
Chapter 1 

Fundamental concepts 

Introduction 

It has long been acknowledged that descriptive epidemiology is primarily 
characterized by its exploratory goals. It is seen as a first approach aimed at defining 
the scope of a research problem, at best generating hypotheses without aspiring to 
verify them. When descriptive epidemiology is seen in this light, the fact that no 
important developments in methodology had taken place until recently is less sur- 
prising. Its basic techniques were borrowed from demography: mortality and mor- 
bidity rates were seen as the key descriptive tools, with their comparison and 
standardization being the only methodological sophistication required. Statistical var- 
iability was rarely taken into account, sometimes producing serious errors in inter- 
pretation. 

Several factors seem to have inspired the development of the techniques which 
make up modern descriptive epidemiology. The first is probably the proliferation and 
improvement of epidemiological data. In the area of cancer research these develop- 
ments have undoubtedly been greater for incidence data than for mortality data. 
Cancer registries have multiplied and worked to standardize their definitions and 
registration procedures. The collection of demographic data, which provides the de- 
nominators of rates, has also seen a marked improvement, notably in the frequency 
of their publication. 

The accumulation of incidence and mortality data over time has led to a focus 
on the analysis of time series. New techniques, mainly based on mathematical mod- 
elling, have been developed to distinguish between the different factors that underlie 
changes in rates. These methods have had both explanatory as well as predictive 
goals. 

Descriptive epidemiology have also benefited from a more rigorous definition 
of its concepts, and from a more satisfactory incorporation in its methodology of the 
basic ideas developed in the context of stochastic process analysis. Appropriate 
mathematical and statistical methods have been developed, largely due to the con- 
tribution of epidemiologists. These advances follow a similar development of statis- 
tical methods in other areas of medicine. It is significant that published reports of 
epidemiological investigations now have a readership which includes specialists from 
other areas of research. The new approaches have led to better solutions to the 
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problems posed, in particular through more appropriate definition of hypotheses and 
the construction of suitable models for their evaluation. 

The integration into descriptive epidemiology of spatial analysis and a more 
critical consideration of ecological studies are two examples of the increasing inter- 
action between the improvement in data collection and the need for more sophisti- 
cated methods. Thus, the collection of increasingly detailed morbidity and mortality 
data, and the creation of data systems which allow cases and deaths to be located 
in time and space, have provided a basis for evaluating real or supposed en- 
vironmental hazards, requiring in turn the development of appropriate statistical 
methods. 

In the same way, when suspected exposures are easier to define at a group 
level rather than at an individual level, it is the role of descriptive epidemiology to 
assess the relationship between these exposures and the risk of cancer. Techniques 
to better control for potential confounding factors have thus been added to the clas- 
sical methods of geographical correlation. 

Traditionally, epidemiology is defined as the study of the distribution of diseases 
over time and place and according to individual characteristics. For the purpose of 
this book, descriptive epidemiology can be defined by replacing this last term with 
'group characteristics'. This definition encompasses the intended contribution of de- 
scriptive epidemiology to etiologic research, as well as emphasising that data known 
only at a group level are the basis of the discipline. Inference is made from the 
group to the individual, in contrast to analytical epidemiology, in which risk is studied 
in groups formed a posteriori from data collected at an individual level. Throughout 
this text, it will be seen that the formation of groups on which the analysis is ulti- 
mately based is one of the crucial problems confronting descriptive epidemiology. 

Apart from the methods of data collection, both for defining populations at risk 
and identifying risk factors, descriptive epidemiology utilizes exactly the same 
methodology as that of cohort studies in analytical epidemiology. Moreover, it will 
be seen that the concepts used are exactly the same. This resemblance is especially 
obvious when descriptive epidemiology has the task of describing the survival of 
cancer patients according to group characteristics. In this situation, data are avail- 
able for individuals and the distinction between analytical and descriptive epidemi- 
ology becomes somewhat artificial. Survival studies have progressively found their 
place as an activity appropriate to cancer registries, and their goals are mainly 
descriptive in this context. Presentation of the methods of incidence analysis and 
then of survival analysis in the same text is in any case justified both mathematically 
and statistically. These two forms of analysis both concern the occurrence of an 
event (diagnosis or death respectively) in the presence of competing risks which 
lead to incomplete observation (also known as censoring). The estimation and mod- 
elling of the probability of occurrence of such an event leads to analytical methods 
requiring mathematical concepts rarely taught in medical schools. 

In this first chapter, our goal will be primarily to convince the i-eaJer of the 
need for such ideas, then to present them as simply as possible through examples, 
while also providing the appropriate theoretical background. The subsequent chap- 
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ters offer a more user-oriented description of the methods, so that the reader can 
carry out the calculations and tests presented. It should be emphasized that the 
reader who does not wish to become involved in the theoretical-developments of 
the first chapter can by-pass them, without compromising an understanding of the 
rest of the book. 

Basic concepts of descriptive epidemiology 

Time and the concept of incidence 

While no-one would dispute that cancer incidence varies with time, there i s  
less agreement over the causes of its evolution. Public opinion readily seizes upon 
the idea that the disease is a modern-day plague. Some people maintain that the 
increase in the incidence of cancer is simply due to the ageing of Western popula- 
tions and to the fact that the other diseases from which people used to die are 
being controlled. On the other hand, there are others who will state that it is a 
curse, linked to atmospheric pollution, nuclear energy or the use of new chemicals. 
Epidemiology allows us to establish that, in any given age group, the frequency of 
cancer (apart from those associated with tobacco) is remaining almost constant or, 
in some countries, is even decreasing (see Chapter 3, page 174). 

These contradictory statements may seem to be an illustration of the saying 
that statistics are a sophisticated form of lying. In fact, they result from the difficulty 
of differentiating between the effects of many variables which are acting simul- 
taneously on the phenomenon being studied: at the end of the twentieth century, 
the 'educated layman' does not necessarily have available the tools needed to make 
an objective analysis of the effects of these variables. The first step towards a n  
understanding of the problem is an accurate definition of the concept of incidence. 

In epidemiology as in demography, time can be located by two indices: date 
and age. Cancer incidence can only be described properly by taking into account 
both of the indices which play parallel roles and are in fact measures of time with 
respect to two different origins. 

Figure 1 . I  (the Lexis diagram) illustrates this duality: a segment of oblique line 
in this graph represents the observable fraction of an individual's life, that is, the 
interval of time and age during which an event of interest (e-g., incidence of cancer 
or complications of diabetes or AIDS in a seropositive patient) can occur. The left 
extremity of the segment is the start of observation: it is for example the date of 
birth in the descriptive study of cancer incidence, or the date of first employment 
in an industrial cohort aimed at measuring the risk of a suspected exposure. It could 
also be the date of the start of treatment in a study designed to measure the risk 
of relapse after illness or the chance of survival after the occurrence of a serious 
disease. The other extremity is the end of observation, characterized by the date 
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and age at which either the event under study took place or the individual stopped 
being observed. This second possibility can be due to death (when we are interested 
in the incidence of some other event), loss to follow-up o f  the subject or the end 
of the study. In these three situations, it is said that the observation is censored 
because the event had not yet taken place at the end of the observation period. It 
is only known that the time necessary for the event to happen to the individual is 
greater than the duration of the observation period. 

In some studies it is the death from a given disease which is the event of 
interest, either because incidence data are not available or because the probability 
of surviving from this diseases is the subject of the analysis. The censored obser- 
vations comes in this context from subjects who died from other causes, who were 
lost to follow-up or for whom the diagnostic of the disease was too recent. 

Depending on the point of view adopted, we can look at different segments of 
an individual's trajectory on the Lexis diagram. In a study of survival, the origin of 
the time scale is most often the date of diagnosis or of first treatment. The duration 
of time at risk of death is therefore measured as the time elapsed from this date, 
age being considered as an additional prognostic variable. Conversely, in an in- 
dustrial cohort study, the basic measure of time is usually age, the time since the 
first entry being taken as an explanatory covariate. But, in both situations, the time 

" 
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Figure 1.1 The Lexis diagram 
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origin is specific to each individual in the study; for a correct statistical analysis, we 
must 'synchronize the clocks' governing each individual's life events. 

The aim of the epidemiologist is to draw conclusions about the different levels 
of risk to which groups of individuals are subjected. This requires well defined meas- 
ures of risk in order to make objective comparisons between one situation and the 
next, or between one country and another. These measures might take the form of 
the probability of developing cancer or of dying from it, or they might be the survival 
rate or the probability of relapse. In all cases, the measures are based on a ratio 
between the number of observed events (the numerator) and the number of individu- 
als at risk within a given period of time (the denominator). Alternative choices of 
the latter can lead to widely divergent results. 

A few simple analogies will show how important the problem is. For example, 
if we want to compare the safety of different types of transport, should we measure 
the number of passenger deaths per kilometre travelled, per passenger x kilometre, 
or per passenger x time travelled? It is obvious that the definition of risk depends 
on the method of calculation. To compare the incidence of cancer in two cohorts, 
should we base our results on the observed proportion of cancer in each group, or 
should we take into account the number of years for which each individual was 
actually observed and at risk of developing cancer? If the two cohorts have the 
same average age and have been observed for the same time period and if the 
only reason for stopping observation was the onset of cancer (or, more generally, 
the event under study), the proportion is a good index of comparison. If, as more 
often happens, other events prematurely bring some individual observations to a n  
end and if, in addition, these events do not occur in the same way in the two cohorts, 
it is likely that more cancers will be seen in the group which has, on average, been 
observed for longer. Conversely, if we take the duration of employment as an ap- 
proximate measure of exposure in a study of lung cancer mortality in an  asbestos 
mine, we should be aware that remaining employed for a given duration means 
having survived this number of years. Thus, if we want to assess the risk of people 
employed for more than twenty years, only the period beginning after twenty years 
of employment and the corresponding cases of cancer would be taken into account 
for the evaluation of this risk. 

