitting model 2 to the present data, the deviance changes from 9.392 to 
18.14. The difference of 8.75, value of a x2 variable with one degree of freedom, 
is highly significant and leads to reject the hypothesis of equality of the incidence 
rates (p = 1). 

The variance and covariance of the parameter estimates are also derived from 
the likelihood (see Chapter 1, page 17). The variable 

Log ($) - Log (p) * =  ,/T 
Var (Log (PI) 

is approximately a standard normal variate. We can then construct a 100 (1 - a) O/O 

confidence interval: 

Log ($1 i Zn/2 dva r  (Log (8 )  ) 
The value of  LO^($) and its standard error are provided by the computer program 
GLlM (see Appendix 2) and are respectively for the current example  LO^($) = - 0.2651 
and var(~og(b)) = 0.00841. Therefore, if the theoretical value of p were equal to 
one, 

a value which is too large for a standard normal deviate. We therefore conclude 
that p is significantly lower than 1 and its value is estimated at 0.77. This second 
way of testing the hypothesis p = 1 is known as the Wald test which here is the 
same as checking whether this confidence interval includes one. 

The confidence interval of Log(p) calculated as shown above is [-0.448 ; -0.08541 
from which we can derive the confidence interval of p by exponentiation k0.64 ; 0.921 
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which is identical in the present case to that obtained earlier from the Mantel-Haens- 
zel estimate (see page 80). 

As a second example, we return to previous data on colon cancer incidence 
in C6te-d'Or (Table 2.13). We shall describe the incidence data observed among 
men older than 20 years by a proportional hazards model: 

that is, since E(Kix) = hixmix: 

This is an 18 parameter model (13 parameters for age and 5 for the relative rates); 
we have 78 observations available to carry out their estimation. 

The fit of the model (see Appendix 2) leads to a deviance of 68.20 for 60 
degrees of freedom; the goodness of fit is satisfactory (p = 0.219) showing that the 
proportional hazards model is acceptable. The relative rate of the 5 cantons with 
respect to Dijon (taken as a reference) are respectively 0.70 (c6te Viticole), 0.55 
(ChGtillonnais), 0.79 (Plaine de la SaGne), 0.70 (Auxois) and 0.45 (Morvan). How- 
ever, only the risk for ChGtillonnais is significantly less than l .  

The confidence intervals of these parameters, which are obtained as explained 
above in the context of the comparison of two populations, confirm our previous 
conclusion. Only the relative rate for Chatillonnais is significantly less than one (see 
Appendix 2). This result implies logically that the rates of colon cancer are not 
homogeneous; it is however preferred to test formally this hypothesis by fitting the 
previous model under the constraint: 

We find a deviance of 80.78 for this new model; the increase 80.78 - 68.20 = 12.58 
is significant when compared to the critical value of X2 with 65 - 60 = 5 degrees 
of freedom (p = 0.03). This confirms the heterogeneity of the rates. 

The modelling approach is particularly well suited for carrying out the test of 
homogeneity of the rural regions made previously (see page 90). The hypothesis is 
then written: 

The fit of this model increases the deviance of 3.46 which is just below its 
expectation (the X2 in this example has 64 - 60 = 4 degrees of freedom). The esti- 
mate of p*, relative rate of rural cantons is obtained from the fit and it is equal to 
0.69 (95% CI = [0.54 ; 0.881). 

We therefore conclude that Dijon has the greater risk of colon cancer and that 
there is no evidence of rate heterogeneity in the rural regions of CGte-d'Or. 

The modelling done for the factor region may also have been done for the 
factor age; it is clear that 13 parameters are not needed for describing the age 
effect which could be smoothed by a polynomial function (the age effect estimates 
for younger age groups have in fact a very low precision). The resulting model would 
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be more parsimonous and would have the same ability for doing the above geo- 
graphical comparison (see Appendix 2). 

The mathematical complexity of this approach is largely compensated for by 
its interpretative power. The clear terms of the hypotheses, the statistical evaluation 
of the results, the flexibility of use and the cohesiveness of the approach are 
qualities that make its systematic introduction into descriptive epidemiology worthy 
of serious consideration. 

Extension and limitations of the present methodology 

Risk analyses in the absence of denominators 

As we have seen in previous sections, the descriptive analysis of cancer risk 
requires the estimation of person-years of observation. For descriptive studies in- 
volving large areas, national bureaux of statistics are usually able to provide the 
necessary information. In most countries, however, the data are generally not broken 
down by variables of epidemiological interest, such as occupation and country of 
birth. In contrast, these variables are usually available for incident cases or deaths. 
This section will show how it is possible to take advantage of this information to 
carry out the analysis of risk despite the lack of corresponding denominators. 

The methods which have been proposed are based on an analysis either of 
the distribution of cases by site (e.g., correspondence analysis) or, where the interest 
is mainly in cancer of a particular site, of the proportion of this cancer occurring 
among all other sites. These are known as relative frequency or proportional inci- 
dence (or mortality) methods. The discussion will be restricted to the situation where 
interest is centred on a specific cancer site. 

The relative frequency of a specific cancer in a population is defined as the 
ratio between the number of cases of the cancer and the total number of cancer 
cases in the population during the same period. The comparison of relative frequen- 
cies of a given cancer between two populations is at best an indirect measure of 
the absolute risk difference. This comparison will be more reliable when the cancer 
site of interest accounts for a small proportion of all cancer cases. For example, 
buccal cavity and pharyngeal cancers represent only 2.1% of all cancers in men in 
the United Kingdom, whereas in France they represent 8.6%. The corresponding 
crude rates in the two countries are respectively 9.2 and 42.4 per 100 000 person- 
years. In this situation, the information provided by the absolute and relative indices 
is identical: this cancer is four times more frequent in France than in the United 
Kingdom. 

As a rule, however, risk estimates obtained from studies of relative frequency 
are less precise. The methods proposed below provide only a partial remedy for 
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their intrinsic weakness. We will discuss briefly methods of standardization of relative 
frequencies and the modelling of proportional incidence in the following sections. 

Standardized indices of relative frequency 

The relationship between cancer incidence or mortality and age is generally 
site-specific. Consequently, it will generally not be the same for the site of interest 
and for all cancers. For example, the proportion of buccal cavity and pharyngeal 
cancers in France is 13.9% between 45 and 64 years and only 5.5% after 65 years 
[23] .  The ratio of the age-specific incidence rate of the cancer under consideration 
and all cancers combined (A, 1 px) will therefore depend on age; standardization is 
necessary to account for confounding by age when comparisons are carried out. 

Two standardized indices have been proposed: ASCAR [24], which was initially 
developed for studies in developing countries, and the proportional incidence ratio 
(PIR). These indices are the equivalents, for relative frequencies, of the direct and 
indirect methods of standardization discussed previously. 

ASCAR is the average of the age-specific relative frequencies, weighted by  a 
standard distribution of age at which cancer occurs. If kx is the number of cases of 
age x for the cancer of interest, Kx the total number of cancer cases and wx the 

proportion of cancer of age x in the standard population (x wx= I ) ,  then 
X 

The PIR is the ratio between the total observed number of cancer cases a t  a 
given site and the number expected if the cases occurred according to a standard 
relative frequency px which was a function of age: 

X 
PIR = 

C Kx Px 

The total number of cancer cases Kx in age group x being fixed at its observed 
value, the number k, of cancer cases at a given site is distributed as a binomial 
variable. It is possible to make statistical inferences based on ASCAR and PIR using 
this distribution. This approach is however of limited interest since neither ASCAR 
nor PIR estimates population parameters which are interpretable in terms of risk or 
relative risk. The following approach overcomes this difficulty to some extent. 

Modelling incidence data in the absence of the denominator 

Suppose that we are studying the risk of a specific cancer C in two populations 
Po and PI in which cancer incidence rates are respectively ho and A, for cancer C 
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and po and p1 for all cancers (Table 2.16). Let v l  = p1 - hl and vo = po - ho be 
the incidence rate for all cancers other than C (denoted A), and p and 0 be respec- 
tively the relative rates of cancers C and A, that is, hi = pho and-vl = Ova. If a 
cancer occurs in population PI, the probability that it is the specific cancer C is: 

and therefore 

The odds of cancer C occurring in population PI are p/O times the odds of its 
occurring in population Po. This odds ratio is equal to the relative risk only if 0 = 1 ,  
that is, if the incidence rate of other cancers A is the same in the two populations. 
The observed odds ratio kito 1 kotl, which is an estimate of pl0, is therefore some- 
what difficult to interpret. When cancer C is rare and other cancers have approxi- 
mately the same incidence in the populations being compared, the method is 
perfectly adequate. 

When a confounding variable is considered, tables similar to Table 2.16 are 
constructed for each category of this variable and the Mantel-Haenszel method is 
used to provide an estimate of p/O [25], for example if the number of cases are 
distributed by age group (x): 

In practice, the logistic model is preferable, since formula (2.38) is equivalent to 

Logit (pi) = Logit (po) + Log 

More generally, if we adapt the model for confounding variables and study the risk 
in more than two groups, the probability of cancer C occurring in group j at age x 
is: 

Table 2.16 Distribution of cancer cases in age group x 

Number of cases 

Population PI Population Po Total 

Cancer under study (C) ki x 
Other cancers (A) [I x 

Total KI x KOX K , 
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which leads to the logistic model 

where 

The parameters of the logistic model may be estimated from data kj, for cancer C 
and tjx for other cancers A over exposure categories j. 

This methodology is exactly that of a case-control study in which cases are 
patients with cancer C and controls are all other cancer patients. Given the similarity, 
this approach will not be developed further. A detailed discussion can be found in 
Chapter 6 of Breslow and Day [25]. An example of the use of this method is found 
in Chapter 3, page 168 where it is applied to a study of migrants. The proportional 
mortality method has also been extensively used in the estimation of occupational 
risk [26]. 

Choosing between various risk measures 

Describing a complex situation by a single value is inevitably a difficult exercise 
and the interpretation of such a numerical summary should be made with great care. 
Standardization is a step towards a better understanding of the phenomena under 
study, but it is certainly not the universal method used to solve problems of com- 
parison of incidence. Epidemiologists should be aware of the limitations of this 
method and should not ignore the fact that, in extreme situations, these statistics 
can behave pathologically. 

We have introduced three principal index classes in this Chapter: i) indices of 
risk that are based on probability, such as cumulative risk; ii) average rates based 
on standard populations that give more or less importance to different subgroups 
of the population under study, such as direct standardized rates; and iii) relative 
measures of incidence, such as the standardized incidence ratio (SIR), whose ob- 
jective is to measure the risk of disease relative to a standard incidence that can 
be interpreted in other respects. In this section, we examine the respective advan- 
tages and disadvantages of these indices, and, in particular, the interpretability, the 
absence of bias and the precision of the indices, three essential requirements of 
statistics intended to summarize disease incidence in a population. 

Cumulative risk places the population under consideration on an immediately 
interpretable scale of risk. Moreover, it has the advantage of being consistent, since 
truncated risk is less than total risk. However, a truncated standardized rate ob- 
viously does not have this property; its value is inevitably arbitrary since it provides 
only a rough estimate of the annual number of cases that might be observed in  a 
fictitious population. So, in C6te-dlOr, an individual has 38 chances out of 1000 of 
developing stomach cancer before 85 years of age, if he does not die before this 
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age and he has 6.8 chances out of 1000 of developing it between the ages of 35 
and 65 years. Among 100 000 persons in the same population and given the present 
level of risk, there would be 14.0 stomach cancers per year if the age structure was 
that of the world population, and 18.9 stomach cancers if the population comprised 
only individuals aged from 35 to 65 with the same age structure as the world popu- 
lation. Cumulative risk can be interpreted in a practical way by anyone who has an 
understanding of the concept of risk. Conversely, standardized rates appear as more 
abstract indices whose interpretation demands some epidemiological training and a 
familiarity with their orders of magnitude. 

Furthermore, the situation is considerably complicated by the existence of a 
multitude of standards. For example, using the European standard, the same com- 
parative rates discussed in the previous paragraph become 23.5 and 19.8, illustrating 
how important the choice of a standard population is in the interpretation of the 
number of cases observed. We should remember that a standardized rate is an 
average of values that varies with age in a ratio of 1:1000 for most cancers under 
study and it is not surprising that the weights used play a large role in the deter- 
mination of the rate. In the situation where the differences of specific rates being 
compared do not all have the same sign, it can be shown that any desired result 
can be obtained by manipulating the standard population. Remember too that all 
the indices are summaries of the incidence curve at a given point in time and syn- 
thesize estimates of rates from various cohorts, which might have been exposed to 
different risk factors or to different levels of the same risk factor. One should be 
extremely cautious when using the indices to analyse temporal trends in cancer risk, 
or to examine the covariation with the level of a factor (see Chapter 1, page 8, and 
Chapter 3). 

All these direct measures of incidence are also sensitive to random variation, 
and the combination of a substantial weight w, and a very imprecise specific rate 
can cause surprising results (see Table 2.16 below). This is a problem to which 
routinely produced indices are particularly sensitive because they are not necessarily 
subjected to close examination before publication. 

Relative measures of incidence are generally used when we want to compare 
subgroups of a population with its overall incidence that is considered to be free of 
random fluctuations. The standardized incidence ratio (SIR) is by its construction 
such a measure, and the comparative incidence figure (CIF) can also be  used for 
this purpose. If the ratio of incidence rates does not depend on age, these relative 
measures are estimates of this ratio, and the SIR is constructed for this particular 
situation. Conversely, when this hypothesis does not hold, the SIR can behave 
pathologically. 

If t, denotes the incidence rate observed in the age group x and h, denotes 
the standard incidence, the SIR may be written 
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where u, is a weighting factor proportional to m,A,, the inverse of the variance of 
t, / 1,. It is therefore a minimum variance estimator of the relative rate. Note here 
that this estimate can provide an absolute measure of risk if it is multiplied by the 
crude rate in the standard population. 

With the same notation, let h, and Lx denote the observed number of cases 

and the number of person-years in the standard population A x =  - , and [ ::I 
H = h,. The CIF may then be written 

X 

If t, / 1, was strictly constant, the CIF would be equal to it; however, as tx is 
subject to random variation, the CIF is a relative rate estimate which can be quite 
inaccurate, since, when it is expressed as a weighted average of the relative rates 
t, J Ax, 

the weight u, are proportional to h, the number of expected cases in the standard 
population. Once again we have the problem that has already been mentioned of 
heavily weighting very imprecise estimates. These difficulties are illustrated in the 
following example. 

Suppose we study a young, healthy population such as that described in Table 
2.17: 

Table 2.17 Example of data distribution leading 
to a directly standardized rate of low precision 

Age Study population Standard population 

kx mx 103 tx w x 1 o3hX 

Total 205 100 000 - 1 .oo - 

Crude rate - - 2.05 - 18 
I 

I 
I 

I 
I 
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the direct standardized rate is then 
- 
t = ( 0 . 2 4 ~  2) + ( 0 . 2 0 ~  2) + ( 0 . 1 9 ~  3.3) + ( 0 . 1 9 ~  10) + ( 0 . 1 8 ~  20) = 7.01 per 1000 

consequently, 

Furthermore, the expected number of cases if the population is subject to the inci- 
dence rate h, is: 

g 

E =  z m x l x =  (98x 3)+ ( l x  3)+ ( 0 . 6 ~  7 )+  ( 0 . 3 ~  22)+ ( 0 . 1 ~  62)= 314 
x=l  

therefore, the SIR can be calculated as 

We can see that the last age group (in which the incidence estimate is very 
imprecise) contributes 3.6 cases to the direct standardized rate, that is, more than 
all other age groups combined. If no cases were observed in this age-group, the 
CIF would be 19%; if, on the other hand, four cases were observed, the CIF would 
be 59%. In fact, both these possibilities are equally and reasonably likely. In contrast, 
under such hypotheses, the SIR would only vary from 65% to 66%. 

However, it would be a mistake to believe that the SIR has only good qualities 
and the direct rate only faults. In reality, as we have said on a number of occasions, 
the strengths of the SIR depend on the hypothesis of proportionality of rates. As an 
illustration, consider the example in Table 2.18, where two populations with grossly 
different age distributions are compared. 

The age-specific incidence is the same in both populations (5 and 20 per 1000) 
and the direct rates will therefore be the same for both populations, regardless of 
the standard population used. The standard rates calculated by the indirect method 
will also be the same if the marginal incidence rate is used as the standard inci- 
dence. However, because of the inversion of the distribution of person-years, they 

Table 2.18 Example of data distribution 
leading to meaningless standardized incidence ratios 

Age Population 1 Population 2 Total 

Total 105 6 000 45 6 000 150 12 000 
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can be very different for standard rates that are not proportional to the common 
observed rates; for example, when hl = 10 and h2 = 15, 

- 

and 

The difference in person-years distribution has led to an excess of expected 
cases in the first population and a deficit in the second. The direction of the differ- 
ence will in fact depend on how the chosen standard differs from the common in- 
cidence rate. In other words, two standardized incidence ratios cannot be compared 
if the populations under study do not have incidence rates proportional to those of 
the standard population. If, however, the hypothesis of proportionality is valid as is 
often the case in cancer epidemiology, it is perfectly legitimate to compare two SIRs, 
and an appropriate test even exists for assessing their equality. 

To test whether the same exposure leads to the same effect in two populations 
with different background incidence hi,, h2x, It is justifiable to test whether the rela- 
tive rates of exposed subgroups (the SIRs) are the same in the two populations. 

Let K1 and K2 be the observed numbers of cases in the exposed subgroups 
of the two populations; then Kl follows a Poisson distribution of parameter plEl 

where El = mlxhlx and, similarly, Kp follows a Poisson distribution of parameter 
X 

p2E2 where E2= m2,h2,. Consequently, the test of equality of the SIRS pl and 
X 

p2 is standard and is based on similar arguments to those developed on page 81 
of this chapter: the total number of observed cases K, + K2 being fixed, K1 has a 

binomial distribution with parameter K1 + K2 and 
E 1 

where 0 -  p2/p1. The 
El + 8E2 

hypothesis of equality of the SIRS can then be tested as the hypothesis 0 = 1 which 
is itself equivalent to a test of the parameter of the binomial distribution. 

Extreme examples should not make us doubt the efficiency of standardization 
methods. In fact, in 80% of situations that we encounter, the SIR and the CIF are 
very close [22 ] .  Nevertheless, we should remember that these indices are only sum- 
maries of a more complex situation and that they have their limitations. Sometimes 
it is advisable to analyse incidence data by age and if necessary by cohort in order 
to obtain appropriate results, and in this situation the more specific procedures in- 
troduced on page 82 and in Chapter 3 should be used. 

A thorough understanding of the concepts that we have discussed should help 
to avoid the main pitfalls encountered in the statistical analysis of descriptive epi- 
demiological data. It is essential that methods are kept in their proper perspective 
when they are used: no statistical recipe book can ever replace a good intuitive 
understanding obtained from practical experience. 
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Bibliographical notes 

As we have already noted, epidemiology, and specifically, descriptive epidemi- 
ology, has borrowed a great deal from demography. Direct and indirect standardized 
rates, the key tools of the epidemiologist, were devised by demographers. Readers 
interested in referring to the source of these techniques can consult two classical 
works on demography which remain current in their field: those of Pressat, in French, 
and Benjamin, in English [28]. 

Breslow and Day's monograph (Volume 1) on the analysis of case-control stu- 
dies provides a fundamental description, at both a theoretical and practical level, of 
the calculation of risk and its interpretation [25]. Volume 2 by the same authors 
deals with cohort studies which, as we have noted in Chapter 1, show the basic 
concepts and techniques of descriptive epidemiology [29]. 

Two articles by these authors usefully complete this bibliographical summary. 
The first [I61 is a discussion of the statistical tests presented in this chapter, par- 
ticularly, the Mantel-Haenszel and related tests. The second [30] discusses the prop- 
erties of the standardized incidence ratio and its advantages and disadvantages 
compared fo the CIF, the principles of the heterogeneity test for comparing incidence 
in several populations, and the use of log-linear models for this type of analysis. 
Once again, although the methods are presented in the context of cohort studies, 
they are directly applicable to descriptive studies. 

In his book on rates and proportions, Fleiss [31] devotes about twenty pages 
to standardization, with a special focus on the case where there are several variables 
for which adjustment is required. In fact, most epidemiological texts consider the 
calculation of direct and indirect standardized rates [32]. Some discuss the problem 
of variability of standardized rates, but few clearly explain the conditions necessary 
for the application of these methods. The recent publication from the International 
Agency for Research on Cancer on the techniques of cancer registration devotes a 
chapter to basic statistical methods in this area, and discusses routine techniques 
for comparison when denominators are unavailable (ASCAR and PIR) [33]. An older 
WHO manual on mortality analysis is out-dated with respect to comparative methods, 
but provides a useful description of the calculation of demographic indices and an 
empirical approach to the analysis of all-cause mortality, when such data are avail- 
able 1341. 

McCullagh and Nelder's monograph provides a deeper analysis of the theory 
of log-linear models [35] while Aitkin and coworkers' introductory work is more 
oriented towards practical application [36]. Finally, Healy provides an introduction to 
the software GLlM [37], in more detail than the brief description in Appendix 2 of 
this book. 
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Chapter 3 

Space-time variations and correlations 

Geographical analysis 

The objectives of cartography 

Like all phenomena which vary across regions, spatial differences in cancer 
occurrence can be represented on a map. A remarkable degree of sophistication 
has been achieved in this area. Geographers are convinced that a map can provide, 
through the simple play of colours, both an overall impression of major differences 
between regions (such as the juxtaposition of plains and mountains on a geophysical 
map) as well as a partial or detailed view of the characteristics of a given region. 

The design of a map is not only based on aesthetic concerns. In contrast to 
a table of regional results, a map provides supplementary information on the con- 
tiguity and the proximity of regions. The fact that neighbouring regions might be 
similar with regard to the phenomenon under study can be an essential element in 
interpretation. 

The cartographic illustration of mortality by cause is not a new idea. It has for 
some time formed the basis for political discussions on inequalities between regions 
and been a tool for health planners, for example, in the regional planning of health 
services. There has been a revival of interest in this approach over the past few 
years mainly as a result of the development of specific computing techniques. In 
the field of cancer, the development of cartography is relatively recent, with some 
notable exceptions such as Figure 3.1, showing crude cancer mortality in Switzer- 
land for the period 1911-1914 [I]. 

Over the past few years, a number of cancer atlases have been produced, 
generally from mortality data. Examination of these atlases reveals many differences 
in the methods used, suggesting that their objectives differed somewhat. Some are 
designed to show only broad spatial patterns (for example, through a limited number 
of regions or colours), others indicate a systematic attempt to show, by magnification, 
highly localized differences through the use of a rich array of colours or a fine 
division of geographical units. Despite these differences, it seems obvious that the 
main objective of cancer atlases is to provide basic information for etiological re- 
search. Their implicit goal is therefore to allow the image of geographical variation 
in the rate of a given cancer to be superposed on other maps, real or imaginary, 
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of one or more environmental characteristics or individual behaviour potentially im- 
plicated in the variation of cancer risk. It is not certain that such superposition of 
these factors can be achieved with a single cartographical representation, since all 
the evidence suggests that exposure to diverse etiological factors can be distributed 
at different scales. 

If interest is in factors which vary locally, the map would be expected to define 
zones in which the incriminated exposure can be found. In this case, a detailed 
subdivision is adopted to obtain relatively homogeneous zones with respect to the 
exposure under consideration. For example, mesothelioma is particularly frequent 
in Italy in coastal areas where naval construction, known as a source of exposure 
to asbestos, is concentrated [2] (Figure 3.2). 

If, on the other hand, interest is in factors which are distributed more widely 
over the spatial map (such as cultural and regional behaviour, or climatic conditions), 
the objective will no longer be to show the level of risk in a particular area compared 
to adjacent areas but to provide a more homogeneous representation of broad pat- 
terns in the phenomenon. If the intensity of the phenomenon varies progressively 
from one region to another across all or part of the country under consideration, 
the differentiation of the areas should visually show this gradient. Such a progression 

Figure 3.2 Mesothelioma mortality, men, 1975 - 1977 
Source : Cislaghi et al. [2] 
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could in fact suggest a dose-response relationship with the level of exposure, 
whereas a finer subdivision could be influenced by local variations which are ir- 
relevant to the phenomenon under consideration. An interesting example of geo- 
graphical variation on a large scale is provided by mortality for malignant melanoma 
of the skin [3,4]. In the USA (Figure 3.3a), mortality due to this cancer increases 
as the latitude decreases, while in Europe (Figure 3.3b), the phenomenon is in- 
verted. In the USA, increased exposure to ultraviolet light in the more southern 
regions results in a detectable increase in melanoma mortality. The way in which 
this country has been populated by migrants of different origins has led to an un- 
planned adjustment for ethnicity. Immigrants from different ethnic backgrounds are 
effectively distributed randomly throughout the country. In Europe, in contrast, factors 
linked to ethnicity are the most important determinant of melanoma risk and mask 
the effect of place of residence; individuals most susceptible to ultraviolet light have 
remained in the north, while recently adopting a life style involving significant expo- 
sure to the sun. 

Beyond the objectives illustrated by these examples, cancer atlases which have 
appeared so far have been works of general scope destined for a wide readership. 
Thus their authors have often made compromises such that the atlases do not nec- 
essarily answer the needs of etiological researchers. Nevertheless, the techniques 
which they apply are fundamental tools which have been used for a long time in 
descriptive epidemiology to solve etiological problems. As early as 1848, John Snow 
identified the source of the epidemic which ravaged London by using a map by 
district of mortality rates due to the disease. Joint study of this map and that of the 
areas covered by different water suppliers revealed similarities which convinced 
Snow to follow his investigations at the level not only of the district but also of 
individual houses [ 5 ] .  This more detailed approach was rendered necessary because 
the old part of London was served by two companies, the Lambeth Society and the 
Southwark and Vauxhall Society. Analysis of the water showed among other things 
differences between the companies not only in the content of organic material but 
also its acidity, which undoubtedly affected the conditions for bacteria growth. These 
geographical observations led Snow to identify the vehicle of the then unknown 
agent of the disease, Vibrio cholerae. 

Since that time, the representation of risk or exposure by means of a geo- 
graphical map and the tools for analysing geographical distributions have advanced 
considerably. The following sections describe both aspects. 

Methods 

Geographical division 

Geographical representation of cancer frequency is provided by the juxtaposi- 
tion of areas of different colours or shades, each of which represents a level of 
frequency. The boundaries and especially the number of the areas determine the 
degree of detail of the map and thus its overall appearance. As has been indicated, 
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the issues are different when the goal is to produce a series of maps fulfilling a 
purely descriptive need, such as an atlas of selected cancer sites, or to indicate 
regions corresponding to a risk or to a given exposure in the context of a specific 
etiological investigation. The geographical level at which data are available (numer- 
ator and denominator) is not always the most important constraint. In practice, dif- 
ficulties are more likely to occur because of the need to ensure statistical stability 
for the risk estimates in each, or at least most, areas. It is important to maintain 
an appropriate ratio between the incidence or mortality from one region to another 
and the corresponding random variation. For example, it would be unreasonable to 
define areas which only include four expected cases on average, if the objective is 
to classify areas into categories representing relative differences of 25%. In this 
situation, the coefficient of variation of the rate is of the order of lla = 50% (see 
Chapter 2, page 53). Accordingly, geographical units which are sparsely populated 
are often grouped together. 

If data are available, it is sometimes preferable not to work with administrative 
subdivisions. For example, in the Finnish study on the relationship between life style 
and cancer incidence, communities have been grouped together to form areas of 
10000 people, characterized by their geographical proximity as well as their simi- 
larity with respect to appropriately selected socioeconomic variables [6]. 

In some situations, the definition of areas is in response to a specific etiological 
problem. The goal of cartography is then to illustrate a specific hypothesis, for ex- 
ample, to evaluate the effect of radiation around a nuclear power station or of pol- 
lution on the frequency of respiratory cancer. The objective then is to form one or 
more areas in which the exposure being studied is homogeneous. Recording infor- 
mation from small geographical units becomes essential. Because of this require- 
ment, many countries have introduced systems by which data from population 
censuses and periodic reports (such as death by cause) are available for geographi- 
cal units defined by appropriate cartesian coordinates [7 ] .  When the source of risk 
is at a specific point, the usual approach would be to define the area as all squares 
located within a circle around this point (Figure 3.4) or between concentric circles, 
in order to demonstrate a dose-response relationship. 

In other examples, the whole region is divided into areas depending on the 
intensity of exposure, as determined by measurements made at specific points in  
the region (e.g., measurement of ultraviolet light at meteorological stations). The 
aim is to divide the region into homogeneous areas around points where measure- 
ments have been carried out. Dirichlet's mosaic provides a simple and elegant so- 
lution [8 ] :  the region to be mapped is divided into areas such that each point in a 
specific area is closer to the measurement point situated in it than to any other 
measurement point. This tiled area is obtained by connecting the perpendicular 
bisectors of the sides of triangles formed by the measurement points. A more sophis- 
ticated solution is based on interpolation from the measurements using polynomial 
regression. Division into areas of homogenous exposure can be constructed from 
contour lines of the resulting surface. This method can also be used after having 
artificially localized a regional measurement (e.g., rate per resident) at the centre 
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Figure 3.3 Melanoma mortality; women 
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Figure 3.4 Construction of a circle with a radius of 5 km from a 1 km-grid square 
Source:  Carstairs e t  al. [7] 

of gravity of the region, which is obtained by weighting according to population 
density. 

When small adjacent geographical areas are grouped together to create ho- 
mogeneous aggregates with respect to exposure, it is obviously important to check 
that the level of exposure can be considered equal in the areas which have been 
grouped together. One method of grouping based on the statistical significance of 
the differences in exposure between adjacent regions will be discussed below (see 
page 134). 

The first objective of these diverse techniques is thus to create areas of more 
homogeneous risk by departing from the constraints of the politico-administrative 
subdivisions. Note that when the techniques involve grouping or interpolation, they 
have the additional advantage of smoothing the exposure data, eliminating the in- 
convenience of large random fluctuations which usually affect small area statistics. 
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This is even more evident when the methodology is used for the description of 
incidence or mortality; for example, a polynomial regression has been used to rep- 
resent curves of stomach cancer mortality in Italy [9] in a purely descriptive context 
(Figure 3.5). 

Choice of a risk indicator 

When the objective is to show variation in risk as opposed to crude rate or 
number of cases, the graphical representation should use a risk indicator which is 
adjusted for age. Both direct and indirect standardization methods have been used 
for this purpose in published atlases. 

For direct standardization, either the world or European population is most 
often used. This choice undoubtedly reflects the desire to expand the atlas's role 
to international comparisons. Nevertheless, the various atlases which have appeared 
are seldom comparable, because of the large variation in the choice of the risk 
categories and colours. None is based on the cumulative rate (Chapter 2, page 60) 
which would be the most readily interpretable index on a probability scale and make 
the various maps directly comparable. 

Many authors have chosen indirect standardization. This option is justified if 
the primary objective of a cancer atlas is to represent risk variations within a country. 
Geographical areas are then classified by their standardized mortality or morbidity 
ratio (SMR). This index generally has the advantage of providing more precise statis- 
tical estimates than the directly standardized rate (Chapter 2, page 100). The ref- 
erence rate adopted for the calculation of the SMR is in general the incidence or 
mortality estimated in the region being mapped. 

Definition of risk classes 

We have already seen that the number of risk classes cannot be  determined 
without taking into account the statistical precision of the risk indicator. Precision is 
equally relevant in the choice of scale and class limits, as we shall see below. 

A priori, a larger number of classes should provide a more detailed picture of 
risk variation. However, dividing the area too finely diminishes the effect of the colour 
or shading contrasts required to distinguish the risk variation clearly. Moreover, as 
a general rule, the homogeneity of classes is proportional to their number: if there 
are few classes, differences between values in the same class could be much larger 
than those existing between the central values of two adjacent classes, which are 

1 

I 
nevertheless represented by different colours. 

The colours chosen to represent the various levels of risk differ substantially 
from one atlas to the next. A principle generally applied is to make the zone repre- 
senting average risk the least coloured. Zones of increasing (or respectively decreas- 
ing) risk are represented by colours which are arbitrarily chosen, but sufficiently 
contrasting visually. The chromatic intensity progressively decreases from extreme 
risk classes to intermediate classes. 
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b: Linear model, 

d: Quintic model 

Figure 3.5 Stomach cancer mortality in Italy; men, 1975-1977 
Source: Cislaghi et al. [2] and personal communication 
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It is not surprising that many authors choose red and green to characterize 
respectively an increase or a decrease compared to a standard risk. Culturally, red 
indicates danger while green represents ecology. Note also that the range of shades 
is not obligatorily centred on the average index value but can be distributed asym- 
metrically around the average index value such that those classes representing risk 
increase are broken down more finely, as has been done in the Chinese cancer 
atlas [ I  01. The subtlety of options used in the various atlases reveals an intention 
to use the physiology of visual perception, particularly in the choice of colours, to 
best communicate the desired message [ I l l  121. 

The simplest procedure involves setting the limits of the classes based on an 
equal division of all risk index values after disregarding extreme values when they 
are outliers. Under this method, the scale depends on the data, and does not lend 
itself to comparison between maps of different cancer sites or the two sexes. 

When the index is a relative measure (for example, an SMR), the same scale 
is adopted for all sites. Transition between colours is then immediately interpretable 
in terms of relative risk increases: for example, a relative risk scale increasing by 
steps of 25% from left to right open-ended categories. These categories at the ex- 
tremities of the scale are defined by the maximum number of classes to be used 
in mapping. This approach has been frequently used in atlases, as it has the advan- 
tage of allowing comparisons to be made between sites and between sexes. In the 
French atlas [ I  31, for example, it can be seen that stomach cancer mortality is one 
and a half times higher in Brittany than in the rest of the country for both men and 
women, and that the maps for both sexes are similar. However, this type of com- 
parison is of little value when the standard levels used in the maps being compared 
(SMR = 1) are very different from each other. For example, for lung cancer in 
France, the comparison of zones characterized by values between 125 and 150 of 
the SMR for men and women is not directly informative, because of the difference 
in background risk between the two groups. 

An examination of maps using fixed limits for risk categories shows that the 
geographical variation in risk is extremely variable between sites. Thus in the French 
atlas, maps representing oesophageal cancer are more variegated than those for 
colon cancer. This methodology may be better suited to a public health perspective 
than to etiological research, in which all real risk differences can be of interest. 

The proportion of each colour on the map is directly dependent on whether or 
not a fixed scale is adopted. If distribution of risk is narrow, the map will be largely 
monochromatic. If the distribution tends to be bimodal, the map will be largely made 
up of colour zones representing high and low risk respectively. If the distribution is 
equally spread, all the selected colours will be almost equally used. 

In order to describe all observed variability, the original scale has been replaced 
in some atlases by grouping together risk classes based on percentiles. For ex- 
ample, in the Scottish atlas directly standardized rates have been divided into seven 
classes with limits determined by the 5, 15, 35, 65, 85 and 95 percentiles [ I l l .  The 
middle class therefore includes 30% of the values. By definition, this method leads 
to the use of a different scale for each site and for both sexes. Each of these scales 
is a function not only of the risk values but also of the shape of their distribution. 
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For a given number of classes, the use of percentiles makes the apparent variability 
of the risk index equal and maximal. It is thus impossible to judge the size of this 
variability visually, as each map makes the same use of the different colours and 
extreme values are no longer apparent. On the other hand, when variations in risk 
are small, any contrasts, gradients or autocorrelative phenomena can be clearly 
appreciated. 

In order to reconcile the advantages of a relative measure with those of a 
measure expressed on an absolute scale, a division based on a logarithmic scale 
has been used in the Chinese atlas. All maps can then be built with one scale 
regardless of site or sex. In this system, the increase in risk for a class compared 
to the level of risk of the class immediately preceding it is represented on a multi- 
plicative and not an additive scale, so that only pronounced variations are apparent; 
this is well illustrated by the map of oesophageal cancer in China (Figure 3.6) [lo]. 

We have noted on several occasions that risk estimates are subject to statis- 
tical fluctuations that can be of different magnitude in different regions. Taking this 
variability into account will modify the interpretation of the map. For example, little 
significance will be attached to the high value of female mortality for cancer of the 
buccal cavity in France in the departement of Cantal [13]: the value of the SMR is 
equal to 1.75 but its confidence interval (0.98; 2.88) does not exclude unity. 

It is generally accepted that maps produced by the principles described above 
are usefully complemented by information on variability of the risk indices. In some 
situations, maps can be simply accompanied by an appended table providing the 
required data, such as the standard error or the confidence interval of the index. 
Others attempt to give a geographical view of variability by juxtaposing a map of 
risk with a map of degree of significance for the same areas [14]. Interpreting the 
two maps together is not always easy, but it can demonstrate that differences can 
be significant without being large, i f  the number of cases is high and/or the popu- 
lations under study large. Thus the majority of European atlases show significant 
differences between regions for colon cancer, even though the variation in risk for 
this cancer is generally relatively small. 

Some maps attempt to combine the size of the variation and its degree of 
significance on one single scale. The atlas of cancer mortality in  England and Wales 
used the following four categories [15]: significantly increased risk; increased risk, 
but not significant; not increased risk; significantly decreased risk. Such a scale 
allows all rates significantly increased with respect to the reference rate to be placed 
at the top of the colour hierarchy even if the increase is in reality very small. Risks 
which are substantially increased, but not significantly so, will appear lower down 
in this hierarchy. In practice, the procedure is acceptable only if the geographical 
areas are divided equally (in terms of population), such that the statistical variability 
is of the same order for a given site. 

The difficulties described above can be minimized or avoided in the interest 
of compromise. However, the study of spatial data, especially for specific problems, 
requires a more rational approach to account for random variability. The methods 
described below are more suitable in these situations. 



Figure 3.6 Oesophageal cancer mortality in China; men, 1973-1975 
Source: China Map Press [lo] 
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Tools to interpret geographical data 

A utocorrelations 

Graphical representation of disease frequency is not the only objective of the 
geographical study of the disease. Although this objective is important, quantitative 
answers to certain simple questions should also accompany the presentation of the 
data, to facilitate their interpretation. 

The first of these questions concerns geographical variability: are rates different 
from one region to another? A homogeneity test such as that given in Chapter 2 
(page 87) can obviously be carried out, but is of little value because it does not 
take into account the spatial structure of the geographical un-its being studied. As 
has been suggested previously, neighbouring regions are often subject to similar 
cancer risks: exposure to factors influencing the level of incidence or mortality is 
often more similar in neighbouring regions than in distant regions. Exposure can 
also vary continuously in a particular direction, resulting in a risk gradient such as 
those cited for melanoma mortality in the USA and Europe (Figures 3.3a and 3.3b) 
[4]. When the direction of the gradient is already known, as in this example, the 
significance of the variation in risk can be evaluated using a test on one degree of 
freedom (Chapter 2, page 90). However, in the majority of situations, no assumptions 
can be made about the direction of the gradient and the validity of the test can be 
questioned if the direction was suggested by observation of the map. 

The spatial distribution of risk factors leading to local correlations in disease 
rates will generally be more complex than the risk factor distributions which deter- 
mine larger-scale geographical patterns described above. For small areas it is of 
interest to measure and test the similarity of disease rates on a much finer scale. 
Local variations in processes which determine cancer incidence or mortality in the 
area under study are the focus of interest rather than overall trends. We therefore 
need to evaluate the correlation of risks in adjoining regions, also referred to as the 
spatial autocorrelation of the random process which gives rise to the observed geo- 
graphical variations of incidence. A significant autocorrelation is frequently found. 
Taking this correlation into account using methods described be-low results in a more 
satisfactory description of the spatial distribution of risks and thus a better repre- 
sentation of incidence. 

Even when the risks are the same over all regions studied, their estimation 
can result in a spatial correlation simply because the most accurate estimates, which 
are those in the most populated regions, are also found most often in neighbouring 
regions. The values observed in these regions will therefore be close simply because 
they estimate the common risk value better. This autocorrelation of the population 
sizes in the different geographical units is common and should be kept in mind, 
since, in this situation, the spatial autocorrelation observed is not in the risks but 
only in their estimates. 

If there is no autocorrelation in risks, the test of geographical homogeneity 
reduces to the classical comparison of several groups. The presence of spatial cor- 
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relation in risk establishes heterogeneity de facto, but its absence does not confirm 
homogeneity. 

Finally, it is possible that a substantial variation on a large scale and spatial 
autocorrelation on a finer scale can be observed simultaneously. Methods described 
below for modelling spatial processes can be used in this situation. Here, we will 
simply show how to evaluate spatial autocorrelation from risk estimates based on 
the SMR. We first describe the different indices available, as if the risks were directly 
observable. 

Suppose that the spatial structure of the geographical units is defined by a 
matrix of weights W, the elements Wij of which measure the geographical proximity 
of the regions i and j. Most often, W will be an adjacency matrix whose elements 
wij are equal to 1 if i and j are adjacent and zero otherwise. Moreover, let Xi be 
the spatial process defined by the relative risks of disease pi in the different regions 
(i = 1 ,..., n) (for example, Xi = log(pi) or Xi = rank (pi)]. Moran's coefficient [I61 meas- 
ures autocorrelation of the spatial process Xi using an index which is very close to 
the classical correlation coefficient : 

where So is the sum z wij which, in the case of an adjacency matrix, is the number 
i4 

of pairs of areas with a common border. 

