Chapter 2

Techniques for the analysis of cancer risk

Measurement of the risk of cancer

Age- and sex-specific rates

The annual incidence rate for a specific tumour, for a group and for a given
time period is equal to the ratio between the number of new cases of the tumour
observed in the group over the given time and the number of person-years accu-
mulated by the members of the group in the same time interval.

The calculation of an incidence rate is more meaningful when the group is
homogeneous and when there is a constant risk during the time period. Moreover,
it is only under these conditions that the observed incidence rate can be considered
as an estimate of the underlying instantaneous rate which plays a key role in the
definition of the risk of cancer (see Chapter 1, page 11). The homogeneity condition
justifies the calculation of rates separately by age and sex, known as specific inci-
dence rates because they refer to subgroups of the population and not to the popu-
lation as a whole.

In the following, we first describe methods for calculating specific incidence
rates, and then examine techniques of estimating their precision since, like all in-
dexes calculated from observed data, the incidence rate is subject to random var-
iation. Finally, we describe some typical incidence curves.

The calculation of a specific rate

The only problems involved in the determination of the numerator are the
completeness of registration and respect for whatever guidelines have been adopted
to define new cases. We will return to this point later in detail with the study of time
trends, which are particularly vulnerable to changes in the definition adopted (see
Chapter 3, page 176).

The determination of the denominator depends on available demographic statis-
tics. In theory, the calculation of the exact number of person-years of observation
requires individual data, but statistical offices provide at best reports including cross-
sectional characteristics of the population at periodic intervals, obtained from cen-
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50 TECHNIQUES FOR THE ANALYSIS OF CANCER RISK

suses or other population estimates. Thus, the denominator can be estimated only
by making assumptions about the evolution of the population between two of these
points, that is, about the way in which individuals traverse the age x time rectangle
of the Lexis diagram (see Figure 1.1). Let us suppose, for example, that we wish
to estimate the annual incidence of breast cancer for women aged 45 to 49 years
in Zaragoza (Spain) between the beginning of 1973 and the end of 1977. Theoreti-
cally, we should add up the number of years lived in this age group by each woman
of the population of Zaragoza during the period 1973-1977: thus, a woman who
turned 45 years of age on 1 January 1977 will contribute one year to the person-
years, in the same way as a woman who turned 49 on 1 January 1973 will contribute
one year. In reality, it is known only that 27 699 women were between 45 and 49
years of age in 1975, the year of the census. It is supposed that there are as many
women each year joining the age group as there are leaving it and that the number
counted at the mid-point is consequently an estimate of the average number
throughout the interval. Therefore, the estimate of the number of person-years ac-
cumulated between 1973 and 1977 is obtained by multiplying the number at the
mid-point by five (27699 x 5). Then, as the Cancer Registry recorded 109 cases of
breast cancer for women between 45 and 49 years of age in the interval under
consideration, the specific rate of breast cancer in this age group is

109/(27 699 x 5) = 78.7 cases per 100000 women per year.

In most situations, this method for approximating the denominator is accep-
table. However, the example below shows that the method can sometimes lead to
aberrant results.

In Calvados, France, the resident population in the age group 60 to 64 years
at the first of January evolved as follows from 1977 to 1982:

Number in age group 60 to 64 years
at 1 January

1977 20790
1978 18 592
1979 16 886
1980 15643
1981 18 757
1982 22 106

To calculate the incidence rate in the interval between 1 January 1977, and
31 December 1981, using the previously described method, we would take as the
denominator five times the average population for the year 1979, that is

v (16 886+ 15 643)

> 2

=81323 person-years

However, a careful examination of the annual figures reveals fluctuations due
to the effects of the decline in the birth rate during the first world war. Therefore,
the calculation of incidence rate should take the figures for each year of the interval
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Figure 2.1 Influence of the denominator estimates on the age-specific incidence
curve. All cancer sites, Calvados (France), males, incident cases 1978-1982
Source : Robillard [1]

into consideration; suppo'sing that, on average, the number of individuals at risk in
the group under study can be estimated each year by the arithmetic average of the

number of individuals in the age group at the beginning and the end of the year,
then we have

20790/2 + 18592 + 16886 + 15643 + 18757 + 22 106/2,
that is, a total of 91326 person-years [1].