These examples lead to the following principles: 

the calculation of the denominator should take into account the number of years 
of observation relevant to the proposed study; it should take into account the con- 
tinuous modification of the population actually 'at risk' throughout the duration of 
the study. By definition, a subject is no longer at risk after the occurrence of the 
event or after the censoring time.' 

incidence rate should be defined as the number of events per person-year, that 
is, per person and per year of observation relevant to the risk being analysed. 

Note however that cancer registries record second primary cancers. Strictly speaking, the 
period at risk starts in this situation immediately after the first tumour as if a new subject was added 
to the population at risk at this point. 
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A given period of observation of a subject will contribute to the person years in 
the denominator only if this subject would have been counted in the numerator had 
he experienced the event being studied over that period of-time. 

Here it is appropriate to introduce the instantaneous rate, a concept which is 
crucial to epidemiology. Intuitively, this parameter measures the probability that an 
individual in a defined population becomes a victim of the event at a specified time 
point, given that the individual is still living and under observation at that time. In 
the same way that the speed at a given moment can be approximated by an average 
speed, so an instantaneous rate can be approximated by an average rate. In 
Figure 1.1, the squared cell shows individuals who were 50 to 55 years old between 
the years 1960 and 1965, that is, individuals who were born between 1905 and 
1915. If the asterisk represents the end of observation due to the occurrence of 
cancer and the point represents the termination of observation for all other reasons, 
the risk of developing cancer between 50 and 55 years of age for individuals born 
around 1910 is then measured by the number of asterisks observed in the square 
divided by the number of years accumulated in the same space by the individuals 
born between 1905 and 1915. Only individuals born in 1910 will be able to accu- 
mulate five years of observation; the further the birth date is from this date, in  either 
direction, the smaller the individual's contribution to the calculation of the denomi- 
nator in this square. The resulting ratio, generally called the average annual rate of 
cancer between 50 and 55 years for the generation born around 1910, or else the 
specific rate for the age group 50-55 years, is an approximation to the instantaneous 
rate. 

Figure 1.2 shows the evolution with age of lung cancer mortality in France; it 
can be seen that, for successive generations, those born more recently have 
suffered the highest lung cancer mortality. In such a situation, the cross-sectional 
curve obtained by plotting age-specific rates at a given time point (for example, the 
curve obtained by joining the points corresponding to the period 1950-1954) would 
be an incorrect description of the phenomenon if it was interpreted as a repre- 
sentation of the effect of age. Actually, the observed decrease in risk for higher 
ages corresponds to a generation effect: it has been shown that the lung cancer 
risk in the older French population is lower only because the corresponding genera- 
tion has had less exposure to tobacco. The phenomenon is clearly seen in 
Figure 1.3, where the evolution of mortality from cancers of the lung, the oeso- 
phagus and the larynx in France is shown for successive generations. The lung 
cancer risk increases regularly with date of birth, whereas the risk of cancers of the 
oesophagus and larynx, which are much more dependent on alcohol consumption, 
have both been smaller for those generations subjected to rationing related to the 
second world war. 

Group characteristics and place 

By revealing the large variability in cancer incidence throughout the world, 
descriptive epidemiology has shown that the prevention of cancer is, at least par- 
tially, possible; differences observed, particularly within the same ethnic groups, have 
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Figure 1.3 Relative risk of death from lung, larynx and 
oesophageal cancers for successive male birth cohorts 
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unambiguously established that environmental factors play a determining role in the 
development of cancer. The most striking example is probably that of oesophageal 
cancer for which the risk is 300 times more elevated in the-north-east of Iran than 
it is in Nigeria. The reasons for this difference have only been partially identified, 
and it is quite likely that multiple factors are responsible [ I ] .  In Europe, the risks in 
the regions most affected by oesophageal cancer are about a factor of 30 greater 
than in the regions least affected; the incidence of this cancer is highest, where the 
highest average alcohol consumption is reported, notably in the west of France. 

Given this large variability, it is extremely tempting to try to establish causal 
relationships by analysing the correlation between the variation of incidence and 
environmental factors in different populations, and in fact many such analyses have 
been attempted. On the whole, however, these attempts have been rather un- 
successful: on an international scale, no substantial correlation has been demon- 
strated between oesophageal cancer and alcohol consumption. Undoubtedly, one of 
the reasons for this failure is that cancer is a multifactorial disease and that the 
determining factors need not be the same in two regions with very different cultural 
traditions. Another reason is that the degree of exposure to the factor can be  dis- 
tributed unequally among the individuals in the regions being compared, even if the 
average rate of exposure in the regions is similar. For example, it is conceivable 
that a country with a minority of heavy drinkers and a majority of teetotallers would 
report more cancer than another area with more widespread consumption at a lower 
level. 

An absence of correlation can also be observed for less obvious methodological 
reasons. For example, studies on individuals show that tobacco is responsible for 
85% of the lung cancer observed in populations where smoking is widespread [ 2 ] .  
However, if we restrict ourselves to Europe, a group of seventeen countries that is 
reasonably homogeneous for other factors, the correlation for the period 1970-74 
between lung cancer risk (cumulative up to 80 years) and the consumption of cig- 
arettes for the same period is only 0.56. A correlation of this size means that the 
variation in the consumption of tobacco explains barely a third of the variation in 
mortality, which is hardly compatible with the above number of 85%. 

In fact, the correlation between tobacco consumption and lung cancer is slightly 
more impressive if we look at it correctly [3]. The first mistake in the preceding 
discussion is to have considered the cumulative risk cross-sectionally, thereby 
adding together risks over generations that had radically different tobacco exposure. 
The second mistake is to have considered the consumption of tobacco contem- 
poraneously with the mortality when the latent period between exposure and the 
occurrence of cancer should have been taken into account. Comparing the cumu- 
lative risk for lung cancer for the seventeen countries between the ages of 35 and 
50 years for people born around 1925, and cigarette consumption between 1955 
and 1964 (Table 1.1 and Figure 3.9), we obtain a correlation between the two vari- 
ables equal to 0.75, a much more reasonable value for data limited by substantial 
imprecision. 

Conversely, these remarks hold true when a factor is correlated positively with 
a disease on a geographical level; the correlation is not always found in studies 
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Table 1.1 National cigarette sales and mortality from lung cancer 
in selected European countries 

Cumulative risk from 35 to 50 years Number (b) of cigarettes 
Generation born in 1925 (a) (Rank) - 1955-64 

Portugal 
Sweden 
Norway 
Spain 
Germany (') 
France 
Iceland (d) 

Greece 
Austria 
Switzerland 
Denmark 
Netherlands 
Finland 
Ireland 
Italy 
Belgium 
UK 

(a) Average risk (per thousand) for both sexes combined; source: WHO (WHO Mortality Data Bank). 
(b) Average annual cigarette sales per adult above 15 years (1955-1964) [8]. 
(') Former Federal Republic of Germany. 
(d) Risk estimated from 14 cases, and therefore of limited reliability. 

involving individuals. This situation can be illustrated by the correlation found be- 
tween beer consumption and mortality from cancer of the rectum [4,5] and also the 
correlation between consumption of fat and breast cancer mortality [ 6 ,7 ] .  

A technical presentation of this approach and other examples will be given in 
Chapter 3 (see page 141), where the usefulness of this methodology will be dis- 
cussed. The above examples were presented to show that the interpretation of de- 
scriptive data requires the same attention as data coming from an analytical study. 
Only a combined analysis of results obtained at a group and an individual level will 
provide the correct scientific interpretation. 

Epidemiology is a science of observation, which means that it is limited to 
making use of natural events which simulate an experimental design. Seen from 
this point of view, studies of migrants and religious groups have been extremely 
successful. Table 1.2 provides a particularly attractive example based on the inci- 
dence of certain cancers observed in various lsraeli communities and in selected 
western populations. The figures show that, for the given cancer sites, the incidences 
observed in lsrael are consistently lower than those observed in the western coun- 
tries used as reference, but their basic interest lies in the differences that they 
reveal between the lsraeli communities. In fact, Jewish people not born in Israel 
have a risk half way between the risk of their country of origin and that of their 
adopted country. This tends to confirm that the observed change in risk was linked 
to a change in environment. 
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Table 1.2 Cancer and migration (a): lncidence rates (b) for selected cancer s i t e s  
in lsrael (1972-76), in Geneva (1973-77) and in Connecticut, USA (1973-77) 

Population Males Females 

All cancers Respiratory Digestive All cancers Respiratory Digestive 
except skin ICD8: ICD8: except skin ICD8: ICD8: 

160-1 62 150-1 57 160-1 62 1 50-1 57 

Non-Jews born 
in Israel 11 7.3 35.7 22.9 62.8 12.3 9.0 

Jews born 
in Africa 
or in Asia 167.1 32.0 42.2 137.3 30.4 18.5 

Jews born 
in Israel 183.7 22.9 51.3 187.1 35.5 30.1 

Jews born 
in Europe 
or in America 21 1.4 34.9 66.7 226.6 55.2 32.3 

Connecticut 303.0 69.7 80.4 257.3 54.3 43.6 
Geneva 328.6 81.2 88.8 225.2 46.3 42.5 

( a )  Source: Cancer lncidence in Five Continents [9]. 
(b) Rates standardized on world population. 