Geary's coefficient [ I  71 measures the average squared difference between risks 
observed in adjacent areas, and should be small in the case of spatial correlation: 

Two other indices have been used for investigating the geographical distribution 
of cancer risks. Ohno [I81 suggested using the number of adjacent areas sf the 
same colour on a map of incidence or mortality. Smans [ I91 recommended calcu- 
lating the average difference in ranks of adjacent areas. As we shall see below, 
these statistics are in fact similar to the statistics used to evaluate time-space clus- 
tering. The first is similar to that introduced by Knox to analyse time-space clustering 
(see page 131) [20] and the second can be written: 

1 
D = - z wijl rank (pi) - rank (p,) I so . .  

'+I 
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Assuming that Xi have independent and identical normal distributions (under 
the null hypothesis of no autocorrelation), the means and variances of I and C are 
given by the formulae: 

where S1 and S2 are functions of wij defined by 

S2 = C (wi + w , ~ ) ~  with W i  = C Wij and W.i= C Wji 

The means and variances of the statistics proposed by Ohno and Smans can be 
obtained directly from the formulae given by Mantel in the context of detecting time- 
space clustering (see page 133, formulae (3.22) and (3.23)). 

Unfortunately, these formulae which only depend on the spatial structure W, 
are of little more than theoretical interest. As we saw above, spatial autocorrelation 
in risk estimates caused by heterogeneity in population sizes can be detected by 
these tests even if the risks are identical across areas. These theoretical values 
would only be valid if the population density was constant. 

In practice, spatial autocorrelation in risks can only be tested by randomization 
procedure using the correct null hypothesis described below. 

Let kxi, m,i be the number of cases and the person-years in the population of 
age x of area i. To test the existence of spatial autocorrelation against the null 
hypothesis of homogeneity. The total number of cases k,, in the different areas are 
distributed proportionally to the populations mxi according to the multinomial model 
(Chapter 2, page 87). The estimates of pi in each area are calculated for each 
simulation and, from these, the autocorrelation statistic and its distribution under the 
null hypothesis are calculated. Table 3.1 gives the mean and the standard error of 
the statistics I and D obtained by the above method for some cancer sites in the 
departement of lsere in France [21]. 

Several patterns emerge from this analysis : in men, testicular cancer has a 
distribution with a significantly positive autocorrelation, while the homogeneity test 
detects no difference. This finding is noteworthy, given that this cancer is of such 
low incidence that the homogeneity test has in any case little power. Autocorrelation 
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Table 3.1 Autocorrelation of risks for selected cancer sites 
in the departement of Isere in France 

K Moran statistic: I (a) Smans statistic: D Homo- 
geneity 

Observed Expected Standard Z Observed Expected Standard Z 
error error 

(") 
(b) ( b, 

Males 
Testis 8 7 
Brain 164 
Kidney 217 
Mouth 431 
Colon-rectum 1 081 

Females 
Brain 11 9 
Kidney 1 24 
Colon-rectum 985 
Breast 2 208 

(a) I is the autocorrelation of the logarithm of the SMRs, multiplied by 100 
(b) Under the assumption of a uniform risk in the departement. Under the assumption of a normal distribution 
with uniform variance but no autocorrelation, the mean and standard error of I would be -2.27 and 9.12; 
those of D would be 15.33 and 0.93 
(") This column gives the value of X2 for homogeneity (Chapter 2, page 89); the critical value at the 5% 
level is 60.5. 

indicated by high values for I and D is illustrated in Figure 3.7 showing the geo- 
graphical variation of testicular cancer incidence in the departement of Isere. In 
males, oral and brain cancers have nonhomogeneous distributions without autocor- 
relation; the distribution of kidney cancer seems completely random. In females, 
brain cancer also has a random distribution. The statistic D detects a significant 
autocorrelation for kidney cancer, suggesting that in this case it is more powerful 
than I, which detects no autocorrelation. Colorectal cancer has geographical varia- 
tion without significant autocorrelation while breast cancer shows both heterogeneity 
and autocorrelation. It is worth noting that the means of I and D can deviate from 
their theoretical values obtained by formulae (3.4) and (3.22) considerably when the 
number of cases is small but only slightly for more frequent cancers such as colorec- 
tal and breast. At the same time, the variances of I and D remain approximately 
constant and close to their theoretical values (see table 3.1, note (b)). 

Identifying risk clusters 

The preceding sections have shown how to describe and interpret the spatial 
distribution of incidence or mortality using the basic geographical unit from which 
the data are usually collected. The aim of this section is to present methods for 
studying spatial distribution on a finer scale. These methods may require a knowl- 
edge of the place of incidence for each case. 
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a: SMR b: Huel's method (a = 5%) 

c: Empirical Bayes method 
(without autocorrelation) 

d: Empirical Bayes method 
(with autocorrelation) 

Figure 3.7 Testicular cancer incidence in lsere (France), 1979-1984 
Source: Colonna [21] 
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Methods for studying the spatial distribution of biological or economical phe- 
nomena have been developed principally in the specific context of ecology and geo- 
graphy. In the medical area, this type of research has been car-ried out mainly for 
communicable diseases, with the goals of identifying clusters of infection and de- 
scribing routes of transmission. The use of these methods in the epidemiology of 
noncommunicable diseases is relatively new. It is due mainly to the recognition of 
a geographical component among the risk determinants of these diseases. 

The existence of apparently unusual clusters of cases in some regions and 
the concern caused by such aggregations among the resident populations are at 
the basis of this type of epidemiological research. Thus, the observation of a cluster 
of leukaemia cases around the nuclear installation at Sellafield in the UK [22] has 
led to much controversy and used as a further argument for the creation of a national 
system for collecting incidence and mortality data from small geographical areas [7] .  
Many epidemiologists were dissatisfied that the cluster had not been detected by 
the existing surveillance system and that it was ultimately revealed to the public by 
the lay press. Although the causes of this increased incidence remain to be estab- 
lished, the resulting research has led to new results, in particular concerning the 
spatial distribution of leukaemia. 

Before describing the methods of analysis, the notion of case aggregation or 
clustering should be clearly defined. A number of clusters are nothing more than a 
misinterpretation of the observations, often as a result of confusing random phe- 
nomenon with regular or uniform phenomenon. This difficulty arises because of our 
frequently inaccurate picture of what is taken to be the normal reference situation, 
against which unusual rates of incidence are judged. 

The problem of demonstrating the existence of a cluster often arises in the 
following circumstances: 

a geographical region exists in which disease incidence is a priori homogeneous 
over all areas within it. 

the disease is of unknown etiology and rare in each unit of the geographical 
region. 

the number of units in the region is sufficiently large to allow the geographical 
distribution of the disease to be studied. 

A cluster is thus made up of one or more adjacent units in which the number 
of cases observed is inconsistent with the possibility of an homogeneous risk in the 
region under study, that is, of a random distribution of cases in all units of the 
region. Thus testicular cancer incidence in lsere [21], discussed in the preceding 
section and on page 140 clusters around canton 11, as demonstrated by bayesian 
methods given in this section (Figure 3.7 d). 

It is necessary to distinguish the situation in which data are collected to test 
the possible excess of cases around the source of exposure that is, the hypothesis 
is proposed before observing the data, from that in which the hypothesis about the 
origin of the observed increase in risk is formulated after making the observations. 
In the latter situation, study of the distribution of cases in the whole geographical 
region can provide the basis for confirming or denying the unusual nature of the 
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observation. This approach, which inevitably leads to statistical tests on a large 
number of degrees of freedom, is extremely conservative. On the other hand, tests 
on one degree of freedom, based on a more specific alternative, are-not acceptable 
as they are designed for the situation in which the hypothesis precedes the obser- 
vation (for example, variation of risk with distance from a source of exposure). Thus, 
specific methods are required. 

The distinction between the two situations cited above is not always obvious. 
For example, the existence of a nuclear reactor or a toxic waste outlet in the vicinity 
of a leukaemia cluster might not always provide an a priori hypothesis. A systematic 
study of suspect environmental situations and the bias caused by the selective publi- 
cation of significant results can lead to confusing interpretations. In the following 
section we provide a brief survey of the principal methods used to examine such 
clustering. 

When the hypothesis precedes the observation, we would generally attempt to 
verify that risk increases with proximity to the source of the exposure. A trend test, 
in which the weights are the distances between the study areas and the source of 
exposure, can be used for this purpose [23]. The test's power nevertheless depends 
on the way in which risk decreases with distance and on the distribution of population 
density according to distance. Schulmann and coworkers [24] have suggested trans- 
forming the distances in such a way that the population density remains constant 
while still maintaining the topological structure of the area (sometimes known as 
isodemographical maps). There has been little research on the influence of the 
choice of proximity measurement on the power of corresponding tests. 

Stone has proposed a method which is largely independent of the relationship 
between risk and distance [25]. Although it could be presented in a rather theoretical 
framework (estimation of risk under the constraint that it decreases with increasing 
distance), the method is based on a fairly intuitive principle; the essential idea is 
to construct a sequence of areas of increasing size around a source of exposure 
using available incidence or mortality data, then to choose the area for which the 
ratio between observed and expected cases or deaths is highest. In other words, 
the SMR is evaluated for that area for which the effect is maximum. The statistic 
thus accumulates the information available to test the assumption of homogeneity 
of the risk. This function of the observations no longer follows a Poisson distribution, 
given the way in which the area on which it is based was selected. Stone has shown 
how the level of significance of the test can be calculated exactly. In practice, it is 
often simpler to proceed by simulating the multinomial distribution of the number of 
cases observed in the constructed sequence of non-overlapping areas, conditional 
on the total number of cases observed in the region under study. 

When several identical sources of exposure can be studied, the fact of living 
close to one of these sources can be considered a potential risk factor and the 
statistical significance of its effect can be evaluated in a geographical analysis. For 
example, the risk of leukaemia in small geographical areas as a function of the 
proportion of people living near a nuclear installation has been studied using a 
log-linear model [26] or more traditional approaches based on the SMR [27]. These 
methods can nevertheless suffer from methodological weaknesses inherent in eco- 
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logical studies (see page 148). Kinlen [28,29] has shown that other conditions, such 
as living in a 'new town' created in the middle of a rural area, can also be linked 
to a high risk of childhood leukaemia. This factor could be canfounded with the 
proximity of nuclear installations in the evaluation of leukaemia risk; its effect might 
be difficult to separate from the potential effect of radiation in an ecological study. 

The problem of spatial aggregation of leukaemias and lymphomas has often 
been raised. In particular, an attempt has been made to evaluate the hypothesis 
that these diseases have a viral etiology, by assessing whether the spatial distribu- 
tion of cases is random or is a cluster distribution. In this approach it is implicitly 
accepted that the viral hypothesis automatically leads to clustering; this latter infer- 
ence can be questioned today in the light of recent findings on viral mechanisms 
and of the existence of a long latency period between infection and disease. Irre- 
spective of any specific hypotheses, however, such studies are of value: beyond 
the test of randomness of the spatial distribution, it is of interest to identify clusters 
of disease, which can lead to further investigation in the geographical areas thus 
identified. A better understanding of the aggregative structure of the spatial distribu- 
tion of a disease results in a more objective analysis of any supposed excess in 
risk. 

The methods proposed rely on the study either of the distribution of cases in 
small geographical areas defined a priori or of the distribution of distances between 
cases observed over the whole geographical area under consideration. Generally 
speaking, the studies of homogeneity in risk are based on geographical areas with 
small populations and limited numbers of cases. Usually, about half the areas do 
not contain a single case. The test of homogeneity described in Chapter 2 (see 
page 87) is clearly inappropriate. An acceptable test should be able to detect de- 
viations from randomness, which could either result from the preferential occurrence 
of excess cases in geographical units where there were already subjects with the 
disease, or be the consequence of small excess risk in several areas, the overall 
distribution of risk having however a small variance. In this second situation, few 
excess cases would be found in each unit, but cases in excess of the expected 
number would be found in the units where risks were higher. These alternatives to 
randomness are known as contagious distributions; the second differs however from 
the strict concept of contagion for which it is the presence of a subject with the 
disease which increases the probability of healthy subjects developing the disease. 
A powerful test against the alternative of heterogeneous risks with a small variance 
distributed around a common value has been proposed by Potthoff and Whittinghill 
[30,31] and used in the above context by Muirhead and Ball [32]. 

Recall that heterogeneity is demonstrated when the g multinomial distributions 
corresponding to g age groups (or more generally to g risk categories) 
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are not compatible with the hypothesis pi = 1 ,  1 5 i 5 n. Potthoff and Whittinghill 
have shown that for such a distribution a powerful test against the alternative of 
small variation of p around 1 is based on the statistic [30] 

where pEi is the value specified by the null hypothesis pi = 1, 1 I i _< n 

Thus, U, in this situation becomes: 

Note that Ux is based on the number of pairs of cases observed in different 
units, weighted by the inverse of the number of person-years accumulated by the 
corresponding population. This weighting has an intuitive explanation, the occurrence 
of a pair of cases being all the more indicative of clustering i f  the population is 
small. Note also that units with only 0 or 1 case make no contribution to this statistic. 
It can be shown that the mean and variance of Ux, under the null hypothesis, are: 

Var (Ux) = 2 (n - I )  E (Ux) (3.9) 

The test of homogeneity is thus constructed by summing the information from 
different age groups as has been done several times previously: 

Table 3.2 shows brain cancer incidence in five cantons of the departement of 
lsere and Potthoff and Whittinghill's test applied to these data. Numbers in 
parentheses have been observed while those which precede them correspond to a 
fictitious incidence, constructed to provide an example of a contagious distribution. 

With TI equal to 3.488, the distribution of cases does not appear to be random, 
even though the classic test of homogeneity gives the value 1.63 for a X2 on four 
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Table 3.2 Potthoff and Wittinghill's test using data on brain cancer 
from five cantons of the departement of Isere, France (a) 

Age Canton Potthoff andewhittinghill's test 
group , 

2 3 4 5 kx . ux E(Ux) Var(Ux) TI (b) 

Total 10 (20) 5 (4) 11 (5) 30 (34) 12 (5) 68 445.1 280 2 240 3.488 
105 029 65 604 130 308 448 768 165 073 

(a) Fictitious incidence cot 
observed are in brackets; 
(b) This column gives the 
formula (3.1 0). 

.responding to a contagious distribution. The number of cases which were actually 
the second line gives the person-years of observation. 
T i  test for each age group separately. The total value of T i  is calculated from 

degrees of freedom (p = 0.80). On the other hand, this test statistic is equal to 25.1 
when applied to observed data (p = 0.00005). The Potthoff and Whittinghill test on 
these same data gives a value of TI equal to 0.55. As the value is not significant 
it shows that this test is not powerful enough to detect certain types of heterogeneity. 
It is important to realize that TI is a powerful test only against the alternative of 
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risk dispersion discussed at the beginning of this section. The statistic is constructed 
to detect a trend towards contagion and cannot detect even substantial heterogeneity 
in the absence of aggregation of this type. In particular, it can beshown that the 
application of this method to testicular cancer data does not provide a significant 
result (TI = 1.405; p = 0.1 6) despite clustering of cases (Table 3.1 ; Figure 3.7d). 

The test does not take into consideration the spatial structure of the geographi- 
cal units being analysed. It is therefore not constructed specifically for geographical 
analyses. Muirhead and Butland [33] have suggested that the test be applied to 
several different levels of geographical grouping in order to define the scale on 
which the phenomenon of aggregation occurs. 

A related approach to that described above consists of regrouping the geo- 
graphical units in such a way that the expected numbers based on a homogeneous 
distribution of risk are identical in the newly-formed groups. The problem of heter- 
ogeneity of populations is thus removed. The randomness of the distribution of the 
number of cases can then be tested simply by verifying that it follows a Poisson 
distribution. Such a test based on the same principle as above [31] is given by a 
statistic known in plant ecology as the dispersion index, defined as the ratio of the 
observed variance to the observed mean [34]. When $ is calculated over n units 
and n is large, (n - 1) $ is approximately distributed as a X2 on (n - 1) degrees of 
freedom. Then : 

T2= 1/2(n- I )$-  62(n-  1 ) -  1 (3.11) 

can be considered to be a standard normal random variable. When several risk 
groups are to be distinguished (for example, age groups), stratification can be used, 
as before. 

Urquardt and coworkers [35] developed this approach further, including an al- 
gorithm to group units. This procedure takes into account the variations in population 
density, to construct study units which lead back to the simple case of the Poisson 
distribution. This idea has also been used in the dual approach, which involves 
working with distances between cases. If the population density is uniform in the 
geographical area under study, the distribution of the number of cases in each unit 
of area would be Poisson, with the mean given by the product of the surface area 
and the average number of cases per unit surface area. Thus, the number of cases 
in a circle with a radius r would follow a Poisson distribution with mean hnr2. The 
probability that the distance from a given point to the closest case was less than r 
would be equal to the probability that the corresponding circle only contained one 

2 

case, that is e-"'. In other words, the square of the distance from a given point 
to the nearest case has an exponential distribution with parameter EL. More gener- 
ally, when distances are ranked, if Rj is the distance from a given point to the jth 
nearest case (neighbour of order j), it can be shown by using the same principle 
(see Chapter 2, page the relationship between X2 and Poisson distributions) that 

2nh R: has a X2 distribution on 2j degrees of freedom. Thus, study of the distribution 
of distances between neighbouring cases (from the first or jth order) provides a 
means of evaluating the randomness of a spatial distribution. Unless distances are 
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transformed appropriately, population density cannot be considered constant and the 
distance to the jth case will not have the stated property. Nevertheless, the method 
still provides a useful statistic to define a test of randomness or-to characterize the 
geographical units which are at excess risk and which need further investigation. 

Cuzick and Edwards [36] have proposed to comparing the proximity of no cases 
to that of n, controls representing of the population residing in the region under 
study. For example, for a childhood disease, these controls could be births of the 
same sex preceding and following the case in the regional birth register. A test of 
spatial aggregation is constructed by determining the pairs of subjects (cases and 
controls) which are neighbours of order j, and counting among these pairs those in 
which both members are cases. An excess of such pairs compared to the expected 
number under the assumption of no aggregation (i.e., if the labels 'case' or 'control' 
are randomly distributed among the no + nl subjects) will indicate spatial aggrega- 
tion of cases. The statistic is then defined by: 

where Xii = 1 if j is the label of a kth order neighbour of i, and 0 otherwise, and 
Yij = 1 if i and j are cases, and 0 otherwise. 

Cuzick and Edwards also suggest other statistics to analyse the structure of 
distances in the group of cases and controls. They describe the distribution of these 
statistics under the null hypothesis of no spatial aggregation, and analyse their 
power to detect certain types of spatial aggregation. The controls in this approach 
are used to evaluate the density of people at risk in the area under consideration. 
A similar approach would be possible if this density was known from other sources : 
the expected number could then be calculated and it would not be necessary to 
resort to a sample of controls. 

Besag and Newel1 1371 suggested defining areas of investigation around each 
case by circles with radius given by the distance to the nearest neighbour of order 
j. The possibility of a cluster around the case under consideration can then be  
identified from the evaluation of the population at risk in this circle, and hence the 
number of expected cases, under the hypothesis of homogeneity of risks. In fact, 
because of the nature of the available data, the region being examined around a 
given case is not exactly a circle : it is constructed by successive accumulation of 
small areas of known population. At each stage, the centre of gravity of the area 
being added is the closest one to the area added at the previous stage. The pro- 
cedure stops when j cases are obtained in the resulting region (the initial case being 
excluded) and the expected number is calculated. A circle around the case under 
consideration is then drawn on the map each time that the probability of observing 
j cases in the region is less than a specified probability level (for example a = 5%). 
The number of expected cases in the region at the level a can obviously be calcu- 
lated taking into account the presence of several risk classes (e.g., age, sex, urban 
or rural residence) if the population at risk can be characterized according to the 
values of these parameters. The method is well suited to detect potential clusters 
in a region for which the population is known on a small geographical scale. In 
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particular, it can be used to identify clusters when the contagious nature of the 
distribution has already been demonstrated (this last condition is in fact necessary 
because if a = 5'/0, Besag and Newell's test will identify 5% of cases as defining a 
cluster in a purely random distribution). 

In practice, these methods are limited by the imprecise information available 
on the location of cases, and the necessity of placing them at the centres of gravity 
of the geographical units being studied. The references cited in the bibliography 
provide more details in this regard. 

Time-space clustering 

If differences in demographic structure and the prevalence of risk factors across 
regions are sufficiently stable over time, the spatial distribution of incidence tends 
to remain constant. Further, time trends will tend to be identical between geographi- 
cal units. This baseline situation corresponds to the absence of time-space interac- 
tion. One pcssible disruption to this state of equilibrium is the occurrence of change 
in risk at a given time in one area of the geographical region being studied. The 
resulting excess of cases defines time-space clustering. In investigation of cancer, 
for which the latency period between the start of exposure and the onset of disease 
is usually very long, it is uncertain that the identification of such clusters has led 
to meaningful epidemiological results. Nevertheless, the statistical methods sug- 
gested for this type of data merits a brief review. 

One of the first studies in this area was by Knox [20] who examined the dis- 
tribution in space and time of 96 cases of childhood leukaemia. He assumed that 
any two cases within a kilometre of each other were spatially close and that any 
two cases occurring within a month of each other were close in time. He then noted 
152 pairs which were close in time and 25 pairs close in space. The observation 
of five pairs close in both time and space led him to the conclusion that there was 
time-space interaction. He based his conclusion on an analysis of the 2 x 2 table, 
classifying the 4560 pairs of subjects (96 x 9512) into four categories according to 
their spatial and temporal proximity. Under the assumption of absence of interaction 
between these two variables, the expected number of subjects close in space and 
time was estimated as 25 x 15214560 = 0.83. Furthermore, considering that the 
number of occurrences of such pairs follows a Poisson distribution, he calculated 
that the probability of observing a value greater than or equal to five was 0.001 7, 
and thus highly improbable under the null hypothesis. 

In fact, David and Barton [38] have shown that the mean and variance of the 
number of pairs belonging simultaneously to two distinct and independent relation- 
ships (for example, time and space) can be derived from the number of subjects N 
and the number of edges ai and bi 15 i 5 N connecting related subjects in the 
respective graphs' of the two relations S and T which define proximity in space and 

A relationship can be represented graphically by a set of points (subjects, 1 S i 5 N), and 
by a set of segments linking points which are in the relation. The subjects are the vertices of the 
graph and the segments are its edges. When the relationship is not symmetrical, the segments are 
replaced by vectors when (i,j) is in the relation and (j,i) is not. 
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time. Specifically, by characterizing the graph of a relationship by a matrix with 
elements equal to 1 if the pair (i,j) is in the relationship and 0 when it is not, U, 
the number of pairs which are in both relationships S and T, can be written in the 
form: 

where Xij and Yij are the elements of the matrices of the graphs of S and T. Let P 
be the number of edges of a relationship and Q be the number of pairs of edges 
of this same relationship, then the number of edges connecting i, the total number 
of edges and the number of pairs of edges in the relation S can be written in the 
form: 

with similar relationships holding for PT and QT as functions of Yij through bi, the 
number of edges connecting i in the realation T. David and Barton's result can then 
be written: 

where 

In the example given by Knox, we have P, = 25, and PT = 152; Barton and 
David calculate Qs and QT to obtain a variance of 0.802, showing that the hypothesis 
of Poisson variation is acceptable and that consequently Knox's conclusions are 
correct. 

This approach can obviously be applied to situations other than the evaluation 
of time-space clustering. For example, to test the homogeneity of risk in a series 
of g families, each of size nj and including kj subjects with a genetic defect, we 
calculate the number of pairs of affected subjects in the same family 

if  S denotes the relationship of belonging to the same family and T is the relationship 
of sharing a genetic defect, then ai = nj - 1 for all members of family j. If, in addition, 
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K is the total number of cases, then bi = K - 1 when i is a case and bi = 0 for 
other subjects. Application of formulae (3.13) then gives: 

- 

which immediately gives the mean and variance of U, from formulae (3.14) and 
(3.15) above. 

The statistic U has been generalized by Mantel [39] by allowing Xi, and Yij, 
the indicators of proximity in space and time of the pair (i, j), to assume values 
other than 0 and 1. Furthermore, Mantel's method does not require the relationships 
S and T to be symmetric, so that it can account for very general situations such as 
the relationship of proximity discussed in the previous section. Cuzick and Edwards' 
method [36], presented earlier, is within the scope of this approach. Mantel's result 
is discussed by Cliff and Ord [40], whose work we will return to in more detail. 
Below, the method for calculating the moments of the statistic U are given. 

First, the quantities So, S1, S2 defined by the following formulae, are calcu- 
lated: 

SP= C (Xi. + x.d2 

The quantities To, TI and T2 are defined by similar formulae as functions of Y. Mantel 
has shown that under the hypothesis of no correlation between Xij and Yij, the ex- 
pected value and variance of U are given by: 

where N ( ~ )  is defined as in formula (3.15). Smans and Ohno's statistics given in the 
previous section are of this kind. In particular, the mean and the variance of D is 
derived from formulae (3.22) and (3.23) in the case of uniform population density. 
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Smoothing and the empirical Bayes method 

Data from small geographical areas can be more informative in the analysis 
of disease occurrence than those for larger geographical areas, for example by 
allowing more homogeneous risk groups to be constructed. However, the size of 
the populations in these areas being studied then implies that most statistics, in 
particular measures of incidence and mortality, are subject to large random variability 
that makes the direct interpretation of data difficult. Use of a smoothing procedure 
then becomes necessary. 

Although numerous smoothing methods have been proposed, their statistical 
properties have been relatively poorly investigated. The polynomial regression 
method discussed above (Figure 3.5) and the moving average method used in the 
Finnish cancer atlas [41] and elsewhere do not totally address the problem of inho- 
mogeneity of populations. These methods can therefore produce extreme risk esti- 
mates for areas with small populations. 

When sufficient information is available, groups of contiguous geographical 
zones can be formed by objectively defining similarity based on determinants of risk 
as geographical or socioeconomic variables. The SMR can then be calculated in 
the resulting areas to obtain more stable estimates, as was done for the atlas of 
cancer incidence in the Isere [42]. In a related approach, Huel 1431 proposed group,- 
ing geographical zones based on similarity of incidence or mortality itself. This 
method assumes an extremely strong autocorrelation since it is based on the idea 
that contiguous geographical zones are a priori alike, in the absence of evidence 
to the contrary. Contiguous zones are grouped according to the following algorithm : 

Define a coefficient of similarity or distance between areas which measures their 
proximity with regard to the variable being considered (e.g., the Mantel-Haenszel 
statistic comparing incidence or mortality in two neighbouring areas; see page 77). 

Choose a cut-off point in the coefficient beyond which two areas cannot be 
grouped (e.g., significant difference at level a).  

Group two contiguous areas when their similarity is greater than that between 
each of the two areas with all other neighbours. 

Iteration of step 3 leads to a unique solution if, at each step, all distances 
between neighbouring areas formed at the previous step are different. In this situa- 
tion, one area can be grouped with only one of its neighbours. 

This method has several advantages. It can eliminate spurious excesses of 
risk that a simple description using SMRs might produce. It can also reveal the 
minimal spatial structure compatible with the precision of the observations. On the 
other hand, the method suffers the inevitable arbitrariness of the choice of the cut-off 
point for similarity. The variability in the number of neighbours across regions raises 
another problem: a region with few neighbours probably has a greater chance of 
remaining isolated and thus attracting attention. This method has been systematically 
used in the atlas of cancer incidence in the Isere in France and the results appear 
to confirm this point. Figures 3.7a and 3.7b show the map of testicular cancer in- 
cidence based on SMRs and the smoothed map using Huel's method as applied by 
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Colonna [21]. The method confirms the existence of a spatial structure which had 
previously been detected by Moran and Smans' coefficients of autocorrelation. 
Furthermore, it shows a high-risk region. Note that the SMRs do not provide any 
clear indication of spatial structure because of the small observed numbers available 
in each geographical unit. 

As noted previously, the description of risk in a group of geographical units 
raises the problem of simultaneous estimation of a series of values for which the 
available statistical information is of variable precision. Furthermore, a series of 
comparisons of geographical units taken two at a time does not necessarily lead to 
a ranking. It is likely that Huel's method provides the best solution that can be 
obtained using a series of tests of this kind. 

The preceding discussion has also shown that the construction of a map im- 
plicitly or explicitly involves two steps: firstly, the establishment of a class of geo- 
graphical units by risk level, then a grouping of these units into large risk categories 
from which the scale of the map is constructed. If this grouping is carried out on 
the basis of centiles, two methods to estimate incidence or mortality which rank the 
geographical units in the same order, or almost the same order, are equivalent and 
lead to the same graphical representation. As a consequence, the choice between 
various methods of standardization is not a major problem, since the rank correlation 
between the resulting measure of risk is usually high. Similarly, the fact that the 
random variability of the estimators is large compared to that of the underlying risks 
that they estimate only causes difficulty when the units contain populations of varying 
sizes: in this situation, estimates of risk in small population units based on small 
numbers are likely to be misclassified and have an unjustified weight in the final 
definition of risk categories. In this case, the classification of regions by incidence 
or mortality level should take into account not only the estimated value of the risk, 
but also the precision with which risk is estimated. 

The empirical Bayes approach is probably the most satisfactory solution which 
has been proposed to date for this problem. Basically, this method [44] does not 
allow imprecise estimates to appear among the extreme values simply on the basis 
of their imprecision. 

Suppose the map is defined by n geographical units in which Oi cases have 
been observed and Ei cases were expected under the hypothesis of equality of risk 
in different units. Then the relative risk pi of each area compared to the standard 
risk is classically estimated by the SMR, Oi/Ei (see Chapter 2, page 100). We have 
seen that Oi can be considered to have a Poisson distribution with mean piEi. Up 
to this point, in the classical approach, pi was considered fixed and totally unknown. 
Now we suppose that the observations are the result of two successive, random 
mechanisms. The first, determined by the risk factors for the disease, generates the 
values pi which then become the n realizations of the same underlying random 
variable determining the risk levels in different regions. The second mechanism leads 
to observations Oi from the Poisson distribution with mean piEi. The geographical 
variability to be described obviously corresponds to the first of these mechanisms. 
In practice a model is chosen to describe the distribution of the relative risks pi, 
which relies on available a priori information about them such as the prevalence of 
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the risk factors in the regions, or a possible autocorrelation -in risks detected by one 
of the methods discussed above. Several classes of distribution can appear to be 
reasonable in this context. If the aim is simply to impose some form of cohesion 
on the estimates and avoid extreme estimates from lightly populated regions, the 
gamma distribution is an appropriate choice, for reasons explained below. Its density 
is: 

where the function r is classically defined by the integral 

The mean and the variance of this distribution are r and rs, as can be verified by  
recalling that T(x + 1) = xT(x). Thus r is the mean risk in the group of regions under 
study and s is a scale factor indicating the size of the geographical variability relative 
to this mean risk. 

If the risks in different regions constitute a sample from this distribution, the 
probability that k deaths (or cases) are observed in region i is: 

that is 

which can be written : 

Thus, the marginal distribution of Oi is a negative binomial distribution with 
parameters sEi and r/s having mean rEi and variance rEi(l + sEi). This distribution, 
which serves as a paradigm for cluster distributions, is particularly appropriate here. 
Effectively, if there is heterogeneity in risks, the distribution of cases in the different 
geographical units will differ from the random scatter represented by the Poisson 
distribution, and the cases will tend to group together in higher-risk regions. 

Using the distribution of observations in the set of geographical units allows r 
and s to be estimated by the method of maximum likelihood, thus giving the mean 
risk and the variance of the distribution of p. This marginal distribution is however 
of limited interest. The main aim of disease mapping in this case is to  obtain an 
estimate of risk in the area i which takes into account both a priori information about 
the distribution of p and a posteriori information provided by the value k taken by 
Oi. The a posteriori distribution of p in this region is used for this purpose, using 
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the fact that the observed value of Oi is k. From Bayes' theorem, the probability 
density of p can be written: 

n (pl k) = 
Y (P) Pr (Oi = kl p) 

Pr (Oi = k) 

where 

This is the density of a gamma distribution with parameters k + r/s and ui. The a 
posteriori mean and the variance of p are therefore: 

If r and s are known, these formulae will provide a Bayesian estimate of pi, 
that is, both a value for pi and the variance of the chosen estimator. In fact, r and 
s must be estimated from the marginal distribution as indicated above, explaining 
the use of the term 'empirical' in this method. Similarly, the variability of the estimator 
cannot be characterized by ci, since, the estimation of r and s introduces additional 
variation which is not taken into account in ti. 

Replacing k by Oi in (3.31), the estimator Si can be written 

that is, as the weighted average of the mean risk r and of the ratio Oi/Ei, the SMR 
of the region i. Since s is the parameter characterizing the variance rs of the a 
priori risk distribution, the following observations can be made: 

For a given variance of the geographical distribution, the estimates will be closer 
to the SMR as Ei increases; however, on the other hand, less precise estimates are 
moved closer to the mean risk (r). 

If the variance of the geographical distribution (s) is very large, there is effectively 
no a priori information and the empirical Bayes estimates are close to the SMRs. 

When all the SMRs are equally precise, the only effect of their collective estimation 
will be to reduce the range of the estimates by bringing them all closer to the mean 
risk. 
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In spite of its attractive features, the gamma distribution can still be questioned 
as the only constraint it imposes on the estimates is in their variances. Generally, 
it would be of interest to incorporate in the a priori distribution of p additional data 
concerning the spatial structure under study or a series of covariables characterizing 
the geographical units being described. These objectives could be achieved by 
making the parameters r and s of the gamma distribution depend on the spatial 
structure and covariables. However, because of technical difficulties in incorporating 
the spatial structure, studies of this type have generally resorted to the arsenal of 
autoregressive Gaussian spatial processes used in other areas of investigation. 

In this context, suppose that the variables Xi = Log pi are Gaussian, with mean 
depending on a number of covariables ( z )  and correlation depending on the spatial 
structure (W). Besag [45] has shown that such a model can be specified using the 
conditional expectation of Xi in the form: 

Var (Xi I Xj , j # i) = o 2 

where W, with elements wij, is most often the indicator matrix of proximity and p is 
a set of parameters to be estimated. More precisely, this specification is equivalent 
to a Gaussian model with mean p and variancecovariance matrix a2(1 - a ~ ) - ' .  

This model is especially appropriate for regular geographical subdivisions in 
which each unit has the same number of neighbours. In practice, this condition is 
rarely met, and it seems more satisfactory to suppose that the conditional variance 
of Xi increases as the number of neighbouring regions decreases. A model proposed 
by Besag and Kempton [47] and examined in detail by Mollie [48] fulfils this objec- 
tive. This model (mixed model) assumes that the observations result from the sum 
of two processes : the first Ti is a normal random process with mean pi, constant 
variance o2 and without autocorrelation. The second, Ui, which has zero mean and 
maximal autocorrelation, is obtained by supposing that the conditional expectation 
of the Ui is the mean of observations Uj in the neighbouring units, and that the 

conditional variance of Ui is r2/wi., where W i . 1  Wij is the number of neighbours of 
j 

unit i. The conditional variance of Xi then depends on the number of neighbours, 
and the autocorrelation of the process Xi = Ti + Ui depends on the relative size of 
the variances a2 and T*. The bigger the ratio a2/r2, the smaller is the spatial auto- 
correlation, while it is maximized for O* =.0.  

The use of such an a priori model for the distribution of risks requires numerical 
methods, because the marginal and a posteriori distributions are no longer ex- 
pressed in a simple analytical form [44, 461. 



GEOGRAPHICAL ANALYSIS 139 

In practice, the method gives estimates influenced not only by the mean risk 
of the region under study but also mean risks in areas neighbouring the unit where 
the risk is being estimated. This method is especially useful in preventing undue 
attention being focused on areas with small numbers and randomly raised SMR, 
when they are surrounded by areas of low risk. 

Mollie 1481 provides a particularly convincing example of the effectiveness of 
these methods, using gall bladder cancer mortality in French men. Figure 3.8 shows 
the SMR for 94 French departements, as well as smoothed estimates produced by 
the methods described above. The gamma distribution provides little insight into the 
spatial structure while this structure becomes apparent using models which take into 

a: SMR 

b: Empirical Bayes method 
Mixed model 

Figure 3.8 Gallbladder cancer mortality in France; men, 1971-1978 
Source: Mollie [48] 
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account the strong autocorrelation of the spatial process. It is worth noting that the 
indicated gradient continues beyond the regional borders, the mortality rate for this 
cancer being particularly high in north east Europe. 

The example of testicular cancer in the lsere used above [21,42] is also helpful 
in demonstrating how this method may incorporate the a priori information. The 
SMRs by canton vary from 0 to 628.7 but are considered not to differ from 1 by 
the homogeneity test (Table 3.1). The choice of the gamma distribution as the a 
priori description of risk is not justified because of the autocorrelation demonstrated 
previously. Its use gives risk estimates between 96.9 and 101.6 within the departe- 
ment; they are much more compatible with homogeneity of risk than the crude esti- 
mates but they completely ignore the local characteristics of the risk process. On 
the other hand, using the above model (formulae 3.34, 3.35, and 3.36) as a priori 
distribution provides estimates with a strong spatial autocorrelation and suggests 
the existence of higher-risk areas. This is reflected in the range of estimates (95.4; 
162.0) which is larger than that obtained from the a priori gamma distribution. The 
second set of estimates should be preferred because the data are not compatible 
with an absence of autocorrelation. It is clearly more logical in this case to use an 
estimation method which takes into account the spatial organization of the geo- 
graphical units, to allow a better appreciation of the geographical variation in risk. 

Concluding remark 

We conclude this section on geographical methods with a cautionary remark. 
The recent rapid development of these methods results more from a preoccupation 
with the environment than from new biological knowledge generating hypotheses to 
be examined. Although legitimate, these preoccupations have led to the introduction 
of some confusion and may well generate substantial report bias. The increase in 
the number of situations in which excess risk is investigated has tended to invalidate 
the statistical methods used in this context which are not designed to deal with this 
multiple test of randomness. 

In these situations, epidemiologists can be caught between two extreme posi- 
tions : either they may accept as having been stated a priori a hypothesis which 
was in reality suggested by the observations; from this point on, the hypothesis will 
be confirmed simply by a suitably chosen test. Alternatively, they can deny the exis- 
tence of any excess risk in the particular case presented to them and look in the 
armoury of available tests for the most conservative one which will simply show that 
their own a priori ideas cannot be disproven by statistics. This ambiguity emphasizes 
the need to adopt an approach dictated by a biological hypothesis which integrates 
research from other disciplines. When there are no data of this kind, a good theoreti- 
cal knowledge of the tools being used is the only support available. With this knowl- 
edge, wrong conclusions resulting from excessive confidence in statistical 
significance alone can be avoided. Thus, for many reasons, the contribution of geo- 
graphical studies to etiological research is uneven, and depends on the context in 
which they are applied. Although they are useful, a number of these methods are 
at best tools of preliminary investigation. 
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Ecological studies 

Aim and methodological principles 

Correlation studies, also called ecological studies, have fundamentally the 
same objective as the methods of analytical epidemiology, that is, to detect asso- 
ciations between risk and exposure levels and then suggest, or preferably confirm, 
explanatory hypotheses. As with all methods in descriptive epidemiology, it is the 
group rather than the individual which constitutes the basic statistical unit. 

Correlation studies are often seen as equivalent to geographical analyses of 
the determinants of risk. Indeed, the procedure is frequently used with groups that 
are geographically defined, whether by region or by country. It is a logical develop- 
ment of the studies described in the previous sections, and represents the most 
straightforward approach to try to explain geographical heterogeneity. Nevertheless, 
the methods have a much wider use, applying to all situations which involve inves- 
tigating the relationship between the frequency of an event in several groups and 
a parameter characterizing the average exposure of individuals in the groups, no 
matter how the groups are defined. 

Ecological studies also represent a natural extension of the pairwise compari- 
sons often made in descriptive epidemiology, in that they provide a synthesis of the 
information obtained from these comparisons. Their advantage is especially obvious 
when many factors are presumed to act simultaneously and the average exposure 
of the group can be determined for each one of them. In this situation, it is not 
particularly informative to simply examine rates and levels of exposure to different 
factors. In theory, the specific effects of each factor could be assessed by simul- 
taneously accounting for them in a multivariate analysis. In addition, correlations 
across groups should offer a further opportunity to confirm the existence of a rela- 
tionship between exposure and risk if it is possible to demonstrate a dose-response 
relationship. In the following section, however, it will be seen that ecological studies 
are subject to a number of weaknesses which limit their value and make their in- 
terpretation difficult. 

Correlation studies are often justified on the grounds that they use available 
data on groups which have been formed for other reasons, but nevertheless reflect 
different levels of the exposure being studied. As with other methods in descriptive 
epidemiology, ecological studies are based on the implicit assumption that the 
groups on which the study is based correspond to a categorization of exposure of 
acceptable specificity. It will be seen later that the homogeneity of exposure within 
groups is an important determinant of the method's success. 

When groups are not defined a prior;, the way in which they are formed using 
available data is obviously of crucial importance. In an ideal situation where these 
data are available at an individual level, groups could be formed by categorizing 
individuals with respect to increasing, if not homogeneous, exposure levels. The 
situation arising in this case is then strictly identical to that of an analytical study. 
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In general, study of the relationship between exposure and risk level is based 
on a graphical representation, in which each group under consideration appears as 
a point, situated on two axes characterizing respectively the two measures in ques- 
tion. For example, in Figure 3.9, data on tobacco consumption and the cumulative 
risk of lung cancer are shown for European countries. An important feature is the 
shape of the resulting scatter of points : concentration of points around a simple, 
especially linear, function tends to support the determining role of the exposure in 
the statistical explanation of risk level. 