In this example, the previous approximation under-estimated the calculation of
person-years accumulated in the interval by 11%. The solution which takes as de-
nominator a demographic estimate that does not correspond to the mid-point of the
interval being considered can lead to even more serious inaccuracies. Figure 2.1
shows, again in Calvados, biases in the age-specific incidence curve when the num-
ber of cases observed for the interval 1978-82 (males) is related to data from the
1975 census. Even if variations from one year to the next are rarely as marked as
those in our example, successive annual estimates should be used in the calcula-
tions when they are available.

The accuracy of the estimate of a rate

Regardless of the bias that a wrong evaluation of the denominator causes, we
should question the accuracy of the estimate of the rate being calculated.

For reasons that were discussed earlier (see Chapter 1, page 20), the denom-
inator can be considered as a non-random quantity; thus, the accuracy of a rate
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only depends on the variability of the number of cases observed (K). We can there-
fore suppose that K is a variable that follows a Poisson distribution whose expec-
‘tation and variance are equal to the theoretical rate (A) that we are attempting to
estimate, multiplied by the number of person-years (m) accumulated within the period
of the study:

K ~ P(Am)
E(K) = Am
Var(K) = Am

Therefore, the variance of the rate estimator (K/m) is

Var(g]: Var(K) _ A
m m

m2

Its estimate is obtained by replacing A by k/m in the above formula, k being the
observed value of K; it is given by

™o
[ K K A
Var( m]— 2K
an expression which has already been obtained in Chapter 1, page 20. It is then

possible to construct a confidence interval of level 1 — o for A. When k is large, we
can consider that the distribution of K/m is normal with mean A and standard de-

viation % therefore

K_a
m

Prob Ny < Ly |= o
m

hence the confidence interval:

k VK |k vk
[Fn”— w2 m T a/ZH}
The usual value of o is 0.05 and Z,, = 1.96. As an example, if nine cases have
been observed in a population of 10 000 persons followed up during three years,
the incidence rate is 30 per 100 000; its variance is 9/(30 000)?, and its standard
error is 10/100000. Therefore, the confidence interval may be written:

30/100000 + (1.96 x 10/100000) = [10.40/100 000 ; 49.6/100 000]

It is also possible to use directly a confidence interval for the expectation of
K as calculated from the Poisson distribution (see page 64). Table 2.3 below gives
the values [4.12; 17.08], which leads to a confidence interval for the rate equal to
[13.70/100 000 ; 56.93/100 000]. This exact interval is fairly different from the above
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conventional interval. It is therefore recommended to use the Poisson distribution
when the number of cases observed is less than 50.

In practice, it is usual to assess the accuracy of the rate on a relative scale.
The relative error in the estimation of a rate is given by the coefficient of variation
of the estimated rate, which is defined as the ratio between its standard error and
its mean:

cV = \/x/m__L
A am

The expected value of K being Am, 1/vk provides a simple estimator of the
accuracy of the rate measured on a relative scale. In the previous example, the
relative error in the calculated rate is 1/V9 = 33%. If we had observed four cases,
the relative error would have been 1/V4 = 50%. These examples reveal the sub-
stantial inaccuracies which can affect measures of rare cancers.

The coefficient of variation that we defined above has a natural interpretation
when it is appropriate to consider the rates after logarithmic transformation (see
next page). In fact, in this case, variability is measured by the standard error of the
logarithm of the specific rate which can be calculated in the usual way:

ol

Var[Log(K) - Log(m)] = Var [Log(K)]

dK
Var{Log (%ﬂ 7»_1m— (2.1)

Thus, not surprisingly, the standard error of the logarithm of the rate is equal
to the coefficient of variation. Using the same principle as before and the data from
the previous example, the confidence interval of the logarithm of the rate is

2 : 2
_ (d Lo [E(K)]j x Var (K) = [i%] x Var (K)

U

Log (30/100000) + (1.96 x 0.33)

which leads, by taking the exponential of the interval end-points to a new confidence
interval for the rate itself

Clgsy, = [15.7 / 100000 ; 57.3 / 100 000]

It is worth noting that, by improving the required normality, the logarithmic
transformation has led to a result which is closer to the exact interval than the
conventional interval based on the rate itself.