Table 1.3 Standardized (a) incidence rates (T) and standardized incidence ratio (SIR)  (b) 
for selected cancer s i tes  in Utah, U S A  (1967-1975) (') 

Mormons Non-Mormons 

Urban Rural Urban Rural 

Males 

Tobacco-related sites (d) 

Lung (ICD8: 162) 

Females 

Breast 

Uterus 
Cervix, invasive 

Cervix, in situ 

Corpus 

T 
SIR 
T 

SIR 

T 
SIR 

T 
SIR 
T 

SIR 
T 

SIR 

(a) Standardized on 1970 US population, * significantly different from the urban rate. 
(b) TNCS Standard (Third National Cancer Survey), - significantly lower than the national rate, + significantly 
higher than the national rate, -- data not available. 
(') Source: Utah Cancer Registry (1967-1975) [ lo ] .  
(d) 1CD8: 140 (lip), 143-150 (buccal cavity, pharynx and esophagus), 161 (larynx), 162 (lung), 188 (bladder). 
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Table 1.3 reproduces some results from the Utah cancer registry. A significant 
proportion of the population comprises Mormons, who do not consume alcohol or 
tobacco and who individually have less sexual partners and on average more child- 
ren than the rest of the population. Taken together, this behaviour has noticeable 
consequences on the incidence of cancer at several sites, as shown in the Table. 
As these figures were not derived from a controlled experiment, it is likely that the 
Mormon population group differs from the non-Mormon group for other characteristics 
which can be associated with cancer development. Nevertheless, it is noteworthy 
that the classic excess of incidence in urban populations, seen here in the non-Mor- 
mon group, disappears in the Mormon community. The urban-rural difference is thus 
very likely to be due to differences in individual behaviour between urban and rural 
inhabitants, rather than being explained by one of the urban risk factors (such as 
pollution) usually invoked as explanatory. 

In practice, the possibility of establishing relationships such as those which we  
have just described largely depends on the use of the appropriate statistical 
methodology. In particular, the methodology should provide the means of evaluating 
the variability attributable only to chance, so that it can be taken into account i n  
the interpretation of observed differences. The remainder of this chapter will b e  
devoted to a discussion of mathematical concepts which are the basis of the ana- 
lytical methods. A discussion of practical applications will be kept for the subsequent 
chapters. 

Statistical concepts for the analysis of incidence data 

Formal definition of the incidence rate 

We have seen above that the identification of factors favouring or causing the 
occurrence of a disease or a death requires the measurement of the risk of develop- 
ing the event. In other words, we need an unbiased estimate of the probability that 
an individual, in a given environment, might develop the event under study. Besides 
the factors under study, this probability depends on temporal variables such as age, 
in incidence and mortality studies, and duration of observation in survival studies. 
The mathematical concept which is fundamental to risk and survival assessment is 
the distribution of the time separating the beginning of observation from the occur- 
rence of the event. From a knowledge of this distribution we can measure, for ex- 
ample, the risk of cancer before age t, or the risk of death t years after diagnosis. 
The date of the development of the event under study is often unknown because 
observation is interrupted before the event occurs; in this case it is necessary to 
use specific techniques to estimate the distribution from incomplete observations. 

As we noted previously, the period for which an individual is followed is the 
result of two competing mechanisms, which results in two different types of obser- 
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vation; one produces the event under study and the other includes all the other 
causes which might be responsible for terminating observation. Our aim is now to 
show how, by taking into account these two types of observati-on, we can reconstruct: 
the distribution that would have been seen if all observations had been completed. 

In this way people dying, for example from a cardiac disease, before age t will 
contribute to the calculation of the probability of having cancer before this age; 
similarly the follow-up of patients who were only diagnosed 1, 2, 3 or 4 years ago 
will contribute to the calculation of the survival probability at 5 years. 

The mathematical concept used for this reconstruction is the instantaneous 
rate, which was defined intuitively above. We now adopt a more formal approach, 
which will allow further mathematical developments. 

Let T denote the time period between the start and the end of observation for 
an individual, whether terminated by the end-point under study (for example, the 
occurrence of cancer) or by any other circumstance which might interrupt the fol- 
low-up. Furthermore, let 6 be the indicator function of the end-point: 6 = 1 when 
the event has taken place and 6 = 0 when the observation is censored. 

The following definitions characterize the random distribution of the couple of 
variables (T,6). Let 

R(t) = Prob (T < t) be the probability distribution of T 

S(t) = 1 - R(t) denote the probability that the subject is still under observation 
(surviving) at the time-point t without the event having taken place, 

pl = Prob (6 = 1) be the probability that the event take place and 

Rl(t) = Prob (T < t 1 6 = 1) be the conditional distribution of the event, that is the 
probability that the event takes place before the time t, given that it has taken place. 

Thus, the probability that the event occurs before the time t may be written 

n(t) = Prob (T < t, 6 = 1) = plRl(t). 

The probability that the event occurs on a given date, while the subject is still 
being followed-up, defines the force of incidence (or mortality) at this point in  time. 
The following expression, which is directly derived from this probability, will be re- 
ferred to as the instantaneous rate, 

1 
h(t)= lim - P r o b ( t < T < t + A t , 6 = 1  I T > t )  (1.1) 

A t 4 0  At 

It should be noted that h(t) is not, strictly speaking, a probability, but a proba- 
bility per unit of time, also known as a probability rate. Application of the rules of 
probability immediately gives 

1 PI Rl(t + At) - PI Rl(t) h(t)= lim - 
A t 4 0  At 1 - R(t) 
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The numerator is the probability that the event occurs at time t of the subject's 
follow-up; the denominator indicates that only the subjects who have been followed- 
up at least until t are taken into account. Furthermore, 

Rl(t + At) - Rl(t) 
h(t) S(t) = pl lim 

At = PI R'l(t) 
At+O 

where R'l(t) is defined as the conditional probability density of T, derivative of Rl(t). 

In this way we obtain the relationship between h(t), S(t) and the distribution 
function of T when the event occurs. The probability that the event occurs before 
time t can be written 

that is, 

In the situation where there are no censored observations, pl = 1 and 
Rl(t) = R(t); this would be the case for example in a study of mortality from all 
causes, if every individual in the cohort was under observation until death. In this 
situation, formula (1.3) leads to 

which is a differential equation with solution 

A(t) = - Log [SO)] and R(t) = 1 - e-"(') 

where 

When there are censored observations, the distribution function defined by 
formula (1.6) is in fact that which would govern the observations if they were all 
complete, that is, if none was censored. The probabilities generated by this distribu- 
tion are called net probabilities as opposed to crude probabilities defined by n(t) in  
formula (1.4). 

If T is age and if  the end-point is the occurrence of cancer, the following 
terminology is used: 

h(t) is the force of incidence, 

n(t) is the crude probability of developing cancer by age t, 

A(t) is the cumulative incidence rate at age t. 

The net probability of developing cancer by  age t, R(t) = 1 - e-"('), is a 
measure of cancer risk when there are no censored observations, that is, in the 
absence of mortality. Therefore, the net probability is not affected by the structure 
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of the mortality pattern in the population under study and it can be used to compare 
several populations. This measure of risk is known as cumulative risk; its properties, 
and methods for its calculation are presented in Chapter 2 -(page 66). 

If T is the interval between diagnosis and the end of follow-up, the censored 
observations are essentially those for which the diagnosis is too recent; in this case, 
~ ( t )  is of little interest. The net probability of survival given in formula (1.6) is usually 
the parameter of interest in survival analysis. 

Estimation of the instantaneous incidence rate 

Having established a framework in which incidence can be defined, we  must 
now consider methods for its calculation, or rather, for its estimation. The age- 
specific rates are usually calculated from the number of cases observed in the differ- 
ent age groups and from demographic statistics which enable the person-years of 
observation in each age group to be evaluated. Only the justification of the method 
will be given at this stage; the practical details will be left until Chapter 2. 

In the case of a cohort of limited size in which each individual history is known 
and stretches over a long time period, the estimation of the age-specific rate requires 
an exact calculation of the person-years of observation. The estimation would be 
straightforward if the rate were independent of time and if each individual observation 
were complete; this situation is described on page 15. When instead some obser- 
vations are censored, this fact has to be taken into account in the calculation (see 
page 18). The discussion will lead us to explain why the random fluctuations in the 
number of observed cases can be described by the Poisson distribution. 

An approximation useful in descriptive epidemiology 

We saw in formula (1.4) that the crude probability TC of developing cancer be- 
tween age to and age tl depends on the age-specific rate h(u) and the probability 
of surviving without cancer S(u), that is 

In principle, this probability can be easily estimated from data on a population 
with a given date of birth (a birth cohort). In this situation, the birth date is the 
natural time origin for all individuals in the cohort and the variable t is simply their 
age. Therefore, to estimate TC we simply divide the number of cases occurring be- 
tween age to and tl by the initial size of the cohort. However, the survival to age 
to will influence the result more than the value of the age-specific rate between to 
and tl. Thus, this probability is of no use in estimating h(u); in contrast, the condi- 
tional probability nc of having the disease between age to and tl, given that the 
subject was still at risk at age to, is obviously not influenced by survival up until 
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that age and is very little influenced by survival between to and tl i f  this interval is 
short. We can write 

If ti - to is sufficiently small so that h(u) can be considered constant in [to,tl] 
and S(u) roughly equal to S(to) in the interval, then 

zc =: %to) (f 1 - to) 

If on the other hand, nto denotes the number of subjects at risk at to, and k is 

the number of cases observed between to and tl, then the estimate of n, is 

and, therefore, the estimate of h is 

In other words, the instantaneous rate estimated at to is obtained by dividing 
the number of cases observed by the number m of person-years of observation for 
the cohort between to and tl, where m = nto (tl - to),that is 

Formula (1.8), which is simply the application of the definition of h in 
Formula (1 . I )  above, shows that the approximation will not be good if h(u) varies 
sharply within the interval [to, ti] or when a large number of subjects die from other 
causes or are lost to follow-up between to and tl; in this situation, the ratio S(u)/S(to) 
would become too far from unity for the approximation being valid. If there is a 
substantial proportion of censored observations, survival time must be explicitly 
taken into account for each of the nto individuals in the interval [to t,]. In other 

words, the number of person-years of observation appearing in the denominator of 
formula (1.9) must be calculated exactly, by taking into account the date of the end 
of follow-up for each individual. 

In order to understand the procedure to be used when individual observations 
are available, we shall first study the situation where h(u) remains constant and all 
observations are complete. Although this is rarely the case in practice, it will help 
us to understand the more complicated situation where observations may be cen- 
sored. This simple example will also allow the principle of the maximum likelihood 
estimation to be introduced. 