The effect of exposure can be quantified by fitting a regression line which 
predicts incidence or mortality as a function of the level of exposure. Later, we will 
see that this method is more appropriate than the calculation of the correlation 
coefficient, which is nevertheless the procedure most often used. 

Technical aspects of the calculation and interpretation of regression and cor- 
relation are presented briefly below. 

Figure 3.10a shows the linear function Y = 2X + 1 when X is between 0 to 1; 
the value of Y depends only on X and its variability is similarly defined by that of X: 

Figures 3.10b, c and d show how such a relationship is changed when a ran- 
dom component of increasing variance is added to the deterministic element 2X + 1 
defining Y. Table 3.3 provides numerical values corresponding to these figures and 
details of the calculations for Figure 3 . 1 0 ~ .  In this example X is assumed to be 
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Figure 3.9 National sales of cigarettes (1955-1 964) 
and risk of lung cancer in European countries 

(average risk in males and females born around 1925; see Table 1.1) 
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a: Var E = 0 b: Var E = Var X 

X 

c: Var E = 4 Var X 

X 

d: Var E = 16 Var X 

Figure 3.10 Least squares estimate of the linear relationship 
Y = 2X + 1 + E, simulated data 

controlled, that is, it takes the values Xi, i = 1, n defined a priori (here from 0 to 1 
by steps of 0.1). The classical model used to represent this type of data is 

where the errors E are assumed to be independent with the same normal distribution 
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It expresses a relationship in which the mean of the normal variable Y depends 

linearly on the variable X and the conditional variance 0: is the same for all values 
of X. The variability of Y is thus the result of its structural variability due to the 
relationship with X and the random variability added by the error r, which may be 
due to other determinants of Y not accounted for by the model: 

In Figure 3.10, o: respectively has the value Var(X) (Figure 3.10b), 4Var(X) 
(Figure 3 . 1 0 ~ )  and 1 GVar(X) (Figure 3.10d). In Figure 3.10c, only half of the variance 
of Y is due to the structural relationship linking X and Y. 

The accuracy of the prediction of Y that can be made from knowing X is often 
measured by the percentage of the variance of Y which is due to its relationship 
with X. This relationship is written as p2 = a2var(x) /var(~) .  Its values are respec- 
tively 100°h, 80%, 50% and 20% in the four diagrammes of figure 3.10 above. This 
figure show that the accuracy of the prediction, therefore p2, depends on the random 

variability 02. The above formula indicates that it is also a function of the structural 
variance. The less the slope, the smaller the value of p2, for given random variability 
and variance of X; p2 is obviously zero when the slope is horizontal, because X no  
longer provides any information on Y. 

In practice, a and b are not known. They can be estimated by the maximum 
likelihood method which, for the model (3.37), is equivalent to the method of least 
squares: the estimates 2 and % of a and b are the values which minimize the de- 
viance D(a,b), that is, the sum of squares of the differences in the model 

A simple rearrangement shows that 

where X and Y are the observed averages of X and Y. 

Calculation of the regression line from data shown in Figure 3.10 c is given 
in Table 3.3. 
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Table 3.3 Data from Figures 3.10(b,c,d) 
and calculation of the regression line for Figure 3 . 1 0 ~  

A 

Unit yb yc yd x x2 ( Y " ) ~  XY yc 
(1 ) (2) (3) (4) (5) (6) (7) (8) 

-- 

Total 21.89 23.67 25.63 5.5 3.85 61.739 14.386 23.67 

The regression of YC on X is obtained from columns 5, 6 and 7 of Table 3.3 
using the following calculation: 

Then, column 8 gives estimated values of Y which define the observed regression 
line: 

A 
Yi = ;xi + 6 

By writing: 

and by developing the second member of the equation, the relationship analagous 
to (3.38) is obtained: 
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which explains the fact that the observed variance of Y is made up of the variance 
due to the regression and the residual variance; in the present example, this is 
written: - 

The value 4.89 obtained for D($, 6) can be calculated in principle from the 
A 

formula (Yi - Y~)'. In practice, rounding errors prevent a precise result from being 
I 

obtained in this way and the value is obtained by subtraction using formula (3.41). 
The percentage of variance explained by the regression is therefore: 

this equation provides an estimate of the exact value p2 which, in this example, was 
set a priori to 0.50. 

The correlation coefficient, classically defined by the formula: 

Cov (X, Y) 
= d ~ a r  (X) . Var (Y) 

is estimated by: 

which is the square root of the percentage of variance explained, and has the same 
sign as a. 

Variations of $ ,6  around their respective expected values a = 2 and b = 1 are 
described by a bivariate normal distribution. In particular, the variance of the estimate 
of the slope can be shown to be 

A 
Var (a) = 

0 ;  

(Xi - X12 

this result, which can be easily obtained from formula (3.40), shows that the estimate 
of a is more precise when the variance of X is large. In other words, a is estimated 
more accurately when the range of values of X is wide, as intuition would suggest. 

Further, D (2, 6) /o: can be shown to follow a X2 distribution on n - 2 degrees 

of freedom, leading to an estimate of o: (which has a value in this example of 
4Var(X) = 0.40) equal to 

A 1 - a level confidence interval around 2 can be constructed as 
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where 

is the standard error of 2 and tai2(n - 2) is the value exceeded with probability a12 
by a Student t distribution on n - 2 degrees of freedom. From data in Figure 3 . 1 0 ~  
where n = 11 and to,025(9) = 2.26, the confidence interval of a is equal to 
[0.74 ; 3.901. 

From data in Figures 3.10 b and d, a calculation not shown here leads to 
estimates of p2 respectively equal to 0.88 and 0.23, as compared to the true values 
which are 0.80 and 0.20. 

Now suppose that the data in Figure 3.10 c give an incidence or mortality rate 
Y calculated in n groups characterized by the proportion X of subjects exposed to 
a risk factor; such a relationship obviously expresses a positive association between 
risk and exposure. The statistical significance of the increase in this risk is evaluated 
by testing the hypothesis a = 0. This test is simply carried out by calculating: 

which can be compared to the critical value of a Student t distribution on n - 2 = 9 
degrees of freedom. In this example, the test leads to rejection of the hypothesis 
a = 0. On the other hand, in Figure 3.10 d, although the estimate of a is 1.61, the 
hypothesis a = 0 cannot be rejected as the formula above provides a value of t 
equal to 1.64 for p2 = 0.23. The random component has blurred the structural re- 
lationship between X and Y. Here, the confidence interval of the slope [-0.60 ; 3.821 
is probably more informative than the probability associated with Student's t test 
(p = 0.14), which reveals nothing about the power of the test carried out and a 
fortiori about the precision of the estimate obtained. 

This model is nevertheless not really suitable for describing random fluctuations 
of incidence or mortality, which are a function of the number of expected cases. It 
may seem preferable to suppose that ki, the number of cases (or deaths) observed 
in each group, follows a Poisson distribution with mean Mi(aXi + b), where Mi is the 
corresponding number of person-years, and to account for the heterogeneity in the 
variances implied by this distribution, if the sizes of the groups being studied are 
very different. This would be particularly relevant if the relationship were log-linear 
instead of linear; calculation of the regression line could then be  modified by taking 
the predicted variable as Y = Log(k1M) and by supposing that the error variance is 
proportional to that predicted by the Poisson distribution. This leads to a weighted 
regression in which the function D(a,b) becomes: 
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where the weights wi are proportional to the information provided by each observa- 
tion, or, as a first approximation,proportional to the number of cases observed. In 
fact, it is unfortunately unlikely that the random component of the number of cases 
is limited to its Poisson part: other factors which have not been taken into account 
possibly play a more important role. Consequently the difference between I 

Y = Log(K/M) and a x  + b is the sum of a first component due to the random var- 
iation of KIM and a second attributable to geographical variation in risk associated 
with factors other than X. In practice, this second error, sometimes called extra- 
Poisson variation, renders the suggested weight insufficient and its advantages de- 
batable (see page 182 for a discussion of this problem in the context of time trends). 
Furthermore, in practice, Y is often the logarithm of a directly standardized rate; its 
random variability can then no longer be of the Poisson type. 

Examples of the use of this method will be given later. Firstly, we turn attention 
to a specific problem raised by the inherent nature of ecological studies. 

Strengths and limitations of a measure of group exposure 

Group versus individual exposure 

Most often, exposure is individual in nature and rarely homogeneous within a 
group, either because all members are exposed but at very different levels, or be- 

The effect of errors in the measurement of exposure on the risk estimates has 1 
been largely studied in the context of analytical studies. It has been shown that 
these errors lead systematically to underestimation of risk when they are nondiffer- 
ential, ie, independent of the status - case or non-case - of the individuals being 
studied. The problem is just as common, but rarely discussed in the context of 
ecological studies. In this situation, exposure is most often estimated from data 
collected for other reasons, which generally provide only an indirect measure of 
possible risk factors. For example, sales of a given product only partially reflect its 
consumption, because losses and unregistered imports are not taken into account. 
Furthermore, exposure is only characterized by a single value for the whole group, 
leading to more or less serious consequences depending on the type of exposure 
being considered. 

When the exposure is collective by definition, it is often reasonable to assume 
that this single collective value is a good measure of individual exposure for all 
members of the group. Thus, in the study already cited of the association between 
water hardness and the incidence of cardiovascular disorders, there is little doubt 
that the quality of the local water is a good indicator of individual exposure for the 
residents of the district. A similar situation would apply in a study of the effects of 
sun exposure or natural radiation. A descriptive study in this case is conceptually 
the same as an analytical study. In the examples given, research carried out o n  
individuals would rely on exactly the same data. 

I 
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amounts to the proportion of exposed individuals. In practice, distribution of exposure 
can often have both characteristics. Cigarette consumption represents an example 
of a heterogeneous distribution of individual exposure, but the heterogeneity may 
be even more marked as, for example, in the study of occupational risks. In fact, 
heterogeneity of exposure is the norm in ecological studies, generally as a result 
of the fact that groups are defined using available data, which usually characterize 
the exposure only indirectly. 

Under these conditions, it is not appropriate to assume that all individuals 
classified as belonging to a given group have actually experienced the same extent 
of exposure, as is done in an analytical study: as a consequence, when it is stated 
that group A is defined as more exposed than group B, it is actually known that 
group B will include subjects more exposed than some subjects in group A and vice 
versa. Most often in an ecological study, hierarchical classification of groups based 
on the degree of exposure is thus only valid for the averages. 

Intuitively, the quality of the information that can be derived from an ecological 
study based on group measurements depends on the relative magnitude of the var- 
iability of exposure within groups with respect to its variability between groups. For 
example, it is doubtful whether a correlation study of the relationship between meat 
consumption and colon cancer, conducted in districts of the same country, could 
provide an interpretable result because variations in average consumption between 
districts would probably be too small in comparison to individual differences within 
districts. 

On the other hand, the more the groups formed for the study can provide a 
representative classification of individual exposure, the more one is tempted not 
only to establish the existence of a relationship between exposure and risk, but also 
to quantify the relationship. 

Risk estimation in the context of an ecological study 

Consider the situation in which individual exposure is characterized by a di- 
chotomous variable (exposed/unexposed) and where therefore the exposure in each 
group is defined by the proportion of exposed subjects. 

In contrast to a study based on individual follow-up (cohort study), a correlation 
study cannot use the distribution of events (whether deaths or incident cases) in  
exposed and unexposed subjects to calculate risk in the two subgroups and the 
relative risk of exposure. Nevertheless, it is still possible to estimate the relationship 
between risk and the factor under study when event data are available for a series 
of n groups. Table 3.4 presents data for the ith group. 

Table 3.4 Distribution (a) of events (deaths or incident cases) 
and person-years in a cohort study and a correlation study 

Exposed Unexposed Total 

Events 
Person-years 

(a) Data available from correlation study are in bold type. 
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If hli and hoi are the unknown rates for the exposed and unexposed, the expected 
number of events in group i can be written: 

If pi = mli/Mi characterizes the proportion of exposed subjects in a group i, the rate 
in this group is: 

that is, the sum of the baseline risk and the additional risk attributable to exposure 
for a subset of the group. If risk in the different groups depends entirely on whether 
or not an individual is exposed, it is independent of other individual characteristics. 
hoi and hli then do not depend on i and the incidence rate pi is a linear function of 
pi, the proportion exposed in the group. In fact, i f  6 = hli - hoi, we have the model: 

where 6 is independent of i. In other words, i f  the baseline risk is constant (IOi = pO), 
and if the relative risk (R = hli / hoi) of exposed subjects does not depend on the 
group, the relationship (3.47) can be written: 

and thus R can be estimated by: 

This estimate of relative risk is based on the assumption that the expected 
number of cases in each group depends only on the proportion of exposed and on 
absolutely no other characteristic of the group. Although this condition is often ac- 
cepted implicitly, it is not routinely satisfied: hence the limited value in practice of 
this type of relationship (see the following section). On the other hand, these cal- 
culations have a theoretical value in showing that when the assumption is true, the 
relationship between risk and exposure is linear and the slope of the regression line 
is the important parameter. 

The ecological fallacy 

A number of authors have noted that the study of the association between 
exposure and risk based on grouped data can lead to false conclusions. An example 
frequently cited in this context [49] is Durkheim's study on suicide rates in four areas 
of western Europe in the nineteenth century [50]. Durkheim relied on the observation 
that the suicide rate increased with the proportion of Protestants in a given region 
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to conclude that Protestants committed suicide more often than Catholics. Was this 
conclusion valid? It may have been that suicide was in fact more frequent among 
Catholics and increased the more they found themselves in the minority and ex- 
perienced social pressures predisposing to suicide. This explanation is nevertheless 
unlikely, because it would require an extremely rapid increase in the suicide rate 
among Catholics as the proportion of Protestants increased. Indeed, Durkheim ulti- 
mately showed that this was not the case. Logically, it was not implausible and 
reveals one of the major contradictions in the ecological approach: the average level 
of an exposure factor can have a positive association with the incidence rate in the 
group, even when the same factor is associated negatively with individual risk within 
the group. This paradox has many causes. As an example, imagine that the in- 
creases in the average income of a group can lead to increased risk behaviour 
among the poorest of the group. The study of cervical cancer in Finland illustrates 
this situation (see below, page 157). This intrinsic weakness of correlation studies 
is known as the ecological fallacy. 

Secondly, it should be emphasized that the ecological approach is particularly 
vulnerable to the effects of confounding variables; not only does the approach not 
allow for control as does a study carried out at an individual level, but it also tends 
to transform other risk factors into confounding variables, even when they are inde- 
pendent of the factor being studied at an individual level. For example, in an inves- 
tigation of the relationship between the proportion of wood workers and lung cancer 
incidence using data from 25 Swiss cantons, smoking will induce confounding if 
consumption changes with the proportion of wood workers in each canton, even if 
the two factors in question are independent at the individual level. 

To illustrate this point, consider the situation of two dichotomous factors given 
in Table 3.5. In an ecological study, only the data in bold type are known for each 
group in the study. If the two factors are independent and there is no interaction 
(on a multiplicative scale), it is clear that the relative risk for one of them can be 
estimated from the complete data without taking account of the other. 

The marginal estimate of relative risk corresponding to the first factor 
(dl,/ml~)/(do~/mo.) is equal to the estimate obtained after stratifying by the second; 

Table 3.5 Distribution (a) of events (d) and person-years (m) 
in the presence of two risk factors 

Factor No 1 Factor No 2 

Exposed Unexposed 

Total 

Exposed 
Unexposed 

Total 

(a) Data available from correlation study are in bold type. 
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since the independence of the exposure factors implies an equal distribution of per- 
son-years, we can write: 

m01 moo mo. - - 

m l l  m10 m1. 

furthermore, as an absence of interaction between the two factors implies that the 
relative rates are equal in the groups exposed and unexposed to the second factor, 
the above formula shows that the relative rate which would be obtained after strati- 
fication is also the marginal relative rate. 

This property is important for the validity of analytical studies where there are 
several risk factors under study which are independent within groups, but which 
have a different distribution from one group to another. Membership in the group 
can then be taken as a categorical confounding variable. In such studies where data 
for a given factor are available at an individual level, it is possible to calculate an 
unbiased estimate of the overall relative risk after adjusting for the group as a factor, 
in the absence of precise information about any other factors. In an ecological study, 
where the group itself is the unit of analysis, it is by definition impossible to proceed 
in this way. 

Using the example in Table 3.5, let the relative risks corresponding to the two 
factors be R1 and R2, and the proportions exposed to each factor in group i be pli 
and p2i, Then the relationship previously established between baseline risk and risk 
in the group becomes (see 3.49): 

This relationship shows not only the need to introduce p2i in the regression 
equation despite the independence of the two factors at an individual level but also 
the inadequacy of linear adjustment2. 

Table 3.6 illustrates this situation from fictitious data. Five groups, each com- 
prising 100 000 person-years, are divided according to level of exposure to a factor 
for which the relative risk is constant and equal to 2 in each group. The regression 
of the death rate against the proportion exposed leads to estimates: 

A A 

PO=-0.1367 and 6=7.56 

these values are not ~ean ing fu l ,  because they provide a negative value for the 
estimated relative risk R (3.50). If the baseline risk is taken to have the value po = 1, 
which was used to generate the data for Table 3.6, the relative risk estimated from 
equation (3.49) is 4.43, a number much greater than its true value of 2. 

In reality, the data have been generated assuming that two factors distributed 
independently in each group act multiplicatively on the risk of death. The proportions 

Formula (3.51) is only valid for two independent factors with a multiplicative effect. I t  can 
be checked that, in general, the last term of (3.51) is p12i [R12 - ( R I  + R2 - I ) ] ;  i t  is equal to zero 
only when the effects are additive. 
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Table 3.6 Correlation study. Example of a possible relationship between mortality rate 
and percentage of exposed subjects 

Deaths Person-years 
(thousands) 

Group Exposed U n- Exposed U n- Relative Rate 
exposed exposed risk (per 1 000) 

Total 1 140 530 230 270 1.96 3.34 

of subjects exposed to the second factor in the five groups were respectively lo%,  
lo%, 30%, 50%, 50% and the relative risk corresponding to the second factor was 5. 

If a linear model with two factors is fitted to the data, by an extension of the 
procedure used above (see page 158 and formula (3.56) for the method to estimate 
coefficients), the following relationship is obtained: 

which does not provide correct relative risks. Only fitting p,, p2 and p1p2 would in 
principle result in an exact estimation of the coefficients of the relationship (3.51), 
respectively 1, 1, 4, 4. In fact, models of this type are rarely fitted, either because 
the factors to be taken into consideration are not known or because the necessary 
data are not available. 

In addition, factors associated with the group which act on the variable of 
interest are not necessarily dichotomous, but are often defined by a number of 
categories or are of a quantitative nature. Equation (3.46) can be generalized to 
account for these situations if the distribution of exposure is known in each group, 
through a model linking exposure and incidence. In the same way as before, 

E(Di) = I mi (e) hi (e) de 
e 

where Mi=J mi(e) de is the total number of person-years of exposure and 
e 

1 
dpi =- mi(e) de characterizes the distribution of exposure e in group i. 

Mi 
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If the baseline risk hi(0) and the relative risk ri(e) are not dependent on the 
group, we have, as before: 

Moreover, if risk is a simple function of exposure (for example, r(e) = 1 + ae), the 
incidence rate in group i can be written as a function of the mean exposure in the 

Pi group (in the preceding example: -= 1 + aGi). Again, this relationship is only valid 
Po 

in the absence of confounding factors. 

In conclusion, caution is required in the interpretation of correlation studies, 
as a number of risk factors which are known to be independent at the individual 
level can be associated at the group level. It is only under particular conditions of 
independence of the factors at a group level, such as when they are equally dis- 
tributed throughout the groups, that this confounding effect is no longer present. For 
example, failure to account for sex would produce substantial bias in an analytical 
study of health in relation to an occupational exposure but would probably be without 
consequence in a geographical correlation study of the same exposure, because 
the sex ratio varies little from one population to another. 

Despite these critical remarks, ecological studies can play an important role in 
epidemiological research. Some factors exhibit weak interindividual variation within 
populations, whereas the populations differ substantially in terms of mean levels of 
exposure. In this situation, the ecological approach can be very informative if carried 
out in conjunction with study on individuals. In addition to environmental factors, 
culturally determined behavioural factors, such as diet or sexual practice, can some- 
times lend themselves to group studies with regard to exposure measurement. Eco- 
logical studies are not necessarily less accurate than studies of individuals. Some 
biases due to self-reporting, such as interviewer bias and recall bias, may even be 
avoided. 

A review of the literature in this area shows the wide diversity in the applica- 
tions of the basic principle. In most situations, the method is justified by the need 
to control for the effects of potential confounding factors. Some of the techniques 
used will be described in the following section. 

Specific techniques and examples 

Definition of groups 

An example of the grouping of the subjects is provided by an ecological study 
of occupational risk of nasal cancer by Gardner and Winter [51]. The population 
census in England and Wales (carried out by sampling) provided the percentage of 
the male population employed in different occupations for each of 1366 local ad- 
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Table 3.7 Number of deaths from nasal cancer in the male population as a function 
of the percentage of workers employed in the furniture and upholstery industry 15111 

Cate- Percentage Number of Total Number of Observed Observed 
gory of workers workers number of districts number expected 

in the industry (a) workers (b) of deaths radio 
( 7  

(a) Furniture and upholstery. 
(b) Based on the 1971 census of 10% of the male population aged between 15 and 64 years. 
(') Expected number of deaths in each group is 77.8. 

ministrative districts. The authors grouped these geographical units into a small 
number of areas which would have had the same risk for the cancer under study 
if age had been the only determinant of the disease. This grouping was carried out 
using the following procedure for each occupational category for which the risk was 
to be investigated. First, the districts were ranked according to the percentage of 
the population employed in the category. The number of expected deaths was then 
calculated for each district based on national age-specific rates. Finally, the districts 
were grouped such that each of the newly formed units had the same number of 
expected deaths from nasal cancer. In order to get this result, the total expected 
cases in some districts could not be allocated to one unit and had to be divided 
between two successive units. The observed numbers in these districts were then 
allocated to the two units in proportion to the expected number of cases. The 20 
new units thus formed were then considered to have the same a priori risk, with 
age no longer having a confounding effect in the correlation study. 

Having formed the groups, the authors carried out a regression of the observed 
number of deaths on the percentage exposed in the 20 groups, and tested the 
significance of the slope. As a result, they showed an association between mortality 

I 
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due to nasal cancer and employment in the furniture and upholstery industry, and 
the leather industry, which is free of the confounding effect of age. 

The classical regression of age-adjusted rates on the proportion of people em- 
ployed in a given sector of activity may appear a priori equivalent and simpler than 
the above procedure.However,while adjusting for age takes account of the differing 
proportion of younger people across districts, it does not account for the fact that 
the proportion of the population employed in the relevant sector of activity is highest 
in groups with the largest proportion of younger people (see formula 3.51). This 
method of forming groups thus has specific advantages from the point of view of 
eliminating the effect of age. In addition, combining groups can in some circum- 
stances eliminate other confounding factors, especially those which have geographi- 
cal autocorrelation. 

The detailed results given by the authors (Table 3.7) illustrate the calculation 
of relative risk by fitting a regression line of risk against the proportion exposed, as 
described above. For the furniture and upholstery industry, the mortality rate of group 
i is defined by the fitted line (using the notation in formula 3.48): 

where pi is the proportion of workers in this occupational category. The increase in 
risk with this proportion is highly significant (X2 = 20.02 on one degree of freedom). 
Note that the authors could have estimated the relative risk by: 

This relatively small increase in risk is surprising, especially as it relates to an 
industry for which the association with nasal cancer has already been established. 
It is possible that the percentage of workers actually exposed to the carcinogens 
(such as wood dust and leather dust) represents only a small fraction of the workers 
employed in this sector; this dilution effect is the most likely explanation for the 
underestimation of true risk. 

The authors of this study propose that the idea of combining groups into 
homogeneous units could be extended to the situation where control for confounding 
factors, such as socioeconomic status, is required. They recognize, however, that 
the combination is much more difficult to achieve, and that true homogeneity of 
groups cannot be attained. Generalizability of the approach is, in any case, limited 
by the requirement that data are available for small geographical units. 

In some situations, exposure is so poorly characterized by the defined exposure 
variable that erroneous conclusions can result. The study of breast and cervical 
cancer incidence in Finnish municipalities as a function of a socioeconomic indicator 
illustrates this phenomenon. Teppo and coworkers grouped 500 Finnish communes 
into five categories by percentage of inhabitants in the upper social class. When 
they examined variations in breast cancer incidence, they found, as expected, an 
increase in risk with the proportion of women 'exposed' according to the above 
definition. It is known that women at higher risk of breast cancer are generally from 
the well-off classes (where risk factors such as lower parity and later marriage are 
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more prevalent). On the other hand, the gradient observed for cervical cancer was 
in the same direction as that for breast cancer (Figure 3.11), and contrary to the 
relationship between high incidence and lower socioeconomic classes established 
in previous studies. 

Discussing later the results of this ecological study in the light of an analytical 
study of the above association, the same authors [52]  concluded that the risk factors 
for cervical cancer are more difficult to identify by the ecological approach than 
those of breast cancer. Under the assumption that cervical cancer is primarily as- 
sociated with sexual history, it is possible that the diversity of individual exposure 
resulting from different sexual behaviour is greater than for breast cancer risk factors 
like parity and dietary factors even in small geographical units such as municipalities. 
In other words, the ratio between inter- and intra-municipality variation in exposure 
to breast cancer risk factors could be greater than the corresponding ratio for cer- 
vical cancer. This explanation is, however, only partially satisfactory, and raises 
questions about the characterization of exposure in the ecological study. In partic- 
ular, the reduction to two social classes undoubtedly yields a measure of low speci- 
ficity for exposure to risk factors for cervical cancer, and it is likely that in the group 
defined as exposed, there is in fact a heterogeneous exposure to the true risk factors 
for cervical cancer. In addition, this heterogeneity can differ from one municipality 
to another. Finally, it can be assumed that the population subgroups for which cer- 
vical cancer risk is particularly high (marginal groups, prostitutes) are generally more 
represented in urban municipalities. Given that these municipalities are defined as 
most exposed on the basis of having a large proportion of residents from the upper 
social class, an apparently positive relationship between cervical cancer risk and 
upper social class is the result. In fact, the number of subjects actually exposed to 
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Figure 3.11 Standardized incidence rates of breast and cervical cancer 
by socioeconomic characteristics in  Finnish municipalities, 1955-1974 

(Finnish population as standard) 
Source: Teppo et al. [6] 
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risk factors for cervical cancer increases with the proportion of persons in the upper 
social class, at the same time as the heterogeneity of the group increases. 

The exposure indicator used is therefore doubly inadequ-ate: not only does it 
not define the populations at risk, but it cannot characterize exposure to cervical 
cancer risk factors. We are faced here with the same type of problems as were 
discussed above in the context of Durkheim's study of the relationship between 
suicide and religion. Subjects actually exposed cannot be those identified by the 
defined exposure criteria. In this situation, a hasty interpretation of observed relative 
risk will inevitably lead to an ecological fallacy. 

Multivariate analysis 

When potential confounding factors cannot be controlled for by an appropriate 
grouping, the necessary adjustment must be carried out in the statistical analyses. 
The regression method described on page 142 for a single variable can be extended 
without difficulty to several variables, and appear, a priori, to be an appropriate tool 
for studying the relationship between cancer risk and multiple environmental factors. 
This method has been used often, mainly in exploratory epidemiological analyses. 
Its methodological principles will be explained using an example in which the method 
discussed on page 142 is extended to two variables. The only new concept required 
when going from one variable to two or more is that of partial correlation, which 
expresses the specific association between a single exposure variable and the risk 
measure, that is, the association which would be observed if all other factors were 
held constant. 

Firstly, suppose that we wish to estimate the association of Y with two variables 
XI and X2. As previously, the estimates of a, and a2 in the relationship: 

Y=alX1 + a 2 X 2 + b + r  (3.54) 

are obtained by minimizing the deviance D(al,a2,b) corresponding to the sum of the 
squares of the deviations in the model: 

If Var and Cov are the estimates of variance and covariance, then: 

D(al, a2, b) = n[Var (Y) + Var (alXl + a2X2) - 2 Cov (Y, alXl + a2X2)] 

From this last expression, and setting the derivatives with respect to al, a2 
A 

and b equal to zero, it can be verified that GI, $2 and b are given by the equations: 

A 
a1 Var (Xl) + $2 Cov (XI, X2) = COV (Y, XI) 
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Letting: 

and 

Cov(Y, XI) 
syx = [ cov (Y, x,] 

we can write: 

a formula which, when added to the third of the equations (3.56) above forms the 
analogue of formula (3.40). The minimum value of D(al,a2,b) can similarly be written 
with the same notation: 

A A "  
D ( a,, an, b) = n [Var (Y) + Var ( Glxl + g2x2) - 2 COV (Y, GIxl + &x2)] 

which leads to the relationship: 

This formula, analogous to formula (3.41), shows how the total variance can be 
decomposed into two terms: the variance due to regression and the residual vari- 
ance. As before, the quantity: 

'"2 syyx B - 
- 1- 

D ($1, 22.6, 

Pyx= ~ a r  (Y) n Var (Y) 

is the percentage of variance explained by the regression. Its positive square root, 
called the multiple correlation between Y and XI, X2, is the correlation between Y 
and the function GI XI +g2 X2; it is equal to the maximum correlation that can be 
obtained between Y and all functions of the form a l X l  + a2X2. Table 3.8 uses data 
from Figure 3 . 1 0 ~  (Table 3.3) to which is added a second predictor X2 of Y. 

Columns 4, 5 and 6 are obtained directly from columns 1, 2 and 3. The data 
from Table 3.3 combined with these results gives: 
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the value of the other coefficients of equation (3.56) have been obtained previously 
(see Table 3.3). Ignoring the factor 1/11, the first two equations can be written: 

A 
1.102, + 2.30a2= 2.55 

2.302, + 25.14& = 12.60 

leading to the estimates: 
A A 
a1 = 1.57 and a2 = 0.36 

The third of these equations gives: 

From (3.58), the component of variation explained by the regression can then be 
calculated: 

and similarly the square of the multiple correlation coefficient: 

A2 8.54 
Pyx = 10.81 = o.79 

Table 3.8 An example of the calculation of multiple regression 
(Y and XI are columns 2 and 4 in Table 3.3) 

Unit x I x2 Y XI x2 x2y X$ ? 
(1) (2) (3) (4) (5) (6) (7) 

Total 5.5 29.5 23.67 17.05 76.08 104.25 23.67 
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In the same way, from (3.58) it can be verified that 

It is then important to be able to evaluate the role of each variable in the 
prediction of Y and in particular, the improvement in this prediction when the variable 
X2 is added to the variable XI in the regression equation. The correlation of Y and 
X2 (r = 0.76) shows that X2 is a predictor of Y. However, as X1 and X2 are correlated 
(r = 0.44), it is probable that XI and X2 provide partially the same information about 
Y. The independent relationship between X2 and Y should therefore be evaluated. 

When X2 is added to the model equation, the deviance is reduced by 2.62, 
the difference between the deviance of the model not containing X2 
(Dl = D(&,, 0.6) = 4.89) and that of the model above (D2 = D($~ ,  i2, 6) = 2.27). This 

reduction expresses the additional role of X2 after taking X1 into account. By ex- 
pressing the reduction in relation to the deviance of the initial model, a measure of 
the specific contribution of X2 is obtained: 

Dividing by Viir(Y) shows that: 

where = 0.55 is the square of the correlation of Y with X1 

"2 A The square root of pyx, I with the same sign as a2 is called the partial cor- 

relation of Y with X2, holding XI constant. Furthermore, it is the correlation between 
the residuals of the regressions of Y on XI and of X2 on XI and is given by the 
formula: 

PYX, - PYX, Px,x, 
PYX, I Xi = 

( 1  - X I  (1 - P2X1x2) 

from which we get the estimate 

A 0 . 7 6  0'74x 0'44= 0.72 (= 
up to rounding errors) 

"'2 ''1 = 40.45 x 0.81 

Many authors have used the techniques of multivariate analysis to try to dis- 
tinguish the roles of multiple factors or to better estimate the effect of a given factor 
by controlling for confounding effects. Two examples illustrating the use of these 
methods are given below. 

A 

Note that the direct application of the formula C (Yi - Y12 would lead to the value 2.29. 
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Blot and Fraumeni [53] estimated the effect of industrial exposure on lung 
cancer mortality using data from 3056 US counties, attempting to control for 
sociodemographic factors. Firstly, they estimated the total number of workers in each 
of 18 industrial sectors in each county, based on the census of industrial employ- 
ment. For each of the 18 sectors, they then grouped the 3056 counties into three 
exposure categories: those in which less than 0.l0/0 of the total residential population 
worked in the sector; those in which between 0.1 and 1% were so employed; and 
thirdly those with more than 1% of the population employed in the sector. 

The estimation of risk associated with the 18 industrial sectors was carried out 
using a weighted multiple regression model including the exposure variable as well 
as the main factors to be controlled for. The dependent variable to be fitted was 
age-standardized lung cancer mortality for the period 1950 to 1969. The exposure 
variable was included in the model as a categorical variable with three levels defined 
as above by the proportion of the population working in the sector. The factors to 
be controlled for were population density, degree of urbanization and proportion of 
non-whites. A further indicator, situating the county in one of seven broad areas 
reflecting differences in lung cancer mortality in the USA, was introduced to take 
large-scale geographical variation into account. The model was thus intended to 
evaluate the risk associated with industrial activities after adjusting for potential con- 
founding factors. Examination of the residuals, after initially fitting linear terms, led 
the authors to add quadratic factors to the regression. The weighted regression 
method was used, with weights defined by the square roots of the number of per- 
son-years accumulated in each county during the period under study, giving weights 
inversely proportional to the standard errors of the mortality rate estimates. The 
authors did not explain why they chose this type of weighting. 

On the basis of the fitted models, the authors concluded that, after accounting 
for sociodemographic factors, the lung cancer mortality rate increased significantly 
for four of the 18 industrial sectors: paper, chemicals, petroleum and transport 
(Table 3.9) 

Results of this kind should obviously be interpreted with caution. It is particu- 
larly advisable to question the ability of this multivariate analysis to effectively control 
for the known etiological factors for lung cancer. The authors considered that differ- 

Table 3.9 Regression coefficients (a) of the standardized rate (b) of lung cancer 
by percentage of workers employed in four manufacturing industries 

Industry Percentage employed in industry 

Paper 0.24 (0.36) 1.02 (0.50) 
Chemical 1.49 (0.31) 2.26 (0.49) 
Petroleum 0.98 (0.45) 1.32 (1 .OO) 
Transportation 1.22 (0.32) 0.84 (0.46) 

(a) Estimated coefficients (standard error). 
(b) Standardized with respect to the white male population of USA. 



ECOLOGICAL STUDIES 163 

ences in tobacco consumption between counties were partially associated with the 
degree of urbanization, which was accounted for in the model. It should also be 
noted that the classical approach adopted by Blot and Fraumeni considers each 
county as a statistically independent unit. It takes large-scale geographical variation 
into account in a way that differs from Gardner's approach described above. The 
integration of areas into non-contiguous zones, as in Gardner's method, can, to a 
certain extent, be thought of as a random assignment of spatially autocorrelated 
factors. On the other hand, the approach described here can be interpreted as an 
attempt to adjust the risk for confounding factors using large geographical zones in 
which they remain approximately constant; thus it indirectly accounts for the corre- 
lation in risk which might exist between geographically neighbouring units. 

Other approaches which avoid the difficulties of interpretation created by spatial 
autocorrelation have been described; that proposed by Richardson [54] is described 
here. First, remember how confounding factors intervene in the equation relating 
the exposure of interest and the risk of disease in an ecological study. 

It has been shown previously (3.53) that the relationship between risk and 
exposure, under general assumptions, can be written: 

where Gi characterizes the average exposure in group i, Mi and Di are the numbers 
of person-years and deaths in the group, and po is the baseline mortality rate. 

If only this exposure plays a role in the determination of risk, the observations 
Di would have independent Poisson distributions and estimation of the parameters 
po and a would not present any particular difficulty. In practice, other factors con- 
found their effect with that of the exposure under study and should in principle be 
included in the equation. As they are generally not measured, the equation becomes: 

where fi is a random variable which is included as an error term, in the absence of 
more specific data on the confounding variables. Thus, we are led back to the 
estimation of a regression equation with correlated errors if, as is generally the case, 
the unmeasured confounding factors have spatial autocorrelation. If we do not take 
this correlation into consideration in the analysis, the result will be excessively liberal 
tests of significance, because the improvement in the deviance will be evaluated 
with respect to an underestimated error. This phenomenon will be systematic if the 
Poisson distribution is used as an error model. It will also occur in the situation of 
positive autocorrelation if  the normal approximation for the distribution of incidence 
or mortality rates is used. 

Some authors have proposed regression models with correlated errors [55,56]. 
However, fitting these models is often unduly complicated in relation to the impor- 
tance of the results which are expected. In contrast, Richardson's approach is ap- 
pealing because of its simplicity and the fact that it provides a rapid means of 
evaluating the significance of an association. 
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The test of the association is based on the variance of of the empirical cor- 
relation coefficient r between incidence (or mortality) and exposure, considered as 
two spatially autocorrelated processes X and Y. It can be shown that: 

where SXY, SX2, SY2 are the empirical covariance and variances of the two processes. 

In the absence of autocorrelation, of = 1 / ( N  I ) ,  where N is the number of 

observations XilYi. In the presence of autocorrelation, 0: is estimated from the ob- 
A2 servations and used to calculate N:!: = I +  l /or from which the significance of the 

correlation is tested with the statistic: 

considered as a Student's variable on N:;: - 2 degrees of freedom. The method thus 
proceeds as if the number of autocorrelated observations made were equivalent to 
a smaller number N* of independent observations. In the same article the author 
showed that the method can be extended to any number of variables. If, for example, 
the significance of the association between X and Y after adjustment for Z is to be 
evaluated, the correlation of residuals of the regressions of X and Y on Z could be 
assessed directly by the method. 

In practice, SX2 and SY2 are used to estimate their expected values. The cal- 
culation of the variance of SXY requires an additional assumption; by calculating this 
variance conditional on X, we obtain: 

C (Xi - X) (Xi - X) COV (YiYi) 
. . 

Var (Sxy) = 
1,J 

N~ (3 .65)  

that is, s:, as an estimate of the variance of Sxy. When the Yi are independent, 
1 

Cov(YiYj) = 0 i f  i # j. Var(Sxy) has the value -- (Xi - X)2 Var (Y) and we find (hat 
N~ 

r is the standard normal variable corresponding to SXY. When the Yi are not 
independent, formula (3.65) is only informative under specific assumptions about 
the structure of the covariance of the Yi. Accordingly, suppose that N(N - 1)/2 pairs 
of geographical units can be stratified into subgroups in which the covariances of 
the Xi and the Yi are constant. This grouping is generally based on the distance 
between the administrative centres of the geographical units being studied, under 
the assumption that the intensity of the autocorrelation only depends on distance. 
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The estimate of c$ is then written, using (3.63), (3.65) and the constancy of the 

covariances: 

where 

and 

are the respective empirical covariances of the Xi and the Yi in subgroup k and Nk 
is the number of pairs of units in this subgroup. 

Applying these principles to the study of the association between lung cancer 
and occupational exposure, Richardson [54] showed that the percentage of men 
employed in the metal industry was correlated with lung cancer mortality across 
French departments (Table 3.1 0). The classical test overestimates the intensity of 
the association but the corrected test is highly significant and remains so even after 
adjustment for cigarette sales. Since adjustment for a confounding variable partially 
accounts for autocorrelation of errors, it should be expected that the total corrected 

Table 3.10 Correlation between risk of dying from lung cancer (a) 

and employment in selected industries (b) in France [54] 

Correlation Classical test 
(N = 82) 

Corrected test 

Metal industry 
Crude 
Ajusted (') 

Mining Industry 
Crude 
Adjusted (') 

Textile industry 
Crude 
Adjusted (') 

(a )  Lung cancer mortality rate (35-74 truncated rate) for 1968-69. 
(b) As measured by percentage of men employed in the industry indicated. 
(') Adjusted for the sales of cigarettes (number per inhabitant in 1953 ; source : SEITA). 
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number of observations in the test increases after this adjustment, which is in fact 
the case. Correlations with the mining and textile industries are weaker and the 
second is eliminated altogether by the corrected test. Richardson shows that the 
first of these two associations also disappears after adjustment for a geographical 
gradient. However, it might be questioned whether such a procedure might have led 
to overadjustment, and hence the elimination of the real associations, if the variable 
being studied has a large geographical autocorrelation, and possibly a strong covar- 
iation with the variable describing the geographical gradient. 

Migrant studies 

Migrant studies are based on the idea that immigrants are, by their life style 
and culture, exposed to risk factors which differ from those prevailing in the host 
country. Thus evidence for risk levels specific to immigrants can indirectly suggest 
or confirm etiological hypotheses. In general, the risk to which immigrants are subject 
is recognized by comparison with the risk in the host country, but it is sometimes 
compared with the risk in the country of origin. 