As the accuracy of the estimate depends only on the number of observed
cases, it can theoretically be increased by lengthening the observation time. How-
ever, if incidence is not constant over time, the accumulation of cases over several
years can only lead to a less meaningful result. In practice, the choice of interval
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is a compromise between these two requirements. The situation is similar when we
consider that a region covered by a registry is too heterogeneous to give only one
estimate of the rate. If we decide to divide the area into subgroups which are more
homogeneous, the accuracy of the rate estimates in each subregion is lower. There-
fore, a compromise between interpretability and accuracy has to be found (see Chap-
ter 3).

The incidence curve

Age-specific rates are usually calculated for seventeen five-year age groups
between the age of 0 and 85 years, with an eighteenth group for 85 years and over.
As a rule, the rates should be represented on a graph by a step-function with five-
yearly increments. However, it is customary to join the points that mark the mid-point
of each age group; the line obtained by doing so is called the incidence curve. In
a population where the age-specific incidence might remain constant over a period
of time, such as would occur in the absence of a cohort effect, the curve could be
seen as an estimate of the function A(t) which we defined in Chapter 1. However,
as incidence does tend to change with time, the shape of the curve is a result of
the combined effect of age and observation time: incidence rates for older age-
groups describe a relationship between risk and age that does not necessarily
correspond to that described by incidence for the youngest individuals living at the
same time. In other words, when older people today were young, they did not have
the same risk as the young people of today.

As we stated previously, incidence according to age is sometimes shown after
logarithmic transformation of age-specific rates. This sort of representation is used
firstly for practical reasons. Rates of very different orders of magnitude can be rep-
resented on the same graph, allowing a clear visualization of incidence levels for
ages where rates are low. It is also worth noting that a constant ratio of age-specific
incidence rate between two populations will produce, on a logarithmic scale, two
parallel incidence curves.

A logarithmic scale may also be used on the age axis. Thus, a log-log graph
is designed to place the observed data in the context of the multi-stage model of
carcinogenesis [2,3]. According to this model, incidence is a power function of age
and should therefore be represented by a straight line on a log-log scale. However,
such a model can only be identified by this procedure in the absence of a cohort
effect [4].

The mortality from colorectal cancer in France for the period 1978-1982 is
represented in Figure 2.2 by using various scales. In this case it is clear that
Figure 2.2(c) provides a remarkably concise description of the increase in risk with
age. However, other more complex incidence curves are often seen (Figures 1.2
and 2.5). In particular, the incidence curve for breast cancer shows a characteristic
drop in the rate of increase around 50 years of age; Clemmesen has demonstrated
the universality of this phenomenon. [5]
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Figure 2.2 Influence of the choice of scale on the shape of age-specific incidence
curves. Mortality from colorectal cancer in France, 1978-1982
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Standardized rates

One of the principal aims of collecting incidence data is the investigation of
etiological factors for the disease being considered. In order to compare observed
incidence for different regions or groups or years, we should be in a position to
take account of the factors which are already recognized as possible explanations
of observed differences in rates. Among these factors, age is the first candidate.
The effects of age are large and, in general, the various populations being compared
differ in their age structures. The control of the confounding effect of a factor, by
methods to be discussed below, implies that we know its distribution in the popu-
lations that we wish to compare. This is the reason why the following methods
cannot be applied to biasing factors such as the quality of registration or the ac-
curacy of diagnosis. On the other hand, when denominators are not available, the
method described on page 95 could be used.

Direct standardization

The principle of this method is to determine the annual rate that would be
observed in a standard, or theoretical, population of a given age structure, were it
subjected to the force of incidence of the population under study. The procedure is
based on the calculation of the expected number of cases in each age-group of this
standard population by applying to the corresponding person-years the estimated
rate of the population under study. The total number of expected cases is then
divided by the total number of person-years in the theoretical population.

Let:

e g be the number of age groups under consideration, which is usually 18 but can
change if we are calculating a truncated rate for a subset of adjacent age-groups,
for example, 35-64 years;

o L be the size of a standard population,
e L, be the number of individuals in the xth age-group of this standard population,

e k, be the number of cases observed in the xth age-group of the population under
study '

e m, be the number of person-years accumulated in the xth age-group of the popu-
lation under study

e t, = k/n, be the specific rate of the xth age-group of the population under study.