When individual observations are available and complete 

Let tl, t2... tn be the time elapsed between the start of the observation and 
the occurrence of the event under study for a random sample of n individuals subject 
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It is therefore possible to state that this difference will rarely (less than 1 in 
20 times) exceed the critical value 3.84 of a X2 with one degree of freedom. More 
generally using the result (1.15) allows the construction of a (1 - a)% confidence 
interval for ho 

In order to illustrate this method, 20 observations ti of an exponential distribu- 
tion with mean ho = 1 were simulated. The sum of the observations was 
20 

A 
ti = 19.36. Thus = 0.9680 and h = 1.033. Figure 1.4 shows the function 2L(h) in 

i =I 

the neighbourhood of nh and the 95% confidence interval obtained from the above 
method. The quadratic approximation of 2L(h) is also shown on the same graph as 

d~(nh) 
a dotted line. Since ----- - 

dh 
- 0, this approximation may be written according to Taylor's 

formula: 

From this expression, it can be seen that the horizontal line z:,~ units (3.84 

units if a = 0.05) below the maximum of the curve will intersect the dotted line at 
two points defined on the x-axis by: 

This interval provides an approximate (1 - a)% confidence interval for Lo. 

A 
It may in fact be shown that, when n is large, the probability distribution of 

h is normal with mean ho and variance equal to the quantity under the square root 
sign in formula (1.18). This result, which can be generalized to more complex sit- 
uations, will be used later in this book. In the simpler context of the exponential 
distribution presented here, the derivation of (1.13) gives: 

which is equal to -18.74 in the present numerical example. Then: 

which is equal to [0.58 ; 1.491 as shown in Figure 1.4. 

The above method provides a simple means of constructing a confidence in- 
terval for an exponential distribution using a sample of independent observations. 
The negative of the second derivative in (1.19) may be considered as a measure 
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Figure 1.4 Maximum likelihood estimate of a parameter (P) 
and its confidence intervals (CI) 

of the information provided by the sample with respect to the parameter h: the larger 
the information, the more precise the estimate will be. 

When individual observations are available but possibly censored 

Let us now consider a cohort in which n individuals undergo the same force 
of incidence h(u) and the same survival S(u) in the interval of observation 0, t (where 
the origin, 0, represents the beginning of observation, which may be, for example, 
the start of a five-year age interval for subjects born around the same time, see 
Lexis diagram Figure 1 . I ) .  Each individual observation is characterized by the value 
of two variables ti and 6i, where 6i = 1 if  the event has taken place at the time ti 
for individual i, and 6i = 0 if the event has not taken place at the time-point ti when 
individual i ceases to be under observation, either because he has not survived or 
because ti = t, i.e., the subject is alive at the end of observation. 
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If the function h(t) is defined by a finite number of parameters, these can be 
estimated from the sample of observations by choosing as previously values for the 
parameters which maximize their likelihood. Although the principle is the same, the 
situation becomes more complicated because of the presence of censored obser- 
vations. The random variable (T,6) does not have a probability density, therefore the 
density of complete observations (6i = 1 )  and that of censored observations (6 = 0) 
should be written separately. 

When = 1 ,  the contribution of the individual to the likelihood is given by formula 

( I  .4), 

P(ti < T < ti + dt, 6 = 1) h(ti) S(ti) dt 

When 6i = 0, the contribution is: 

P(ti < T < ti + dt, 6 = 0) = c(ti) S(ti) dt, 

where c(u) is the analogue of h(u) for censored observations. 

Thus, the likelihood may be written 

where S(t) is the probability of still being followed up at time t without the event 
having occurred. Writing this probability as a function of incidence and censoring 
rates, we have 

t 
where C(t) = c(u) du 

0 

If the mechanism which leads to censored observations is independent of in- 
cidence, c(t) does not depend on the parameters that determine h(t). To maximize 
V with respect to these parameters, we can therefore ignore the last two factors. 
In fact the contribution of a censored observation to the likelihood becomes the 
probability that T is greater than ti in the absence of risks other than the one under 
consideration. Therefore, the logarithm of the function to be maximized is 

L(h) = Log d t i )  h(til6i 
[i: ] 
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As an example, if h(t) is constant, this function becomes 

n 

L(h) =- h C ti + k LO@) = - hm + k Log (h) (1.23) 
i=l 

n n 

where k = C  Zi is the number of events observed in the interval [O,t], and m = ti 
i=l I 

is now the exact number of person-years of observation of the cohort within the 
interval [O,t]. The quantity m may also be written n f  where T is the mean duration 
of observation. 

The function reaches a maximum for 

The comparison of formulae (1.9), (1.14) and (1.24) shows that the principle 
governing the estimation of h is unique. The only variation is in the way in which 
the mean observation time is calculated. Furthermore, as above, the precision of 
A 
h obtained from the second derivative of the likelihood (1.23) is: 

At this point, it should be noted that the function to be maximized in formula 
(1.23) is, to within a constant, the logarithm of the likelihood of a single observation 
k having a Poisson distribution with parameter hm: 

where M(k,m) = - Log(k!) + k Log(m) refers to all the constant terms independent 
of h. 

Consequently, when estimating an instantaneous rate, although the numerator 
and denominator are both random variables, we are led to the same estimation 
procedure as if the numerator alone were random and followed a Poisson distribu- 
tion. Therefore, the precision of the estimate of the incidence (or mortality) rate is 
judged exclusively from the variability of the numerator described by a Poisson dis- 
tribution. We will use this equivalence throughout Chapter 2. The distribution of k 
is actually more complicated; however, there are no disadvantages and many bene- 
fits in making this approximation as long as the analytical methods are based on 
the likelihood. It is often stated that the true distribution of k is binomial; this would 
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only be the case if each of n individuals exposed to a given constant risk where 
observed for the same duration t defined a priori (see formula (1.9)). In this situation, 
the probability that the event (disease or death) occurs in a given-individual would 
be R(t) = 1 - e-" (see formula (1.10)) and the number of observed events would 
follow the binomial law with parameters n and R(t). Actually, when R(t) is small, this 
distribution is close to the Poisson distribution of parameter n ( l  - e-lt) = nht = Am. 
However, the argument for the binomial law has little weight in practice since the 
contribution of the individuals to person-years is random and varies widely from 
subject to subject. We shall therefore consider that the Poisson distribution is the 
best compromise to describe the random fluctuation of the number of cases and 
that it remains adequate as long as the number of events (k) is small compared to 
the number of individuals at risk (n). 

In practice, formula (1.24) is mainly used in cohort studies [ I l l ,  since its use 
requires knowing the time ti for each individual in the population under study. This 
information is available in a survival study and the terminology traditionally used in  
this context will be presented in the following sections. 

Conversely, in a descriptive study, individual dates are never available and, as 
we have previously stated, the denominators of the age-specific rates must be esti- 
mated from demographic data. The most simple method of calculation is to multiply, 
for each age group x, the number of individuals recorded at the mid-point of the 
case-registration interval, by the number of years in the interval. If the local statistical 
office provides annual population data, the calculation of the denominators can b e  
made in a way which is more precise. If we know the number of cases k, which 
arise in the age group x during the year t and the total number of individuals nx(t) 
in the age group on the 1st January of the years t and t + 1, then we can estimate 
h, by using the average of these two totals for the number of years lived during 
the year t by the individuals in the groups: 

When the cases have been recorded between 1 January of year t and 31 
December of year t + h, the sum of the annual average totals (the denominator of 
(1.26)) can be used to estimate the years lived for the period (see also page 27). 

Statistical concepts in survival analysis 

Follow-up studies 

In the preceding section, basic principles for the analysis of event occurrence 
in the presence of censoring were discussed. These principles were illustrated by 
the examples of incidence or mortality where time is explicitly accounted for only in  
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the form of age. In this context, the observation of a large number of individuals 
over a short period is the basis for the analysis, but it could also involve a cohort 
in which the individual follow-up extends over several decades; therefore the ageing 
of the individuals is the principal factor which modifies the instantaneous rate of 
occurrence of the event under study. In survival studies, on the other hand, the rate 
is suddenly modified by the occurrence of the disease and tends to return to normal 
as the time since diagnosis increases; age becomes simply a covariable which can 
if necessary be taken into account in comparisons of the survival of several groups. 
Despite the similarities of the underlying principles, each of these situations has 
generated its own terminology and sometimes requires specific approaches; those 
used in the framework of survival studies will be reviewed below. 

There are three fundamental notions on which the calculation of survival de- 
pends. The first is the group (or cohort), defined by a common event whose date 
marks the beginning of the observation period. In the context of cancer epidemiology, 
this date is usually the time when the risk of death is considered to be increased 
by the existence of the tumour, that is, the date of diagnosis. In clinical trials, as a 
general rule the point chosen is the date of randomization when the force of mortality 
should start to decrease as a result of treatment. 

The second notion is the follow-up of each of the individuals in the cohort, 
from the date of the common event which defines the cohort; this procedure enables 
the status (living or deceased) of cohort members to be ascertained. It ensures in 
particular that those for whom death has not been notified are still living and under 
observation. 

Finally, we require the follow-up time of each subject, defined as the time 
between the date of the common event characterizing the cohort and the date at 
which observation ends (the variable T of page 12). There are three ways in which 
observation of a subject ceases: by death; by the subject's being lost to follow-up, 
in which case the end of observation is considered to be the date of the last infor- 
mation on vital status; and by withdrawal from the follow-up of patients who have 
been diagnosed recently and therefore have a duration of observation shorter than 
the maximum time for which survival probability will be calculated. 

Any observation that terminates by death is a complete observation. All others 
are censored observations. Two further terms will be defined. A closed group con- 
sists of a group of individuals in which there are only complete observations. An 
open group is a group where observations may be incomplete. In practice, it is rare 
to find a closed group except in the artificial situation of the construction of a life 
table. In most real situations, the group is open because there are subjects either 
lost to follow-up or withdrawn from follow-up. 

When only one cause of mortality is taken into consideration, the group should 
also be treated as an open group. Observations which are interrupted by death from 
other causes can in fact be considered, under certain conditions, in the same way 
as other censored observations. 