Immigrants are identified by their nationality when they keep it, or by their 
place of birth. Some studies are exclusively based on surname. In certain situations, 
first-generation immigrants (born in the country of origin), can be distinguished from 
their children, often born in the host country, who are described as second-genera- 
tion immigrants. This distinction sometimes provides information on the effects of 
behaviour changes resulting from the cultural integration, which act more profoundly 
on the second generation. 

This technique has been used by Buell and Dunn [57] in their study of Ja- 
panese migrants living in California. The incidence of common forms of cancer in 
first and second-generation migrants was compared with the corresponding rates 
for California and Japan. The main results, shown in Figure 3.12 have been dis- 
cussed by Cairns [58] .  They show that the risk to which migrants are exposed con- 
verges towards the risk in the host country, passing through intermediate risk levels. 
These findings demonstrate the importance of environmental factors over factors 
linked to ethnicity. The change in risk is shown to differing degrees for cancers at 
four sites, the stomach, liver, colon and prostate. Incidence of colon cancer, much 
rarer in Japan than in the USA, increases markedly for first-generation migrants; 
the second generation has approximately the same rate as Californians. The tran- 
sition is much slower for stomach cancer. The risk is extremely high in Japan, and 
remains much higher for Japanese migrants, even those of the second generation, 
than for Californians. This phenomenon can obviously be explained by the main- 
tenance of risk behaviour or the failure to adopt protective behaviour, for example, 
dietary habits. On the other hand, based on these data, the hypothesis of an ethnic 
susceptibility for stomach cancer cannot be completely excluded. 

The principle of migrant studies has been extended to cultural and religious 
minorities. Cancer risk has been studied among Mormons and Seventh Day Adven- 
tists, who are recognized as consuming little or no alcohol, tobacco, coffee or other 
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Figure 3.12 Relative risk of death from various cancers 
for male Japanese migrants to California compared to white Californian males 

Source: Buell and Dunn [57] 

stimulants. Research of this kind has largely confirmed the importance of lifestyle 
on cancer risk. For example, it has been shown that cancers of the upper aero- 
digestive tract were much less frequent in Californian Seventh Day Adventists than 
in the Californian population as a whole [59]. 

This type of study has sometimes allowed the effects of closely associated 
factors to be distinguished. In Chapter 1 ,  it was noted that the apparent effect of 
urbanization on lung cancer disappeared when the association was studied in Mor- 
mons who were living in the same environment but were nonsmokers. The effect 
originally observed was thus largely due to the fact that smoking is more frequent 
in urban populations (see page 10). 

In terms of methodology, migrant studies can be classified according to whether 
or not denominators are available. Given the numbers in each group for which risk 
is to be estimated, the appropriate analysis is the calculation of rates and their 
comparisons (see Chapter 2, page 85). In practice, the groups being studied are 
often small and indirect age standardization using the SMR or log-linear modelling 
based on the Poisson distribution is used. When denominators are not available, 
study of the relationship between risk and membership in specific groups can b e  
carried out by the PMR method described on page 96 in Chapter 2. As we have 
seen, it is actually preferable to carry out the analysis using logistic regression 
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identical to that used in case-control studies. A study of Italian migrants in Geneva 
illustrates this double approach4. 

The Geneva cancer registry has been operating since 1970 and identifies cases 
by nationality. Swiss nationality is not granted automatically after a certain length 
of residence, even for foreigners born on Swiss territory. Therefore most immigrants 
keep their original nationality for one or more decades, as do their descendants. 
Numbers of foreigners by sex, age and nationality living in Geneva have been esti- 
mated regularly since 1976. 

Standardized morbidity ratios for immigrants of Italian nationality were first cal- 
culated for the main digestive tract cancers over the period during which denomi- 
nators were available (1976-1987). The calculation was carried out by comparison 
with the incidence rates established for the total resident population of the Geneva 
canton. Although this population includes Italians who represented goh of all resi- 
dents, the potential diluting effect in the risks was not considered to be large. 
Table 3.11 shows that significant differences only emerged for gastric cancer, there- 
fore subsequent investigations were restricted to this site alone. 

Although the etiology of stomach cancer is not well understood, research has 
focused mainly on dietary factors. Consumption of salted or smoked food, particularly 
in places where refrigeration is not widely available, might be a risk factor; fresh 
fruit and vegetables, on the other hand, could have a protective effect. An often 
observed increase in risk in lower socioeconomic classes could simply be a marker 
of dietary practice associated with access to refrigeration. Relatively marked geo- 
graphical differences have nevertheless been observed between countries, ap- 
parently independent of living standards. In Italy, in particular, differences in mortality 
are substantial from one province to another, with the highest rates observed in 
regions in the centre of the country. It is also widely accepted, notably from Buell 

Table 3.11 Standardized incidence ratio (a) for Italians living in Geneva, Switzerland, 
by sex and site (1976-1987) 

Men Women 

ICD-9 Site Relative risk 95% CI Relative risk 95% CI 

1 50 Oesophagus 0.79 10.43 ; 1.331 0.83 [0.10 ; 2.991 
151 Stomach 1.61 [1.18 ; 2.141 1.81 [0.92 ; 2.331 
153 Colon 0.97 [0.71 ; 1.301 0.71 [0.45 ; 1.051 
1 54 Rectum 0.88 [0.56 ; 1.321 0.94 [0.56 ; 1.491 
155 Liver 1.21 [0.75 ; 1.851 0.85 [0.18 ; 2.481 
156 Gall-bladder 1.48 [0.60 ; 2.841 1.12 [0.41 ; 2.551 

(a) Geneva resident population incidence rates as standard rates. 

See Sarti e t  al. chapter 16 in [60] 
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and Dunn's study [57] described above, that the period of induction of gastric cancer 
is particularly long. 

In Geneva, several characteristics routinely recorded for each registered case 
enable the role played by the above factors in gastric cancer carcinogenesis to be 
studied. They include socioeconomic status, country of birth and duration of resi- 
dence since migration. Other information relating to the above hypotheses, such as 
province of birth and spouse's nationality, was obtained from local files of residents 
by ad hoc inquiries. Because it was not feasible to construct denominators for these 
additional variables, study of their effects could be carried out only by using an 
analysis of relative frequencies. 

This analysis was carried out with 100 cases of stomach cancers occurring 
between 1970 and 1978 among Italian nationals residing in Geneva and 300 controls 
drawn randomly from 11 61 cancers of other sites registered among Italian nationals 
during the same period. The number of controls was kept to three per case to 
minimize the manual investigation of data files. No matching was carried out. Ana- 
lyses were carried out by unconditional logistic regression (see Chapter 2, page 98). 

The evaluation of living standard was based on three socioeconomic categories 
(manual labourers; clerical workers; management and professional) and from a vari- 
able distinguishing five regions of birthplace (southern Italy; central Italy; northern 
Italy; Switzerland; other), which defined a gradient of socioeconomic status from 
most socioeconomically deprived to most socioeconomically privileged, that is, from 
southern Italy to Switzerland. For men, after taking age into account, neither of 
these variables significantly modified gastric cancer risk; a nonsignificant increase 
in risk was noted for central Italy. For women, no significant variation in risk was 
observed with social class, but the risk was significantly higher for women born in 
central Italy. 

The degree of cultural integration was measured by the number of years of 
residence and by the fact of being married to a Swiss national. No significant as- 
sociation was found from the analysis of these two variables, despite a decreasing 
trend in risk with duration of residence (both sexes), and with a Swiss spouse (men 
only). 

To investigate differences in risk with place of birth, the 95 Italian provinces 
were grouped by relative mortality rates, available for the period 1975 to 1977 into 
three categories: less than 80% of the national average (low); between 80 and 120% 
of the national average (medium); and more than 120% (high). Separate scales were 
constructed for both sexes. This breakdown was completed by a fourth class corres- 
ponding to cases born in Geneva, where stomach cancer mortality is particularly 
low, and this category was used as the reference. 

This indicator was shown to be highly significantly associated with risk (after 
accounting for age). For provinces of birth characterized by the highest mortality 
rates, relative risk was estimated as 4.0 for men and 6.8 for women. The trend of 
increasing risk across categories was also significant. 

In order to judge their effects in the presence of other factors, the variables 
under study were introduced simultaneously in the same model, with the exception 
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of social class which was assumed to be represented largely by the place of birth. 
Because no interaction between these factors and sex was significant, an analysis 
was undertaken with both sexes combined. The results of this analysis (Table 3.12) 
confirmed the importance of province of birth as a risk factor for gastric cancer. 
There remained, however, an indeperident effect of region of birth (highest risk for 
central and southern Italy), which may reflect a residual role of the birth province, 
if this factor was too broadly categorized. The dominant role of birth province sup- 
ports the results of analytical studies, which have demonstrated the local specificity 
of dietary habits in central Italy, suggesting that they play an important role in the 
mechanism of gastric cancer [61]. The apparent absence of effect of variables meas- 
uring the degree of integration (length of residence and Swiss spouse) is not sur- 
prising, considering that gastric cancer has a long latency period. 

Table 3.12 Distribution of cases and controls and risk estimates associated 
with selected factors (both sexes combined) [60] 

Cases 
(1 00) 

Controls Relative risk (a) 
(300) 

Level of risk of Italian province of 
origin 

Low (b) 43 
Medium 23 
High 34 

Italian region of origin 
North (b) 
Central and South 

Length of residence - 

Spouse 
Non-Swiss 
Swiss 

(a) Adjusted for age and the other factors in the table. 
(b) Includes those born in Switzerland and elsewhere, except Italy. 

Time trends 

Objectives 

In the context of descriptive epidemiology, there are many reasons for studying 
time trends. Firstly, information on the historical evolution of risk (incidence or mor- 
tality) can generate etiological hypotheses or confirmation of suspected associations 
between risk factors and disease. While the existence of geographical variation in 
incidence between populations might be explained by genetic differences, changes 
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in incidence in single populations imply the introduction or disappearance of envi- 
ronmental risk factors much more clearly. Comparison of the development of en- 
vironmental factors with the development of the frequency of different types of 
cancer should therefore be profitable. For example, the increase in lung cancer 
mortality parallels the progressive introduction of cigarette smoking, while its 
decrease quickly follows a decrease in the proportion of smokers. 

However, in etiological research, the interpretation of chronological covariation 
remains delicate. It would be simple to show that the incidence of melanoma has 
undergone an increase identical to that of many changes in lifestyle which cannot 
be incriminated in the etiology of this cancer. Similarly, the general decrease in 
frequency of stomach cancer could be related to the modification of many en- 
vironmental factors which accompany higher living standards; its etiology neverthe- 
less remains largely unexplained. The existence of a direct link between the 
evolution in risk of a given cancer and that of a suspected etiological factor may 
be less questionable when they both show the same inversions of trend. For ex- 
ample, the parallel trends in incidence of larynx and oesophageal cancers 
(Figure 1.3) clearly suggests a common etiology, in this case alcohol consumption. 
Alcohol consumption has in fact declined substantially in the period when the genera- 
tions at lowest risk of these cancers were between 20 and 25 years of age 
(Figure 3.13). When the joint evolution of a cancer and a risk factor are studied, i t  

World 
War I1 

Figure 3.13 Change in alcohol consumption in France between 1860 and 1989 
Source : Hill et al. [64] 
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is necessary to consider the mechanism of action of the risk factor and particularly 
the latency period. Thus, in contrast to the previous observation on alcohol-related 
cancers, the large decrease in tobacco consumption during the second world war 
did not have a marked effect on lung cancer mortality. In fact, it is difficult to detect 
joint evolution : risks and etiological factors generally undergo a slow, steady evo- 
lution. 

The observation of time series can also be seen as an instrument for epidemi- 
ological surveillance of the population with the aim of detecting new risk factors. 
However, in addition to the difficulties created by the delayed effects of the latency 
period, it should be emphasized that rapid detection of changes in trends is not 
easily achieved. In particular, when monitoring relates to a relatively small population 
or a small risk, observed variations are often simply a reflection of purely random 
fluctuations. 

The study of time trends is of particular interest in the evaluation of primary 
prevention, which involves the reduction in exposure to risk factors, and of secondary 
prevention (screening) which is aimed at reducing mortality. It is anticipated that the 
intervention will cause a more or less generalized shift in the existing trend in inci- 
dence or mortality. Before-and-after designs, aimed at identifying such shifts, have 
generally been used for this purpose. 

The study of time trends is not limited to incidence or mortality. Descriptive 
epidemiology is increasingly concerned with the overall assessment of progress 
made through improved treatment or earlier detection of disease. This requires 
methods for quantifying the corresponding increase in survival rates calculated for 
all cases in the population in which the evaluation is being carried out. 

Finally, from the public health viewpoint, the observation of changes in risk in 
the recent past leads naturally to a desire to predict its future development, in order 
to determine budget priorities and plan necessary services. 

The following sections are devoted to definitions and basic concepts, which 
are of fundamental importance in the development of modelling methods, particularly 
those used in identifying age, period and cohort effects. 

Methods 

Components of temporal evolution 

From 1955 to 1959, 41 7438 deaths from cancer were registered in France. 
Twenty-five years later, between 1980 and 1984, these deaths numbered 638 01 2. 
In other words, cancer deaths increased 53% over 25 years, or 1.7O/0 per year (see 
formulae 3.68 and 3.69). To varying degrees, the same phenomena occurred in 
other Latin countries (Table 3.13). The increase concerned not only numbers of 
deaths for each type of cancer but also their proportion in all-cause mortality and 
crude rates. 
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Table 3.13 Changes in number of deaths (a) 

for cancer between 1955 and 1984 in selected European countries 

Men Women 

1955-59 1980-84 (b) Variation (') 1955-59 1 980-84 (b) Variation (') 
(% per year) (% per year) 

Spain 
Number 
Crude rate 
Proportion (d) 

France 
Number 
Crude rate 
Proportion (d) 

Italy 
Number 
Crude rate 
Proportion (d) 

Switzerland 
Number 
Crude rate 
Proportion (d) 

WHO mortality data bank. 
Spain 1980-81 ; Italy: 1980-83. 
Average annual rate of change over the period of n = tl-to years, calculated according to formula (3.69). 
Proportion of deaths from cancer among deaths from all causes in the period. 

These observations are important from the public health viewpoint. However, 
they do not reveal anything about the way in which cancer risk evolved over the 
course of the 25 years, and can even lead to errors in interpretation. The proportion 
of deaths due to cancer increases partly because of a decrease in the number of 
deaths from competing causes, while the increase in crude rates is largely explained 
by the ageing of the population. An examination of trends in the net risk of cancer 
mortality which leaves aside competing causes ends up with rather different conclu- 
sions (Table 3.14). In particular, net cancer mortality decreases when cancers as- 
sociated with tobacco use are excluded. Similar conclusions were reached by a 
study carried out some years ago in the USA: while the number of cancer deaths 
increased 181 % between 1930 and 1970, an analysis of the components of the 
increase shows that 10% was due to change of risk, 74% to population growth, 46% 
to the ageing of the population, 17% to the amplification of changes in risk resulting 
from demographic changes and finally 34% to interactions between demographic 
factors (62). A recent study carried out for the European Community predicted that 
cancer mortality would increase 48% for men and 20% for women between 1980 
and 2000, with approximately half of this variation due to demographic changes 
expected during this time. 
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Table 3.14 Change in net risk (a) of dying from cancer 
between 1955 and 1984 in selected European countries 

Country Men Women 

1955-59 1980-84 (b) Variation (') 1955-59 1980-84 (b) Variation (') 
(% per year) (% per year) 

Spain 
Tobacco- 
related (d) 
Other 
Total 

France 
Tobacco- 
related (d) 
Other 
Total 

Italy 
Tobacco- 
related (d) 
Other 
Total 

Switzerland 
Tobacco- 
related (d) 

Other 
Total 

(a) Net risk 1s measured by the cumulative r~sk  from 0 to 75 years ; source : WHO mortality data bank. 
(b) Spaln: 1980-81; Italy: 1980-83. 
(') Average annual rate of change over the per~od of n = ti-to years, calculated according to formula (3.69). 
(d) Sites for wh~ch the effect of tobacco use has been established (mouth and pharynx, oesophagus, lung, 
larynx and bladder). 

In etiological research, the focus should be on the risk of disease and not only 
the risk of death. Unfortunately, trends in incidence can be studied in only a few 
countries, because of the relatively recent establishment of cancer registration. In 
addition, results can rarely be generalized because registries often cover subpopu- 
lations chosen by circumstance, not necessarily corresponding to regions that would 
have been selected for the study of specific hypotheses. Therefore, we are often 
forced to rely on mortality data, which are available over long time periods for both 
national and regional populations. Nevertheless, it should be kept in mind that the 
risk of death is only an indirect, and even a biased measure, of the risk of cancer 
occurrence, particularly because of the increase in survival. 

The methods proposed in Chapter 2 for comparing incidence between popula- 
tions should in principle be suitable for studying changes over time. However, most 
of these methods rely on the assumption that ratios of incidence (or mortality) remain 
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more or less constant with age. In fact, it is far from certain that risk alters in the 
same way for all age groups in a changing environment. Indeed, there are, in 
general, good reasons to assume that different age groups behave in different ways. 

The epidemic of lung cancer illustrates this point. At first, the older age groups 
were unaffected and the increase in risk was observed only in younger age groups. 
Signs that the epidemic is declining are now obvious, for example, in the UK and 
the USA, and again in the youngest age groups which are decreasingly exposed to 
the carcinogenic effects of tobacco. In the oldest groups, on the other hand, the 
increase in risk is sustained for much longer, as they are still experiencing the 
consequences of high tobacco consumption twenty years ago. In France, where the 
smoking epidemic occurred later, there is still an increase in risk in the younger age 
groups (Figure 3.14). In such circumstances, neither crude nor standardized rates 
can provide an appropriate assessment of trend. Calculations based on age-adjusted 
rates, which in principle control for the effects of population ageing, provide an 
incomplete picture of the phenomenon, and hide its more interesting components. 

This example underlines the importance of observing changes in risk in young 
adults when the consequences of a new risk factor or protective agent are to be 
assessed (or predicted). For cancer, as for most non-transmissible diseases, etio- 
logical factors are often linked to forms of social behaviour which come and go with 
passing generations. 

These considerations are illustrated in Figure 3.15, which shows cancer mor- 
tality over time in Scotland. If we only consider overall trends, the patterns in three 
usual standardized rates (African, European and world standards) are similar and 
indicate a regular and relatively small increase in risk. On the other hand, exami- 
nation of rates calculated for less than and greater than 65 years of age shows that 
the trend in standardized rates is due to changes which diverge with age, with an 

cd 

Scotland 

- Fitted rate 

1955 1960 1965 1970 1975 1980 1985 

Time period 

Figure 3.14 Lung cancer mortality trend in France, the USA and Scotland 
in 40- 44-year-old men 
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increase in risk for the oldest age groups and a decrease for the youngest. It is 
likely that this decline signals an inversion of trend which will ultimately affect other 
age groups. 
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In addition to real trends in risk and random variations, changes in data quality 
over time affect the observed trend in incidence or mortality. These effects can 
create apparent increases or decreases in risk, when the true risk is actually 
completely stable. 

For incidence data, time series partially reflect progressive improvements in 
the registration rate, whether resulting from the development of diagnostic tech- 
niques or improved reporting systems for the registry. The newer the registry, the 
stronger this effect is likely to be. In some situations, the very existence of the 
registry creates an awareness which increases the proportion of cases diagnosed 
(such as through post-mortem examinations). In most registries, there has been a 
progressive decrease in the proportion of registered cases on the sole basis of 
death certificates. In Connecticut, the proportion declined from 35% in the first years 
after the registry was established (1935) to 1% in the 1980s 1631. This improvement 
in the rate of registration of cases during their lifetime has led to a temporary and 
artificial increase in the number of incident cases. It has been proposed that the 
standard indices calculated to assess the completeness of registration (proportion 
of cases registered from death certificates only and frequency of autopsy) be used 
to correct incidence rates. 
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As a registry develops, there is also an improvement in the quality of diagnostic 
information obtained for each cancer registered, and a consequent increase in the 
precision in coding of the site and type of the tumour. Codes corresponding to poorly 
defined sites are progressively less used as the percentage of histologically 
confirmed cases rises. An artificial increase in the frequency of well specified sites 
will therefore be seen. In the Connecticut registry, the percentage of histologi- 
cally confirmed cases increased from 73% to 93% during the period mentioned 
above [63]. 

Finally, incidence can fluctuate as a result of changes in the stage at which 
cancer is detected, particularly for slow-growing tumours. For example, it is known 
that the incidence of in situ cervical tumours can increase explosively during cyto- 
logical screening campaigns, because of the inclusion of prevalent cases which are 
not detected clinically. The detection of early stage disease has an even greater 
effect in the study of time trends in survival. 

The quality of cancer mortality data has undoubtedly also improved over time, 
but the improvement has occurred more in the precision of diagnosis than in the 
number of registered deaths. As with incidence, there have probably been artificial 
increases in the number of deaths from better defined causes. Thus, increased 
mortality from ovarian cancer observed in France between 1950 and 1985 in women 
over 50 years might be due partially to the introduction of systematic surgical in- 
vestigation of abdominal masses. Previously, some ovarian cancers discovered at 
an advanced stage were wrongly classified as peritoneal cancer [64]. 

Problems in classification have been discussed too extensively elsewhere to 
justify detailed review here. We simply note that all changes in classification, or 
even coding practices, can affect the number of cases at a given site or due to a 
specific cause of death and distort trends. The decision to register papillomas or 
non-infiltrating lesions has clearly played a role in the apparent increase in the 
incidence of bladder cancer. Also well known are the difficulties which arise in the 
study of trends in non-Hodgkin lymphoma, which is sometimes coded according to 
topographical site and other times as a tumour of the haematopoietic system. 

The problem of imprecise data is accentuated by the differences in the evolu- 
tion of precision with region or age. Errors in diagnosis are generally more serious 
in older people, and improvements in diagnostic precision can therefore have a 
fundamental effect on incidence rates in this age group. The phenomenon is prob- 
ably a partial explanation for the recent increase in multiple myeloma in the elderly 
[65]. As a final point, it should be noted that chronological patterns in incidence or 
mortality rates depend on the quality of the denominators over time. Population 
estimates provided by statistical services may be increasingly distorted the further 
they are from the date of the census. This distortion often results in an underesti- 
mation of the denominators, because enumeration is not as accurate for persons 
leaving the population as it is for those arriving. 
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Role of modelling 

Observed time trends should be evaluated in the context of the problem under 
study : sometimes it is sufficient to describe long-term trends; in other situations, 
interest might focus on variation over a more limited time period, in particular the 
recent past, if the goal is to predict new directions of the phenomenon. Apart from 
the simple description of changes in risk over time, the study of trends should there- 
fore involve the search for models which can describe observed data via plausible 
hypotheses about the causes of observed changes. Under this approach, the rele- 
vant components of the time trend can effectively be separated from the random or 
systematic (e.g., seasonal fluctuations), allowing a more complete interpretation of 
the observed data. 

Models of risk evolution over successive generations have a particularly im- 
portant place in the study of cancer incidence, because of the long latency period 
between the start of exposure to a risk factor and the occurrence of the disease. 
When interest focuses on the generation effect, also known as the cohort effect, 
the inevitable presence of period effects created by, for example, changes in diag- 
nostic practice or the appearance of an environmental risk factor which could simul- 
taneously affect all age groups, necessitates the combined analysis of both the 
cohort and period components of risk. In other situations, the period effect may be 
of primary interest and the cohort effect is only a confounding factor that must be 
controlled for. An example of this situation is the evaluation of the effect of screening 
for cervical cancer (see page 202). 

The use of models in the study of trends has not been widespread, because 
of two fundamental problems which will be discussed in this section. 

The first is the difficulty of separating meaningful variations from those which 
can be considered to be random fluctuations. Simpler models might be discarded 
because the random component is in fact greater than that predicted by the Poisson 
distribution which is used to assess significance of the terms included in the model. 
In such a situation, it might be wrongly concluded that specific factors play a sig- 
nificant role in the explanation of the observed phenomenon. 

The second difficulty lies in the impossibility of satisfactoriiy separating cohort 
and period effects from the data alone, when hypotheses on the nature of these 
components cannot be formulated a priori. It is for this reason that some authors 
have questioned the value of modelling over traditional graphical approaches to 
carry out this type of investigation [66].  This point of view, however, ignores the fact 
that exclusive use of graphical methods can also lead to subjective interpretations 
which an appropriate model may avoid. 

The following section presents the tools required for the quantitative description 
of trends and the evaluation of the adequacy of the underlying models. Data on 
lung cancer in young adults are used to show how the analysis of trends in the 
logarithms of age-specific rates can display several types of time trend, and ulti- 
mately allow different components of this evolution to be revealed. This analysis 
naturally leads to a discussion of age-period, age-cohort and age-period-cohort 
models. 
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Description of trend by period 

First, recall the concept of rate of change, which summarizes exponential in- 
crease in incidence or mortality. If N(to) cancers were observed in year to, and N(t,) 
cancers in year t, = to -c n, the relative change is measured by: 

or by the corresponding percentage 100 x T. 

To derive the constant annual rate of change r that must apply each year to 
observe this relative change after n years, write: 

given that t, - to is equal to n, we have 

Log (1 + r) = 
Log [N(tl)l - Log [N(to)l 

t l  - to 

in other words, the slope of the line linking the logarithm of incidence at the two 
time points under consideration is practically equal to the average annual rate of 
change in incidence, since Log(1 + r) - r when the rate is small. If the rate is not 
small, and if  I3 denotes this slope, we have the relationship r = eP - 1. The calcu- 
lation above based on number of incident cases can obviously be carried out with 
all other indices of incidence or mortality. 

When the numbers of cases occurring in the intervening years are known and 
if the logarithm of incidence varies linearly between the two dates, the rate of in- 
crease can be estimated by the slope of the line which best represents the logarithm 
of incidence as a linear function of year of diagnosis or death. Estimation of this 
regression line can be based on either maximum likelihood or weighted least 
squares. 

As an example, we calculated the annual rate of change in lung cancer mor- 
tality among males in the USA, France and Scotland in the 40-44 years age group. 
The data for six successive five-year periods appear in Table 3.15 and in 
Figure 3.14. 

Let kt, m,, ht be the numbers of cases and person-years and the incidence 
rate for the age group under consideration for the period t. As was described above, 

the rate of change is the value eBl - I = PI in the equation : 
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Table 3.15 Change in lung cancer mortality over 25 years 
for men aged between 40 and 45 years 

USA Scotland France 

Number M x Y 
(") 

Rate 
(b) 

Number M x Y 
("1 

Rate 
(b) 

29.8 
27.6 
30.9 
26.1 
19.2 
16.0 

Number M x Y 
(") 

Rate 
(b> 

Rate of 4.95 % - 

change (') 

(") Man-years in thousands. 
(b) Death rate per 100 000 man-years. 
(') Five-yearly percentage change 100(eP1 - 1) estimated by the method of maximum likelihood using the 
linear model (3.70). 

The parameter PI is estimated by maximum likelihood, supposing that kt has 

a Poisson distribution with mean mt ePltIPO, or by using weighted least squares, min- 
imizing: 

where w, is proportional to the inverse of the variance of the logarithm of the ob- 
served rate, that is : 

The calculations were carried out with the software GLIM, using a program 
given in Appendix 2. Table 3.16 shows that the estimate of the rate of change and 
the deviance (an overall measure of the quality of the model's fit) are almost identical 
for the methods of maximum likelihood and weighted least squares when the model 
specifies a linear change in rates. On the other hand, the precision of the estimate, 
as indicated by the standard error, appears much greater when the method of max- 
imum likelihood is used. In fact, this method assumes that the model is appropriate 
and that the variation observed around the values calculated for each period using 
equation (3.70) are those predicted by the Poisson distribution. In this situation, the 
deviance indicates that the differences between observed and expected numbers 
are too big for the model to be acceptable. This statistic should be of the order of 
4 (the mean of a x2 distribution on four degrees of freedom), if the logarithms of 
the rates really varied linearly with time. Figure 3.14 suggests that the linear model 
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Table 3.16 Modelling of data from Table 3.15 

Country Method Model Coefficients (b)  Deviance d.f. 
(") P 2 PI 

USA ML Linear 

Quadratic 

LS Linear 

Quadratic 

Scotland ML Linear 

Quadratic 

LS Linear 

Quadratic 

France ML Linear 

Quadratic 

LS Linear 

Quadratic 

(") ML = maximum likelihood method based on the Poisson distribution; LS = method of weighted least 
squares. 
(b) Standard error in brackets. 

is quite good for France but not for the USA and Scotland. The measure of fit 
(deviation) is very bad for the USA (553.1 for a X2 on four degrees of freedom) but 
also poor for Scotland and France (approximately 15 on four degrees of freedom). 

In the present situation, the poor fit observed for the USA and Scotland is  
partly due to the inversion of trends observed in these two countries during the 
period being studied. A linear model is therefore inadequate, and a second-order 
term must be added in the model to account for the concave curve representing 
this phenomenon: 

Fitting this quadratic model, represented geometrically by a parabola, signifi- 
cantly improves the deviance compared to the linear model, as judged by maximum 
likelihood. This result suggests that the trend inversion is real. 
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The validity of this conclusion is difficult to challenge for Scotland because the 
second-degree model fits the data perfectly (x' = 4.1 for three degrees of freedom). 
The conclusion is also confirmed by the standard error of the quadratic term obtained 
from the method of least squares (t test = -0.041/O.C)14 = -2.9). This method as- 
sumes that log(kt / m,) has a normal distribution with mean p2t2 + Pit + PO and var- 
iance 02/kt. As G~ is estimated by the quotient of the deviance and its number of 
degrees of freedom, it will not be very different from 1 when the model with Poisson 
error is satisfactory. The result is that, in this situation, the standard error of the 
parameters obtained with the method of least squares will be close to the standard 
error estimated under the method of maximum likelihood, as can be seen from the 
Scottish data. Therefore, when the deviance suggests a good fit, the two methods 
are practically equivalent. 

For the USA, and to a lesser extent for France, the problem of lack of fit 
remains. The test of the quadratic term based on the standard error obtained from 
the method of maximum likelihood is therefore not valid. For the French data, the 
coefficient of the quadratic term is not significant when evaluated by the method of 

least squares (FA = (15.0 - 6.5)1(6.513) = 3.92). but it is highly significant by the 

method of maximum likelihood (X2 = 14.9 - 6.5 = 8.4 on one degree of freedom). 
Similarly, the standard error obtained using the method of maximum likelihood for 
the linear coefficient in the US data is obviously incorrect, while that obtained by 
the method of least squares correctly indicates the poor fit of this model. The two 
methods thus lead to contradictory results with neither being truly satisfactory. 

For the USA and France, a large number of person-years of observation are 
available from populations that are a priori quite heterogeneous with respect to lung 
cancer risk. It is therefore likely that the randomness predicted by the Poisson dis- 
tribution accounts only for a small portion of the random variation in the data. In 
particular, the assumption of a constant risk h, for all individuals is an oversimplifi- 
cation which masks a much more complex reality. For these two countries, the size 
of the populations being studied allows the rates to be estimated more precisely, 
showing that the observed variability is significantly greater than that predicted by 
the Poisson distribution. 

The fit could certainly be improved by constructing a more complex model, 
especially by adding higher degree terms to describe observed variations more pre- 
cisely; however, this approach is contrary to the principle of simplicity which is fun- 
damental to all modelling, and can lead to a good but useless description of purely 
random variation. 

In order to take the excess variability into account, it is preferable to conclude 
explicitly that It, a fixed parameter to be estimated in the previous calculations, is 
in fact a random variable describing the distribution of risk in the population under 
study. Equations (3.70) and (3.72) are then only true on average. Effectively, we 
have: 

Log (At) = f (t) + €t = Log (vt) + (3.73) 
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where f(t) is the model proposed for the change over time in the mean of Log(v,), 
the logarithm of the rate, and r, is a random variable of unknown distribution and 
constant variance 02 [67,68]. Hinde assumes, in addition, that the distribution of r, 
is normal [67]. 

As a first approximation, Log(kt / m,) can be assumed to have a normal dis- 
tribution with mean f(t) and variance l/vtm, + 02, the sum of the Poisson and extra- 
Poisson variance. 

Calculations not shown here show that estimation of this model by the maxi- 
mum likelihood method from data given in Table 3.15 gives a2 equal to 0.260 x loF3 
for the US data. This value corresponds to extra-Poisson variation of between 30 
and 50%, but the likelihood is not significantly improved by the introduction of this 
additional parameter (X2 = 2.92 on one degree of freedom). 

The estimate of a2 is null for the Scottish data, as would be expected given 
the excellent fit of the quadratic model without an extra Poisson variation obtained 
previously (Table 3.16). 

The French data are as well described by a quadratic model without extra 
Poisson variation as by a linear model which includes variation of this type between 

30 and 60% (G2= 0 . 1 4 4 ~  lov2). This result proves that the slowing of the increase 
in lung cancer mortality, suggested by the more recent data, requires further con- 
firmation before being unequivocally accepted. 

From this discussion, it is clear that the rate of change alone is rarely sufficient 
to comprehensively describe the data, even within a single age group. A fortiori, a 
method which describes the evolution of the logarithm of a standardized rate using 
a linear regression can conceal interesting aspects of a time trend. In the Scottish 
data (Figure 3.15), it can be seen that standardization leads to an estimated increase 
of between 0.90 and 1.52% per year, depending on the standard population. How- 
ever, the cumulative rate between 65 and 84 years of age increases by more than 
4% per year, while the rate from 0 to 64 years decreases by nearly 0.6% per year, 
as shown in Table 3.17. Note that the trend in the cumulative rate between 0 and 
84 years depends largely on the trend observed in the elderly and, consequently, 

Table 3.17 Change in lung cancer mortality in men in Scotland (a) 

Standard population Rate of Standard 'error 
change (b) 

1.52 0.4 1 European 
World 1.19 0:42 
African 0.90 0.40 
Cumulative rate 0-64 years -0.61 0.32 

65-84 years 4.10 0.65 
0-84 years 2.70 0.47 

(a)  Mortality data in six five-yearly periods from 1955 to 1984 (see 
Figure 3.1 5).WHO mortality data bank. 
(b) Estimated by the method of least squares assuming that the 
logarithm of the standardized rate varies linearly; the result is ex- 
pressed as a percentage change per year. 
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completely disregards the important epidemiological fact that the lung cancer rate 
is decreasing in young people, as might be predicted by the changing smoking 
habits of this generation. 

The preceding discussion underlines the importance of studying time trends 
with respect to age. Three examples corresponding to different epidemiological sit- 
uations are shown in Figure 3.16. The first example concerns the incidence of blad- 
der cancer in Birmingham, UK. The incidence of this cancer increased sharply for 
all age groups from the end of the 1960s, due to the inclusion of papillomas. The 
calculated rates of change are thus positive and of the same order of magnitude at 
each age; the curve obtained is approximately a horizontal line. The second example 
concerns the evolution of lung cancer mortality in Scotland, already discussed on 
several occasions. The graph shows that the rates of change increase strongly with 
age, and become positive after 65 years. The third example is provided b y  the 
incidence of cervical cancer in Birmingham, UK. The graph is a complex curve with 
a minimum at around 40 years. This shape could be partially explained by the pro- 
gressive extension of screening to successive generations, and partly by increased 
exposure among young women to risk factors linked to sexual behaviour. 

To obtain the data in Figure 3.16, rates of change have been calculated for 
each age group by fitting of the log-linear model : 

where the rate of change Px depends on the age group x. 

- - - Lung 1963- 1982 

Age (years) 
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Figure 3.16 Trend in the age-specific incidence of bladder cancer in men 
and cervical cancer (Birmingham,UK), and of lung cancer in men (Scotland) 
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For bladder cancer in Birmingham, UK, the constant rate of change with age 
suggests that a model in which P is constant will provide an equally good description 
of the data. This model is written: 

Log (Axt) = a, + Pt (3.75) 

Fitting the models (3.74) and (3.75) gives x2 values of 70.28 and 80.69 re- 
spectively, on (4 x 11 - (2 x 11) = 22 and (4 x 11 - (11 + 1)) = 32 degrees of 
freedom, showing that the improvement in fit created by introducing a different slope 
for each age group is negligible. Nevertheless, the size of the deviance indicates 
that the linear model does not adequately describe the data. 

A careful examination of the data given in Table 3.18 and Figure 3.17 shows 
that the increase, although similar in all age groups, was greater between the second 
and third time periods. The absence of linearity is not surprising in that it corres- 
ponds to a change in the case definition which occurred precisely between the 
second and third period, and resulted in the inclusion of papillomas, previously con- 
sidered benign. The constant rate of change observed before indicates that this 
event has produced an effect which is proportional to the existing incidence. This 
finding was not obvious a priori: the relationship between papillomas and invasive 
cases could have varied with age. We therefore adopt a multiplicative model, in  
which the incidence rate is multiplied by a factor independent of age. In addition, 
the poor fit of the linear model leads us to calculate a relative rate for each period, 
rather than a single parameter summarizing the increase over the 15 years of reg- 

0.1 ! I I I I I I I I I I i 

35 40 45 50 55 60 65 70 75 80 

Age (years) 

Figure 3.17 Bladder cancer incidence in Birmingham, UK; men, 1960-1976 



186 SPACE-TIME VARIATIONS AND GROUP CORRELATIONS 

istration. This way of describing the rates is usually called an age-period model. It 
is written: 

Log (Ixt) = a, + pt XI 5 x I xg 
t, 5 t l th 

Pt, = 0 

where g and h are respectively the number of age groups and the number of study 
periods. The term 13t in the linear model is thus replaced by a term P, indicating 
changes of unspecified shape over time which are nevertheless identicai in all age 
groups. 

Maximum likelihood estimates of px = 1 OOOOOeUx and pt = ept are given in 

Table 3.18. The values of px provide a smoothed incidence curve for the first reg- 
istration period and pt provide a description of the increase similar to that given by 
the SIR in the same Table. 

The goodness-of-fit of the multiplicative age-period model can be assessed 
from the results. For example, incidence for the age group 60 to 64 years in the 
third period is estimated by: 

Table 3.18 Incidence ~f bladder cancer; men, Birmingham, UK, 1960-1976 (a) 

Registration period 
(t) 

- - 

Estimated rates (b) 

(PA 

Relative rate (b) : pt 1 .OO 1.09 1.62 1.65 

SIR (') 71.47 78.00 11 5.91 11 7.98 

Observed cumulative 1.84 1.95 2.82 2.93 
rate 25-79 years 

(a) Rates as number of cases per 100 000. 
(b) Estimated using an age-period model (3.76). 
(') Using observed incidence between 1970 and 1976 as standard. 
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as compared to the observed number of 71.39. The deviance of this model is 41.17 
on (4 x 11 - (11 + 3)) = 30 degrees of freedom. Despite being somewhat large for 
a X2 on 30 degrees of freedom, this value (p = 0.08) confirms that the multiplicative 
model is a good description of the data. As the SIRS have been designed for such 
a situation, they obviously provide a good description of the time trend. A detailed 
discussion of the adequacy of this model for the Birmingham incidence data can be 
found in a recent article which, to a large extent, inspired these developments [70]. 

At this stage, it is important to ask why an age-period model has been adopted 
to describe this data set. The presence of a clear change in rates for all ages 
between the second and third registration period excluded the model (3.75). In other 
words, it was necessary to introduce the effect of period as a non linear function 
of time, leading to model (3.76), which has an acceptable fit because of the pro- 
portionality of the observed incidence curves. 

It is worth dwelling a little longer on model (3.75) which, as we will see below, 
can be equally well interpreted as an age-period or an age-cohort model. This model, 
known as an age-drift model [70, 711, implies the same linear change in the loga- 
rithms of incidence rates over time for all age groups. In this situation, the estimate 
of the rate of change p (or eP - 1, if P is large) is a complete summary of the time 
trend. This model and an example of its application are presented below in detail. 

Table 3.19 gives the incidence rate and the number of observed cases by 
five-year age group from 30 to 74 years for malignant melanoma in Norwegian 
women, for five time periods from 1960 to 1980. From the Table, it can be seen 
that incidence of this cancer has approximately quadrupled between 1960 and 1980 
and that the increase has been very regular. This four-fold increase over 20 years 
corresponds to a growth of approximately 7% per year (4"20 = 1.07). 

We have seen that under model (3.75),  Log(h,,) depends linearly on the period. 
On the other hand, the age effect is represented by separate parameters a, for 
each age group, with no a priori assumptions about the shape of the age-incidence 
relationship. Just as we have considered other assumptions about the relationship 
with time, there are various ways of incorporating age in the model. Here, an age- 
drift model of the form: 

Log (hx3 = a0 + a, x + a2 x2 + a3 x3 + Pt 

where the logarithm of age-specific incidence is modelled by a polynomial of degree 
3, provides a satisfactory fit for this data set. The deviance of the model fitted by 
maximum likelihood is 45.87 on 40 degrees of freedom (p > 0.20) and leads to an 
estimated annual rate of increase of 7.4%. 