L,t, is thus the number of expected cases that might be observed in one year
in the xth age group of the standard population if it were exposed to a level of risk
defined by the rate t,. The standardized rate is then:

g
-1
t= 1 2 L (2.2)

x=1
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It may also be written

g
t= ) Wyl - (2.3)

x=1

where wy = L,/L is the proportion of individuals in the xth age group in the standard
population with

g
Z Wy = 1
x=1

This expression shows that the rate t is a weighted average of age-specific
rates, with the weights being the proportion of individuals in the various age groups
of the standard population.

We should note that the calculation presumes that the number of person-years
of observation and the number of observed cases in each age-group of the popu-
lation under study (or at least the age-specific rates) are known. Furthermore, the
calculation requires the choice of a standard population. In practice, this choice
depends on our objective and it influences the numerical result that we obtain. The
principal standard populations that have been suggested are presented in Table 2.1.
For routine comparisons, it is preferable to use the world population as a standard.
The European population figures are suitable when we are comparing observed
incidences in countries where the age structure is similar to that usually observed
in developed countries. In the same way, the African population can be used as a
standard for developing countries. A truncated population is used to restrict the
comparison to the adult age groups where the most interesting differences appear.
It also has the advantage of eliminating from the standardized rate the contribution
of the oldest age groups that are particularly subject to the risk of being under-reg-
istered. When we are not dealing with routine comparisons, other standards are
sometimes adopted; for example, if we wish to describe the risk in several subsets
of a region or a country, it is reasonable to take the total population of the region
or the country as the standard population. In the particular case where we are
interested in two regions or countries, the sum of their populations is sometimes
taken as the standard.

Table 2.2 presents the calculation of the standardized rate of stomach cancer
for males in the French region of the Coéte-d’Or from 1976 to 1980, using the
European population as a standard.

The calculation of a directly standardized rate uses age-specific rates that have
been estimated from observations which are subject to a certain amount of random
variability. This variability affects the estimate of the standardized rate and can lead
to spurious conclusions if the observed difference between standardized rates is in
fact mainly due to random variation. In order to evaluate the importance of this kind
of variation, the standardized rate (t) should be presented with its standard error or
its confidence interval.
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Table 2.1 Age structure of commonly used standard populations [6]
(valid for either sex)

Age group World African European - World truncated
0-4 12 10 8 -
5-9 10 10 7 -
10-14 9 10 7 -
15-19 9 10 7 -
20-24 8 10 7 -
25-29 8 10 7 -
30-34 6 10 7 -
35-39 6 10 7 6
40-44 6 5 7 6
45-49 6 5 7 6
50-54 5 3 7 5
55-59 4 2 6 4
60-64 4 2 5 4
65-69 3 1 4 -
70-74 2 1 3 —
75-79 1 0.5 2 -
80-84 0.5 0.3 1 -
85 + 0.5 0.2 1 —
Total 100 100 100 31

As we saw previously when discussing the estimation of A, from K, observa-
tions resulting from my person-years in age group X,

Kx ~ POwmy)
E(Ky) = Var (Ko = Axmy

The variance of the specific rate t, = K,/m, is then obtained using the classical
method

Var (K A
Var (ty) = —(2)(): E&
my X

Therefore, the variance of the standardized rate is, from formula (2.3)

g
Var(t)= Y. wZ Var (t,)

x=1

g
Var®= >, wa {%J (2.4)

x=1 X
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Ax being unknown, Var(t) must be estimated by replacing Ay by its estlmate Ky/my
in the above expression. Then

AT 2 W>2<
Var (t) =3 |— |k

x=1 My

If the theoretical standardized rate is denoted by p = ZWXKX and if s is the estimate
X

of its standard error, then we can consider that (t —u)/s is approximately a standard

normal variable; the confidence interval at level 1 — o for u is then obtained as

explained previously:

[t— Zoo VWVar (1) 5 t+Zgo VWar (1) ]

In practice, rates are given per 100000 person-years (105 ty); the variance that
is calculated is therefore in the form 10'° Var(t).