A further possibility which would imply an open group is the entry into the 
study of subjects subsequent to the occurrence of the disease which characterizes 
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the cohort. Such patients are by definition those who have survived at least up to 
their date of entry; their inclusion in the cohort would clearly lead to an overesti- 
mation of survival if this possible bias is not appropriately taken into consideration. 
In fact, the situation of a study cohort that accepts such subjects after the original 
group has been defined is rather uncommon and will not be considered further here. 

In Chapter 4, we will discuss in detail different methods of follow-up which are 
being used at present in cancer registries. 

Survival probability 

If the group is closed, survival at time-point t can be calculated directly by the 
ratio between the total number of living subjects at time-point t and the original 
number of subjects, that is, nilno. In this context, the probability of survival has been 
termed direct survival probability. In this situation, survival can be estimated by the 
above ratio, and the statistical precision of this estimate can be assessed by noting 
that the numerator nt obeys a binomial probability distribution law with index no, 
size of the cohort, and parameter S(t), survival probability at time t. 

In practice, as previously explained, it is rare to find a closed group for several 
reasons. Diagnoses occur gradually over time and information brought to the study 
by cases which recently join the study is useful. Alternatively, there may be a number 
of subjects lost to the study whose observations could contribute to the final analysis. 
In these circumstances, survival probability can only be properly estimated by util- 
izing the idea of instantaneous rate. An alternative approach, especially appropriate 
in dealing with discrete data, is based on the concept of conditional probabilities of 
death. 

If s(t) is the conditional probability that the subject is living at date t + At, given 
that he or she was living at t, then the probability that this subject is living at date 
t + At is 

S(t + At) = S(t) s(t) 

Therefore, the calculation of survival depends on dividing the observation time 
into successive intervals (0, t,, t2... tk), and on making a separate calculation of the 
conditional probabilities s(ti) for each one of them. 

If we know for each interval [tj, ti+,] the number of subjects nt, who are at risk 

at the beginning of the interval t,, as well as the number of deaths dt occurring in 

the interval, we can estimate the values of s(tj) by 1 - dt, /nt,, and, from them, we 

can deduce S(t,+,) for successive intervals. Thus the probability of surviving until 
the end of the ith interval is 

with to = 0. 
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The actuarial method and the Kaplan-Meier method described in detail in Chap- 
ter 4 are both based on this principle. These two methods actually differ only in the 
definition of the intervals used for calculating s(tj). The choice of intervals is linked 
to the assumption that we make about the instantaneous death rate. For the actuarial 
method, we assume that the instantaneous rate is constant in the intervals which 
are defined a priori; in the second situation, no assumption is made about the in- 
stantaneous rate, which leads us to assume that it is zero in the interval between 
two deaths; the dates of death are then the end-points of the intervals (Kaplan-Meier 
method). 

Suppose that h is constant in the interval (t, t + At) and that dt deaths have 
been observed among nt subjects under observation at time t. Then the estimate 

A dt of the instantaneous rate is h = - where mt is the number of person-years of survival 
m t 

of the nt subjects in the interval (see (1.24)). If we assume that dt deceased in- 
dividuals and rt subjects with censored observations had been living on average for 
half of the interval, the estimate of h is 

where 

Therefore, we make the calculation as if Nt subjects were at risk at the begin- 
ning of the interval and that dt deaths were observed among them. The probability 
of death is then 

The above formula (1.31) which links rate and probability has been used in 
the context of the construction of the life table (see page 26). The assumption that 
h(t) = h remains constant in the interval should in fact imply 

A 
q t = l  -e- t ~ t  (1.32) 

The expressions (1.31) and (1.32) differ only by a term of the order of 
which is usually negligible. 

In the actuarial method, it is the number Nt (effective number at risk), which 
is used as the denominator to calculate the probability of death. Therefore, the 
survival probability is calculated at the end of each interval by the formula 
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and, furthermore, by using the approximation 

in each interval, the function is linear between t and t + At. 

The Kaplan-Meier method is much simpler as no assumption is made about h; 
the dates of death are now the only information available to estimate the survival 
probability and it cannot be excluded that h is zero in the interval between two 
deaths. Accordingly, survival probability is estimated as constant between two 
deaths. In other words, if all the dates of death are distinct and i f  ti and ti+l are the 
dates of two successive deaths, survival probability just after ti+l is 

where ni+l = ni - 1 - ri is the number of subjects remaining under observation just 
before ti+1 if ri observations are censored between ti and ti+l (inclusive); function S 
is now constant between ti and ti+l and changes its value at the time of each death. 
Furthermore, it can be shown that S is the maximum likelihood estimate of theoretical 
survival. In practice, if several deaths occur on the same date, we use the formula 

where di+, is the number of deaths observed on date ti+,, and n i + ~  = n. I - d. I - r. I- 

When censoring and death occur at the same time, it is considered that death occurs 
first; in other words, the censored observations at time ti+l are counted in the de- 
nominator ni+, . 

Note that, in the actuarial method, the exact dates of death or loss to follow-up 
are not necessarily needed in the calculation; in fact, it is sufficient to know the 
subjects' status at the limits of the intervals. In the Kaplan-Meier method, the date 
of each death needs to be known but not the dates when subjects are censored, 
as only the number of censored observations between two deaths plays a role in 
the calculation. 

Theoretically, the actuarial method could be improved if the exact dates of 
death and censoring were known; this information would enable the exact computa- 
tion of the person-years of observation mj in each interval [tj,tj+l] to be carried out. 
If the death rate is constant in each interval and if Atj is the length of the interval 
[tj, tj+l], survival would be estimated by the function 

The argument of the exponential is the estimate of the cumulative rate, which 
we defined above (see page 13); each dj/mj is the estimate of the instantaneous 
rate in the interval [tj, tj+,]. 
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If dj is the number of deaths from a given cause, all the methods estimate the 
net probability of survival from this cause, to the extent that risks which are related 
to other causes are independent. In practice, the possibility-of estimating this proba- 
bility presents several problems which will be discussed in Chapter 4; in particular, 
in the situation which arises when we are interested in deaths due to the disease 
under study among individuals diagnosed with the disease. The related concept of 
competing risk will be discussed on page 34 after we have introduced the necessary 
tools to construct a life table for a given population and discussed a few classical 
models for survival distributions (see page 29). 

The life table 

The life table is an example of calculating survival in a closed group. It de- 
scribes, for each sex, the survival of a fictitious cohort of new-borns from one birth- 
day to the next up until the complete extinction of the group, under the hypothesis 
that it is subject to the force of mortality of the population for which the table is 
constructed. As only one risk is operating, the group is closed, that is, subjects 
cannot leave the group for other reasons (such as departures or loss to follow-up); 
likewise, the group is closed to new entries (new arrivals) and the total number of 
subjects at each birthday is consequently the same as the number of surviving 
subjects at the preceding birthday minus the deaths which have occurred between 
the two birthdays. 

The construction of the table is based on mortality rates by age; the rates are 
calculated from counts of deaths and census results, which explains why most of 
the tables refer to a period around the census date. The annual mortality rate is in 
fact often calculated over several calendar years in order to avoid large random 
fluctuations. 

The table is built from a fictitious cohort whose initial total membership is ar- 
bitrarily fixed at 100 000 or 10 000 individuals (the radix of the table); it gives the 
number of surviving individuals at each birthday until a terminal age w at which, by 
convention, all members of the cohort have died (i.e., the number of cohort survivors 
at age w + 1 is zero). 

The following terms, referred to as biometric functions, describe the principal 
information which is tabulated on a life table (see Appendix 1) 

x (column 1) indicates -the beginning of the age interval, that is, birth and then 
successive birthdays. For most tables, x is used for males and y for females. 

6, (column 2) is the proportion of individuals who die during the interval out of 

those who were living at the beginning of this interval. This proportion is the estimate 
of the probability of dying in the interval; it is obtained from vital statistics as de- 
scribed in (1.42). In the Swiss table given in Appendix I, 425=0.001532 is the pro- 
portion of those who died between their 25th and 26th birthdays. 
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A A 
a The quantity px = 1 - q, is the estimate of the conditional probability of survival 
between x and x + 1 given that the subject was alive at age x (column 3). 

i\h, (column 4) is the estimate of the mortality rate (see page 12): 

4, (column 5) is the number of survivors at the xth birthday, when the mortality 
at each age is defined by the series q,. The series ex is called the survivor function. 
For example, the cohort of I 0 0  000 births still includes e25 = 97 155 survivors at the 
25th birthday; the probability of survival which corresponds to this age is equal to 
0.97155. As the group is closed, the probability of survival between x and x + h is  
given by the ratio of the number of survivors at these two birthdays: 

L, (which is not shown in the Table in Appendix 1) denotes the total number of 
years lived by the members of the cohort between x and x + 1 (the person-years), 
taking account of the fraction of years lived by those who died between the two 
birthdays. If the ages at death are spread uniformly over the interval, it may be 
written 

showing that L, is equal to the average number of individuals of age x. 

d, (column 6) is the number of deaths which occurred in the cohort between age 
x and age x + 1. 

0 
ex (column 7) is the life expectancy (or average number of remaining years of 

life) at the beginning of each age interval, that is, at each birthday x. (The O symbol 
above e indicates that deaths occurring at age x did not take place on the day of 
the xth birthday but, on average, between birthdays). Life expectancy is calculated 
by adding the remaining years of life of the ex survivors up to the terminal age of 
the table (age w) and by dividing this total by ex: 

From formula (1.38), we obtain 

where ex is obtained directly from the survivor function ex. 
From the table in Appendix 1, the life expectancy on the day of the 25th birth- 

day is 
0 
e 2 ~  = 49.28 years 
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From the preceding definitions, the estimate of the mortality rate at age x is 

The equation is classically used to pass from the annual observed mortality 
rate to the annual probability of death on which the table is based. However, some 
authors prefer to calculate the annual probability of death directly without first esti- 
mating h,. This latter parameter is in fact obtained from tx using ( 1 . 4 1 ) ~  In this 

approach, the estimate of 8, is obtained by dividing the number of deaths at age x 
observed in a given birth cohort by the number of persons at risk at the beginning 
of year t. 