The age-drift model, shown in equation (3.75) in its age-period form, can be 
immediately transformed into an age-cohort model by writing: 

Log (Ax,) = (ax + px) + pu = a', + pu (3.78) 

where u = t - x is the year of birth of an individual aged x at time t. Thus, by 
adopting a different model of age-specific incidence, the age-drift model becomes 
an age-cohort model in which the change in risk depends linearly on the date of 
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Table 3.19 lncidence (a) of malignant melanoma in Norwegian women 
aged 30 to 74 years between 1959 and 1982 

Registration period 
Age 

1 959-61 1964-66 1968-72 1973-77 1978-82 

(a) Rates per 100 000 person-years. Number of observed cases in brackets. 
(b) Rates standardized to the truncated world population 30 to 74 years. 

birth. If risk increases with time, incidence increases more rapidly with age if risk 
is measured longitudinally (intra-cohort); conversely, if incidence decreases, the 
cross-sectional incidence (intra-period) will have a steeper slope. The two curves 
differ by the quantity px, a linear function of age (Figure 3.18), and serve to remind 
us that the real increase in risk of a given cancer with age cannot be determined 
when its incidence changes over time. Unless it is specified a priori, based on other 
observations, that the changes are due to either cohort or period effects, the in- 
crease in risk can only be measured up to a term px. 

Table 3.20 gives cross-sectional incidence estimated for the year 1975 based 
on model (3.77) and longitudinal incidence for the cohort born around 1925, calcu- 

Table 3.20 lncidence of malignant melanoma by age for women in Norway (a) 

30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 

Cross-sectional 1975 (b) 9.76 13.96 16.54 17.11 16.31 15.11 14.35 14.73 17.25 
Longitudinal 1925 (') 2.80 5.72 9.68 14.32 19.50 25.80 35.01 51.34 85.89 

(a) Rate per 100 000 person-years. 
(b) lncidence estimated for the year 1975 from model 3.77. 
(') lncidence estimated for the cohort born in 1925 from the model 3.78. 
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Longitudinal curve 

Cross-sectional curve 

1 
I I 

1 I I I I I I 1 I 

35 40 45 50 55 60 6 5 7 0 75 8 0 

Age (years) 

Figure 3.18 Skin melanoma incidence in Norway, women; 1975 
(cross-sectional curve), and for the generation born in 1925 (longitudinal curve) 

lated from the cohort version of the model given in formula (3.78). Here, the increase 
in risk with age is a priori better described by the longitudinal curve, insofar as sun 
exposure practices tend to change over generations. Furthermore, the cross- 
sectional curve gives a rather implausible description of the increase in risk with 
age. If this interpretation is correct, the cumulative risk of malignant melanoma for 
women aged between 30 and 74 years born in 1925 based on Table 3.20 is 1.25%. 
This risk has therefore increased from (1.251(1.077)~~) = O.ZO/O for the generation 
born in 1900 to (1.25 x (1 .077)15) = 3.8% for the generation of women born in 1940. 

Table 3.19 can be reconstructed very accurately from the age-drift model using 
the data of Table 3.20 and a drift of 7.4%, except for the incidence over the first 
period in the age group 70-74 years, which is abnormally high. The estimated rate 
is in fact 17.25 x e [0.074(1960 - 1975)] - 5.68. - 

Figure 3.19 shows rates estimated by cohort, under the longitudinal hypothesis. 
The change in shape observed between the oldest and youngest generations is 
quite likely to be mostly an artefact. This phenomenon once again shows how hard 
it is to model changes in risk with age: fitting a third-degree polynomial, which on 
average describes the data well in the observation period, undoubtedly leads to 
somewhat pessimistic estimates when extrapolated to young generations. Unfor- 
tunately, this uncertainty in the calculation of lifetime risk is inevitable, given that 
each cohort can only be observed over a limited age range. 

Description of trend by cohort 

Just as non-linear changes in risk with time leads to an age-period model, 
non-linear progression of risk with date of birth points to an age-cohort model. This 
model is satisfactory if the corresponding portions of the longitudinal incidence 
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Age (years) 

Figure 3.19 Skin melanoma incidence in Norway; 
estimated age-specific rate by birth cohort, women 

curves are parallel. In certain situations, a graphical representation can often show 
to what extent this condition is fulfilled [72]. Thus, Figure 3.20 shows the time trend 
of lung cancer incidence in Scotland by age group according to calendar period 
(Figure 3.20a) and date of birth (Figure 3.20b). Diverging curves in Figure 3.20a 
clearly show the inadequacy of an age-period model. On the other hand, the parallel 
segments in the corresponding parts of the curves seen in Figure 3.20b suggest 
that an age-cohort model fits well. 
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Figure 3.20 Trend in the age-specific incidence of lung cancer in Scotland; men 
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The age-cohort model is written: 

or, by writing explicitly the drift in the equation, as before (see formula 3.78): 

Log (hxu) = a', + pu + non-linear terms in u (3.80) 

As already mentioned, the use of this model is illustrated with data on lung 
cancer incidence in Scotland between 1964 and 1980 among men aged between 
30 and 74 years (see Table 3.21). 

Table 3.21 Incidence rates (a) of lung cancer in men in Scotland 

Registration period Estimated rate 
Age 

1963-66 1970-72 1973-77 1978-82 
(b) 

u = 1925 

WTR (') 5.27 7.52 10.75 15.35 21.93 

Observed rate per 100 000 person-years ; observed number in brackets. 
Age-specific rate estimated for the generation born in 1925. Rates underlined correspond approximately. 
the ages for which this cohort is actually observed. 
Rates standardized to the truncated world population 30 to 74 years. 

Note that the data used are not available at equidistant dates; it has therefore 
been necessary to reconstruct the cohorts, by dividing up the observation periods 
according to the cohorts that they include, and interpolating the corresponding per- 
son-years [73]. When there are three cohorts, the expectation of the observation kXt 
for age x and time t can be written 
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where: 

ul, u2, u3 and XI, x2, x3 are respectively the average birth dates and average 
ages in this period-time interval of the three cohorts spanning this observation period 
at age x; 

MI, M2, M3 are the estimated person-years of observation in the corresponding 
sub-regions of the lexis diagram; and 

I,, is the incidence rate from the chosen model. 

Estimation of the model is then straightforward using maximum likelihood as 
before. The likelihood based on the Poisson distribution is, apart from a constant 
term, 

A 

where kxt is the value of k,, estimated from the model. 

For the data of table 3.21, the model: 

Log (Ax,) = a(x) + y(u) 

where a(x) is a second-degree polynomial in x and y(u) a fifth-degree polynomial in 
u, provides a satisfactory fit (X2 = 24.8 on 28 degrees of freedom). 

Incidence rates and observed numbers are given in Table 3.21, as well as 
age-specific rates estimated for the cohort born in 1925. Relative risks for other 
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Table 3.22 Lung cancer risk (a) in Scotland by cohort, 
for men born between 1905 and 1945 

Year of birth 

1905 1910 1915 1920 1925 1930 1935 1940 1945 

Relative risk 0,93 0.97 1.00 1.02 1.00 0.93 0.81 0.68 0.59 
Cumulative risk 

30-74 years 10.50 11.00 11.30 11.50 11.30 10.40 9.10 7.60 6.70 
- 

(a) Relative risk (reference 1925) and cumulative risk (%) are estimated from the age-cohort model 

cohorts and corresponding cumulative risks from 30 to 74 years are given in 
Table 3.22 and Figure 3.21. Estimated rates corresponding to the observations are 
shown in Figure 3.22. This Figure shows the extent and the nature of the extrapola- 
tions carried out to obtain the cumulative risk for a given cohort. 

In this example, a knowledge of the epidemiology of lung cancer would strongly 
suggest that risk has changed over successive cohorts. The fact remains that the 
fitting of a model, regardless of how good it is, does not prove whether an observed 

Age (years) 

Figure 3.22 Estimated age-specific incidence of lung cancer in Scotland 
by birth cohort in men 
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effect is due to period or cohort. For instance, in this example, the absence of 
non-linear effects associated with period implies that the a priori hypothesis of a 
multiplicative age-cohort model (equation 3.82) can be accepted. Taken in isolation, 
the quality of the fit tells little about the validity of this last model. 

Often, however, non-linear changes occur over time in factors related to period 
and cohort, necessitating their simultaneous introduction into the model; we are then 
led to consider age-period-cohort models. 

Age-period-cohort models 

We saw that when an age-period or age-cohort model describes the data well, 
it is possible to summarize the data simply, either by cross-sectional mortality or 
incidence rate and a series of standardized rates for each period, or by a longitudinal 
mortality or incidence rate and a series of cumulative risks for each cohort. Even if 
there is no ultimate proof of the models' validity, they provide a more or less full 
reconstruction of the information present in the data, and an accurate representation 
of the time trend. We have also seen that when the nature of the model is known 
a priori, estimates of the corresponding parameters can be obtained. 

On the other hand, when neither of the two models is adequate, parameteri- 
zation according to one or another of the time scales is no longer justified. Further- 
more, even when it is known that an age-period-cohort model underlies the data, it 
is impossible to estimate all the parameters, because of the algebraic relationship 
between the three study factors (t = u + x). It has been proposed that the linear 
term, the drift, be partitioned according to the goodness of fit of the age-period and 
age-cohort models (74). Unfortunately, as has already been stated, goodness of fit 
only indicates the size of the contribution of the non-linear terms characterizing 
period or cohort changes, not their respective absolute size. Note, for example, that 
a perfectly linear cohort effect combined with a purely quadratic period effect leads 
to an age-period model with perfect fit. 

To show its various forms, we write the age-period-cohort model in the form : 

Log (hxt,J = a0 + ax + a(x) + pt + p(t) + yu + c(u) (3.83) 

where a(x), p(t) and c(u) are the non-linear effects associated with age, period and 
cohort respectively. Thus written, this model is not identifiable, because t = u + x. 
It can be shown that two versions of this model are: 

the age-cohort model corrected for non-linear period effects, which, using the 
relationship Pt = px + pu, can be written: 

The linear coefficients of age and cohort are thus biased by P. 
the age-period model corrected for non-linear cohort effects, which, using the 

relationship yu = yt - yx, can be written: 
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where the coefficient of the linear term in age is now biased by - y. The coefficient 
of the linear term in period, P + y, is the same as the coefficient corresponding to 
cohort in model (3.84). This coefficient (the drift) is the sum of the rates of change 
according to period and cohort: it is the linear approximation of the trend in the 
neighbourhood of the reference year of observation (t = 0) and year of birth (u = 0) 
respectively, when a, c and p are modelled by polynomials of degree greater than 1 .  

We illustrate the use of the age-period-cohort model with data on cervical 
cancer in Birmingham, UK between 1960 and 1982 (see Table 3.23). Figure 3.23, 
which shows that the trends in each age group are very different, shows that an 
age-period model is certainly not appropriate. Fitting the age-cohort model gives a 
deviance of 51.9 on 30 degrees of freedom, which becomes 38.0 on 27 degrees of 
freedom when period is added as a factor, a significant reduction (p = 0.003). Esti- 
mates from models (3.84) and (3.85) are given in Table 3.24. Following Holford [75 ] ,  
effects of each factor are presented by separating the overall linear trend from the 
'non-linear' effects which correspond here to departures from linearity. This approach 
differs from the polynomial modelling used here in the age-cohort model, particularly 

Table 3.23 Cervical cancer incidence (a) in  women in Birmingham, 
UK, between 1960 and 1982 

Registration period Estimated rate (b) 

Age u = 1920 
1960-62 1963-66 1968-72 1973-76 1979-82 

(a) Observed rates for 100000 person-years; observed numbers in brackets. 
tb) Age-specific rates estimated for the cohort born in 1920. Underlined rates correspond to the age intervals 
for which the cohort is actually observed. 
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with regard to the interpretation of the drift. In this case, it should be considered to 
be the best approximation to the linear change in incidence over the whole obser- 
vation period. The drift is small (P + y = 0.01070), because the decrease observed 
in some age groups is balanced by a substantial increase in other age groups. A 
polynomial model with cohorts centred around 1920 and periods around 1970 would 
give a much larger drift, given that the increase at these dates was already quite 
marked and that this version of the drift estimates local increases. It is important 
to note that, although it is identifiable, the drift depends essentially on the model 
selected, and it must be interpreted with care. 

Fortunately, these subtleties are often irrelevant. In most situations, the struc- 
ture of the time trend is much simpler and the different parameterizations are more 
or less equivalent. In the complex example considered here, change in risk across 
cohorts after correcting for linear effects of period (Table 3.25) still provides quite 
a satisfactory picture of the underlying epidemiological situation. 
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Figure 3.23 Trend in the age-specific incidence of cervical cancer 
in Birmingham, UM, between 1960 and 1982 
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Table 3.24 Cervical cancer in Birmingham, UK. 
Estimation of the age-period-cohort model 

Factor Coding (b) Deviation 
from linearity 

Total (a) 

Age 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 

Linear effect 

Cohort 
1885 
1890 
1895 
1900 
1905 
1910 
191 5 
1920 
1925 
1930 
1935 
1940 
1945 
1950 
1955 

Period t PO) 
1960-62 -2 -0.063 
1963-66 -1 0.054 
1968-72 0 0.040 
1973-76 1 0.01 2 
1979-82 2 -0.042 

Drift p + y = 0.0107 

(a) The effect of the factor is obtained by summing the deviation from linearity and the linear effect corres- 
ponding to each of the models. Thus, the age effect at age 65 years (x = 3) in an age-cohort model 
corrected for nonlinear period effects is : 0.1152 x 3 - 0.111 = 0.235. 
(b) Age, cohort and period variables are coded by corresponding integers, ignoring irregularities created by 
the observation periods. Age, cohort and period factors are centred around the categories 50-54, 1968-72 ~ 

and 1920-25 respectively. 
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Table 3.25 Cervical cancer risk (a) in Birmingham, UK, by year of birth 

Year of birth 

Relative risk 1.20 1.00 0.89 0.77 0.79 0.92 0.97 0.96 0.72 0.57 0.63 0.87 1.46 
Cumulative risk 
25-79 years 1.99 1.66 1.47 1.28 1.31 1.52 1.59 1.58 1.19 0.94 1.03 1.44 2.41 

(a) Relative risk and cumulative risk (O/O) are estimated from the age-period-cohort model. Relative risks are 
normalized by the requirement that the sum of their logarithms is zero over the years considered. 

Specific techniques and examples 

Epidemiological evaluation of a secondary prevention campaign 

The incidence of skin melanoma and associated mortality have shown a marked 
increase since the 1960s in most countries [73,76]. Some of this increase is most 
likely due to exposure to ultraviolet radiation, and another part can be attributed to 
improved diagnosis of these cancers. In theory, earlier detection of cases should 
limit the increase in mortality over time, or even reverse the trend. Accordingly, many 
countries or regions have developed intervention programmes, which in turn require 
evaluation. Even though secondary prevention programmes must ultimately be 
assessed on the basis of changes in mortality, the observation of larger increases 
in early-stage cases can also provide information on the effectiveness of the method 
of implementation of the programme. 

A campaign conducted in Switzerland at the beginning of May 1988 had the 
twin objectives of primary prevention, aimed at educating the population about the 
dangers of prolonged exposure to the sun, and secondary prevention, through in- 
forming the public and the medical profession about the advantages of rapid and 
systematic examination (clinical and, if necessary, histological) of suspicious skin 
lesions. A year after this campaign was launched [77], only the second objective 
could be assessed. The ensuing analysis provides an example of the use of log- 
linear models to evaluate this type of chronological evolution. 

The immediate objective of the campaign was to increase the number of cases 
diagnosed at an early stage, but it might also be expected that the number of 
advanced cases could also increase as a result of the intervention. The evaluation 
thus consisted of checking the assumption that the time trend prevailing before the 
campaign changed immediately after the launch of the campaign (that is, after June 
1988), and that any increase was greater in early cases than in advanced cases. 

For practical reasons, mainly related to the quality of cancer registration, data 
from before 1985 were not used to estimate the pre-campaign trend in incidence. 
Analysis was restricted to cases registered between 1 January 1985 and 30 April 
1988 (three years and four months) and the campaign was assessed over the eight 
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Table 3.26 Skin melanomas by stage and calendar period in four Swiss registries 

Geneva Neuchiitel Vaud St-GallIAppenzell 

Stage 1-2 Other (a) Stage 1-2 Other (a) Stage 1-2 Other (a) Stage 1-2 Other (a) 

1985 
Jan-Apr 
May-Aug 
Sep-Dec 

1986 
Jan-Apr 
May-Aug 
Sep-Dec 

1987 
Jan-Apr 
May-Aug 
Sep-Dec 

1988 
Jan-Apr 
May-Aug 
Sep-Dec 

(a) Includes cases of unknown stage. 

remaining months of 1988, when the effects of the intervention should have been 
apparent. In total, 734 skin melanomas were reported from January 1985 to Decem- 
ber 1988 in the four participating regional registries (Geneva, Neuchatel, St-Gall/Ap- 
penzell and Vaud). Given the short duration of the study period, it was not 
considered necessary to take denominators into account. On the other hand, monthly 
counts of cases were used, to allow for the effects of seasonal fluctuations. 

In Switzerland, the melanoma incidence tends to increase markedly from the 
beginning of summer, and reach its lowest level during winter. It was decided a 
priori that a division of the year into three periods of four months (January to April, 
May to August and September to December) would provide a satisfactory description 
of the seasonal variation. Grouping into four-monthly periods also corresponded to 
the interval during which the effects of the campaign should have been noticeable, 
that is, the second and third periods of 1988. This grouping did not result in a 
significant loss of information compared to an analysis based on monthly data 
(X2 = 12.4 on nine degrees of freedom). All analyses were therefore carried out from 
data grouped in this way. For both practical and theoretical reasons, disease stages 
were also grouped. 'Early' cases were Breslow's stage 1 and 2 (up to and including 
1.5 mm), while 'advanced' cases comprised those of stages 3 and 4 and unknown 
stage (7.9% of the total). Table 3.26 provides the data on which the analysis was 
based (see Table 3.27). 
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Table 3.27 Modelling of data from Table 3.26 

Model Estimate Deviance d.f. 

Model A = Registry + Campaign + Year (conti- 
nuous) + Four-month period 

Four-month period (a) 

Jan-Apr 1 .OO 
May-Aug 1.42 [ 1.1 6 ; 1.731 
Sep-Dec 1.11 [ 0.90;  1.371 

Year (b) 2.30 [-6.60 ; 12.11 
Campaign 114.9 88 

Before campaign 1 .OO 
After campaign (') 1.46 [ 1.13 ; 1.891 

Model B = Model A + registry x campaign 111.0 85 

Model C = Model A + stage 99.0 87 

Model D = Model C + stage x campaign 
Before campaign 1 .OO 
After campaign (') 
- early stages 1.63 [ 1.22 ; 2.191 
- autres stages 1.24 [ 0.90 ; 1.711 96.5 86 

(a) Relative risk. 
(b) Annual rate of increase (%). 
(') Relative increase in number of cases. 

The first step in the analysis was to assess whether there had indeed been 
additional increase in incidence from the start of the campaign, taking into account 
the prior trend and seasonal variation. Trend was modelled using year of incidence 
as a continuous variable, with the four-monthly periods to represent seasonal 
changes. Region of registration was also introduced into this model as a factor to 
take into account both the differences between the size of the populations (denom- 
inators) and possible differences in the prevalence of the risk factors in the popu- 
lations covered by the four registries (model A). The model expresses the logarithm 
of the expected number of cases as a linear function of the various factors: 

where r, q, c are the indices of the region, the four-monthly periods and the campaign 
respectively, and where t is the year of incidence. The model was fitted by maximum 
likelihood assuming that the number of cases follows a Poisson distribution of mean 
p r q  Jt). The result is an estimate of the overall effect of the campaign equal to 1.46 
11.13 ; 1.891, which means that incidence was 46% higher than expected on the 
basis of the pre-campaign trend and seasonal variation. 

The second step was a comparison of the effectiveness of the prevention cam- 
paign in the four registry regions, by adding an interaction term (registry x campaign) 
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D a t e  

All stages, expected 
- - - - -  All stages, observed 

Stage 1, expected - - - 

Figure 3.24 Observed and expected cases of skin melanoma before and after the start 
of a screening programme in Switzerland; both sexes combined; 1985-1988 

, 

to the above model, to allow for a possible different effect in each region (model 
6). The reduction in the deviance of 3.9 on three degrees of freedom led to the 
conclusion that there was no difference between the four regions with respect to 
the effect from the campaign. 

The third step was to address the fundamental question as to whether the 
increase in incidence had been more marked for early stages. To test the hypothesis 
that the increase was identical for all stages, a model which included stage in ad- 
dition to the other four factors included initially (registry, year, four-monthly period 
and campaign (model C)) was compared with a model augmented by an interactive 
term representing a campaign effect which differed for each stage (model D). The 
reduction in the deviance was 2.5 on one degree of freedom (p = 0.10). Despite 
the absence of a formal statistical significance at the 0.05 conventional level, the 
authors were convinced that the effect of the prevention campaign differed with 
respect to stage. The relative increase was estimated to be 1.63 f1.22 ; 2.191 in 
early cases and 1.24 f0.90 ; 1.71 ] in advanced cases, or 63% and 24% respectively. 
The campaign was therefore judged to be doubly effective on the basis of its first 
expected outcomes: (i) increased total incidence and (ii) a more marked increase 
in early cases. 

The estimates obtained from fitting the final model (model D) provide the basis 
for calculating estimates which make up a smoothed curve (Figure 3.24). The num- 
ber of expected cases can be calculated for any combination of values of the terms. 
For example, the number of cases over a whole year can be calculated by stage 
under the assumption that the prevention campaign either worked, or did not work. 
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In other words we can estimate the additional cases that were diagnosed during 
1988, due to the effect of the screening campaign: 

Early Other 
stage 

Total 

No screening 9 7 7 7 1 74 

Screening 159 9 6 255 
Additional cases 6 2 19 8 1 

(% increase) + 64 + 25 + 47 

Trends in cancer of the uterine cervix 

In most western countries, the frequency of invasive cervical cancer has been 
decreasing for many years, almost certainly at least partly as a result of screening. 
However, a rise in incidence has recently been noted among young women in some 
countries. Various explanations have been offered, including an increase in sexual 
activity and the consequent increase in risk of infection by the human papilloma 
virus, an increase in the prevalence of smoking and decreased participation in 
screening programmes. Whatever the reasons for this phenomenon, it is of interest 
to examine the divergence by age of the time trend in different populations. 

In Geneva, reliable incidence data are available from 1970. A study of time 
trends was first carried out on all invasive and microinvasive cases [78]. The time 
trend over the 18 years from 1970 to 1987 was analysed by modelling the logarithm 
of annual incidence rates by a linear function of year of diagnosis and estimating 
the parameters by maximum likelihood. Fitting the model 

Log (hxt) = a + Pt 

gave a rate of change of P = -4.3% per year [-6.0 ; -2.61, indicating a significant 
decrease in the crude incidence rate (Table 3.28, model B). The next step was to 
estimate the rate of change in the age-adjusted incidence from model (3.75): 

Log (hxt) = ax+ Pt 

which led to P = -4.6% [-6.3 ; -2.61 (model C). 

The null hypothesis that the trends did not differ across age groups was tested 
by introducing a term for interaction between age group and year of diagnosis, which 
is equivalent to a different slope for each age group (model D) (see formula 3.74). 
Because of the significant improvement in the model's fit (X2 = 18.3 on six degrees 
of freedom, p < 0.05),  it was concluded that there was a real difference in trends 
between age groups, justifying different estimates of annual rates of change for 
each age group. These estimated rates of change are shown in Figure 3.25; esti- 
mates obtained by applying these rates of change to the incidence by age observed 
in 1970 are shown in Figure 3.26. 
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Figure 3.25 Age-specific rate of change in cervical cancer incidence 
in Geneva between 1970 and 1987 
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Figure 3.26 Trend in the age-specific incidence of cervical cancer 
in Geneva between 1970 and 1987 
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Although the numbers are small (480 cases observed in seven age groups 
over 18 years) and, consequently, the standard errors associated with the rates of 
change for each age group are high, the preceding analysis and data from 
Figures 3.25 and 3.26 suggest that there are three different types of time trend. 
The apparently increasing incidence for women less than 35 years could be a result 
of exposure to risk factors linked to sexual behaviour. In contrast, women aged 65 
years and over, in whom incidence has only slightly decreased, might not have 
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Table 3.28 Modelling time trends by age group from annual rates of cancer 
of the uterine cervix in the canton of Geneva from 1970 to 1987 

(all incident invasive and microinvasive cases) 

Model Rate of change % 95% CI Deviance d.f. 

Model A = Constant 
Log (hxt) = a 

Model 6 = Year 
Log (hxt) = a + pt 

Model C = Year + Age 
Log (hxt) = ax + Pt 

Model D = Age * Year 
Log (hxt) = ax + PX t 

15-24 (4 cases) 
25-29 (9 cases) 
30-34 (22 cases) 
35-44 (84 cases) 
45-54 (92 cases) 
55-64 (101 cases) 
65+ (168 cases) 

benefited from screening as much as younger women either because screening for 
this cohort was not yet routine or, more likely, because they stopped being screened 
after menopause. Incidence decreases substantially and relatively uniformly only in 
women aged between 35 and 65 years. Most of this change can reasonably be 
attributed to screening. 

Bibliographical notes 

A more detailed discussion of the concepts and methods of graphs and spatial 
analysis can be obtained from Cliff and Haggett's Atlas of disease distributions : 
analytical approaches to epidemiological data [79], effectively a manual of statistical 
ecology. While mainly using examples from the field of transmissible diseases, in- 
cluding the historical data of John Snow, the book also deals with problems relevant 
to cancer epidemiology, such as nasopharyngeal cancer in China, clusters of me- 
sothelioma cases in the USA and monitoring risk around nuclear power plants or in 
the region of Chernobyl. The book reviews the principal techniques used to define 
regions and to smooth data, and also considers the problem of detecting outliers 
and clusters, both spatial and spatio-temporal. Also discussed are methods for de- 
tecting autocorrelation, estimating spatial patterns and regression involving exposure 
factors in ecological analyses. 
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Another text brings together a series of papers on cancer mapping, including 
presentations of the principal mortality atlases published at the time [80]. Several 
articles of this latter monograph discuss the various problems raised in the geo- 
graphical representation of epidemiological data on cancer, or comment on methodo- 
logical issues, such as the choice of colour. 

The recent article by Walter and Birnie [81] provides a survey of the 49 atlases 
which appear during the fifteen-year period ending in 1989. The atlases are ex- 
amined and classified by population and disease, and by the mapping and statistical 
techniques adopted. The authors emphasize the diversity of methods used and the 
consequent difficulty in making comparisons across atlases. 

Research into the analysis of the spatial distribution of cancer, and in particular 
on the detection of clusters, has been published recently; two publications of note 
are the proceedings of the meetings organized by the Royal Statistical Society of 
the UK, on cancer incidence near nuclear installations [82], and the review of 
Marshall [83]. 

Applications of the empirical Bayes and grouping methods proposed by Huel 
[43] are presented in a thesis by Colonna on geographical studies in the situation 
where incidence is low [21]. This paper also deals with autocorrelation and its 
measurement. The thesis by Mollie includes a detailed mathematical discussion of 
smoothing based on the Bayesian approach, with an application to cancer mortality 
in France [48]. On the same subject, articles by Clayton and Bernardinelli [84] and 
Bernardinelli and Montomoli [85] provide an original point of view and practical ex- 
amples. 

The epidemiological literature includes many studies which have tried to link 
risk and exposure at the level of groups, mainly defined geographically. These stu- 
dies provide examples of the methods dealt with on page 141 of this chapter. Of 
particular note are three studies on dietary factors which appeared at the time when 
ecological correlation analysis first became widely used, and which clearly illustrate 
the methodological problems raised by measurement of exposure at the group level. 
The first study relates to the geographical correlation observed in the USA (across 
states) and in Europe (across countries) between alcohol and tobacco consumption 
on one hand and various cancer sites on the other [86]. The second study examines 
the relationship between dietary factors and the various types of cancer, using 
national statistics from 32 countries [87]. The third article also considers dietary 
factors, but includes diseases other than cancer [88]. 

A thesis by Viel compares the results of published case-control and cohort 
studies on the effect of pesticides with those that he obtained from ecological analy- 
sis of French data from the departements. These analyses are carried out using the 
method proposed by Gardner [51], a Poisson regression adjusting for latitude and 
longitude, and a correlation test modified to take into account autocorrelation, pro- 
posed by Clifford and coworkers [go]. The work provides a good example of geo- 
graphical correlation methods applied to the study of an association involving an 
exposure which is difficult to quantify at the individual level. 
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There have been a number of studies published on cancer risk in migrants. 
Recent monographs published by the International Agency for Research on Cancer 
have considered Jewish migrants to Israel [91] and Italian migrant populations [60]. 
The first of these monographs is an excellent example of the use of information on 
the country of birth and time since arrival, in a country characterized by immigration 
from many countries. The second only considers one country of origin, Italy, but 
studies their outcome in a range of host countries. 

Data on time trends in cancer incidence and mortality are essential for the 
development of public health policy. For this reason, it is surprising that the literature 
in this area is relatively poor. There has been little research on the simultaneous 
estimation of rates of change having variable precision. There is however a need 
for methods to allow data of this type to be presented in a more convincing manner. 
The only work in this area has been based on empirical Bayes methods, particularly 
in the estimation of cohort effects in the youngest and oldest cohorts. Breslow and 
Clayton have proposed the estimation of random effects based on autoregressive 
models, in which the estimate for each cohort is based on some information from 
earlier and later cohorts [92]. In contrast, Desouza has used data on the trend in 
several geographical areas, to estimate cohort effects in each area by making use 
of information from other study areas [93]. These methods have nonetheless been 
used very little, and their value in practice is still unknown. The current rate of 
progress in the analysis of longitudinal data suggests that there will be a rapid 
improvement in this situation [94]. 

The majority of research on time trends has involved relatively simple methods. 
This lack of sophistication is undoubtedly justified both by the lack of suitable com- 
puter software, and by the desire to publish observed data with only a minimum of 
smoothing compatible with the needs of graphical presentation. Research in this 
area has been published by Hakulinen and coworkers, on trends in cancer incidence 
in Nordic countries [95]; by Osmond and coworkers for trends in cancer mortality 
in England and Wales during 1951-80 [96], by Devesa and coworkers who carried 
out a fairly complete survey of trends of cancer incidence and mortality in the USA 
[97], by Lee and coworkers for trends in cancer incidence in Singapore [98], Hill 
and coworkers for those in France [64], La Vecchia and coworkers for Europe [99] 
and, finally, Coleman and coworkers who reviewed trends in cancer incidence and 
mortality using the data available from all five continents [73]. 

For a general discussion of methodological problems in the study of time 
trends, in particular those which are not statistical, two meeting reports may be  of 
value [100,101]. 
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Chapter 4 

Techniques for survival analysis 

Survival analysis in descriptive epidemiology 

The need for the estimation of survival rates' is twofold: the first objective is 
to describe the outcome, with time, of a given disease in a group of patients. The 
mortality associated with the disease can then be assessed in terms of setting public 
health priorities or providing prognostic information for a patient newly diagnosed 
with the disease. The second objective is to compare mortality between various 
groups of patients or to study survival according to individual characteristics such 
as sex, age, diagnosis or type of treatment in order to identify prognostic factors. 
Cancer registries are primarily concerned with the first, descriptive objective. 

From this point of view, it is important to remember that survival rates routinely 
calculated from incident cases in a population should be distinguished from data of 
the same kind established from a series of hospital patients or from patients included 
in clinical trials. 

Although the methods used in the two situations are identical, the groups 
studied in treatment evaluation are submitted to numerous selection criteria (recog- 
nized or unrecognized) and only rarely represent the full epidemiological diversity 
of the patient population. Survival rates estimated from incident cases (from which 
it is standard practice to remove cases discovered at death) can thus be noticeably 
different from hospital results, with the extent of difference depending on  the selec- 
tion process which affects the hospital population under study (see page 268). Con- 
versely, survival rates established in an epidemiological context can only be used 
to estimate the overall efficiency of the health system, which depends not only on  
the quality of care but also on the accessibility of the system and the consequent 
likelihood of early diagnosis. For this reason, these rates do not lend themselves 
to retrospective evaluation of treatment even if  the necessary information is available 
for some or all of the incident cases. 

The analysis of survival data, like all epidemiological analysis, requires stand- 
ardization of the case definitions. In particular, the diagnostic classification, including 

The expression "survival rates" will be used in this chapter as meaning survival probability, 
as it is current practice among clinicians, despite the fact that rate and probability are different 
concepts in theory. 

21 3 
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site, subsite and histological type, may give rise to heterogeneity in the groups being 
studied. This issue will not be considered here. 

We must also acknowledge the fundamental role of the stage of disease at 
the time of diagnosis. The apparent benefit of an early diagnosis, as measured by 
an increase in survival time, may be misleading if it only reflects the addition to the 
survival time of the lead time which separates early detection time from the time at 
which diagnosis is usually made clinically. Thus, screening and early detection may 
in reality be prolonging the period of morbidity while having no effect whatsoever 
on the natural history of the disease [I] .  In fact, such arguments are not always 
easy to challenge in the absence of good information on the distribution of the time 
spent in the preclinical phase of the disease. However, i f  such were the situation, 
the survival curve would have about the same shape after the lead time for patients 
diagnosed early, and their age at death would not be changed [ 2 ] .  In any case, the 
standardization of criteria defining date of incidence remains a fundamental objec- 
tive. 

The problems associated with data collection must not be ignored. In the study 
of survival, as in the study of disease incidence, it is essential to  question the 
reliability of the data. In order to avoid bias, data collection systems should allow 
not only for the routine registration of death but also for the active verification of 
the status of cases for which no information on death has been received. 

The primary objective of this chapter is to provide the means to calculate as 
precisely as possible the survival probability as a function of the time elapsed since 
the occurrence of the event marking the beginning of follow-up. This function of time 
defines the survival curve of the group under study. The necessary material is 
covered from page 216 to 222. 

Survival data, like incidence data, are subject to sampling variation, that is, 
they can provide only an estimate of an unknown, underlying reality. For this reason, 
the degree of confidence to be attached to the results is also considered (confidence 
interval). 

We will then examine (see page 231) methods that have been proposed to 
take account of the effect of competing causes of death, in order to provide a better 
understanding of the phenomenon under study: a cancer patient is not protected 
from other risks of death and adjustment for these is needed for assessing the 
specific effect of the cancer on the risk of death. Some authors calculate cause- 
specific survival, which only takes into account death due to the disease being 
studied. Among alternative methods that have been proposed, the most widely used 
is that of relative survival, based on the use of the life table, the principal concepts 
of which have been presented in Chapter 1. The reader will find the methods to 
overcome the possible lack of published life tables on page 236. 

Methods to compare survival in two or more groups are dealt with in the second 
part of this chapter. These problems are very similar to those which were considered 
under the comparison of age incidence curves. Just as one might prefer the com- 
parison of incidence curves as a whole to the comparison of cumulative risks alone, 
comparison involving whole survival curves is preferable to a comparison which only 
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concerns survival probabilities at a given time point. However, one is often restricted 
to this latter comparison in the absence of appropriate data, resulting in the need 
for methods described briefly on page 246; unfortunately, routinely published data 
do not always provide all the details needed for making this point comparison. 

When comparison is carried out over entire survival curves, the assumption is 
often made that the instantaneous mortality rates are proportional. In this situation, 
the optimal test, known as the log rank test, is effectively identical to the Mantel- 
Haenszel test discussed in Chapter 2. We will re-examine it in the context of survival 
distribution (see page 247). 

Populations that are being compared sometimes experience different mortality 
patterns after the time of diagnosis: some are subject to a very high initial mortality 
followed by a long remission; others, in contrast, experience a more regular occur- 
rence of deaths. In the former case, the Gehan-Breslow test, also presented in this 
section, is in principle more appropriate. 

In certain situations, if the necessary information is available, survival compari- 
sons can be made taking confounding factors into account. A further section dis- 
cusses methods of adjustment or stratification which allow us to take account of 
confounding factors (see page 255). 

When individual characteristics which might affect survival ('prognostic factors') 
are available for each case under follow-up, it is usual to assess the specific role 
played by each factor in the prediction of survival time. The stratification approach 
is however rapidly limited by sample size while it is still possible in some situations 
to use a modelling approach, despite the small number of subjects available. Cox's 
multiplicative model provides the necessary tool in this context and is discussed 
from page . 

Calculation of long-term survival raises particular problems: because of ageing, 
the group is subject to an increasing risk of mortality from causes other than the 
disease under study. In this situation it becomes important to base comparisons on  
net survival, requiring the application of specific methods (see page 272). 

A number of data sets obtained from cancer registries will be used to illustrate 
methods that have been mentioned: the first set of data refers to survival of incident 
cases of colon cancer in the French department of C6te-d'Or. This example il- 
lustrates the mathematical calculations required to establish survival probabilities by 
the actuarial method and their confidence limits. Survival of incident cases of skin 
melanoma in Geneva (Switzerland) will provide an example of the use of the Ka- 
plan-Meier method. Data on colon cancer in Geneva will serve to' illustrate the com- 
putation of relative survival rates and similar data from the canton of Vaud 
(Switzerland) will be considered with those from C6te-d'Or and Geneva to show how 
to carry out a comparative analysis. 

Finally, we will use data from the Geneva cancer registry on various cancer 
sites to compare the results obtained by the relative survival method and those 
obtained by the cause-specific survival method where deaths not attributable to the 
disease are taken as censored observations. 

Stratification methods will be illustrated by the comparison of survival distribu- 
tion for men and women with melanoma, taking subsite as the confounding factor. 
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The more general modelling approach will be illustrated by the analysis of breast 
cancer survival in Geneva according to the type of health care system providing the 
treatment. 

Estimation of survival distribution 

When concepts associated with the study and interpretation of individual fol- 
low-up were discussed in Chapter 1, we presented the notion of censored observa- 
tions, that is, observations which are incomplete and which require a specific 
methodology. In this section, we will illustrate different techniques proposed for the 
analysis of survival data. Although some of these techniques have been developed 
for clinical trials, they ca'n be used in the present context with minor adjustments. 
Nevertheless, the choice of an analytical method and the interpretation of the results 
require a specific approach, because of the way the data are obtained, the size of 
the groups under study and the absence of randomization. 

When there are no censored observations, survival probability after a given 
time is estimated simply by the ratio between the number of survivors at a specific 
date and the number in the group at the beginning of the study. This probability, 
called by some authors the direct survival rate, obviously cannot b e  calculated for 
individuals in the group for whom the period of follow-up is less than the time interval 
being considered. The group under study is therefore subdivided into subgroups in 
which the subjects have the same potential follow-up time and the survival probability 
calculated in each subgroup is assumed to be an estimate of the survival rate for 
the corresponding length of time. However, as the resulting probabilities have been 
obtained from different groups of patients, they will not in general provide a con- 
sistent survival curve, that is, the survival probability will not necessarily decrease 
with time. 

In fact, observations with incomplete follow-up can still contribute to the esti- 
mation of survival for time intervals greater than the duration of their follow-up. This 
idea is being used in the following two methods which are also described in a more 
formal context in Chapter 1. 

Estimation of crude survival 

Actuarial method 

The aim of this method is to study the survival of a group of subjects for whom 
a common event has occurred; for each subject the date of occurrences marks the 
beginning of follow-up. In the present context the common event which characterizes 
the group will be the diagnosis of cancer. 
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Follow-up of individuals comes to an end either at death, or on the date at 
which the individual is lost to follow-up, or on the date at which the individual is 
withdrawn from follow-up, for example for the purpose of analysis of the survival 
data. In fact, the date of withdrawal may be specific to each individual if assessment 
of status (living, deceased or lost to follow-up) is only carried out at regular intervals 
following the date of diagnosis; there may also be a single date of withdrawal if this 
assessment is carried out on the same date for all individuals (see page 227). The 
time between the date of diagnosis and the end of follow-up is called the follow-up 
time. Figure 4.1 illustrates the two follow-up procedures discussed above. Note that 
the recruitment period is generally less than the study period, for example, when 
we only want to consider cases which have a minimum follow-up time. On the graph, 
el, e2 and e, represent the entry dates of new cases, fl, f2 and fg the end of 
individual observation periods, and the solid circles represent dates of assessment 
of status. 

Theoretically, the method is applicable when new cases are recruited who have 
been diagnosed before their inclusion in the study group. These cases are only 
included in the calculation from the time when they are actually under observation 
and not from the date of their diagnosis. If such a precaution is not taken, mortality 

Figure 4.1 Principles of follow-up of cases in a survival study 
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during the period prior to their inclusion would be underestimated. Apart from the 
increased complexity in the calculations, it is generally preferable not to take these 
cases into consideration because of the selection biases to -which they may be 
subject. 

The first step of the actuarial method is the subdivision of the maximum ob- 
served survival time into intervals; the length of the intervals is set a priori taking 
into account the distribution of deaths over time, so that each interval, on average, 
has at least some deaths. If necessary, the intervals can be of unequal size. 

The second step is the computation of the conditional probabilities in each 
interval which are defined by the proportion of those living at the start of the interval 
who were still living at the end of it. However, in order to account for subjects with 
shorter follow-up time, the number at risk at the beginning of the interval is reduced 
by half the number of subjects who were withdrawn or lost to follow-up during the 
interval. The total thus obtained is known as the corrected number of subjects at 
risk or the effective number at risk. 

The probability of surviving to the end of a given interval is obtained by mul- 
tiplying together the conditional probabilities over all the intervals preceding this time 
point. Survival is obtained by linear interpolation for all other time. 

Table 4.1 Calculation of survival probabilities by the actuarial method 
(incidence of colon cancer in males in Cdte-d'Or, France, between 1976 and 1982) 

Interval Number Number Death Effective Conditional Conditional Survival 
(months) at risk censored number probability probability of rate 

in ti at risk of death survival 
ti, ti+? ni Ti di Ni (7 i Si Si+l 

(1 ) (2)  (3) (4) (5) (6) (7) (8) 

Columns (1) to (4) give observed data; data in columns (5) to (8) have been calculated. 

Let: 

ti, ti+, be the interval end-points (0 5 i 5 I - I ) ,  

ni be the number of subjects surviving and followed up at date ti (number at risk), 

ri be the number of subjects withdrawn or lost to follow-up in the interval ]ti, ti+,], 

di be the number of deaths in the interval ]ti, ti+,], 

Ni = ni - (ri / 2) be the corrected number at risk, 
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qi = di 1 Ni be the estimates of the conditional probability of dying in the interval 

]ti, ti+tl, 
si = 1 - qi be the conditional probability of being alive at ti+l given that the subject 

was at risk at ti, and 

Si+, = n s, , the survival probability at tiit. 
j = 0 

The method has the advantage of using all available information, as opposed 
to the direct survival method, which is based only on cases which have a follow-up 
time at least equal to the time for which survival probability is being calculated. On 
the other hand, the method relies on the assumption, sometimes debatable, that 
those for whom observations are censored are subject to the same force of mortality 
as cases for whom follow-up is complete. 

Table 4.1 shows the details of this calculation using data from the C6te-d'Or 
on colon cancer in males. Figure 4.2 shows the corresponding survival curve. An 
interval of six months has been used. Cases lost to follow-up and cases withdrawn 
from follow-up are treated in the same way and considered to be censored obser- 
vations. 

0 6 12 18 24 30 36 42 48 54 60 

Time since diagnosis (months) 

Figure 4.2 Survival of male colon cancer patients in C6te-d'Or, 
diagnosed between 1976 and 1982 

Kaplan-Meier Method 

This procedure relies on the same principles as the actuarial method. However, 
the time intervals are not set a priori but are determined by the occurrence of death: 
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the conditional probabilities of surviving between two dates of death are estimated 
every time a death occurs. As in the actuarial method, the probability of survival, 
from the start of follow-up, is obtained by the product of probabilities calculated for 
each successive interval. 

Intervals are usually defined in days. The method requires the calculation of 
as many survival probabilities as there are deaths, except if several deaths occur 
on the same day. It is particularly suited to analysing data from small groups. An 
observation which is censored between two deaths does not affect the cumulative 
probability of survival, which remains constant in this interval; in principle, it is not 
necessary to know the exact dates when such observations are censored. However, 
it is necessary to know the number of censored observations between two deaths 
which is subtracted from the number at risk at the start of the next interval. 

Let: 

ti be the ith observed time of deaths 1 I i 5 I, 

di be the number of observed deaths at ti, 

ri be the number of censored observations in interval [ti, ti+l[, 
n. = n. 

I - diPl - ri-l be the number at risk just before time of deaths occurring 
in ti: to obtain ni, subtract from ni-1 the deaths which took place at ti-, and all other 
cases for which follow-up ended in the interval [ti-1, ti[ 

si = 1 - (di/ni) be the conditional probability of being alive in ]ti,ti+,] given the 
subject was at risk at ti, and 

I 

Si= n s, be the probability of surviving after ti. This probability is constant up to 
j = 1  

date ti+l inclusive. 

The details of the computation are shown in Table 4.2 which refers to data 
from Geneva for skin melanoma in males. The corresponding survival curve is 
graphed in Figure 4.3. 

We can see that the successive conditional probabilities are calculated here 
from the true number at risk at the moment when death takes place and not from 
a number obtained by subtracting half those censored in the interval, as is done in 
the actuarial method. Furthermore, the latter method assumes a constant force of 
mortality by interval, while the Kaplan-Meier method makes no assumption about 
the underlying instantaneous rate. 

In practice, both methods give very similar results when they are applied to 
large groups, which is one of the reasons why most registries traditionally use the 
actuarial method, the application of which in medicine goes back to J. Graunt [4]. 
The fixed intervals of the actuarial method are perfectly suited .to the classic pre- 
sentation of survival probability for a given number of years after diagnosis, for 
example, 1, 3 or 5 year survival. However, the existence of modern computer soft- 
ware makes the application of the Kaplan-Meier method much easier than in the 
past, and it may be better to consider using it more widely, even for large groups, 
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Table 4.2 Calculation of the probabilities of survival by the Kaplan-Meier method 
(incidence of skin melanoma for males, Geneva, Switzerland, 1970) 

Day of Day (number) Number of Number Number Conditional Survival 
death of censored deaths of censored at risk survival probability 

observations observations at ti between 
ti and ti+, 

ti di Ti-I ni si s i 
(1 ) (2) (3) (4) (5) (6) (7) 

Columns 1 to 3 as well as the first line of column 5 (actual size of the group) give observed data; other 
values are calculated. 
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both for its greater precision and because it is more appealing than the actuarial 
method in the context of modern tools of survival data analysis. 

Confidence interval for a survival rate 

The estimation of variability of a survival rate becomes essential when its cal- 
culation is carried out on small groups of patients. The computation of confidence 
limits is usually undertaken for estimating the cumulative survival rates at a given 
time point. Determining several successive intervals gives an approximate idea of 
the 'confidence band' within which the real survival curve is taken to be, although, 
strictly speaking, it does not define the 95% confidence interval of the curve. It is 
sometimes useful to estimate the confidence intervals of the conditional probabilities 
of survival, cumulative not from the date of origin but from a given time. For example, 
one might focus on subjects who have survived for at least two years after diagnosis. 
The calculations are based on the same methodology. 

The estimation of a confidence interval for a cumulative rate Si  is based on 
the estimation of its variance, which depends in turn on whether the group is open 
or closed2. 

In a closed group, survival at time ti is the proportion of those surviving: 
Si = ni/nol where no is the initial number and ni is the number of survivors at time 
ti. In this situation, the variance of Si is simply: 

that is, the variance of the estimated probability from no trials among which there 
are ni successes (Binomial law). 

In the usual situation where the group is open, the number of subjects at risk 
is decreased over time by censoring; the variance is thus larger than if  the entire 
group had been followed up. Nevertheless, it is smaller than it would be in a closed 
group which would also have counted ni survivors and which would have produced 
the same estimate of survival. In this situation, the initial size of the group would 
have been 

ni n'o = - (4.2) 

S i 

Peto [5] suggests using this theoretical number to determine an upper bound 
for the variance. Thus, the corresponding standard error is 

See the definition of these terms in Chapter I, page 22 
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Greenwood [6] based an estimate of the variance of Si on the estimated var- 
iance of the conditional probabilities Sj, which are directly derived as variances of 
a proportion, since at each time ti, Sj is the proportion of survivors in the group of 
subjects at risk of death just before tj. 

Thus: 

Furthermore, since: 

the standard method [7] of calculating the variance of Log (sj) based on the variance 
of sj (4.4) can be used to show that 

I I 
Va r (sj) 

Var [Log (Si)] = z 
j = 1  sf 

z '.I:' 
j = 1 

and, consequently, that 

which is the formula that Greenwood established for the actuarial method by replac- 
ing nj, the number at risk at the beginning of the interval, by the effective number 
at risk Nj. Insofar as this result depends on the estimate of the variance (4.6) being 
valid for large samples only, this formula can lead to an under-estimation of the 
variance for long time intervals when the group size is not sufficiently large [8]. This 
estimate and that proposed by Peto are shown in Table 4.3, in which calculations 
of variance are made from the data in Table 4.1. 

Colurnn 5 of Table 4.3 is obtained by induction: 

The number calculated in column 6 and the standard error in column 7 are obtained 
from (4.2) and (4.3). 

In general, the confidence interval of size a for a survival rate 8 can be cal- 
culated by 
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Table 4.3 Calculation of standard errors by Greenwood's and Peto's methods 

i ni Si si+~ Greenwood - Peto Peto 
(1) (2) (3) (4) nb Ei+l 

(5) (6) (7) 

The numbers in columns 1 to 4 are from Table 4.1 and those in the remaining columns have been derived 
from formulae 4.8, 4.2 and 4.3. 

where 0 is the probability of survival to be estimated at ti and SE(Si) is the standard 
error of its estimator Si. If SE(Si) is replaced by one or another of the standard 
errors in Table 4.3 (columns 5 and 7 ) ,  a symmetric interval is obtained as: 

since when time t is fixed, the estimate of the survival rate at time t is approximately 
normally distributed. 

As Rothman suggests [9], it is also possible to calculate an interval whose 

limits always lie between 0 and 1, by substituting the quantity d y  for SE(S~) 

in equation (4.9) with 

where Vi is either Greenwood's variance or the maximum variance postulated by 
Peto. The confidence interval is then obtained by solving equation (4.9) for 0: 

The choice between the many different ways of calculating the confidence in- 
terval depends on practical considerations and on how conservative an estimate is 
required. For routine calculations, most scientists in cancer registries use the wider 
symmetric confidence interval (4.10) with the Greenwood standard error. We prefer 
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to use (4.12) with the theoretical number n'b derived from Greenwood's variance 

(4.11). In fact it has been shown that this method on average provides the most 
satisfactory result [ I  01. Note however that the symmetric confidence interval derived 
by Peto is an easily-obtained estimate of the magnitude of the variability of the 
survival probability estimate. 

Table 4.4 shows survival probability at 12, 30 and 60 months for cancer of the 
colon in men in Gate-d'Or between January 1976 and December 1982, and confi- 
dence intervals obtained using the three methods discussed. The differences are 
only noteworthy after 60 months, when Peto's interval is substantially wider. 

Table 4.4 Confidence intervals for survival; data from Table 4.1. 

Time since Survival Greenwood Greenwood Peto 
diagnosis probability Rothman symmetric symmetric 
(months) 

ti Si 

Median survival time 

With the preceding methods, the distribution of survival times can be correctly 
estimated in the presence of censoring without making assumptions about the an- 
alytical shape of this distribution. However, by not adopting parametric models, we 
cannot use the method of maximum likelihood, which is an effective tool for esti- 
mating parameters such as life expectancy and its confidence interval. In all the 
methods previously described, it is accepted practice to estimate quantiles of the 
distribution of survival. In particular, the median survival time is the time at which 
the survival rate is equal to 50%. This value can be estimated from the curve cal- 
culated using one of the methods previously described. The median survival time 
is a readily calculated location parameter which provides an easily interpretable 
summary of the data. 

In the actuarial method, a unique value of this median is usually obtained 
because the survival curve is continuous and, more often than not, strictly decreas- 
ing. If Si and Si+, are respectively the survival rates at the end points of the intervals 
which include the value 0.5, then the median of the observed distribution is obtained 
by linear interpolation: 
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for data relating to cancer of the colon in C6te-dlOr (Table 4.1), the observed median 
is 

m = 1 2 +  0'549- 0.500 (1 8 - 12) = 15.77 months 
0.549- 0.471 

If the survival probability is estimated by the Kaplan-Meier method, there is in 
general no time for which the observed survival rate is exactly equal to 0.5. The 
observed median can be taken as the date of the first death corresponding to a 
survival rate less than or equal to 0.50. For the data on melanoma (Table 4.2), the 
survival rate is not less than 0.5 before the last observed event, which is a death 
at 2481 days. Strictly speaking, the median survival is thus 2481 days, or six years 
and nine months. In fact, in this example, it is clear that the estimate is imprecise 
because of the small number of observed cases. As a general rule, the variability 
of this parameter can be substantial. Therefore, it is important that it be accompanied 
by its confidence interval. 

Figure 4.4, based on hypothetical data, shows that a confidence interval for 
the median can be obtained by simply inverting the functions representing the lower 
and upper confidence limits of the survival probability. The confidence region R, for 
the median is thus contructed from the confidence interval of the survival probability 
defined as in the previous paragraph. A time point t is included in the confidence 
region of the median if the confidence interval for St includes 0.50: 

" 
mi m m, 

Time since diagnosis 

Figure 4.4 Confidence interval of median survival 
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When the actuarial method is used, the upper and lower confidence limits of 
the median are determined by interpolation. For example, survival following cancer 
of the colon in C6te-d'Or is greater than 0.501 at 12 months and greater than 0.423 
at 18 months (lower bound of the confidence interval) (Table 4.4); the survival time 
for which the lower bound of the confidence interval is exactly equal to 0.5 is thus 
found between 12 and 18 months. This time is obtained by linear interpolation: 

12+ 0'501 - 0'500 x 6 = 12.08 months 
0.501 - 0.423 

Similarly, survival is less than 0.519 at 18 months and less than 0.480 at 24 
months (upper bound of the confidence interval) (Table 4.4). Survival will thus be 
less than 0.50 at 20.85 months. Therefore the confidence interval of the median is 
[ I  2.08 ; 20.851. 

When the Kaplan-Meier method is used, the upper and lower confidence limits 
of the median are obtained by determining respectively the first and last date of 
death for which the confidence interval of survival includes the value 0.50 [11,12]. 
When this method is applied to the data in Table 4.2, it is seen that the confidence 
interval of St includes 0.50 from t = 975 days and that all the subsequent time points 
are those which correspond to survival probabilities for which the confidence interval 
includes 0.5. As a result, the confidence interval of the median extends from two 
years and eight months to infinity, illustrating the imprecision obtained with a small 
number of cases. 

Collecting data for survival analysis 

In the usual situation of an open group, we have just seen that the calculation 
of survival rates requires specific variables for each member of the group: 

date at which follow-up started (date of incidence) 

date when follow-up ended 

status of the subject at this date (dead, living, lost to follow-up). 

we have also seen that the date at which follow-up ended for each individual is 
either the date of death, the last date at which the subject was known to be alive 
for those who were lost to follow-up, or the date at which follow-up is ended for all 
subjects as a result of the study being concluded. 

This information can be obtained either on an ongoing basis or retrospectively. 
It comes in general from a variety of sources. These sources are rarely perfect and 
can give rise to selection biases of different kinds, especially when they involve 
routine forms of data reporting. For example, failure to notify certain deaths results 
in the overestimation of survival. The same effect occurs indirectly when the number 
of individuals lost to follow-up is underestimated, since these cases are then wrongly 
counted in the numerator and denominator of the survival probabilities. More subtle 
biases can arise when the amount of information obtained on an individual depends 
on his or her status. For example, the status of a patient may be better known 
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simply because of a regular presentation to an oncology department or, conversely, 
because a death has been recorded. Consequently, no matter how good routine 
reporting sources may be, it is advisable to carry out a regular update to check the 
status of all subjects not known to have died, probably using reporting sources 
independent of those already employed routinely. In other words, for these cases, 
passive follow-up should be complemented by active follow-up which may involve 
searches of official records, direct contact with the patient or the patient's family or 
other sources. 

From an administrative point of view, it is sensible to carry out these updates 
individually at regular intervals from the date at which follow-up started, for example 
at every fifth anniversary of the date of incidence. This procedure ensures that the 
tasks required for active follow-up are ongoing throughout the year rather than all 
being carried out at once when it is time to analyse the data. Whatever procedure 
is used, the duration of follow-up should be ended at the date of the last update 
which ends the follow-up period for the subject. 

When the survival probability is calculated for all incident cases, follow-up of 
subjects who are officially recorded as having left the geographic area covered by 
registration should be censored at the date of departure, and should be treated as 
lost to follow-up. Following subjects outside this area can introduce a bias if it is 
routinely easier to obtain information on death or, conversely, on the surviving 
patients. A death which occurs outside the registration area obviously should not be 
counted even if it is known to have occurred. Updates should be organised in such 
a way that cases lost to follow-up in the literal sense of the term, that is, those 
cases for which it is not known whether they have left the area or not, are the 
exception. 

Calculating survival probability solely from cases residing in an area for the 
whole follow-up period has the apparent advantage of characterising the effective- 
ness of regional medical care. However, when departure from the area is linked to 
stage of disease (and to the survival probability which follows from it), this way of 
proceeding might plausibly introduce a bias in the results. For example, suppose 
that foreign workers with cancer routinely return home, as soon as their condition 
worsens, to die in their own country. There is unfortunately no ideal solution to 
resolve this difficulty; only the appraisal of each individual situation ensures that 
resulting biases are appropriately evaluated. 

The mode of follow-up can have a considerable effect on the reliability of re- 
sults obtained in survival analysis. It is instructive to compare the follow-up pro- 
cedures used in C6te-d'Or, Geneva and the Swiss canton of Vaud (from where the 
data used as examples in this chapter have been drawn). Following accepted prac- 
tice, incident cases in the three regions which are known only from death certificates 
are excluded from calculation. 

In C6te-dlOr, follow-up of patients is based on routine registration of deaths 
and on an annual update at a fixed time to check the status of all cases. Routine 
registration identifies approximately 75% of deaths occurring in patients with cancer 
of the colon. This percentage varies with age, treatment and survival time. The 
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status of patients for whom there is no report of death is obtained on a fixed date, 
partially from government registry offices at the place of birth (except for foreign-born 
subjects) and partially from clinicians (gastroenterologists, surgeons and general 
medical practitioners). Alltogether, in 98% of cases it is thus known whether the 
patient is living or dead. 

In Geneva, follow-up is carried out from two sources of information, one being 
the updating of the database from routine notification of death, the second resulting 
from a regular check-up at five-yearly intervals from the date at which follow-up 
started, for subjects believed to be alive. There are multiple sources of information 
on deaths: the cancer registry has the right to obtain from the health authority a 
copy of all death certificates which mention cancer as a cause of death. The registry 
can be incidentally informed of death when collecting missing data from the hospital 
records. Finally, information on death is obtained annually by merging records of 
incident cases with death records at a national level. This link-up of data is based 
on the date and place of birth. The five-year update is done by manually consulting 
population records, allowing the registry to note dates of any definite departures 
and to stop follow-up accordingly. Deaths which might otherwise have escaped de- 
tection can also be detected by this manual consultation. It is important to emphasise 
that cases are only included in the calculation of survival for the period covered by 
the five-year update. Events which follow this update are not taken into consideration 
even if they are already registered. In particular, deaths occurring after the time 
when the update takes place must not be included in the analysis. 

In the canton of Vaud, follow-up is based principally on the regular linkage 
between mortality files held by the Federal Swiss Office of Statistics, and the registry 
of incident cases. Linkage is achieved by a series of computer processes accom- 
panied by manual verification. The routine update also involves an investigation of 
cases presumed living, through the municipal population registries in order to de- 
termine status and dates of any departures from the canton. Active follow-up is 
organized and status is determined at a single fixed date for all cases (31 Decem- 
be r) . 

Estimation of net survival 

The study of survival in a population subgroup is often motivated by the sup- 
position that the subgroup is subject to a risk of death different from that experienced 
by other individuals in the population. For example, people with cancer generally 
experience a much higher mortality than the general population in the years imme- 
diately following diagnosis. Insofar as the increase in risk due to the disease being 
studied tends to diminish, mortality progressively returns to 'normal'. Overall survival 
probability should therefore be considered as the result of two components, corres- 
ponding respectively to the disease being studied and to all other causes taken 
together. 
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Thus a net survival can be defined as that which might occur if the risks of 
death other than the cancer were removed. Its complement is none other than the 
net probability of death (see Chapter 1, page 34). Analysing the net survival proba- 
bility is thus equivalent to the analysis of the excess mortality in the group under 
study. 

To the extent that it is accurately estimated, net survival probability tends to 
become constant as deaths due to cancer decrease. It then represents the percent- 
age of subjects who can be considered to be cured of the cancer under study. The 
time period corresponding to the point when net survival probability becomes con- 
stant can thus be interpreted as a recovery period. As for all estimates, this value 
is only valid as an average for the group; it does not exclude the possibility of a 
fatal recurrence for certain individuals outside this time period. 

The justification for calculating the additional risk due to the cancer under study 
is particularly clear when considering an older age group, because the force of 
mortality from other causes increases with age. As a group ages over time, net 
survival probability tends to be decreasingly well represented by observed survival 
probability, which is increasingly determined by death from other causes. The esti- 
mation of net survival probability also responds to the need to make comparisons 
between subpopulations from the same region or between populations from different 
regions where the mortality due to other causes may differ such that the comparison 
of overall survival probabilities might lead to biased conclusions. 

The determination of net survival probabilities implicitly assumes that the risk 
of death from the cancer being studied and the risk of death from other causes are 
independent, that is, not interactive (see Chapter 1, page 34 for the definition of 
this term). In fact, with cancer, the two risks seem to be positively correlated: the 
presence of cancer and its treatment cause an increase in the force of mortality 
from other causes. The inverse situation cannot however be excluded. When survival 
time increases, the survivors of the group might benefit from a reduction in the risk 
of death from other causes, because of better medical care or a decrease of risk- 
related behaviour. It will be seen later that such interactions cannot be totally ignored 
when deciding which method to use in estimating net survival or when interpreting 
the results. 

There are two classical methods available to estimate the probability of sur- 
viving a given disease: the method of cause-specific survival and that of relative 
survival. 

Cause-specific survival 

The principle of this method is simple: the cause of each death is assessed 
and only those deaths that can be attributed to the disease under study are counted. 
Other deaths are considered as simply termination of follow-up (in the same way 
as cases lost to follow-up and observations which are censored at the end of the 
study). Calculation of cause-specific survival can also be carried out by the actuarial 
method or by the Kaplan-Meier method. Under both methods, survival rates are 
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obtained disregarding deaths from other causes. However, if these methods are 
used, note that it is assumed that the process leading to death from cancer is 
independent of the process leading to death from other causes, an assumption which 
is often only approximately true (for example, when a suicide occurs following the 
diagnosis of advanced cancer). 

The method of cause-specific survival is sometimes used in a clinical setting 
if follow-up is of sufficient quality to distinguish between deaths due to the disease 
under study and other deaths. The method can only be applied to epidemiological 
data when the cause of death is routinely recorded, a situation which does not 
generally hold in population registries. Whatever the situation, the method of cause- 
specific survival comes up against the difficulties of determining cause of death such 
as the doubtful reliability of information supplied by the certifying doctor and the 
arbitrary choice of the primary cause of death when there are multiple or associated 
pathologies. Moreover, it would seem practically impossible, as much as it would 
be appropriate, to take into consideration deaths caused by secondary effects of 
treatment. 

Relative survival 

The method of relative survival [13] does not require knowledge of the cause 
of death and thus avoids the difficulties associated with its determination. The 
method involves calculating, at each time period t, the relative survival probabilities 
defined by the relationship 

where S,(t) and Se(t) are respectively observed survival and expected survival at 
time t. 

Expected survival corresponds to the mortality of the general population, taking 
into account the initial distribution in the group of prognostic factors which one 
wishes to control for. If only age (the effects of which should always be accounted 
for) is considered, the expected survival Se(t) is provided by the proportion of sur- 
vivors that would be predicted at time t in a group having the same initial age 
structure as the group under study, but subject only to the force of mortality of the 
general population. The adjustment is thus a standardisation of the indirect type. 
The calculation of the expected number of survivors is firstly done for each subgroup 
defined by age at diagnosis in single years or by larger age groups according to 
the available life tables. Expected deaths are then summed. If nx is the number of 
subjects of age x at the beginning of follow-up and Sex(t) is the probability of survival 
at time t for a subject with initial age x, then the number of survivors at time t for 
this age group is 
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The total number of survivors at this time is thus: 

Consequently, the overall expected survival is 

that is, the average survival probability at time point t, weighted by the initial number. 

Remember that survival after t years of a group of individuals aged x at diag- 
nosis whose follow-up can only terminate only with the death of the subjects (ie, a 
closed group) is equal to the ratio of the number of survivors of age x+t to the 
number of survivors of age x. Thus 

by using the data and expressions of the life table (see page in this chapter and 
Chapter 1). The half year results from the fact that the table is related to the birthday, 
while in fact an individual considered to be aged x is, on average, aged x + 0.5. 
The number of survivors at age x + 0.5 is obtained by linear interpolation of the 
values given in the table: 

Even if the calculation of expected survival does not have to be very precise 
(in particular concerning relatively short survival times, for which observed survival 
is generally substantially less than expected survival), the simplest method is to use 
a table which gives the number of survivors at each birthday. When the computation 
is carried out from a table in which the age groups are of a duration Ax greater 
than one year (known as an abridged life table, for example, by five-yearly age 
groups), the correction is made in the same way and the value will correspond to 
the number of survivors at age x + Ax12. 

The life table which is used should reflect the general mortality of the region 
at the appropriate time. If the rate of mortality does not change too quickly and if  
follow-up is over a long time, adopting a life table which relates to the middle of 
this time period will be adequate. For example, a table based on a population census 
carried out in 1980 can be suitable for a cohort recruited in 1975 and followed up 
for ten years. If the time for which survival probability is calculated increases, it 
might be necessary to adopt mortality rates derived from several successive tables. 
If the survival of the general population improves, the use of only one table could 
produce an artificial improvement in the relative survival by underestimating the 
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expected survival of more recent cohorts. Furthermore, it will be seen in the following 
section that the construction of a life table does not present any special difficulties 
when complete data on the population and deaths are available, and that large 
numbers guarantee precise results. 

When prognostic factors other than age and sex are identified, it is preferable 
to calculate expected survival by taking them into account. Examples of such factors 
are marital status, ethnicity and socioeconomic status. Their incorporation in the 
analysis can be achieved if the data necessary to construct the life tables are avail- 
able as a function of these variables. 

As an example, Table 4.5 shows some of the calculations used to establish 
expected survival for cancer of the colon for males in Geneva between 1970 and 
1979. 

Table 4.5 Calculation of the expected number of survivors(a) for cancer of the colon 
for males in Geneva, Switzerland; incident cases 1970-1979 

Age Survivor Number Expected pro ortion 
(years) function at risk of survivors [by after: 

Expected number 
of survivors (b)  after: 

x,x+l 
1 2 3 4 5 1 2 3 4 5 

N x ex year years years years years year years years years years 

Total 

(a) Life table for Geneva 1976-80 (Table 4.9). 
tb) Columns 4 to 8 are derived from column 2; columns 9 to 13 are derived from the preceding columns. 
For example, the expected proportion of survivors after three years for the age group 50 to 54 years is: 

The number of expected survivors is therefore 29 x 0.9764 = 28.32. Columns 4 to 8 of the last line are obtained 
from the last five columns. Expected survival at five years for the whole group is 342.431454 = 0.7543. 



234 TECHNIQUES FOR SURVIVAL ANALYSIS 

The above calculations have been obtained from the life table based on five- 
yearly age intervals shown in Table 4.9. This table has been constructed using the 
method described below (see page 236). When a life table b y  single years of age 
is available, the calculations are based on annual and not five-yearly interpolations 
and are slightly more accurate. As an example, the expected survival of the same 
group has also been estimated from the Swiss life table (1 978-1983) by single years 
of age in Annex 1. Initially, the survivors at regular yearly intervals are used and 
then those at five-yearly anniversaries as if the life table had been abridged. 
Table 4.6 shows the results using these different methods. 

Table 4.6 Expected number of survivors from two life tables for cancer 
of the colon in men in Geneva, Switzerland (incident cases 1970-1979) 

Expected number of survivors 

Time since Geneva table 
diagnosis 1976-1 980 

Swiss table (a) 

1978-1 983 
(years) 

.- 

Quinquennial Annual Quinquennial 

(a) See Annex 1. 

The results obtained from the Swiss life table show that the use of a five-yearly 
table hardly changes the estimate of the expected number of survivors obtained 
from the annual life table. On the other hand, the earlier Geneva life table (1976- 
1980) gives estimates which are noticeably less than those obtained from the Swiss 
life table (1 978-1 983). The observed differences probably reflect real differences in 
mortality both between Switzerland as a whole and Geneva, and between time pe- 
riods. However, Table 4.7 shows that the differences between the relative survival 
probabilities are no more than 2%, which is certainly smaller than the differences 
between the results obtained with this method and alternative methods described 
below. 

The confidence interval of the relative survival probability is proportional to that 
of the observed survival if the random variation in expected survival can be assumed 
to be negligible. The standard error for S, is thus 

Table 4.8 gives cause-specific and relative survival for various cancer sites at 
five years estimated from data from Geneva. For cause-specific survival, deaths 
have been attributed to the cancer concerned when the first three numbers of the 
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Table 4.7 Expected and relative survival probabilities from two life tables 
for cancer of the colon in men in Geneva, Switzerland (incident cases 1970-1979) 

Time since Observed Expected survival Relative survival 
diagnosis - 

(years) 1976-1 980(~ )  1978-1 983(') 1976-1 980(~)  1978-1983(') 

(a) Actuarial survival probability calculated from three-monthly intervals. 
(b) Geneva life table (Table 4.9). 
(') Annual Swiss life table (Annex 1). 

Table 4.8 Cause-specific and relative survival probabi- 
lities; Geneva, Switzerland (incident cases 1970-1977) 

Survival probabilities at 5 years 
Site (sex) 

Relative Cause-specific 

Stomach (M) 
Colon (M) 
Colon (F) 
Lung (M) 
Breast (F) 
Prostate 
Ovary 
Bladder (F) 

ICD 8 code for the primary cause of death (coded by the Registry according to the 
WHO rules) correspond to the code for the site. Note that under this procedure, 
carried out in a registry where the causes of death are systematically verified and 
corrected if necessary, the specific rates for most sites are more optimistic than 
those obtained by the method of relative survival. This difference can be explained 
by the fact that, in contrast to cause-specific survival, the method of relative survival 
attributes to the cancer any deaths resulting from the secondary effects of treatment 
or from diseases caused by the same risk factors as the cancer. 

The method of relative survival is also based on the assumption that the 
general mortality, as it is described by the life table of the population adequately 
takes account of all causes of mortality, except for the specific cause under study. 
This cause is considered to be negligible in comparison to all other causes of death. 
Only on this condition can relative survival provide an acceptable approximation to 
net survival. If this assumption does not hold, net survival will be overestimated as 
a result of the overestimation of the mortality due to other causes. For example, it 
is known that in women aged 50 to 54 years mortality from breast cancer is re- 
sponsible for approximately one death in six. If the method of relative survival is 
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applied to this cause in this age group, net survival will be markedly overestimated. 
If death rates by cause are available for the general population, it is possible to 
calculate probabilities of death and then of survival by subtracting the risk of death 
due to the cancer under study. However, this precaution is rarely taken in practice. 
Indeed, it has been suggested that this correction is excessive, because the group 
under follow-up is still at risk of developing a second malignancy at the same site 
[13]. In addition, the life expectancy of a group of patients may in fact be less than 
that in the general population, as a result of the factors to which the patients have 
been exposed. These factors can lead to an increase in the risk of dying from other 
causes (for example, other diseases related to tobacco in people with lung cancer). 
In this case, the relative survival could be less favourable because of factors as- 
sociated with the disease rather than because of the disease itself. The cause- 
specific survival, on the other hand, would not be affected by the occurrence of 
these deaths, since they would be attributed to other causes. 

As we have indicated above, the determination of the time point t at which 
relative survival becomes constant leads to an estimate of the percentage S,(t) of 
people cured, because t corresponds to the moment at which deaths due to the 
cause under study are no longer recorded. Graphically, from t onwards the observed 
and expected survival curves become parallel on a logarithmic scale. In practice, a 
plateau of this kind in the relative survival is not uncommon even when deaths due 
to the cancer under study continue to be recorded. Furthermore, the relative survival 
may even start rising from a certain point onwards. Some authors have attributed 
this increase to the fact that mortality in surviving patients, who are receiving good 
medical care, can in the long term be less that that in the general population. This 
explanation is nonetheless incompatible with the interpretation of relative survival 
as an estimate of net survival. We will see (page 242) that this effect is more 
frequently due to a methodological bias [14]. 

Constructing a life table 

Life tables established by national statistical services are usually available to 
calculate expected survival in the absence of cancer. However, it can happen that 
there is no life table suitable for the population being studied, either because the 
last official table is out of date or because the population being followed is too 
selected for its mortality to be described by the official table available. In this sit- 
uation, a table can be built from available mortality rates (or calculated specifically 
for the purpose) provided they are sufficiently reliable and statistically accurate. 
Frequently, these conditions can only be fulfilled by using a table abridged in five- 
year age groups, and a long period of follow-up to calculate the mortality rates. 

The method described below provides approximate results but sufficient ac- 
curacy for the objective. The results differ by definition from those which official 
statistical services would calculate from similar data; national tables are in fact made 
by using various methods to smooth the data and, especially in older age groups, 
are based on mathematical models of mortality. These procedures are not discussed 
here. 
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We saw in Chapter 1 that the life table was defined entirely by the probabilities 
of dying in the different age groups and that these probabilities could be directly 
estimated from mortality rates (Chapter 1, formula 1.31): 

where 1, is the annual mortality rate for the age group x and A, the length in years 
of the age interval. In a five-yearly table, the probability of dying for each age group 
is obtained by 

1 Oh, 
qx = 5- 

It is usual however to break down the first five-year interval by estimating the 
probability of dying in the first year of life separately. Thus, for the first age group 
(x = O), and taking into account the concentration of deaths in the first days of life, 
it may be accepted that 

and, from the formula above, the probability of dying during the four following years 
is estimated as 

Up until the age group 70-74 years, this formula provides sufficient accuracy. 
For older age groups, Reed and Merre17s formula is recommended [15]. For A, = 5 
this formula gives: 

2 

q', = 1 - e (- 5 h, - h,) 

The number of survivors at the beginning of each five-year period can then be 
calculated by applying the successive probabilities of death starting with the initial 
number (root of the table), equal for example to 10 000: 

As an example, Table 4.9 shows the results obtained from mortality rates ob- 
served in Geneva between 1976 and 1980. The calculation of the probability of 
death q, is based on formula (4.24) up to q 7 ~  and on formula (4.27) after that. 

Alternative methods 

As we have seen, the method described previously for calculating cause- 
specific and relative survival probabilities raise problems of interpretation which have 
led many authors to look for alternative solutions to the estimation of net survival. 
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Table 4.9 Calculations of the probability of death and of survivors by age from morta- 
lity rates observed in men in Geneva, Switzerland, between 1976 and 1980 

- - - - 

Age Mortality rate Probability of death Survivor f ~ n c t i o n ( ~ )  
X J.x q x  e x  

(a) The number of survivors at a given age is obtained by linear interpolation from these numbers. For 
example, the number of survivors at 33 years is given by: 

Results obtained by the method of cause-specific survival depend closely upon the 
quality of information available on causes of death. Systematic national differences 
in the coding of causes of death make this method unsuited to comparisons between 
registries. Relative survival, derived from expected survival as in the previous sec- 
tion, is equally subject to methodological biases which will be briefly discussed 
before presenting other methods. 

The group being followed is often heterogeneous with respect to factors in- 
fluencing both net survival and survival from competing causes, and hence observed 
survival. Observed survival is consequently an average value which depends not 
only on the initial structure of the group but also on the changes that the group 
experiences over time with respect to these different factors. For obvious reasons, 
the force of mortality acting on the group in the long term is generally closest to 
the mortality in the group with the longest lifespan [14,16]. The calculation of ex- 
pected survival as described above does not take into account changes in the group 
over time, consequently the ratio between observed and expected survival will gener- 
ally lead to overestimation of net survival over long time periods. 
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When age is the factor being considered, the consequences of this phenome- 
non can be easily demonstrated. Individuals in the group under study may end 
follow-up for one of three reasons, all of which are dependent on age: death from 
the disease under study, death from other causes and withdrawal from follow-up for 
reasons other than death. If hx(t), yx(t) and yx(t) are the corresponding instantaneous 
rates for each age x, then the force of mortality to which the group is subject at 
time t is a weighted average for which the weight wx(t) changes over time. This can 
be written 

where wx(t) is the proportion of individuals aged x years present in the population 
at time t. Using the notation of formula (4.17), this proportion is equal to 

wx (0) Scx (t) Sex (t) r x  (t) 
Wx (f) = g 

C wx (0) ~ c x  (t) Sex (t) r x  (1) 
x = l  

where Tx(t) is the probability that an individual aged x years has a potential follow-up 
time greater than t. 

If the net survival and the potential follow-up time are independent of age, the 
weighting becomes proportional to the expected number of survivors: 

Wx (0) Sex (f) 
wx (t) = g 

C wx (0) Sex 0) 
x =  1 

and the net mortality rate comes out from the summation over age: 

Therefore, the observable survival probability can be written 

t 

S, (t> = e - jo V(U)  du 
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Furthermore, since 

it follows that 

s'ex (t) 
Px (f) = - 

s e x  (t) 

Since the term to be integrated is equal to the derivative of the logarithm of 

wx ( 0 )  Sex (u), 
g 

s o  (t) = sc (t) x wx (0) Sex (t) (4.31) 
x = l  

This formula implies that the observed survival is the result of two independent 
forces of mortality and that in this case relative survival correctly estimates net 
survival. 

When the net survival or potential follow-up time depend on age, this relation- 
ship no longer holds true. In the long term, relative survival then tends to estimate 
the net survival of age groups which have the greatest life expectancy. In particular, 
if the potential follow-up time depends on age when the net survival is constant, 
the estimate of net survival by relative survival is biased. 

In principle, the changes in the group over time can be accounted for in the 
calculation of expected survival, as in the method proposed by Ederer and Heise 
[I71 and programmed by Rothman and Boice [18]. Instead of calculating expected 
survival from the initial number in each age group (Nx(0)), it is estimated at time 
t + At for subjects still living at time t. Conditional expected survival Se(t +At) is then 
the average of expected survival probabilities at different ages, weighted by the 
proportion of subjects still subject to the risk of dying at time t: 

- 
g 

se (t + A t) = x WX (t) Sex (At) (4.32) 
x = l  

The probability sex(At) that an individual aged x years living at time t will still 
be living at the end of the time period (t + At) is obtained from the life table. For 
example, i f  a five-yearly table is used 

Expected survival of the group is then given by the cumulative product of the average 
survival over each five-year interval: 
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This method will be termed Ederer 1 1 ,  as opposed to Ederer's method previously 
described (Ederer I, see page 231). 

It can be seen that if the net mortality rate hx(t) does not depend on age, Sc(t) 
is factorised as before: 

where S,(t) now denotes expected survival after taking into account the group struc- 
ture at each time point t. This last formula holds whether or not the follow-up time 
depends on age. This characteristic was noted by Hakulinen [I61 who proposed 

replacing wx(t) by wz(t) in the calculation of expected survival where 

z Wx (0) Sex (t) r x  (t) 
i = l  

that is, by a weight which corrects for the distortion of age structure caused by 
censoring but in which net survival no longer plays a role. This expression gives 
the same result as (4.33) if net survival does not depend on age. It also provides 
an expected survival which is not affected by the value of net survival when it 
depends on age. In contrast, the Ederer II estimate derived in (4.32) and (4.33) 
provides an expected survival which depends on net survival and thus on the cancer 
being studied. 

When Sc,(t) does not depend on x but T,(t) does, for example when the popu- 
lation ages and increasingly older patients enter the study, Ederer ll and the method 
of Hakulinen are preferable to Ederer I, which can lead to biases of the order of 
10% [16]. 

When ScX(t) depends on x, Ederer II will systematically give results which are 
less than those of Hakulinen's method if net survival decreases with age. In fact, 
because they experience a larger number of deaths from cancer, the oldest subjects 
will be withdrawn more quickly from the calculation of expected survival, which will 
consequently be overestimated. 

The original proponent of relative survival [I91 clearly intended to calculate the 
net survival of a group of patients and not simply to provide an indicator of relative 
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risk of dying. However, the parameter being estimated when net survival depends 
on age has never been clearly defined. Implicitly, most authors are in favour of 
estimating the net survival of the group by the ratio of observ-ed and expected sur- 
vival. Explicitly taking age into account, this ratio can be written 

g 

C n, Sex (1) Scx (t) 

and thus corresponds to the average of net survival probabilities weighted by the 
expected number of survivors. 

As stated before and shown by formula (4.36), the estimate of G( t )  will always 
be closest to the net survival of the subgroup that has the greatest life expectancy. 
Considering the goal of this type of calculation, it would seem preferable to calculate 
the average of net survival probabilities, weighted by the initial numbers of subjects 
followed up and not by the expected number of survivors at time t: 

A relative survival estimate based on direct standardisation of relative survival cal- 
culated separately for each age group can in theory be obtained in this way. How- 
ever, it is less likely that this calculation can be made in practice, because of the 
statistical instability of the estimates for the older age groups. In addition, it can be 
questioned whether subjects who are diagnosed with cancer at 80 years should play 
the same role in the calculation of survival in  the long term as those who were 
diagnosed with cancer at 40 years. The expected survival of elderly patients is 
moreover difficult to estimate from available data. 

This discussion shows that the calculation of relative survival should be placed 
in the context of the classical methods for estimating the parameters of a survival 
model. This would have the two-fold advantage of providing both a better definition 
of the concept and a standard method for calculation. It seems natural in this context 
to estimate the net probability rate using a proportional hazards model (see 
page 260) where baseline hazard is a step function: 

where z is a vector of covariates including age which might influence net survival, 
Ik(t) is the indicator function of the kth interval (Ik(t) = 1 if t is in the interval, Ik(t) = 0 



ESTIMATION OF SURVIVAL DISTRIBUTION 243 

if it is not), and m the number of intervals being considered in the whole period 
under study. 