Figure 1 . 5  presents the various elements required to calculate the annual 
probability of death on a Lexis diagram where d't is the number of deaths which 

have taken place in year t, and drft+, is the number of deaths which have taken 
place in year t + 1  in a cohort whose members have their xth birthday in year t; 
n,(t + 1 )  is the number of persons of age x in the population alive on 1  January of 
year t + 1.  

In published tables, probabilities of death are usually smoothed, by using 
various analytical and graphical procedures, in order to attenuate the effect of ran- 
dom fluctuation [I 21. 

Age  x+ 1 

Age x 

Figure 1.5 Representation of the data needed 
for the calculation of the annual probability of death on a Lexis diagram 

In the life table provided in Appendix 1 ,  this formula gives a result which is correct only up 
to the first two decimal places as the published results have been smoothed. 
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National or regional tables made by statistical bureaux consider mortality over 
a short period of time (current life table), that is, as it is observed at a given time 
(or over one short period) across a range of ages. Mortality at various ages is 
estimated from different birth cohorts and the table which is constructed in this way 
thus refers to a fictitious force of mortality made up of the mortality experience of 
several successive birth cohorts. Cohort life tables can sometimes be constructed 
retrospectively; they describe the actual mortality experience for successive ages of 
a given birth cohort by combining the mortality information from several censuses. 
In the calculation of expected survival of a cohort which is followed for a relatively 
long time, the change of mortality of the general population must be taken into 
consideration. It is then advisable to apply the proper mortality rate to the different 
cohorts instead of using the cross-sectional force of mortality. 

Classical models for survival distribution 

It was seen on page that a survival distribution may be completely specified 
by the instantaneous mortality rate. There are several families of distributions which 
have played an important role in medical applications and whose definition depends 
on a parametric expression of h(t). Two of these families lead to a simple expression 
for the survival distribution S(t): 

The Weibull distribution, for which 

The log-logistic distribution for which 

It is simple to estimate the parameters 8 and a that define respectively the scale 
and the shape of the survival distribution by using the maximum likelihood method. 
The log-likelihood may be written 

Note that the exponential distribution discussed on page 16 is a particular case 
of the Weibull distribution with a = 1. In fact, h(t;1,8)= 8 and S(t)= e-". The Weibull 
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hazard rate may also be used to describe cancer incidence rate and could in par- 
ticular be used in the framework of the multistage theory of carcinogenesis. In this 
context, a would be the number of stages needed for a cetl to become malignant. 
The Weibull distribution is in fact the paradigmatic survival distribution and the 
starting point for the definition of more complex models which include prognostic 
factors z = (zl, ... z,). 

First, by writing p = -Log(O) and o = l l a ,  it can be shown that the logarithm 
of survival duration Y = Log(T) is p + OW, where W has the same distribution as 
the minimum of a sample of continuous variables (extreme value distribution [13]). 
An analogous property holds for the log-logistic distribution, with W having in this 
case a distribution defined by the logistic probability density ew/(l + eW)'. A natural 
extension is to model the expectation p of Log(T) with a linear function of the prog- 
nostic factors z (p = Pz). This model supposes that the factors z act on survival by 
multiplying (or dividing) the mean duration of survival by a constant (ePZ). 

A second approach more commonly used in medical applications starts from 
the observation that the hazard rates defined by the Weibull family are proportional. 
Writing p = Oa, the hazard rate of the Weibull distribution becomes 

Considering that each prognostic factor acts on the instantaneous rate by mul- 
tiplying (or dividing) it by a constant (p = ePZ), we obtain an example of a propor- 

a-1 pz tional rates model h(t) = at e . The most general model of this class is the Cox 
model [I41 defined by the relation 

where hO(t) is left unspecified. 

Estimation of the parameter vector f3 in the model (1.46) is made difficult by 
the presence in its equation of the arbitrary function ho(t). The likelihood of the 
observations given by formula (1.22) depends explicitly on ho and is impossible to 
maximize without parameterizing ho(t). However, as one of the goals of the Cox 
method is to specifically avoid such a parametric distribution, this approach would 
not be satisfactory. Full mathematical development of the likelihood function under 
the Cox model is beyond the scope of this text. It is however useful to understand 
the principles underlying its development in simple situations. In the framework of 
this model, only the ranks of the observed survival times are informative for the 
estimation of P: as the rate ho(t) is a priori an arbitrary function, it could b e  zero 
between two deaths. Another set of values of survival times with the same rank 
order should provide the same estimate of P. More precisely, it is simple to check 
that a change in time scale defined by a monotonic function .r = u-'(t) would give 
survival time zi with a distribution specified by the same model. The background 
hazard rate would simply be replaced by ho[u(~)u'(.r;)]. As a result, the estimate of 
p will be the vector of numerical values which maximize the probability that the 
ranks of the survival time are as observed. 
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Consider first two complete observations tl and t2 for which z equals u and v 
respectively. The probability that the death of the subject having covariate value u 
comes first is - 

This intuitive result can be checked from the joint probability distribution of 
tl,t2. This principle may be generalized easily to m complete observations. If ui ... um 
are the values of z for the m - i + 1 subjects still alive just before the ith death, 
the probability that the death of the subject with covariate value ui comes first is 
given by 

The extension of this approach to n observations among which n - m are cen- 
sored leads to the likelihood 

V(P) = Pr[(tl< ... 4,) and (ti < censored observations in ti, ti+l ; 15  i I m)] 

that is 

where 

i indexes the m dates of death ti ranked in increasing order; 

ui is the covariate value of the subject who died at time ti; and 

Ri is the set of subjects still at risk at time ti of the ith death. 

The log-likelihood is 

A 

The estimate of P is the value P which maximizes L(P), obtained by equating 
to zero its derivatives with respect to the coordinates Pk of p: 

where 
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is the average of the covariate values of the subjects still at risk just before time ti 
weighted by their respective relative rates. Ck is known as the score function and 
is used to construct the score test described below. 

The observed information matrix having as elements the negative of the second 
derivatives of the log-likelihood L(P) (see page 17) 

where 

will be used to carry out the maximization using the Newton-Raphson method. This 
algorithm cnonstructs a sequence of p values which lead by successive iterations to 
the value p where C(P) = 0:  

This method is used by most computer programs, yhich estimate the Cox 
model. The inverse of the observed information matrix I-'(P) provides an estimate 
of the covariance matrix of the maximum likelihood estimates of the parameter vec- 
tor p. 

The application of these principles leads to unmanageable formulae w h e n  the 
number of deaths di occurring at time ti exceeds more than a few. The likelihood 
may then be approximated [I51 by 

where : 

m e Psi 
vcp, = n 

'=I / c e ~ u i  jdi 

is the sum of the covariate values of the di subjects dying at date ti. Expressions 
(1.49) (1.50) and (1 52)  then become 
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It is worth noting that the above approximation may be obtained directly from 
the assumption that the hazard function is constant within intervals, as is the case 
with the actuarial method. The estimation of the nuisance parameters hi, 1 I i r m 
and their substitution in the likelihood lead to (1.54) [16]. 

Several tests for comparison of survival distributions may then be obtained 
from the likelihood or from the score function [17]. The practical aspects of these 
methods are described in detail in Chapter 4. Here, we simply note that the test of 
the hypothesis p = 0 by the likelihood ratio test is based on the statistic 

which has a X2 distribution with r degrees of freedom, dimension of p, under the 
null hypothesis P = 0. The score test is based on the evaluation of the score function 
at p = 0 which should be close to zero under the null hypothesis since, at the true 
value of p ,  the derivative of L should be close to zero, its value at the maximum 
likelihood estimate. After standardization by its variance, the score statistic is written 

and also has a X2 distribution with r degrees f f  freedom under the null hypothesis. 
The Wald test is based on the evaluation of P itself which should be close to zero 
under the null hypothesis. After standardization by its variance, we obtain the statis- 
tic 

A A 

T3 = @ I 0' (1.61) 

which also has the X2 distribution with r degrees of freedom under the null hypothe- 
sis. 

Similar tests exist when the null hypothesis does not completely specify the 
value of p. In this context the null hypothesis is usually defined by one or several 
constraints on the coordinates of p (e.g., pi = 0). TI and T2 are then calculated b y  
replacing zero in (1.59) and (1.60) by the maximum likelihood estimate of j3 under 
the null hypothesis. When the null hypothesis specifies that some coordinates of P 
are zero, this approach is equivalent to setting the other coordinates to their max- 
imum likelihood estimates under the null hypothesis. In this case, the test Tg is 
restricted to the coordinates being tested. The number of degrees of freedom of 
these three tests is equal to the number of coordinates of p which specify the null 
hypothesis. Applications of this methodology are presented in Chapter 4, page 268. 
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In the preceding discussion, we have concentrated on the properties of the 
proportional hazards model which enable group comparisons to be carried out. In 
other words, the problem of estimating f3 has been seen as more important by 
considering lo as a nuisance function. In practice, it is often necessary to provide 
an estimate of the survival distribution for some given value of the covariate z .  The 
same principle as used previously for the Kaplan-Meier procedure (1.34) may be 
used here, taking into account the fact that the subjects are not at the same risk 
of death at the time when one of them dies. For a subject with covariate zi, this 

A 
risk is characterized by the relative rate of mortality aj = e 4 where P is the maiimum 
likelihood estimate of f3. Thus, in estimating ho(ti), each subject at risk at that time 
will account for Bj units instead of one. Therefore the cumulative rate and survival 
distribution will be given by: 

The estimate of the survival distribution for a given value of z is then obtained 
from the fact that the hazard rates are proportional. Therefore 

Interactive risks 

Competing risks 

We can see from the preceding sections that it is relatively simple to estimate 
the distribution of survival times while taking account of information provided by 
incomplete or censored observations. The method which has been discussed de- 
pends on the assumption of independence between risk of death and the mechanism 
which leads to censored observations. In Chapter 4, we will discuss situations in 
which this assumption can be questioned, most notably when not all the members 
of the cohort are followed up in the same way. However, the assumption is usually 
quite reasonable. In fact, the survival time which corresponds to z x::it3drawal is 
clearly defined. It could be observed by prolonging the study; it would then be 
possible to check statistically that censored observations are not associated with 
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either longer or shorter survival times, or equivalently, that survival does not change 
with time of diagnosis. 