Estimating such a model from individual observations (for subject i, ti is survival 
time, 6; the status living or dead in ti, zi the vector of covariates and xi the initial 
age) is easily achieved by the maximum likelihood method. The logarithm of the 
likelihood can be written (see Chapter 1, page 19): 

n n 

L(P77) = - C A (ti 9 zi) + C 109 [h(ti , ~ i )  + (ti + xi , (4.39) 
i =  1 i =  1 

where p(ti + Xi, zli) is the mortality rate at age ti + xi for a subject in the general 
population characterized by Z l i ,  the value of the covariate zl, subvector of the covar- 
iate z for which these data are available (e.g., sex and ethnic group). 

After substituting (4.38) for h in (4.39), the first and second derivatives of L ( ~ , T )  
A A 

are obtained. Then, using the Newton Raphson method, the values P, I ,  which max- 
imize L(P, T) are derived. The confidence intervals of these parameters are obtained 
simultaneously by inversion of the matrix of second derivatives with respect to P 
and T at the maximum. It can be shown that in practice this method amounts to 
describing observed deaths in each interval by the sum of expected deaths based 
on the risk of overall mortality (pTk) and of deaths resulting from the disease under 
study (ATk), where Tk is the time spent in this interval by patients in the cohort who 
have respectively rates p and h [20]. 

Applying this method to the survival data for cancer of the colon in Geneva 
(1970-1979) shows that net survival does not depend on sex but strongly depends 
on age (appropriate significance tests are given below, see page 274). The mortality 
rate for age group 65 to 74 years is e0.59 = 1.8 times bigger than that for age group 
0 to 64 years and for age group 75 to 99 years is eO." = 2.5 times bigger 
(Table 4.1 0). 

The cumulative mortality rate, the corresponding net survival and their confi- 
dence intervals are obtained from h(t,z) and from the standard errors of f3 and T by 
using the formulae already described in Chapter 1 (see for example formula 1.36) 
as well as the standard procedures for calculating asymptotic variances [7]. 

If ul, u2 ... urn are the limits of the intervals used to define the baseline hazard 
step function and if t E [ue, ~ e + ~ ]  

Table 4.1 0 gives values calculated for five and ten years and survival protja- 
bilities obtained by other methods. It will be seen in the present case that relative 
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Table 4.10 Survival p r~bab i l i t y (~ )  of patients with cancer of the colon in Geneva, 
both sexes, 1970-1 979 

Age at time 0 (years) Total 

Numbers 
At risk 
expected at 10 yeastb) 

Crude survival(c) 
5 years 
10 years 

Net survival 
Ederer I(') 
5 years 
10 years 
Likelihood method(d) 
tl 
5 years 
10 years 

Cause-specific survival 
5 years 
10 years 

(a) The standard error of each estimate is given in brackets. 
(b) Calculations from the Swiss life table (1978-83). 
(') Crude survival is calculated by the actuarial method with intervals of three months. Relative survival is 
obtained by the Ederer I method (4.17). 
(d) Estimation of p is obtained by the maximum likelihood method and survival analysis is deduced from 
these values and from that of T (not reproduced here) by using (4.39) and (4.40). 

survival is more optimistic than net survival obtained by the maximum likelihood 
method (Figure 4.5). The difference is particularly noticeable for older age groups. 
In this situation, the cause-specific survival can be calculated from the same data 
using causes of death as assessed by nosologists at the Geneva registry. Specific 
survival is slightly higher for the younger age groups than the estimate obtained by 
the maximum likelihood method but it is the same for the group as a whole. For 
the oldest age group, cause-specific survival is closer to the maximum likelihood 
estimate than the relative survival calculated by the Ederer I method. 

Calculations not given here show that in this case the Hakulinen method pro- 
vides results which are close to those of the Ederer I method (0.42 to 5 years and 
0.42 to 10 years for the whole group). The last two methods would suggest that 
the time at which cancer of the colon can be considered to be cured is five years, 
because relative survival is then no longer decreasing. The maximum likelihood 
method is in fact stricter and would reject this assumption. The estimate of the 
average rate of mortality T in the interval 5 to 10 years is 0.019 with a standard 
error equal to 0.008. In fact, the Ederer method overestimates relative survival for 
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Figure 4.5 Observed and relative survival of colon cancer patients diagnosed 
between 1970 and 1979 in Geneva, Switzerland; both sexes 

" L 20 - 

10 - 

the oldest age group on the one hand and overall relative survival on the other 
hand by weighting each age group with expected survivors 

- - Net (Maximum likelihood) 
- Observed 
- - - Relative (Ederer) 

(while the average weighted by the initial numbers would be 0.37). 

Other alternatives to the Ederer method have been proposed. Breslow [21], 
Andersen and coworkers [22], and Hill and coworkers [23] proposed a model in 
which the presence of the disease multiplies the risk in the general population by 
a constant. Pocock and coworkers [24] have suggested a model similar to that 
described in this section, in which the risk added by the disease decreases ex- 
ponentially with time. We would also suggest that the additive model is more natural 
in this context. However, the multiplicative model has certain advantages which have 
already been explained in detail [22]. 

0 ,  I I I I I I I I I I 

0 6 12 18 2 4  30 3 6  42 48 5 4  60 

Time since diagnosis (months) 

Methods of comparison 

Introduction 

In some situations, comparison of survival between two groups can only be  
made at one time point on the survival curve, for example at five years. The method 
used in this situation is described below. Generalization from this comparison to the 
whole survival curve can nonetheless lead to incorrect results : survival probabilities 
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at five years in the two groups might be the same even though the two survival 
curves are different as a whole. This is a common situation in clinical practice, 
especially when two groups are treated with different therapies- (e.g., surgery versus 
radiography) having effects which may be unequally distributed over time. The choice 
of a specific time point to evaluate survival will thus be arbitrary. Furthermore, when 
the groups are small in size, a survival rate at a given time point is subject to a 
relatively large random error and observed differences may appear to be due to 
chance, while the more powerful overall comparison between survival curves might 
lead to a significant difference. 

Except in particular situations, there is therefore a strong argument to compar- 
ing the whole of the two curves, provided that the necessary data are available. 
The problem is then to summarize all differences between the curves by a suitable 
indicator and then to use an appropriate test. The methods described below (see 
page 248) illustrated with data on cancer of the colon in C6te-dlOr, Geneva and 
the canton of Vaud provide a way to answer these questions. 

Furthermore, it is not unusual for the groups being compared to be unequally 
distributed with regard to age, sex and stage of disease at diagnosis. The compari- 
son should take these prognostic factors into account by a method based on  an 
appropriate stratification, provided that the necessary information is available for 
each subject. This method will be illustrated by data from Geneva on the survival 
of subjects with malignant melanoma by site and sex (see page 255). 

A substantial amount of research has been carried out over the last two de- 
cades in the area of semiparametric models of survival, which simultaneously take 
into account various prognostic factors defined on an individual basis [ 25 ,  261. 
Among these, the proportional hazards model has been of particular interest because 
of its simplicity and effectiveness (see page 260). We will present this model using 
breast cancer data from the Geneva Cancer Registry to assess the influence of 
health care systems on survival. 

Long-term survival cannot be compared between groups without considering 
competing causes of death. This consideration leads to the comparison of relative 
survival between groups, (see page 272). Despite the above-mentioned difficulties, 
it may be that a point comparison of two rates is appropriate or that, as is often 
the case, the basic data are not available to make an overall comparison. The 
method to be used in this situation will be presented briefly below. 

Comparison of crude survival probabilities 

Test to compare two survival rates 

Observed survival probabilities are often only published in the form of an 
actuarial rate at a given time (e.g., survival rate at five years). Evaluating the statis- 
tical significance of the observed differences between two or more populations re- 
quires information on the variability of the rates, which unfortunately is rarely 
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available. Knowledge of the number of cases initially entered in the study is not 
sufficient to correctly estimate the variability. If the observed number of survivors at 
a given time is known, the upper limit of the variance of the survival rate can be 
calculated (see page 222) and a slightly conservative comparison can be made. 
Implementation of the test is straightforward as soon as an estimate of the variability 
of the rates is available. 

Let S,(t) and S2(t) be the survival rates at time t, estimated using one of the 
two methods described in the first part of this chapter (see pages 216 and 219) 
and let V,(t) and V2(t) be the estimates of their variance. For a given value to of t, 
the quantity 

follows an approximately normal distribution and provides an appropriate statistic to 
test the hypothesis of equality of the rates in to. For example, the five-year survival 
rates in men following cancer of the colon are obtained using the actuarial method 
as 0.324 (Geneva) and 0.348 (canton of Vaud). As the standard errors obtained by 
Greenwood's method are 0.0228 and 0.021 6, we have : 

It is therefore concluded from this value that five-year colon cancer survival for men 
does not differ significantly between the canton of Vaud and Geneva. 

When standard errors are estimated from initial numbers (as if there were no 
censored observations), the standard error for Geneva is 0.0220. The proximity of 
this value to 0.0228 can be explained by the fact that the majority of subjects were 
followed up for five years. Conversely, the standard error in the canton of Vaud is  
0.0187 instead of 0.0216 because the percentage of censored observations is high 
among the 650 cases. In this situation, it is particularly important to provide a correct 
estimate of variance. In fact, the upper limit of the variance calculated solely from 
the 114 survivors observed at 60 months would be 0.0263 which is a slight over- 
estimation. 

In general, it is highly recommended that survival rates be presented with their 
standard errors to provide the basis for making more reliable comparisons. 

Rank tests to compare survival curves 

The objective of these tests is to compare two or more survival curves making 
optimum use of the available information about the survival of patients in the different 
groups. They are part of a family of tests which are the extensions to censored data 
of methods based on ranks [27]. Even if the data were not censored, it is inappro- 
priate to make a simple comparison of average survival times of two populations, 
because survival times do not follow the normal distribution which is a prerequisite 
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for the validity of classical tests. Non-parametric procedures (rank tests in particular) 
allow us to overcome this difficulty. 

When observations are complete, the implementation of a rank test requires 
ordering all survival times within the two groups in ascending order, assigning a 
score ci to the observation of rank i, then calculating the observed sum C of ci for 
one of the samples and, finally, comparing C to its expected value E(C) under the 
assumption that ranks are randomly assigned between the two samples. If, in reality 
the survival times in one of the samples are on average greater than in the other, 
their ranks will be on average higher and C will be significantly greater than E(C). 
The scores ci are chosen in such a way that the resulting tests are efficient against 
certain alternatives in the framework of the largest possible family of survival dis- 
tributions. In the Mann-Whitney test, for example, the score Ci of an observation is 
simply its rank i in the classification. In the Savage test, the score ci is equal to 
the expectation of the observation of rank i in a sample from a distribution with a 
constant mortality rate (that is, an exponential distribution). For n observations, this 
score is equal to: 

The extension of these methods to censored data requires the assignment of 
a score to observations censored between the ith and the (i + 1)th survival time, 
for which it is only known that survival time exceeds ti. When the Savage test is 
extended to censored data, it becomes very similar to the Mantel-Haenszel test 
described in Chapter II (see page 77). In the framework of survival comparisons it 
is known as the logrank test [28]. The generalization proposed by Gehan and 
Breslow [29, 301 of the Mann-Whitney test (or the Kruskal-Wallis test for more than 
two populations) is similar to the logrank test. Both tests are based on a comparison 
of observed deaths di with expected deaths ei in a group, at each time point ti where 
at least one death is observed. The two tests only differ in the weight given to the 
observed differences (di - ei). Application of the logrank test to the comparison of 
three populations is given below. 

Let: 

k = 1,2,3 be the three groups being compared, 

ti be the dates at which at least one death occurred, 

dki be the number of observed deaths at ti in group k, 

eki be the number of expected deaths at ti in group k, 

Di be the total number of deaths occurring at ti, 

nki be the number of subjects at risk just before ti in group k, and 

Ni be the total number of subjects at risk just before ti. 

The test is based on the comparison of the total number of observed deaths 

in each group k, (Ok = dki), with the number of deaths (Ek = 2 eki) that might 
I I 

have been observed if the force of mortality was the same in the three groups. The 
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number of expected deaths in each group should be calculated at each time point 
ti when at least one death occurred. The comparison takes into account not only 
the total number of observed deaths in each group before a given date but' also the 
date at which these deaths occurred. It is possible that the overall proportion of 
deaths is the same in the three groups over the entire time period under colilsidera- 
tion, but that there is an unequal distribution of survival times in the groups due to 
differences between the instantaneous mortality rates. Figure 4.6 shows ten-year 
survival for men with colon cancer in Geneva, C6te-d'Or and the canton of Vaud. 
The observed rates are practically identical in the three registries after the fifth year, 
while survival is better in the canton of Vaud before this date. 

Table 4.11 gives the breakdown of counts used in the test at a time point ti 
when at least one death occurred. 

Under the null hypothesis, the observed number of deaths in each of the three 
groups would be proportional to the respective numbers of subjects at risk in each 
group at this date. The numbers eki of expected deaths under this hypothesis are 
therefore: 

Table 4.11 Logrank test. Breakdown of counts at each time point ti when one or more 
deaths occurred 

Group 1 Group 2 Group 3 Total 

Deceased dl i d2i d3i Di 
Alive nii - dii nni - d2i nsi - d3i Ni - Di 

Total nii n2i n3i Ni 

- Canton de T'aud 
- - -  Geneva 
-- Cote d ' O r  

Time since diagnosis (years) 

Figure 4.6 Survival of male colon cancer patients in the canton of Vaud, Switzerland 
(1 974-1 983), Geneva, Switzerland (1970-1979) and C6te-d'Or, France (1 976-1982) 
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giving the total numbers of expected deaths: 

The objective of the test is to judge whether the sum of the differences between 
the observed and expected numbers in each group (Ok - Ek) differs significantly 
from zero. The test is identical in principle to the Mantel-Haenszel test described in 
Chapter 2 (see page 77). However, the distribution of deaths in this case is multi- 
nomial leading to a three-dimensional hypergeometric distribution for dki when the 
total number of deaths Di is fixed, rather than the multinomial distribution which 
results when the number of deaths follows a Poisson distribution. The variances 
and covariances of dki are thus : 

from this, we derive the symmetric variance-covariance matrix V of (Ok - Ek) which, 
when comparing three groups, is of dimension 3 x 3; the diagonal elements are 

and the remaining elements 

The definition of the expected numbers implies that the sum of Ok is equal to 
the sum of Ek : it is therefore sufficient to know the deviations (Ok - Ek) in two of 
the groups in order to know the deviation in the third. To assess the size of the 
deviation between all pairs of observed and expected values, it is therefore sufficient 
to retain two of the three groups. The significance is determined from the statistic: 

where whk are the elements of the inverse of the variance-covariance matrix of 
(01 - El) and ( 0 2  - E2): 
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under the null hypothesis of equal survival, the statistic TI follows a X2 law on two 
degrees of freedom. Formula (4.47) can be easily generalized to r groups and is 
expressed in matrix form as: 

TI = ( 0  - E)' W (0 - E) (4.49) 

where (0 - E) is the vector made up of the r - 1 differences between the observed 
and expected numbers in the first r - 1 groups, and W is the inverse of the vari- 
ance-covariance matrix of the first r - 1 differences of (Ok - Ek). When TI exceeds 
the critical value corresponding to X2 on r - I degrees of freedom, it can be con- 
cluded that the r survival curves are different. The test of a more specific alternative 
hypothesis is carried out in a way analogous to that in Chapter 2, page 90. For 
example, a trend test is based on the statistic : 

where X' = (xi, ... x,) is the vector corresponding to the r levels of a quantitative 
variable such as disease stage or age group which may have an influence on sur- 

vival. T; follows a X2 distribution on one degree of freedom and provides a more 

powerful test than TI for specific alternative hypotheses defined a priori. Contrasts, 
particularly pairwise comparisons, between groups can be tested with the same 
statistic. It is worth noting however that if a large number of comparisons of this 
kind are made, the type one error associated with the final result could be seriously 
underestimated. 

The homogeneity of survival rates in 2 groups can be evaluated by a conser- 
vative test, approximating formula (4.49) by 

under the assumption that T, is distributed as X2 on r - 1 degrees of freedom 
[31,32]. Because of its simplicity, the statistic T2 is sometimes calculated first when 
a rapid result is needed; if it gives a non-significant result, more precise tests can 
still be carried out. 

Table 4.12 shows some of the calculations involved in the comparison of five- 
year survival following cancer of the colon in males in Geneva (incident cases 1970- 
83), CGte-d'Or (incident cases 1976-80) and the canton of Vaud (incident cases 
1 974-83). 
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Table 4.12 Comparison of survival following cancer of the colon among males 
in the canton of Vaud, Switzerland (incident cases 1974-83), Geneva, Switzerland 

(incident cases 1970-83), and in C8te-d'Or, France (incident cases 1976-80) 

Vaud Geneva C6te-d'Or Total Expected 

ti(month) 
nvi dvi ngi dgi nci dci N i D i evi egi eci 

Total 0, = 369 0, = 292 Oc = 270 931 E"z406.6 E,=279.6 E,=244.8 

The logrank test is calculated from the variance-covariance matrix of the 
observations: 

If the test is calculated from the first two groups, we obtain (cf formula 4.48): 

Applying formula (4.47) gives: 

The simplified test (formula 4.51) gives: 

which, as stated previously, is slightly less than the result of the exact test. 
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Overall, survival differs between the three groups (p = 0.029). The test T; 
applied with values of X' equal to (1, -1, 0) and (0, 1 ,  -1) shows that survival 

differs between the canton of Vaud and Geneva (T: =3.99, using the first value of 

X', p < 0.05), but not between Geneva and C6te-d'Or (T; = 0.34, using the second 
value of X'). Figure 4.6 showing ten-year survival demonstrates clearly the reason 
for this apparent contradiction: mortality is initially less in the canton of Vaud, while 
the five-year survival rate here is almost the same as in Geneva (see the test 
described above page 247). 

The difference between survival curves is often characterized by a constant 
ratio R between instantaneous death rates. This ratio is a measure of the relative 
risk of death in one group compared to another. The quantity 

can be taken as an estimate of this ratio if it is between 0.5 and 2, but it has been 
shown to be an underestimate when it is too far from unity [21]. In this latter case, 
estimation of the relative rate by maximum likelihood in the context of the Cox model 
(see page 263) is preferable. The Mantel-Haenszel estimate can also be calculated 
from the series of contingency tables obtained for each date of death as in 
Table 4.1 1 : 

where Ni' = nki + nhi 

The force of mortality in group k is Rkh times higher than that to which group 
h is subjected. The logrank test evaluates the hypothesis Rkh = 1 against the alter- 
native Rkh f l .  It is optimum in this situation. 

When rates are not proportional and the ratio of the forces of mortality 
decreases over time as in the example above, the difference between curves will 
be more correctly determined by the Gehan-Breslow test, which only differs from 
the logrank test in the weighting of the differences between the observed and ex- 
pected numbers. The principle of this test is based on the calculation of a score for 
each of the groups being compared. This score summarizes all possible pairwise 
comparisons of survival times: all follow-up times tkj in group k are compared to all 
follow-up times tlh in the other groups and: 

v(k,j,l,h) = + 1 if the comparison of tkj and tlh indicates that subject j has a better 
survival probability, and 

v(k,j,l,h) = -1 if the comparison of fkj and tlh indicates that subject j has poorer 
survival; 
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the value 0 is given to y, when the comparison is inconclusive, either because of 
equal survival times or censored observations. The score associated with group k 

? [? Y (k, j, I, h) is higher to the extent that survival times i n  the group are on I 
average greater than those of all the other groups. It is easy enough to verify that, 
ignoring its sign, this score is equal to 

where the summation extends over all the dates of death. In other words, Ck  is 
again obtained as a sum of the differences between observed and expected numbers 
over all time points at which a death occurs. However, unlike the logrank test, this 
sum is weighted by the total number of subjects still at risk at this date. Any given 
difference will thus have a weight which is higher for short follow-up times, when 
Ni is still large, while its effect on the score will be negligible for long follow-up 
times if the number of subjects still under observation is small. Figure 4.6 suggests 
that this statistic will be particularly sensitive in the first years to large observed 
differences between the canton of Vaud, Geneva and C6te-d'Or. 

The score Ck is calculated for each of the first r - 1 groups, and the variance- 
covariance matrix of the Ck is constructed from: 

where the variance and covariance are defined by formulas (4.43) and (4.44). When 
comparing three groups, the statistic T3, analogous to TI, is written: 

where, as previously described, Wij denotes the terms of W, the inverse of the 
variance-covariance matrix of the parameter estimates for the two groups involved 
in the calculation. 

As the value of Ck is generally very high, each score in the numerical appii- 
cation given below has been divided by the number of thousands of conclusive 
comparisons carried out (with score equal to either + I  or -1). This operation ob- 
viously does not change the proposed weighting and reduces the differences t o  an 
order comparable to that obtained for the logrank test. The calculations were carried 
out with data from the canton of Vaud, Geneva and C6te-dlOr; 1 156 446 conclusive 
comparisons were carried out and the modified score (per 1000) in each of the 
groups is: 
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which indicates that survival time is on average longer in the first group. To evaluate 
the significance of this difference, the variance and covariance of these scores are 
calculated using (4.55) and (4.56) modified by the weighting above. The result is 
the matrix 

W being the inverse of the matrix V defined by the first two rows and columns of 
the matrix above, we have: 

and the value of the statistic: 

The three global tests thus lead to the conclusion that survival in the first five 
years is significantly different between the three registries. Gehan-Breslow's test 
provides a much larger value (Tg = 14.17) than that obtained for TI (TI = 7.07) or 
T2 (T2 = 6.62) as it takes greater account of differences observed at the beginning 
of the curve and, as Figure 4.6 shows, differences between the Canton of Vaud and 
the other two registries are present mainly in the initial period. These results suggest 
that long-term survival is actually the same in the three registries but that artefacts 
linked to the definition of the date of incidence and to the mechanisms of follow-up 
may have led to the differences observed in the initial period. 

Obviously not every test described in this section needs to be used for each 
data set under study, nor should a test be selected solely for its convenience. In 
fact, the choice of a test should, as always, be dictated by a hypothesis made prior 
to the examination of the survival curves. As Gehan-Breslow's test can behave un- 
predictably in certain circumstances [26], caution is recommended in its use. In 
particular, the result of this test should be ignored if it does not produce significance 
when the logrank test does, especially when there is a large number of censored 
observations. 

Stratified comparison of crude survival 

The survival of a group of patients is generally associated with many prognostic 
factors which are themselves related. When survival of two or more groups are 
compared, it is crucial to take into account known prognostic factors. Thus, the 
difference of colon cancer survival between Geneva and the canton of Vaud might 
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be partially explained by differences in the distribution of clinical stages between 
the two regions: it would be preferable to compare the two geographic areas 'holding 
stage constant'. The opposite situation can also occur: a difference in survival be- 
tween groups may go unrecognized if a major determinant of survival within groups 
is ignored. 

Regardless of the distribution of the prognostic factors in the various groups, 
a comparison holding these factors constant will tend to increase the power of the 
test that is used by decreasing the within group variability. Accounting for these 
factors in the analysis is achieved through an adjustment based on an appropriate 
stratification as follows. 

For each category (or stratum) of the factor under consideration, the approach 
described in the previous paragraph is used (see page). We calculate, for each 
group k and stratum j, the number of observed deaths (Okj) and the number of 
deaths that would occur (Ekj) if, in each stratum, the force of mortality had been 
the same in each of the groups being compared. In other words, the expected 
number ekji of deaths at date ti in group k is calculated and summed separately for 
each stratum j. Evaluation of the difference between observed and expected num- 
bers is based on the sum of results from all strata. 

In order to simplify the notation, we first show how to carry out the adjustment 
for a two-group comparison in the presence of a two-category prognostic factor. 
Generalization to any number of groups and categories is immediate. The method 
is illustrated by comparing survival between patients with malignant melanoma of 
the legs and patients with melanoma at another site (using data from Geneva). As 
sex is known to be a prognostic factor for melanoma, it should be considered in 
the comparison. 

In the case of two groups, only one needs to be considered. we take the group 
(k = 1) of patients with melanoma of the legs. Thus: 

for males (stratum j = 1)  

for females (stratum j = 2) 

variances in each stratum being calculated using formula (4.43). 
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Observed and expected number of deaths in the group of patients with skin 
melanoma of the legs are added over the two strata: 

similarly, the variance of 0 1 ,  (the within-stratum variance) is obtained by addition of 
the variances of 011 and OI2 

then the quantity 

TI = 
(01. - El  .12 

Var(O1.- El.) 

is calculated; under the null hypothesis of equal survival, the statistic TI follows a 
X2 distribution with one degree of freedom. Comparison of TI with the critical value 
of the corresponding X2 distribution tells us if the two survival curves differ overall, 
after correcting for sex. 

An appropriate formula similar to (4.51), based only on observed and expected 
data in the two groups can also be used: 

T2 = 
( 0 1 . - ~ 1 . ) ~  3- ( 0 2 . - ~ 2 . ) ~  

E l .  E2. 

T2, under the null hypothesis, approaches (but is greater than) a X2 with one degree 
of freedom. The significance of T2 is sufficient to conclude that the groups have 
different survival probabilities, but calculation of TI is necessary if T2 is not signif- 
icant. 

When more than two groups are being studied, the calculation of the within- 
group covariance using formulae (4.44) and (4.46) and the generalization of (4.58) 
provides the basis for carrying out the adjusted global test and the associated tests 
on one degree of freedom given on page 251 In this case, the observed and ex- 
pected numbers calculated from the obvious generalization of formula (4.57) to more 
than two groups are used in formulae (4.49) and (4.50). 

Table 4.13 gives survival data by site for incident cases of malignant skin 
melanoma among males and females in Geneva between 1970 and 1982. 
Melanomas of the legs make up group 1; sites from the rest of the body form group 
2. The data are illustrated in Figure 4.7. 

The unadjusted comparison of group 1 (legs) and group 2 (other sites) using 
the logrank test shows significantly better survival in group 1: 

If the comparison is made without taking into account the patients' sex, it could be 
concluded that the mortality rate is approximately twice as high (p < 0.01) in group 
2 than in group 1 (4.52). 
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Table 4.13 Survival of patients with malignant skin melanoma(a) in Geneva, Switzerland. 
Incident cases 1970-1 982 

Year Group I (b) Group 2(b) 

Number Observed Expected Survival Number Observed Expected Survival 
at. risk deaths deaths(c) (standard at risk deaths deaths(c) (standard 

error) error) 

(a) Number of patients living and still under follow-up, cumulative deaths and survival are given for the end 
of the year under consideration. These values are based on calculations using a month as the time unit. 
(b) Group 1: 83 patients with melanoma of the skin of the leg. Group 2: 204 patients with other skin 
melanomas. 
(') Variance in brackets. 

I - Other sites 

0 6 12 18 24 30 36 42 48 54 60 

Time since diagnosis (months) 

Figure 4.7 Survival of skin melanoma patients by site, Geneva, Switzerland 
(incident cases 1970-1 982); both sexes 
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In fact, it is known that sex plays a strong prognostic role in the survival of 
melanoma patients: women have a better survival than men. As melanoma of the 
legs is much more frequent in women (641146 = 43.8%) than in men 
(1 91141 = 13.5%), the observed effect can partially be explained by sex. 

Table 4.14 gives the same survival data for each sex separately. After adjust- 
ment (see formula 4.58), the comparison becomes: 

Thus, the hypothesis of equal survival for the two sites can no longer be rejected 
after taking sex into account. The relative mortality rate is now estimated to be 
1.0810.77 = 1.4, a value which no longer differs significantly from unity. 

Figure 4.8 shows that these results should be examined even more closely 
since, survival for group 1 (legs) is better than that of group 2 (other sites) regardless 
of sex or follow-up time. We see that, in men, there are only 19 cases of melanoma 
of the legs. Thus estimation of survival rates in this stratum is imprecise : for this 
latter patients the confidence intervals of survival probability at five and ten years 

Table 4.14 Comparison of survival of subjects with malignant skin melanoma by site 
and sex in Geneva, Switzerland. Incident cases between 1970 and 1982(a) 

Year Group 1 Group 2 

Number Observed Expected Survival Number Observed Expected Survival 
at risk deaths deaths (') (standard at risk deaths deaths (') (standard 

error) error) 

Males 
1 18 1 

Females 
1 6 2 2 2.6 

(1.5) 
3 6 0 4 8.6 

(4.7) 
5 5 5 9 12.9 

(6.9) 
10 17 13 16.2 

(8.7) 

(a) Number of patients living and still under follow-up, cumulative deaths and survival are given for the end 
of the year under consideration. These values are based on calculations using a month as the time unit. 
(b) Group 1: melanoma of the skin of the leg (18 male and 64 female patients). Group 2 : other skin. 
(') Variance in brakets. 
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the groups will no longer provide subjects at risk of dying, thus making the results 
from the test increasingly imprecise. In describing all the data by one model, the 
comparisons to be made are summarized by those between the few parameters 
which characterize the model itself. The information which was not available in the 
data is effectively replaced by information provided by the equation defining the 
distribution of the survival data under study. The benefit is however only real if the 
model is sufficiently valid. 

The classical analytical models (exponential, Weibull; see Chapter 1 ,  page 29) 
are often too rigid to take into account the diversity of situations which are en- 
countered in practice. Methods with more general applicability, based on principles 
analogous to those used in linear regression, have therefore been developed. The 
most frequently used in survival analysis is the proportional hazards model [25], 
which states that the instantaneous mortality rate depends on covariables through 
a multiplicative parameter applied to an unspecified background or baseline rate 

ho(t): 

where z is a vector of covariables and P a vector of coefficients measuring the 
intensity of the effect of the components of vector z. Thus, when z is the indicator 
of membership in a subgroup, this model implies that, at each time point t, the 
mortality rate in the subgroup (z = 1) is proportional to the mortality rate for the 
rest of the study sample (z = 0): 

where 0 = eP is consequently the relative mortality rate of the subgroup with respect 
to the rest of the sample. 0 is also a good approximation of the relative risk of dying 
at time t when the cumulative mortality rate is small. 

As a rule, the ratio of hazard rates for any two values of z: 

is independent of time, giving rise to the name, proportional hazards model. This 
model is often called semiparametric because the background rate ho(t), unlike the 
relative rate, is not specified by a parametric model. 

When the factor under study is defined by a qualitative variable with r catego- 
ries, the variable z = (z ,... z,), where the zi are r - 1 indicator variables defining 
membership of the subgroups corresponding to r - 1 categories of the factor, is 
constructed: for 2 I i I r, zi = 1 if the subject falls into the ith category and zi = 0 
otherwise. The first category of the factor is characterized by zi = 0, 2 I i I r. The 
choice of the particular role played here by the first category is obviously arbitrary. 
Thus, if the covariable under study is stage at diagnosis, coded into three classes 
of increasing severity, two indicator variables are constructed. A subject in stage 1 
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is coded as z2 = 0 and z3 = 0 ,  a subject in stage 2 as z2 = 1 and z3 = 0 and a 
subject in stage 3 is defined by z2 = 0 and z3 = 1. 

The coefficient Pi corresponding to the indicator variable z i  allows the calcula- 
tion of Oi, the relative mortality rate for patients in the category compared to those 

in the first category. Thus, in the previous example, O2 = e b  is the relative rate of 
subjects in stage 2 with respect to subjects in stage 1. The relative rates of any 
two categories can then be derived from the previously described relative rates by 
simple division, the choice of standard categories being entirely arbitrary. Still using 
the example of disease stage, 03/02 measures the relative rate of the subjects in 
stage 3 compared to those in stage 2, and similarly for all pairs of categories. 

The proportional hazards model has already been discussed in the context of 
incidence data (Chapter 2). There, it was noted that the ratio of incidence rates in 
two populations with different cancer risks was frequently independent of age. This 
variable played the same role as time since diagnosis in the present situation. The 
constancy of the ratio implied that the age-incidence curves for the two populations 
were parallel when plotted on a logarithmic scale. 

In survival analysis, the hazard rate itself is not usually calculated. Neverthe- 
less, analogous graphical properties can be demonstrated from the estimation of 
survival probability itself. Since: 

we have: 

an equation which shows that the proportional hazards model is also a generalized 
linear model in which the intercept with the Y-axis is the logarithm of the cumulative 
background rate at the specified time interval. This relationship also shows that, if 
the negative of the logarithm of survival probability is plotted on a logarithmic scale 
for two values u and v of z ,  the two curves will differ from each other by a translation 
of value p(v - u). Drawing these two curves in practice helps to assess the validity 
of the model. 

Just as the linear regression method is used in the context of normally-dis- 
tributed observations to assess the specific effect of a risk factor (see Chapter 3, 
page 158), fitting the model ho(t) e a x  + pz to survival data allows the effect of a vari- 
able z to be evaluated after correcting for a confounding variable x. The regression 
method is successful where a stratification method would have failed because it 
assumes that the effect of z is the same regardless of the value of x. In contrast, 
the method of stratification evaluates the effect of z for all categories of variable x, 
which means that a larger number of observations is required for the analysis. When 
the model is judged to be inadequate, it is obviously possible to construct a model 
which is slightly modified in each stratum by defining a baseline rate ho(t) exclusive 
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to it. Equivalently, interaction terms expressing that the effect of z is no longer the 
same for different categories of x can be introduced into the model. It should how- 
ever be remembered that overly complicating the model risks sacrificing a large part 
of its value, as much in its interpretability as in its effectiveness. 

Principle of the Cox model estimation 

The estimation of the vector P in the model (4.61) has been described in detail 
in Chapter 1 ,  page 30. In this section, the application of these principles to survival 
analysis is described for malignant melanoma of the lower limbs, already used to 
illustrate comparative methods. The covariable under study here is sex, defined by 
z = 1 for female subjects and z = 0 for male subjects. The model (4.61) implies 
that the instantaneous mortality rate for men is ho(t) and that of women is 8ho(t) 

P where 6 = e . 

Since under the model, two subjects of the same sex have the same mortality 
rate, it is clear that there is one chance in two that one will survive longer than the 
other. Furthermore, since 8 is the relative mortality rate for women with respect to 
men, a man has the probability Ill+ 6 of surviving longer than a woman. Similarly, 
the probability that a woman will survive longer than a man is O/lt..8 

If at the time point ti, n l i  men and n2i women are still under follow-up and if 
a subject characterized by the covariable zi dies, the probability of this death oc- 
curring among the nli + n2i possible deaths is, by extension of the previous concept: 

When the mortality rate ho(t) is not given by a parametric model, the likelihood 
can only be based on the order of the observations. In this case, it is equal to the 
probability that the m deaths occur in the observed order and that they had preceded 
the censored time that followed them. By repeated application of formula (4.66), the 
likelihood is obtained as: 

A 
the estimate p of P is the value which maximizes the logarithm of V(P): 
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A 

To obtain p, the derivative of this function with respect to p is set equal to zero: 

A A 
m 

known as the score. Noting that 8 = ep and d 2 =  2 Zi is the total number of deaths 
i= 1 

observed in women, the equation C(p) = 0 is equivalent to: 

an expression which indicates that the total number of deaths observed in women 
is consistent with the proportions of female deaths predicted by the model at each 
observed date of death. 

A 
The variance of P is obtained from the second derivative of L(P). Thus, in the 

context of this example, we have: 

Since the likelihood curve is concave around its maximum, its second derivative 
is negative (see Figure 4.9). The bigger the absolute value of its second derivative, 
the greater the curvature of L(P) and the more precise is the estimate (see Chapter 1, 

Figure 4.9 Likelihood and associated statistics. Cox model 
for survival of skin melanoma patients by sex, Geneva, Switzerland 

(incident cases 1970-1 982) 
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page 17). Similarly, the greater the curvature is, the more C(P) is variable in the 
vicinity of b. It can be shown that the variance of is closely approximated by the 
inverse of I(P) and that I(P) itself is a good approximation of the variance of C(P). 

Under the previous reasoning, we suppose that a single death occurs at each 
time ti. In practice, this is rarely the case as the measurement of time is never 
precise enough to allow all deaths to be ordered. This situation is particularly true 
for data from registries when only the month of death is recorded. When Di deaths 
have been observed at time ti, the available information on survival time could have 
been generated by the observations defined by all possible orders of the identical 
survival times. There are therefore Di! possible configurations. it can be seen that 
a calculation based on the above principle becomes practically impossible as soon 
as Di increases in size past a few units. In practice, the probability pi(P) is approxi- 
mated by the quantity: 

which is proportional to the probability that dli male deaths and d2i female deaths 
are observed out of a total of Di deaths observed at time point ti. The equations 
(4.68), (4.69), (4.70) and (4.71) in our example thus become: 

The likelihood suggested by Cox is defined for each survival time by the proba- 
bility that the Di deaths have the observed configuration at this date: 

where C is the totality of choices of dZi deaths among the n l i  + n2i subjects present 
in the study at ti, and k(.e) is the number of female subjects in the combination 8. 
The expression (4.72) is an approximation to (4.77), and is used in most computer 
software for survival analyses. 
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Table 4.15 Likelihood of the Cox model; prognostic value of sex on survival of sub- 
jects with melanoma of the legs in Geneva, Switzerland (Incident cases 1970-1982) 

Date Males Females Contribution to the l i ke l ih~od(~)  

death at risk death at risk 
A 

Log pT(0) Log p,(P) 

A 
(") See (4.67), (4.68), (4.72) ; 8 = eP ; P = 0.76 

Table 4.15 gives dates of observed death, number of subjects under follow-up 
at each date and the contribution of each death to the likelihood. The approximation 
(4.72) is used in case of identical survival times. Figure 4.9 shows the function 2L(P) 

A 
in the vicinity of fi which, in this case, is -0.76 (8 = 0.47). Here the test of the 
hypothesis P = 0 has as its objective the comparison of the survival between male 
and female subjects, and could be carried out by the logrank test. In the context of 
the maximum likelihood method, there are several classical tests available [33] (see 
Chapter 1); it is of note that one of them will again lead to the logrank test. 

The likelihood ratio tesf 

has a X2 distribution under the null hypothesis. Its number of degrees of freedom 
is equal to the dimension of P. In the example given, the number of degrees of 
freedom is equal to unity and TI = 2.63 (p = 0.1 1). 
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A 

A 
Furthermore, 2[L(P) - L(Po)] has this distribution if P = Po. We define around 

p all the values of j3 which, given the observations, are not rejected by the test TI, 
that is, those for which 

This interval is classically known as the likelihood-based confidence interval, and 
noted as LCI, in Figure 4.9. 

A 
Wald's test is based on the variance of P, obtained from the matrix of the 

second derivatives of L. In the example where P is of dimension 1, 

is a X2 variable on one degree of freedom. Here, the standard error associated with 
the estimate j3 is calculated from 1 I I(P) and is 0.451, therefore T2 = (-0.76)~/(0.451)~ = 
2.84. indicating that we can not exclude the possibility that P is null. 

A 
The variance of P, allows a confidence interval for P to be constructed using 

the usual expression: 

This interval is derived in the same way as the interval LC1 except that 2[L(P) - L(O)] 
is replaced by its quadratic approximation (see Figure 4.9 and Chapter 1 ,  page 17). 

The Score test is based on the vector of first derivatives of the likelihood 
which, in the example, reduces to the function C(P). The statistic 

assess the magnitude of the slope of the tangent to the likelihood curve 2L(P) at 
the value of j3 being tested (here 0). If it is not possible to reject the hypothesis 
that this line is horizontal, then it should be concluded that 0 is acceptable as a 
value of p. In the example, T3 = 2.98. Since, from formula (4.75) 

it can be seen that the score test is based on the same statistic as the logrank. 
The variance I(0) is exactly that obtained in (4.43) if there are no ties (Di = 1 for 
each ti). It is slightly different if there are ties (since each term of the sum defining 

it is multiplied by (Ni - l)/(Ni - Di)). Using pf (P) (4.77) instead of the approximation 

pi*(P) to calculate the likelihood would give exactly the same variance as (4.43) and 
the score test will thus be identical to the logrank test in all cases. 

The previous example illustrated the use of the Cox model to estimate the 
relative rate for a single dichotomous factor. The principles applicable when more 
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than one categorical or continuous factor is studied (the case in fact for which the 
model was developed) have been described in Chapter 1. These principles are ex- 
actly the same: only the expression of the model is more complicated. In the con- 
struction of these models, the mortality rate ho(t) has been considered to be  a 
nuisance parameter. However, in practice, it is often desirable to estimate the sur- 
vival curve corresponding to this background rate. The principle of the Kaplan-Meier 
method (see formula 1.22) is used here, but the number of deaths at time point ti 
is related to a modified denominator to take account of the fact that not all individuals 
under follow-up at time point ti are subject to the same risk of death. The estimate 
of S,(t) is therefore given by the formula: 

in which each individual in group Ri of subjects at risk of death at time ti is no 
longer counted as one but as a value equal to its relative rate. 

Example of an adjustment using Cox's model 

Survival data based on hospital records are often considered to be a biased 
representation of the overall situation. In particular, survival rates calculated from 
these data may be better than those obtained from the ensemble of incident cases. 
One explanation for this phenomenon is that cases not treated in hospital are often 
those that are very advanced or that have not been treated at all. Hospital statistics 
would therefore represent a selection of favourable cases, for which survival is over- 
estimated in comparison to the general population. 