The problem presents itself in different terms when our aim-is no longer to 
measure overall mortality but to establish the impact of a specific cause of death, 
usually corresponding to the diagnosis by which the cohort is defined. Therefore, 
we should consider that the individuals under observation are subject to other risks 
of death besides the one which forms the basis of the study. Since the realization 
of one of the risks excludes the possibility of the realization of the others, the risks 
are then said to be competing. It is tempting to consider deaths due to other causes 
as censored observations; survival related to the cause under study could then be  
estimated by simply using the method described earlier. Discussion of the practical 
problems raised by this approach will be left until Chapter 4; in this section we will 
treat succinctly the theoretical aspects of competing risks and problems raised by  
the definition and especially by the evaluation of the independence of risks. 

The crude probability of death from a given cause is the probability of death 
from this cause in the presence of other risks. 

The net probability is the probability of death from the given cause when all 
other risks of death have been eliminated. 

The partial crude probability is defined as the probability of death from a given 
cause when the potential effects of another cause (or group of causes) are elimi- 
nated. 

The third concept is obviously crucial to competing risk theory. Its recognition 
probably goes back to the controversy over the efficiency of the smallpox vaccina- 
tion; in 1760, Bernouilli [18], d'Alembert [ I  91 and other authors were each attempting 
to evaluate the consequences of eliminating the risk of death from smallpox on the 
composition and life expectancy of the population. Today, it is relatively straightfor- 
ward to construct life tables based on probabilities of death after a cause has been 
eliminated, in order to estimate the cause's impact on life expectancy [20]. For 
example, it has been calculated that, if mortality from cancer (all sites combined) 
was totally eliminated, the consequent lengthening of the expectation of life would 
be about two years. However, these statistics only tell part of the truth: the improve- 
ment in survival for patients who suffer from the disease is much more significant 
both qualitatively and quantitatively. Our goal is to define the survival probability as  
a measure of the consequence of a specific disease. This concept corresponds 
better to the net probability, that is, the survival probability from cancer in the ab- 
sence of mortality from other causes. 

The data which are generally available for the study of mortality by cause can 
be summarized by the three variables T, A and z, where T is survival time, A the 
indicator of the cause and z the vector of covariables which influence the risk of 
death. A varies between 1 and m + 1 when m causes of death are studied and the 
number m + 1 indicates withdrawals other than those due to death. If the with- 
drawals are independent of death, the same argument that was used on page 19  
shows that the contribution of observation ti, Zi of subject i to the likelihood may b e  
written 



3 6 FUNDAMENTAL CONCEPTS 

hj(ti, Zi) S(ti, zi) if death resulted from the jth cause, 

S(ti,Zi) if the observation is censored at ti, 

where 

m 

- c A, (ti, Zi) S (ti, ~ i )  = e i=l 

formulae in which hj and Aj are the instantaneous and cumulative rates of death for 
the jth cause. The likelihood is thus a product of m terms of the form 

where 6j = 1 if death results from the jth cause (A = j) and tij = 0 otherwise (A # j); 
each of these terms represents the likelihood which would be obtained in the study 
of the jth cause of death if all deaths from other causes could be considered to be 
independent censored observations. 

From this discussion it is clear that the methods previously described for esti- 
mating h and assessing the effect of covariates z on mortality are appropriate in 
the presence of competing risks. It is also clear that they are describing a particular 
risk of mortality within a complex of risk interactions, rather than the risk that would 
prevail if one or several causes of mortality were eliminated. It was previously stated 
that it is generally valid to assume that the instantaneous rate of death observed 
in the presence of censored observations is that which would prevail if the censored 
observations were eliminated (or completed). However, this assumption may well be 
questionable when a specific cause of death is being studied in the presence of 
other risks of death. Indeed, it is very likely that the removal of one cause of death 
would have noticeable consequences for the risk of death from one or several other 
causes. We should remember that some individuals can be subject to increased risk 
of death from several diseases, either because the diseases have similar etiology 
or because they are linked to the same innate susceptibility. When one of these 
diseases tends to occur earlier in life or to be associated with a shorter survival 
probability, it will more often be the cause of death. Any action taken to eliminate 
one disease or to reduce its associated mortality will tend, therefore, to modify the 
instantaneous mortality rate of associated competing diseases. For example, it has 
been suggested that coal miners who survived pneumoconiosis were subject to a 
reduced risk of lung cancer, as a result of the selection of the most resistant. If this 
assumption is true, an improvement in the treatment for pneumoconiosis resulting 
in better survival could lead to an increase in the lung cancer mortality rate. On the 
other hand, a measure aimed at reducing exposure to coal dusts might result in a 
decrease in the two risks under consideration. 

This example shows that the probabilities of death that are calculated in a 
given context of risk interaction need not correspond to the instantaneous rates 
which would prevail i f  other causes of death were eliminated; it also shows that the 
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direction of the interaction between risks can be modified by the intervention used 
on one of the risks. 

In practice, the existence of a statistical link between competing risks is difficult 
to identify, and the strength of a link is hard to measure. Independence of risks 
cannot be verified simply from survival data, since, by definition, the occurrence of 
death from cause j excludes the possibility of death from all other causes. In fact, 
data of the type (T, A, z) do not contain the information necessary to assess risk 
interaction. Moreover, it has been shown that, for a given set of such observations, 
a compatible model of independent risks can always be constructed [21-231. Some 
empirical models have been proposed to assess the interaction between risks of 
death using additional information such as concomitant causes of death [24]. It is 
however possible that the concomitant causes of death have a direct link with the 
disease primarily responsible for death or are a consequence of its diagnosis or 
treatment. In such a situation, information on concomitant causes is of little use in 
assessing risk dependence and may even lead to a biased evaluation. So far, these 
models have not proved to be usable. By definition, there is absolutely no information 
which could allow the correct estimation of the joint distribution of potential survival 
times for multiple causes. Consequently, the formal specification of this joint dis- 
tribution cannot be verified and is therefore of little practical value. 

For lack of a better alternative, we therefore restrict our discussion to the net 
probabilities of mortality (and consequently the net survival) with respect to a given 
environment of risks, while remaining aware of the limitations in their interpretation 
(see Chapter 4). These difficulties probably explain why life tables routinely pub- 
lished by official statistical services only rarely present net probabilities, and gener- 
ally restrict themselves to crude probabilities by cause or group of causes. 

Relationship between incidence, mortality, survival and prevalence 

The most widely available information describing the risk of cancer as a func- 
tion of space and time are age- and sex-specific mortality statistics. In many coun- 
tries, these data have been recorded systematically over long time periods for most 
cancer sites. In some countries, they may even be available for small geographical 
areas such as census or administrative districts. However, mortality data are 
frequently of uneven quality and inadequate for the descriptive study of site-specific 
cancer occurrence. 

Information on cancer incidence is provided by the number of new cases of 
cancer occurring each year, and is generally available from cancer registries. This 
information is much more reliable than mortality statistics but, except for Nordic 
countries, it is limited in space and time. Cancer registries may also have information 
on survival of cancer patients when they have established routine procedures of 
follow-up (see Chapter 4). Thus, in a region where cancer incidence is recorded, it 
is possible to estimate the empirical relation which links incidence, mortality and 
survival and then use this observed relation to estimate cancer incidence in regions 
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where cancer registries do not exist [25-281. The goal of the present section is to 
give some insight into the theoretical relationships which link incidence, mortality 
and survival and to assess the feasibility of estimating one of them from the other 
two. 

This discussion will also introduce the concept of prevalence, the number (or 
proportion) of subjects with a specific condition in a population at a given time. This 
measure of disease frequency depends on incidence and duration of disease, that 
is, on survival probability, in the case of a 'non reversible' disease such as cancer, 
for which an incident case is considered prevalent up to death, even if treatment is 
effective. In contrast to incidence, which is a concept with a natural link to age and 
therefore logically described in the context of birth cohorts, prevalence is related to 
the time period of observation. Incidence is better assessed in a longitudinal study, 
whereas prevalence is measured on a cross-sectional basis. For this reason, the 
relations between incidence, survival and prevalence are simple only in stationary 
populations in which longitudinal and cross-sectional measures are identical. In this 
section, the meaning of the term 'stationary' will be explained and the usage of the 
relationship 'prevalence is the product of incidence and the duration of the disease' 
will be discussed. 

Although it is rarely estimated in cancer registries, prevalence is important to 
public health planning. When incidence data are not systematically recorded (as for 
HIV and diabetes), it is often from prevalence surveys that incidence will be esti- 
mated. 

In order to understand the relationships between these concepts, a fictitious 
cohort of size to born in year t = uo and subject to cancer incidence rate A,,, is 
described in Table 1.4. We assume that the number of years Ly lived without cancer 
by each individual of the cohort is known for each age y. 

In the absence of migration, the number of cancer deaths at age x occurring 
in year t = uo + x among incident cases in the cohort is given by the formula 

where S,(x) is the probability that a subject diagnosed at age y survives to age x; 

S,, x -  - - S x + - is then the probability that death occurs at age x. Similarly i :'i y i  $1 
( j ( j 

the cases of age x prevalent in the population during year t = uo + x come from 
the cohort born in year uo. Their number is given by the formula 

which shows that they are calculated from the cases in the cohort diagnosed before 
age x and still surviving at age x. 
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Table 1.4 Incident cases, deaths and prevalent cases 

Age Time period 

If 4, is equal to 100 000, the figures are obtained per 100 000 births in year 
uo. The numbers of deaths and cases (incident or prevalent) actually observed are 
obtained by multiplying the figures in Table 1.4 by the actual number of births B(uo) 
in year uo. 