The Geneva cancer registry routinely collects the place of treatment of all in- 
cident cases (public university hospital or other health care centre). The survival of 
patients treated in these two health centres can thus be compared. Breast cancer 
data are given as an example [34]. The 1105 women diagnosed between 1975 and 
1982, were allocated to two groups depending on their place of treatment. The two 
groups were then compared using a Cox model with one covariable z, indicating 
group membership (z=l corresponds to the group treated in a university hospital): 

The hypothesis of equal death rates in the two groups (P = 0) is evaluated by 
the score test (4.81) which, in this case, corresponds to the logrank test. The value 
obtained (T3 = 29.9) corresponding to a X2 on one degree of freedom is very sig- 
nificant (p i The likelihood ratio test (4.78) obviously confirms this result 
(TI = 33.2). 

The estimate of the relative rate obtained by maximizing the Cox likelihood is: 
A A o = eP= 2.04 
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indicating that the mortality rate is about twice as high for patients of the public 
university hospital as for those of other health care centres. 

Since there is no reason to suspect that health care is inferior in university 
hospitals, it is important to take into account factors which might lead to the selection 
of cases with a poorer prognosis into public health care institutions. One possibility 
may be that the public hospital receives advanced cases which require complicated 
treatment and have poorer prognoses. There may also be selection by social class 
associated with the higher financial contribution required of patients in the private 
sector. Clinical stage, social class and age have therefore been examined in order 
to assess this assumption. It is known that these three variables have a prognostic 
role and Table 4.16 shows that they have a different distribution in the two health 
care systems. Consequently, they should be taken into account in the comparison 
(see page 255) otherwise all or part of their effect may be attributed to the type of 
hospital health care system. 

Clinical stage, which has a fundamental importance in this context, is used to 
illustrate the model-fitting for a qualitative variable. This variable has four categories, 
with an associated vector of indicator variables x = (x2, x3, x4) defined by: 

Localized only (x2 = 0, x3 = 0, x4 = 0) 
Regional involvement (x2 = 1, x3 = 0 ,  x4 = 0) 
Metastases (x2 = 0, x3 = 1, x4 = 0) 
Unknown (x2 = 0, x3 = 0, x4 = 1) 

These three variables are then included in the model which is written: 

the variable z still being the variable of interest indicating the health care system 
as defined. 

Table 4.16 : Distribution (%) of prognostic variables available by health care system 
for breast cancer in Geneva, Switzerland (Incident cases 1975-1982) 

Age (years) < 50 50-64 65-74 75+ 

University hospital (N=808) 
Other (N=297) 

Stage Local Regional Metastasis Unknown 

University hospital (N=808) 47 39 10 4 
Other (N=297) 60 27 1 12 

Social class Manual 
workers 

Office Executives Unknown 
workers 

University hospital (N=808) 
Other (N=297) 
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A 

The estimate 6 =  ep which maximizes the likelihood of observations for this 
model is the relative mortality rate 'adjusted for stage' for the university hospitals. 
Its value (6 = 1.91) is only slightly less than the previous value, showing a small 
confounding effect due to the fact that the stage at diagnosis is on average more 
advanced in public hospitals. 

The test of the hypothesis P = 0 from the likelihood ratio gives a value 
TI = 22.8. By the score test, the value obtained is Tg = 21 .O. These values are very 
significant in both cases,indicating that the effect of hospital type remains after taking 
stage into account. 

The logrank test with stratification described earlier (see page 255) could have 
been used to solve this problem. In fact, it would have provided the same results 
as a Cox model with stratification specifying: 

This equation implies, as does (4.84), that there is the same relative rate between 
public hospitals and other health care systems for each stage x. However, it allows 
for the possibility that the baseline hazard rates might differ for each stage. The 
maximum likelihood here is the product of the likelihoods of the proportional hazards 
model written separately for each stage. To obtain the score test for the hypothesis 
p = 0, scores calculated for each stage are first summed and the variance of this 
sum is calculated by addition of the within-stage information related to P. The test 
is then the ratio of the two sums and is identical, apart from the way in which ties 
are dealt with, to the logrank test with adjustment for the stage given page ... Its 
value (T3 = 19.4) is very close to that obtained above, (Tg = 21.0), and the estimate 

of p (8 = 1.85) is little different from that derived from the model (4.84), that is, 
A 0 = 1.91. This result confirms that the stage at diagnosis is responsible for only a 
small part of the difference observed between the two types of hospitals. 

The adjustment for all other available variables is summarized in Table 4.17. 
Although social class and age have some prognostic value, they do not qualitatively 
change the previous conclusion since the estimate of P, after adjusting for these 
variables, still corresponds to a relative rate of 1.56 which is significantly different 
from unity. 

Figure 4.10 gives survival observed in the two groups. Survival predicted by 
the model for each of the hospital types is also given. The predicted survival for 
other health care system is given for a group of patients with an identical distribution 
of stage, age and social class to that of the patients treated in the public university 
hospitals. The difference between the curve predicted and observed for patients 
outside university hospitals is an estimate of the portion of the improvement in sur- 
vival which can be explained by the most favourable distribution of the recorded 
prognostic factors in patients treated outside the public sector. 

This result suggests that factors other than stage, age and social class as 
recorded by the registry may lead patients with worse prognoses to be treated in 
university hospitals. The presence of a large number of cases of unknown stage 
among patients treated in other health care systems could distort the comparison, 
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Table 4.17 Cox's model for breast cancer survival data from Geneva, Switzerland 
(Incident cases 1975-1982) 

A 

SE($) 
A 

Na) Wb> Score test(c) 

Health care system 
University hospital 
Other 

Stage 
Local involvement 0 - 1 .oo 21 .o 

Regional involvement 0.801 0.12 2.23* 
Metastases 2.482 0.16 11.97* 
Unknown 1.399 0.19 4.05* 

Age (years) 
< 50 
50-64 
65-74 
75+ 

Social class 
Manual workers 
Off ice workers 
Executives 
Unknown 

(a) Estimate obtained when all variables (stage, age and class) are included in the mqdel. A 

(b) The asterisk indicates variables for which the 95% confidence interval excludes 1 (P/SE(P)2 1.96). 
(') Test of effect of the health care system after inclusion of the corresponding variable in the model. The 
first model is the crude test of effect equivalent to the logrank test without adjustment. 
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Figure 4.10 Observed and adjusted survival of breast cancer patients 
by type of hospital - Geneva - Cases diagnosed between 1978 and 1982 
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as could cases of advanced clinical stages which are almost all treated in university 
hospitals. It is therefore worth repeating the analysis, limiting the comparison to 
patients whose tumours were at an early stage, either being localized or only show- 
ing regional involvement. The results are not modified substantially although the 
estimate of 6 = 1.54 is decreased as is the score test (Tp = 7.57),  showing that 
part of the difference observed for unknown stage was incorrectly attributed to an 
effect of the health care system. 

These results do not correspond to the commonly held notion of better survival 
in leading hospitals; effects of selection other than those which have been controlled 
for are probably responsible for the findings. Furthermore, it is known that adjustment 
by class can leave residual differences with respect to confounding factors because 
of the phenomenon of within group variation. Classification into three clinical stages 
only partially accounts for the characteristics of the disease. Fitting stage categories 
more finely, even though impossible due to the lack of the necessary information, 
would have improved the results. 

Phenomena of this kind have been described by Feinstein [35]  to illustrate the 
paradox attributed to Will Rogers. Convinced of the mediocre intellectual level in 
California even among higher socio-economic classes, Rogers noted that the aver- 
age cultural level in California improved even when underprivileged people from 
Oklahoma emigrated there. This emigration obviously caused a similar phenomenon 
in Oklahoma. A similar situation occurs with the retrospective reclassification of clini- 
cal diagnoses of cancer [35] .  Reclassification effectively leads to the worst cases 
of localized cancer being categorized as regional stage, although these cases have 
on average a better prognosis than those of the category in which they are now 
classified. The result is a purely fictional improvement in the survival rate in both 
categories. 

Comparison of net survival 

Differences between the survival distributions in several groups are often dif- 
ficult to interpret because the overall mortality observed is partially due to competing 
causes of death. These causes, however, are not the object of the comparison and 
the extent of their effect can vary from one group to another. These difficulties can 
be very pronounced when a comparison is to be made over a long time period, in 
particular when the groups being compared do not have the same age distribution 
or life expectancy. Comparison is then carried out using net survival. 

The methods discussed in the previous sections for comparing survival between 
two or more groups apply without change if the net survival is estimated by the 
cause-specific survival method (see page 230). In effect, dates of death not caused 
by the cancer under study are considered as censored observations. However, as 
noted above, it is not generally advisable to use this method because of inaccuracies 
in the classification of the causes of death. Other methods such as relative survival 
should thus be considered to estimate net survival. Unfortunately, the analysis is 
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then nof.as simple and should be adapted from principles used above to carry out 
the comparison of crude survival. 

The comparison of two relative survival rates at a given time point (e.g., five 
years) can be easily carried out by calculating their variances, which are in turn 
obtained directly from the crude survival analyses. A test analogous to that given 
in formula (4.42) can then be easily carried out. This approach is however subject 
to the same criticism as for crude survival. 

Note that the use of relative survival does not remove the need to account for 
age in the comparisons. In fact, as we have seen before (Table 4.10) and as we 
will confirm below, net survival, like crude survival, is often dependent on age. Rela- 
tive survival should therefore also be adjusted for the effect of age before any 
interpretation of observed differences is made. Myers and Hankey [36] and Hakuli- 
nen [37] have resolved this problem by calculating relative survival in subgroups 
which are homogeneous for the main determinants of net survival and by calculating 
a relative survival rate for the whole group using the method of direct standardisation 
(see Chapter 2, page 56). Myers and Hankey compared relative survival for different 
cancer sites between Blacks and Whites after adjusting for age and stage. Hakulinen 
compared relative survival between Finland and Norway after adjusting for age. How- 
ever, this method accounts rather imperfectly for the effect of age and depends to 
some extent on the choice of the standard population. Furthermore, as for crude 
survival, comparison of survival at specified time points is rarely the only problem 
of interest. Consequently, methods have been proposed for comparing entire net 
survival curves and adjusting for confounding variables. We will only describe here 
the principles underlying these methods and suggest further reading for the reader 
who wishes to apply them. 

One possibility is to adopt a method analogous to the Mantel-Haenszel test, 
by considering the distribution of deaths in the groups for each interval appearing 
in the actuarial survival curve (Table 4.11). Brown [38] and Hakulinen [39,40] have 
constructed tests of this kind, based on the maximum likelihood method. The dis- 
tribution of the number of deaths dki for time interval i among the nki subjects in 
group k is a binomial distribution: 

where rki is the relative survival of the nki individuals in group k who were living at 

the beginning of the interval and sgi is their expected survival, calculated from the 
life table, and taking into account the competing forces of mortality. The test of the 
hypothesis that the rki are equal is however more complicated than the Mantel- 
Haenszel test: when nki and the number of deaths are fixed, dki has a noncentral 
hypergeometric distribution with variance and covariance depending on rki. Although 
identical in all groups for each interval i under the null hypothesis, the rki neverthe- 
less remain unknown, and in order to carry out the test, they must be estimated. 

Moreover, this method makes implicitly the unrealistic assumption that all in- 
dividuals at risk of death at the beginning of the interval have the same expected 

survival sii. Its application would in principle require stratification of the variables 
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influencing survival so that, for each level j of the stratification variable, the nkji 
individuals at risk at the beginning of the interval would have the same expected 

survival ski .  Stratification of this kind is always possible for age and sex, for which 

the existing life tables allow the calculation of expected survival probability s i j i .  

When groups being compared have the same mortality hazard for other causes, 
this stratification will make expected survival identical for individuals in the different 
groups being compared within each stratum thus created. The logrank test with 
stratification then applies without change since, under the null hypothesis, the proba- 
bilities of dying are identical. In this special case, stratification by age avoids the 
need to adjust for competing causes. Adjusting for age using Cox's model is also 
possible. However, if age classes are included directly in the model equation, the 
effect of age is implicitely considered as being multiplicative; since a large part of 
this effect is created by the additive effect of competing causes of death (see 
formulae 4.29 and 4.39) it might be advisable to fit an age stratified Cox model. 

When mortality for other causes cannot be considered equal for the two groups, 
Brown's and Hakulinen's methods can be used, bearing in mind that the variance 
of dki differs from that specified by the binomial distribution. It is relatively easy to 
take this problem into account in the context of a generalized linear model such as 
that proposed by Hakulinen [39,40]. However, it seems more efficient to derive the 
likelihood from individual observations and not from data grouped by interval. This 
approach has been used by Pocock and coworkers [41], Buckley [42] and in the 
model presented in the first part of this chapter. Pocock assumes that the rate added 
to the baseline rate of the general population by the presence of the disease 
decreases exponentially with time. In contrast, Buckley considers the case where 
the distribution of net survival is exponential. The extension of his analysis to  a 
proportional hazards model with baseline rate described by a step function is dis- 
cussed by Esteve and co-workers [20] and summarized by the formulae (4.38), (4.39) 
and (4.40). This approach leads to a classical test based on the likelihood ratio 
principle analogous to that described for the Cox model. The strategy discussed for 
this latter model can be applied without change (see p. 268). 

As an example, the method has been applied to colon cancer survival data 
from Geneva (page 244). Table 4.18 presents the test of the effect of sex on survival 
in three different contexts. In the first, the comparison is made ignoring mortality 
from other causes; in the second, the method described above is used and, in the 
third, cause-specific survival probabilities are compared. Sex has no significant effect 
regardless of the method used. Nevertheless, it is worth noting that the effect of 
sex is corrected in the right sense when competing causes are taken into account. 
The effect of age on net survival can also be evaluated by the likelihood ratio test. 
The logarithm of the likelihood of model (4.38) with 0=0 is calculated to be -1072.25, 
giving a X2 on two degrees of freedom equal to: 

Although the effect of age appears to be weaker for net survival, it still remains 
very high. The effect of age would have been incorrectly described if it had been 
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Table 4.18 The influence of age and sex on colon cancer survival i n  Geneva, Switzerland. 
(Incident cases 1970-1 979) 

Context Estimate of p 
(Standard error) 

Sex Age 
males(a) 

65-74 75 + 

1) Crude s~ rv i va l (~ )  0.101 
(0.08) 

sex excluded - 

2) Net survival(c) 

sex excluded 

3) Cause-specific survival(d) 0.005 
(0.09) 

sex excluded - 

Logarithm 
of the 

likelihood 

(a) In each context, the second model contains age only in order to allow for the likelihood ratio test to be 
carried out. 
(b) Proportional hazard models fitted by Cox's method with three months as the time unit. 
(') Proportional hazard model with a background rate constant for three-month intervals up to three years 
from diagnosis, six-month intervals up to four years and then an interval of one year and an interval of five 
years. 
(d) The same models as for (b), but each death not recorded as due to cancer of the colon is censored 
at the date of death. 

All ages 
20 I--- -- > 74 

Figure 4.11 Relative survival of colon cancer cases diagnosed between 1970 and 
1979 i n  Geneva, Switzerland, estimated by the method of maximum likelihood 
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studied for relative survival at five years and it would have been almost unnoticed 
using relative survival at ten years (Table 4.10). Figure 4.11 shows the net survival 
of the three age groups and of all groups calculated by the-maximum likelihood 
method. 

Bi bliographical Notes 

Chiang's now classic work [43] dedicated to stochastic processes in the field 
of human biology, provides a complete, systematic and integrated study of the ap- 
plication of probability theory to the concept of risk and survival which are essential 
in epidemiology. Although this work is usually reserved for statisticians, it contains 
many chapters which are relatively accessible mathematically. These sections mainly 
involve analysis of the life table and the mechanics of its construction, and the 
problem of competing risks. Chiang has written a manual for the World Health Or- 
ganization on the life table which is more accessible to epidemiologists [44]. 

More detailed concepts and methods underlying survival analysis can be found 
in the more recent, fundamental work of Kalbfleisch and Prentice [26]. Although the 
concepts and methods are mainly described for mathematically-minded readers, the 
accompanying examples assist the non-statistician. Of particular note are the sec- 
tions on parametric models (Weibull, exponential, log-normal, gamma) and the prob- 
lems presented by the adequacy of the models fitted. Cox's proportional hazards 
model and its application are the subject of a substantial section in the book, espe- 
cially with regard to time-dependent covariates. A review of the theory of competing 
risks and methods for the retrospective analysis of survival can also be found in 
this text. 

The manual on survival analysis by Hill and co-workers is among the more 
practical texts for non-statisticians. Although it addresses clinical trials rather than 
epidemiology, this text is nevertheless useful for its detailed review of descriptive 
and comparative methods of survival study. Problems raised by tests of comparison 
have an important place in the book; an annex is entirely devoted to the principles 
underlying rank tests and the choice of the appropriate test. Parametric and semi- 
parametric models, the evaluation of goodness-of-fit, coding of variables, hierarchical 
tests and trend tests are treated with equal clarity. 

The description of the life table in Pressat's text offers a more demographic 
view point [45]. Of historical interest, Berkson first proposed the concept of relative 
survival [I91 and the classic article by Elveback presents somewhat didactically the 
principles behind the actuarial method [46]. The scientific publication on cancer reg- 
istration published by the International Agency for Research on Cancer (IARC) con- 
siders the calculation of survival of incident cases [47]. 
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Cancer registries can calculate survival using the computer program package 
developed by the Finnish Cancer Registry [48]. These programs enable users to 
estimate relative and observed survival curves and carry out comparative tests. 

Clinicians will benefit from the article by Christensen describing the concepts 
underlying the Cox model in the context of clinical trials [49]. This article provides 
practical advice and many examples on how to conduct the analyses and interpret 
the results. 
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Life table for Switzerland; 1978-1 983 
(source : Office federal de la statistique, Berne, 1985) 

2 
Probability 
of death 

A 
q x  

3 
Survival 

probfbility 
Px 

4 
Death rate 

k x  

5 
Survivor 
function 

e x  

100000 
99051 
98963 
98897 
98842 

98797 
98757 
9871 9 
98684 
98652 

98621 
98591 
98562 
98532 
98498 

98458 
98408 
98341 
98249 
981 31 

97986 
97822 
97647 
97476 
9731 1 

971 55 
97007 
96864 
96727 
96598 

6 
Number 

of deaths 
dx 

7 
Expectation of 
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2 
Probability 
of death 

A 
q x  

0.001255 
0.001 248 
0.001257 
0.001282 
0.001 323 

0.001382 
0.001451 
0.001530 
0.001630 
0.001757 

0.001923 
0.0021 27 
0.002366 
0.002635 
0.002931 

0.003251 
0.003572 
0.003897 
0.004258 
0.004690 

0.005225 
0.005872 
0.006610 
0.007424 
0.008301 

0.009229 
0.01 01 72 
0.01 11 29 
0.01 21 82 
0.01 3356 

0.014712 
0.01 6236 
0.01 7894 
0.01 9706 
0.021694 

0.023879 
0.0261 99 
0.028641 
0.031296 
0.034256 

3 
Survival 

probability 
A 
Px 

0.998745 
0.998752 
0.998743 
0.998718 
0.998677 

0.99861 8 
0.998549 
0.998478 
0.998370 
0.998243 

0.998077 
0.997873 
0.997634 
0.997365 
0.997069 

0.996749 
0.996428 
0.9961 03 
0.995742 
0.995310 

0.994775 
0.9941 28 
0.993390 
0.992576 
0.991699 

0.990771 
0.989828 
0.988861 
0.98781 8 
0.986644 

0.985288 
0.983764 
0.9821 06 
0.980294 
0.978306 

0.9761 21 
0.973801 
0.971 359 
0.968704 
0.965744 

4 
Death rate 

5 
Survivor 
function 

4 x 

96474 
96352 
96232 
961 11 
95988 

95861 
95729 
95590 
95443 
95288 

951 20 
94937 
94736 
9451 1 
94262 

93986 
93681 
93346 
92982 
92586 

921 52 
91 671 
91 1 32 
90530 
89858 

89112 
88289 
87391 
8641 8 
85365 

84225 
82986 
81 639 
801 78 
78598 

76893 
75056 
73090 
70997 
68775 

6 
Number 

of deaths 
dx 

7 
Expectation of 

I t e  
ex 
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2 
Probability 
of death 

A 
qx 

3 
Survival 

probability 
A 
Px 

4 
Death rate 

fix 

5 
Survivor 
function 

e x  

6 
Number 

of deaths 
dx 

7 
Expectation of 
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Appendix 2 

Using GLlM in descriptive epidemiology 

The software GLIM' was specifically designed for fitting generalized linear mod- 
els which are commonly used in the analysis of epidemiological data. It is therefore 
one of the most useful tools for carrying out epidemiological calculations 

We should first recall the concept of the linear model. Suppose that Y is a 
normal variate with mean p and variance o2 and that p is linearly related to several 
covariates represented by the vector z : 

or 

Y = p z + r  

where E -+N(O, 02) is usually called the error. Suppose further that Y has been 
observed for several values of z.  The response variable, called also the dependent 
variable Y can therefore be represented by a vector of dimension n, the number of 
observations. Denoting Yi as the ith observation corresponding to the value zi of a, 
the maximum likelihood method enables f5 to be estimated by minimizing the ex- 
pression 

which is the negative of the log-likelihood. 

GLlM provides estimates of the coordinates of f5, the variance-covariance of 
these estimates as well as fitted values (Qi) and residuals (Yi - Qi). 

GLlM is an interactive programme which can be run on either a personal corn- 
puter or a mainframe and which is usually activated by simply typing GLlM on  the 
keyboard. In order to introduce the reader to its use, the estimation of the parameters 
of the regression equation which was fitted to the data presented in table 3.3 (Chap- 
ter 3 page ) is reproduced and commented upon below. Comments are framed and 
printed in italics; instructions given to the programme are printed in bold type, while 
output of the programme is printed in smaller character using the current typeface. 
As a rule an instruction is introduced by a '$' and remains activated until another 
$ character is input. With these conventions the dialogue between the computer and 
the user may be as follows : 

GLlM 

GLlM 3.77 update 2 (copyright)l985 Royal Statistical Society, London 

' Generalised Linear Interactive Modelling, NAG Ltd, Wilkinson House, Jordan Hill Road, Ox-, 
ford OX2 8DR, UK 
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After this welcome message the user is invited with a ? to input a directive (a 
$ followed by a word). Directives are either a statement or a request for an 
action to be carried out.Their name can be abbreviated provided that it is 
unambiguous. 

These directives state that there are 1 1  observations (n = 11)  and that there 
are two values per unit in the input data (z and y) 

The above directive requests data to be read from the keyboard. They should 
be input as described in the directive data. The computer therefore expects 
2 x I I numbers as a series of z y pairs 

This directive requests the output of the values of z and y. It is used here to 
check that the data have been input correctly. 

z Y 

The directive yvar enables the dependant variable to be specified, and err 
state that the error r is normally distributed ('n' for normal). This complete the 
specification of the model. The estimation starts with the directive fit and ini- 
tially produces the deviance and its d.f. 

deviance = 10.806 

d.f. = 10 
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Since the argument of fit is empty, the request is for the adjustment of a 
constant mean (Y = p x 1 + r where 1 is a vector with eleven coordinates 

n 
A 

equal to 1) .  In this case the estimate p of P is therefore = Yi and the value 
i= 1 

n 
A 

of the negative of the maximum log-likelihood L(P) = (Yi - Yl2, which is the 
i=l 

minimum deviation from the observed data when fitted with this class of models, 
is called the deviance; when divided by 02, the deviance is distributed as X2 
with d. f. degrees of freedom. 

In order to display the estimates (e) the directive display must be used. This 
latter direclive automatically produces standard errors of estimates and the 
value of L(P) /df, named the scale parameter which is here an estimate of 0'. 

estimate s.e. parameter 

1 2.152 0.31 34 1 

scale parameter taken as 1.081 

$DIS? $fit z $disp e 

deviance = 4.8900 

estimate s.e 
1 0.9923 0.41 58 
2 2.31 9 0.7028 

scale parameter taken as 0.5433 

parameter 
1 
z 

The directive fit z requests the estimation of the linear model p = Po + Plz Note 
that the constant 1 is always included in a model except if explicitly excluded 
(fit 2-1). The estimates of the parameters of the regression equation are the- 

A A 
refore Po = 0.9923 PI = 2.31 9 and a2 = 4.89/9 = 0.5433 

The letter r is an argument of the directive display. Yhen  typed while display 
is still activated, it requests that the fitted values (Yi) and the standardized 

A 
residuals (Yi - Yi)/SE(Yi) be output 
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unit observed fitted residual 

The generalized linear model differs from the above simple normal model in 
two respects, (i) the model now aims to describe a function of the mean and not 
the mean itself; (ii) the error is no longer distributed as a normal variate but belongs 
to a class of random variables which enable reliable estimation of linear models to 
be achieved. As pointed out often in this book, descriptive epidemiology collects 
data which are often distributed according to the Poisson distribution; in this context 
it is the logarithm of the mean which is modelled and the name 'Poisson regression' 
is now commonly used to designate genralized linear modelling using Poisson dis- 
tributed error and logarithmic transformation of the mean. We shall illustrate the 
principle of this method and its implementation in GLlM with the data of table 2.8, 
adjusting the model of equation 2.33 (see page...). 

Suppose that the data are stored in a file named MHP.DAT and organized as 
shown below, where each line corresponds to a computer record : 

8 8 36 54 53 96 115 145 

A possible way of fitting the multiplicative model (2.33) to the above data is 
given below. Comments briefly introduce the directives. 

GLlM 

GLlM 3.77 update 2 (copyright)l985 Royal Statistical Society, London 

/ Eight observations from each of two cancer registries. I 

Read the number of cases (k) in the file MHP.DAT which will be connected to 
the reading unit 1 after answering the file name request; then read the number 
of person-years (m). Note that dinput is used instead of read when reading 
from a file. 

? $data k $dinput 1 

File name? mhp.dat 



Create the variables AGE and REG (for registry) using the- function %g l :  this 
function creates a vector with values given by the first argument (here 8 and 
2 because I I  age I 8 and 1  I reg 5 2). The second argument gives the 
number of repetitions of each value. Note that, if not specified otherwise, the 
dimension of a vector equals the number of units. The character ':' enables 
the activated directive to be repeated with other arguments (here the calculate 
directive). 

? $cal age=%gl(8,1) :reg=%gl(2,8) $loo reg age k m $ 

REG AGE K M 

State, using yvar, that the response variable is the number of cases (k), state, 
using err, that the error distribution is the Poisson distribution and, using offset, 
that the origin of the response variable scale is shifted by log(m) (i.e., the 
mean p is such that log@) = zero + pz). 

- 

? $yvar k $err p $cal zero=%log(m) $offset zero 

State that AGE and REG are categorical variables (factors). This directive re.- 
quests the computer to create dummy variables for each level of the factors 
but one (i.e., 7 for AGE and I  for REG). 

? $factor age 8 :reg 2 $ 

The successive fits enable the contribution of each factor to be assessed. 
Remember that the change in deviance is distributed as a X2 with df equal to 
the corresponding change in degrees of freedom. 

I 

? $fit :+ age :+ reg $ 

scaled deviance = 676.59 at cycle 4 

d.f. = 15 
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scaled deviance = 18.142 (change = -658.4) at cycle 3 

d.f. = 8 (change = -7) 

scaled deviance = 9.3920 (change = -8.750) at cycle 4 

d.f. = 7 (change = -1) 

estimate s.e. parameter 

scale parameter taken as 1.000 

unit observed 

8 
8 

36 
54 
53 
96 

115 
1 45 

10 
6 
7 

18 
17 
25 
35 
37 

fitted residual 

-1.244 
-0.734 
0.580 

-0.227 
-0.280 
0.312 
0.044 
0.312 
1.845 
1.240 

-1.033 
0.419 
0.539 

-0.569 
-0.080 
-0.581 

The programme provides several statistics, values of which can be requested 
through the look directive. For example to get the classical goodness of fit x2 
type : 

Note that most statistics can also be calculated directly using system-built vec- 
fors storing the main results of the fit. For example the above x2 is obtained 
through %fv which sfores the fitted values. 
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Notenthat the above values are the squares of the standardized residuals, 
(Yi - Yi> 

6 
listed previously. The residuals could also be stored in a vector : 

? $cal r2=(k-%fv)**2/%fv $ 

The directive table is a powerful tabulation programme. It is used here in its 
simplest form to get the total of r2 coordinates, that is the value of the good- 
ness of fit X2. 

? $tab the r2 t $ 

Before going to the next example of Poisson regression, we should remember 
that the estimates of the coordinates of P are the logarithms of the estimated relative 
rates; for example the relative rate of age-group 8 (70-74 years) compared with 
age-group 1 (35-39 years) is exp(3.08)=21.76. The incidence rate of this latter age- 
group is estimated as exp(-7.519)/5=10.85/100 000 (the estimated rate is divided 
by five because we input the populations instead of the person-years; see table 
2.8); similarly the relative rate of Geneva (REG(2)) compared with Zaragoza is 
exp(-0.2651) = 0.767. 

The method of Poisson regression is now applied to the data of table 2.13 
(page ), stored as previously in a file named HOMINCG.DAT. Only the ciata corres- 
ponding to age greater than 20 were used, since no case was observed before that 
age. 
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GLlM 

GLlM 3.77 update 2 (copyright) 1985 Royal Statistical Society, London 

1 Thirteen age-groups and six cantons of CBte d'Or make 78 units of observation. I 

File name ? homincg-dat 

Create the variable AGE and PLACE (for canton). The first two arguments of 
the directive look select the output interval for the vectors looked at, I to 12 
in the present example. Note that GLlM 3.77 retains only four meaningful letters 
to identify a variable (plac for place) 

$DIN? $cal age=%gl(13,6) :place=%gl(6,1) $loo 1 12 place age k m $ 

PLAC AGE K M 

Specify the model and the factors to be used in the fit; then fit the multiplicative 
model. 

? $yvar k $err p $cal zero=%log(m) $offset zero 

? $factor age 13 plac 6 

$FAC? $fit age+plac $disp e $ 

scaled deviance = 68.1 98 at cycle 8 

estimate s.e parameter 

1 
AGE (2) 
AGE (3) 
AGE(4) 
AGE(5) 
AGE (6) 
AGE (7) 
AGE (8) 
AGE (9) 
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scale parameter taken as 1.000 

Note that the incidence rate estimate in age-group 3 is almost zero and has 
a very large standard error. Actually no case has been observed in this age- 
group and the incidence rate estimate should be zero. The next step is to 
assess the significance of the factor PLAC; to this end a model containing only 
the factor age is fitted to the data and the corresponding increase in deviance 
evaluated 

? 

? $fit -plac $ 

scaled deviance = 80.781 (change = +12.58) at cycle 8 

d.f. = 65 (change = 1-5) 

This calculation confirms that the incidence differs in the various cantons of 
CGte d'Or. It is then possible to test whether this difference is mainly between 
the town of Dijon and the other cantons : a dummy variable is created which 
takes on the value 0 for Dijon and I for the other cantons; the best way to 
do this is to use the logical functions which are available in GLIM. 

? $cal other=(plac > 1) $fit age+other $disp e $ 

scaled deviance = 71.663 at cycle 8 

d.f. = 64 

estimate s.e. parameter 

estimate parameter 

1 
AGE(2) 
AG E(3) 
AGE(4) 
AG E (5) 
AGE (6) 
AG E (7) 
AGE (8) 
AGE (9) 
AGE(10) 
AGE(I1) 
AGE(12) 
AGE(13) 
OTHE 
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scale parameter taken as 1.000 

The deviance is not increased significantly (71.66 - 68.20=3.46 for 4 degrees 
of freedom); this observation leads us to accept the homogeneity of incidence 
in the cantons other than Dijon. The relative rate for these regions compared 
with Dijon is estimated as exp(-0.37)=0.69; a confidence interval may be ob- 
tained as exp(-0.37f 1.96*0.1214). 
The relationship between age and incidence rate can be modelled with a po- 
lynomial in order to describe the data with a more parsimonious model. The 
variable age is first centred, then the polynomial degree to be used is roughly 
evaluated. 

scaled deviance 102.96 at cycle 4 

d.f. = 75 

scaled deviance = 102.96 (change = 0.00) at cycle 4 

d.f. = 75 (change = 0) 

scaled deviance = 91.70 (change = -11.261) at cycle 5 

d.f. = 74 (change = -1) 

scaled deviance = 88.98 (change = -2.73) at cycle 5 

d.f. = 73 (change = -1) 

scaled deviance = 87.58 (change = -1.40) at cycle 5 

d.f. = 72 (change = -1) 

1 A third degree polynomial provides an acceptable model.. . . . .. 1 

scaled deviance = 88.98 (change = +1.40) at cycle 5 

d.f. = 73 (change = +1) 

estimate s.e. parameter 

1 -8.91 6 0.1818 1 
2 0.6368 0.05715 X 
3 -0.3677 0.1213 OTHE 
4 0.001819 0.01794 X2 
5 -0.004087 0.002379 X3 

scale parameter taken as 1.000 

....... which provides practically the same estimate of the relative rate as that 
obtained when age was modelled as a factor, 

We shall consider as a last example the data from table 3.15 giving the trends 
in mortality from lung cancer among young adults in France Scotland and the USA. 
These data were stored in the computer as a file (TREND.DAT) with 18 records 
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each containing two numbers, the number of cases (k) and the person-years in 
thousands (m). The records are sorted by country (USA, Scotland, France) and by 
time of death (1955 to 1984 by 6 groups of five years). The calculations which have 
been described on page ... and in table 3.16 are reproduced below in detail. 

GLlM 

GLlM 3.77 update 2 (copyright)l985 Royal Statistical Society, London 

1 Fitting a model for the USA. 

File name ? trend.dat 

Create the variable time period (t). 

Specify a model for a Poisson regression 
-- -- 

? $yvar k $err p $cal zero=%log(m) $offset zero $ 

? $cal t2=t*t $fit t+t2 $disp e $ 

scaled deviance = 14.094 at cycle 3 

d.f. = 3 

estimate s.e. parameter 

scale parameter taken as 1.000 

Wald's test based o n  the standard error of the  T 2  coef f ic ient  
(-0.0529910.00231 0=-22.9) shows that the quadratic term is strongly signifi- 
cant. The same evaluation can be made using the likelihood ratio test: 

scaled deviance = 553.06 (change = +539.0) at cycle 3 

d.f. = 4 (change = + I )  
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estimate s.e. parameter 

scale parameter taken as 1.000 

We shall now fit the same model expression using a different error distribution 
in considering that the logarithm of the incidence rate is normally distributed 
with a mean equal to the proposed expression and a variance proportional to 
the observed number of cases in each unit. 

? $cal y=%log(k/m) $yvar y $err n $cal w=k $weight w 

- model changed 

/ Do not forget to set the origin back to zero. After having done so (offset), fit 1 
/ the quadratic model with the method of weighted least sqares. 1 

deviance = 14.042 

estimate s.e. parameter 

scale parameter taken as 4.681 

I Fit the linear model by the same method. I 
deviance = 547.19 (change = +533.1) 

d.f. = 4 (change = +1) 

estimate s.e. parameter 

scale parameter taken as 136.8 

Note the value of the standard error of the T coefficient, obtained when fitting 
this model by least squares and compare it with the same coefficient in the 
linear model fitted by Poisson regression. 

- 

Fitting a model for Scotland. 
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The method of least squares will be applied first, since it is the model which 
is activated. 

- change to data affects model 

Do not forget to change the values stored in w before fitting .... 

- change to data affects model 

deviance = 4.011 7 

estimate s.e. parameter 

scale parameter taken as 1.337 

Note that the scale parameter is close to one and that the coefficient of the 
quadratic term is strongly significant, as confirmed by the calculation reported 
below, which is based on the Poisson distribution : 

? $err p $yvar k $cal zero= %log(m) $offset zero $weight 

- model changed 

$WE1 ? 

This last directive eliminates the weighting, which is irrelevant in the Poisson 
regression. 

scaled deviance = 4.0565 at cycle 3 

estimate s.e. parameter 
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scale parameter taken as 1.000 

scaled deviance = 15.495 (change = +11.44) at cycle 3 

d.f. = 4 (change = + I )  

estimate s.e. parameter 

scale parameter taken as 1.000 

Fitting a model for France. 

? $data k m $dinput 1 

- change to data affects model 

? $cal zero=%log(m) $fit t $disp e $ 

scaled deviance = 14.875 at cycle 3 

d.f. = 4 

estimate s.e. parameter 

scale parameter taken as 1.000 

? $fit +t2 $ 

scaled deviance = 6.4909 (change = -8.384) at cycle 3 

d.f. = 3 (change = -1) 

estimate s.e. parameter 
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scale parameter taken as 1.000 

I Now apply the least squares method : ---T 
- - model changed 

? $yvar y $fit t $disp e $ 
- - model changed 

deviance = 15.015 

d.f. = 4 

estimate s.e. parameter 

scale parameter taken as 3.754 

? $fit +t2 $ 

deviance = 6.5056 (change = -8.509) 

d.f. = 3 (change = -1) 

? $disp e $ 

estimate s.e. parameter 

scale parameter taken as 2.169 

Note that the reduction in deviance is identical for the two error models; How- 
ever, the standard error of the coefficient of the quadratic term is greater in 
this second situation where the lack of fit is taken into consideration in the 
estimation of 0*. 

This brief description of the capabilities of GLIM for carrying out calculation in 
descriptive epidemiology may be supplemented by references [36] and [37] of Chap- 
ter 2. A new release of this software is now available and details can be found in : 

Francis B J, Green M and Payne C P (eds) The GLIM System : Release 4 
Manual, Oxford University Press, Oxford. 
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Log-linear, 90, 200 
logistic, 97 
multiplicative, 30, 73, 262 
multistage, 30 

Mortality 
rate, 11, 49 
comparative figure, 59 

Multiple comparison, 90, 134 
Multiple correlation, 159 
Multiplicative model, 30, 73, 262 
Multistage model, 30, 

Nearest neighbour, 129 
Negative binomial distribution, 136 
Net probability, 13, 66 
Net survival, 43, 229 
Number at risk, 220 
Numerator, 5, 49 

Occupational exposure, 155, 162, 165 
Odds ratio, 97 
Open group, 22 

Partial correlation, 161 
Partial crude probability, 35 
Person-years, 5, 49 
PIR see Proportional incidence ratio 
Poisson distribution, 20, 64 
Poisson regression, 91, 180, 284 
Polynomial regression, 11 4, 180 
Population 

estimates, 50, 191 
standard, 58 

Potential years of life lost, 69 
Prevalence, 37 

age-specific, 39 
Probability 

conditional, 23, 219, 220 
crude, 13, 66 
of death, annual, 28 
of developing cancer, 66 
net, 13, 66 
partial crude, 35 

Proportional hazards, 242, 260 

Proportional incidence ratio, 96 
Proportional incidence (mortality) methods, 

95 

Rank tests, 247 
Rate 

age-specific, 21, 49 
annual, 6, 50 
background hazard rate, 261 
cumulative, 13, 60 

standard error, 62 
incidence, 11, 49 

standard error, 52 
instantaneous, 6, 12 
mortality, 11, 49 
of change, 179 
relative, 73, 253, 261 
standardized, 56 
truncated, 57, 99 

Rate ratio see Relative rate 
Regression 

linear, 143, 158 
Poisson, 91, 180, 284 
polynomial, 11 4, 180 
weighted, 147 

Relative frequency, 95 
Relative rate (risk), 73, 253, 261 
Relative survival 43, 231, 242 
Religious groups 9, 167 
Risk 

cumulative, 14, 67 
clusters, 122 
competing, 34 
relative, 73, 253, 261 

Score function, 30 
Score test, 30, 267 
Significance tests 

for comparing two forces of incidence, 
77 

for comparing two SIRS, 102 
for comparing two standardized rates, 

7 5 
for comparing two survival probabi- 

lities, 246 
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for comparing survival curves, 248, 
255 

for comparing relative survival rates, 
273 

for homogeneity of age-specific rate 
ratios, 82 

for homogeneity of several forces of in- 
cidence, 87 

for spatial clustering, 122 
SIR see Standardized incidence ratio 
Space-time clustering, 122, 131 
Spatial aggregation, 130 

see also Cluster 
Spatial autocorrelation, 120 
Standard error 

incidence rate, 52 
cumulative rate, 62 
survival rate, 222 

Standard population, 58 
Standardization 

direct, 56 
indirect, 62, 99 

Standardized incidence ratio, 63, 99 
confidence interval, 65 
significance tests, 102 

Standardized rates, 56 
significance tests, 75 

Stratification 
for the Cox model, 270 
for comparing survival rates, 255 

Survival 
analysis, 21 3 
cause-specific, 230 
expected, 232 
probability, 23, 21 6 

confidence interval, 224 
significance tests, 246 
standard error, 222 

net, 43, 229 
rate, 213 
relative, 43, 231 ; 242 

confidence interval, 243 
significance tests, 273 
standard error, 234 

time, 225 
Survivor function, 27, 281 

Tests 
homogeneity, 82, 87, 94, 119, 127 
likelihood ratio test, 33, 266 
Logrank test, 248 
rank tests, 247 
score test, 30, 267 
Wald test, 33, 267 
see also Significance tests and Trend 

test 
Time at risk, 4 
Time-space clustering, 131 
Time trend, 170 
Tobacco consumption, 8, 142 
Trend, time, 170 
Trend test 

for age-specific rate ratios, 82 
for detecting a risk gradient, 90 
for comparing survival curves, 251 

Truncated rates, 57, 99 

Urban-rural differences, 11, 90 

Wald test, 33, 267 
Weibull distribution, 29 
Weighted regression, 147 
Will Rogers, 272 
Withdrawal, 22, 217 

Years of life lost, 69 