The figures in column uo + x of Table 1.4 are generated by successive birth 
cohorts and depend on factors which change with time, either period- or cohort-wise. 
Most often, survival probability changes with period, whereas age-specific incidence 
depends substantially on birth cohort. Each line in column uo + x must therefore be 
calculated from the parameters Ly, hy and Sy(x) by taking their evolution over time 
into account. 

The prevalence at age x or age-specific prevalence is the proportion 
nx(t) 

Px(~> = p where tX(t) is the number of survivors at time t among the individuals 
4x0) 

of the cohort born in uo. This figure depends only on the risk environment ex- 
perienced by this cohort up to age x while the overall prevalence depends on the 
experience of several successive cohorts: 

where each term in the above sums is generated by different birth cohorts for each 
of the g age groups. 
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A deeper understanding of the relationship linking the survival, incidence and 
prevalence requires more detailed modelling which involves explicit mathematical 
definitions. Let 

- 

h(t,x) be the incidence rate at age x and time t for the disease under study, 

p(t,x) be the mortality rate at age x from causes other than the disease, for in- 
dividuals without the disease, 

vY(t,x) be the mortality rate at age x of patients diagnosed with the disease at 
age y and time t, 

P(u) be the average annual number of births, considered to be a Poisson process 
and depending on year u. 

It is then possible to write formulae similar to (1.65) and (1.66) as well as 
formulae for the number of individuals with and without a particular health condition 
living in the population at time t. 

The probability of being alive and free of cancer at age x and time t for an 
individual born in year u = t - x can be written 

This expression shows that to be alive and without cancer, an individual must 
escape both the force of cancer incidence and the force of mortality in the interval 
between birth and age x. Therefore, the number of individuals of age x without 
cancer at time t is on average 

In the same way, the probability that an individual with cancer is alive at age 
x and time t may be written 

where : 

is the probability of surviving up to age x when diagnosed at time u+y and age y. 
The number of individuals of age x who have been diagnosed with the disease in 
the population is therefore at time t 

The prevalence p(t), the proportion of individuals with the disease living in the 
population at time t, is then obtained in a simple way from the ratio of the number 
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of individuals diagnosed with the disease to the number without the disease (prev- 
alence odds). This ratio can be written from (1.69) and (1.72): 

In a stationary population where h, p and P are all independent of t, the above 
formulae lead to simple relationships. It is however important to realize how restric- 
tive the stationary hypothesis is; it implies that the birth rate, the cancer incidence 
rate, the cancer survival probability and mortality rate from other causes all remain 
constant with time. We will nevertheless give the main results which are obtained 
under the stationary hypothesis, since most epidemiological textbooks define prev- 
alence in this situation. 

In a stationary population, the various rates do not depend on time so that 
formulae (1.68) and (1.70) simplify to 

The integrals of these functions which no longer depend on t are respectively 

which is the mean duration of life for individuals who remain without the given dis- 
ease over their lifetime, since H(x) is their survival distribution. By exchanging the 
order of integration 

M 

which is, except for division by R =I H(y) h(y) dy, the mean duration of disease for 
0 

those who have contracted it. In other words 

is the product of the crude risk of disease [see (1.41)] and the mean survival of the 
patients which, in the case of a 'non-reversible' disease (see above), is the duration 
of the disease. 

Since p is constant, formula (1.73) simplifies to become the ratio of (1.78) and 
(1.76), that is 
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Furthermore, the ratio of R/Eo(X) may be written as a function of H and h, using 
their respective definitions: 

This last result leads to the classical statement that 'prevalence is the product of 
incidence and the duration of the disease' since we can write from (1.79) and (1.80) 

The above approach to the concept of prevalence is taken from a paper by 
Keiding [38]. We will also describe the method of Verdecchia and Capocaccia [39], 
who showed that under certain conditions the information needed to carry out the 
various calculations is contained in the net probability distributions of age at the 
occurrence of cancer and at death from cancer. 

Let X, Y and V be respectively the age at death from the disease of interest, 
the age at diagnosis and the survival time up to death from cancer. We may then 
write 

Consequently, the age at death from cancer has the probability density 

where i and s, are the probability densities of Y and V. As explained previously, 
this function is known only from the corresponding incidence rates because of cen- 
soring. (1.82) must therefore be written 

where 

v,(v) is the mortality rate from the disease v years after diagnosis for a patient 
diagnosed at age y; and 

p.;(u) is the mortality rate from causes other than the disease at age u for a patient 
diagnosed at age y. 

Denoting by $(x) the difference p;(x) - p(x) which represents the excess death 
from other causes for a patient diagnosed at age y, we can write 
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The rate v;(u - y) = vy(u - y) +T~(u) is the mortality rate experienced by patients after 
diagnosis taking into account the excess (or the reduction) of the hazard of death 
from other causes. This rate is connected to the relative survival rate (see Chapter 4, 
page 231), whereas v, corresponds to net survival. If most deaths of cancer patients 

are in fact certified as due to cancer, we can replace v y  by v; in (1.84) and obtain 

where 6 is the mortality rate for the given cancer and D, A and N* denote the 
cumulative rates associated respectively with 6, h and v*. Formula (1.85) results 

X 

from the fact that d(x) = 6(x) epM(') since M(x) = D(x) + 1 p(y) dy is the cumulative 
0 

mortality rate from all causes. 

The relationship initially given for the crude probability density in (1.82) there- 
fore remains true for net density in (1.85) if net and relative survivals are identical. 
However, this relationship is only simple when survival probability does not depend 
on age at diagnosis or depends on it according to a simple model. In this situation, 
the relationship between mortality, incidence and survival distribution can be written 
as a convolution and corresponding mathematical tools are available to carry out 
its analysis. 

The probability ~ ( x )  of having cancer and still being alive at age x may be 
calculated in the same way. Thus 

The number of cancer cases of age x in the corresponding birth cohort is n(x) = 
B n(x) where B is the number of births in this cohort. Furthermore, the number of 
survivors without cancer of age x is h(x) = B H(x), where H(x) is obtained from 
(1.74). Therefore the age-specific prevalence is given by 

where n,(x) is the first integral of the right-hand side of formula (1.86) and Ri(x) is 
the net risk of disease before age x. 

Denoting the net probability densities of age at death, age at diagnosis and 
survival time by d, i and s,, the following two equations can be written: 
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The derivative with respect to x of n,(x) is by definition 

1 
n',(x) = lim - [x, (x + Ax) - n, (x)] 

A x 3 0  AX 

S y ( x + A x - y ) - S y ( x - y )  
= lim 5 i(y) 

Ax AX --to O X 

which may be written, using the rules of calculus and the fact that the derivative of 
Sy is -sy: 

and therefore 

which expresses the fact that the numerator of the prevalence odds in (1.87) is the 
difference between the net risk of having cancer before age x and the net risk of 
dying from this cancer before age x. Thus the age-specific prevalence of cancer 
may be obtained from: 

where Rd(x) denotes the net risk of dying from the given cancer. 

This result is obtained under some fairly general assumptions about the inter- 
actions between the risk of dying from the given cancer and the risk of dying from 
other causes. When the cancer risk is not stationary, the formula 1.91 must be used 
in conjunction with the modelling of the time trend in incidence and mortality by 
birth cohort (see page 189) 

Preston has provided a useful and intuitive approach to calculate prevalence 
when the population is not stationary [40]. 

Bi bliographical notes 

Mathematical arguments used in basic epidemiological texts, and in particular 
those which form the theoretical basis of descriptive epidemiology, are often ap- 
proximate, and for a good reason: a satisfactory mathematical approach, based on 
the statistical analysis of stochastic processes, quickly leads to advanced mathe- 
matics [29] in even the simplest situations. Moreover, this level of sophistication is 
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rarely required to meet the real problems of descriptive epidemiology, which are 
more often of a different kind. The approach we have taken in this first chapter is 
similar to that used in demography [30], where data of this type were first analysed 
rigorously. The modern trend in mathematical statistics is to treat the analysis of 
censored data using the concepts of stochastic processes, which provide very 
general results on the convergence and the speed of convergence of the estimates. 
It is not surprising that, in medical research, most effort in this direction has been 
in the context of clinical trials, because these often have relatively few subjects and 
the validity of the statistical conclusions is a paramount requirement. Readers inter- 
ested in this approach can find the necessary concepts in Hill et al. [31], particularly 
the appendix. Anderson [32] has published a fairly complete and non-technical in- 
troduction to this method. To the extent that the fundamental principles of descriptive 
epidemiology do not differ from those of cohort studies, several sections of chapters 
2, 3 and 4 in the book by Breslow and Day [ I l l  make profitable reading, and give 
a more complete bibliography of the various formalizations. 

Chapter 9 in Pressat [30] provides a complete presentation of the concepts 
involved in the life table. The estimation of the life table is discussed in depth by 
Chiang [20] in chapter 9. Classical survival models are described in detail in Kalb- 
fleisch and Prentice [33] [see pages 21-30] and in Cox and Oakes [34] [see pages 
13-28]. Since Cox [I41 was first published, the proportional hazards model has had 
so many applications, that even an abridged list would be difficult to provide. Ref- 
erences [35,36 and 371 provide a clear discussion of its application in epidemiology. 

The theory of competing risks is discussed in Chiang [20], chapter 2; a mon- 
ograph has also been written on this subject [41]. Makeham [42] is generally rec- 
ognized as having originated the concept of multiple decremental forces, from which 
the essentially similar idea of latent survival time was largely derived. In this ap- 
proach, the observed survival of a subject is the smallest of the [unobserved] latent 
survival times, with each of these times corresponding to the causes of death under 
study. This approach is described in the monograph by David and Moeschberger 
[41], and discussed in reference [23]. The problem of estimating mortality when the 
competing risks cannot be assumed to be independent is reviewed in an article by 
Duchene [43]. 

The concept of prevalence and its calculation has been discussed by many 
authors. The texts by MacMahon and Pugh [44], and Kleinbaum and co-workers [45] 
can be consulted, and an article by Freeman and Hutchison [46] gives a detailed 
overview. Reference [38] also provides a full bibliography on the subject. 
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