Table 2.2 also gives the data required to calculate the variance of the stand-
ardized rate, from which we obtain a standard error of 1.55 and its 95% confidence
interval [20.49 ; 26.58].

We should note again that the procedure which enables the confidence interval
to be constructed from the standard error of the estimator implies that the distribution
of this estimator is reasonably close to normal. This is in fact only true in the present
situation if the total number of cases is sufficiently large. It is however difficult to
tell what ‘sufficiently’ means in the present context because the numerator of a
standardized rate is no longer a Poisson variate. lts variance depends not only on
the total number of observed cases but also on the weighting scheme w and the
accuracy of the age-specific rates. This may be seen by writing the formula (2.4)
in the following way:

)

—
_”..
ry

This expression shows that the variance may be badly assessed from the total
number of expected cases especially if the majority of them (i) originated from an
age group where my is low (see page 100).

The quotient of two standardized rates calculated from the same standard
population is known as the comparative incidence figure (CIF). It is a measure of
the relative risk of a population compared with another population and is generally
expressed as a percentage. The standardized rate in a subgroup of a population
that is itself used as the standard, divided by the crude rate in the whole population
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Table 2.2 Calculation of a directly standardized rate (stomach cancer in Cé6te-d’Or,
France, males, 1976-1980, European standard)

X Age Ky my 10° t, Wi 10%wi,  qo10| Y e

mg
(1) (2) (3) 4 (5) (6) (7) (8)

1 0-4 0 91 228 0.00 0.08 0.000 0.0000
2 5-9 0 95 230 0.00 0.07 0.000 0.0000
3 10-14 0 95 869 0.00 0.07 0.000 0.0000
4 1519 0 98 744 0.00 0.07 0.000 0.0000
5  20-24 0 101 131 0.00 0.07 0.000 0.0000
6 2529 0 101103 0.00 0.07 0.000 0.0000
7 30-34 0 83 544 0.00 0.07 0.000 0.0000
8 3539 1 67 580 1.48 0.07 0.104 0.0107
9  40-44 3 68 577 4.37 0.07 0.306 0.0313
10 45-49 6 68 126 8.81 0.07 0.617 0.0633
11 50-54 10 63 708 15.70 0.07 1.099 0.1207
12 55-59 17 51 007 33.33 0.06 2.000 0.2352
13 60-64 27 37 695 71.63 0.05 3.582 0.4751
14 65-69 34 44 374 76.62 0.04 3.065 0.2763
15 70-74 51 36768  138.71 0.03 4.161 0.3395
16 7579 46 24196  190.11 0.02 3.802 0.3143
17 80 + 42 17491 240.12 0.02 4.802 0.5491
Total 237 1146 371 1.00 23.537 2.4155

Columns 1 to 4 and 6 are given and columns 5, 7 and 8 are calculated.

kx : observed number of cases of stomach cancer in Cote-d’Or from 1976 to 1980 for the xth age group.
mx : estimate of the number of person-years for males in each age group x, obtained by summing the
numbers of the Cote-d’Or population from 1976 to 1980 (INSEE, PRUDENT).

fx : age-specific rate per 100 000 persons per year.

wx : structure of the standard population by age.

(which in this case is equal to the standardized rate with reépeot to itself) is also
a CIF.

The value of a CIF is independent of the standard population used only if the
ratio of the age-specific incidence rates is constant, in other words, only when the
two incidence curves that are being compared are parallel when the log scale is
used on the rate axis. This property often holds for incidence curves (see Figure 2.3)
and can be checked with a statistical test which evaluates the assumption of the
homogeneity of age-specific relative rates (see page 80).

Cumulative rates

The overall incidence observed in a population can also be described by the
cumulative rate [7] which provides, as we shall see below, an approximation of the
risk of developing a disease before age b (or between two ages a and b) in the
absence of mortality (see the concept of net risk in Chapter 1, page 34). The cu-
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Figure 2.3 Age-specific incidence of colon cancer in Zaragoza (Spain) and Geneva
(Switzerland) males, 1973-1977

mulative rate over a whole lifetime is an integral of the function represented by the
incidence curve. This rate can be estimated by adding up the age-specific incidence
over each year of age. Assuming that the incidence is constant within an age group
(x) of five years, we will write

i j
top= D, 5x ty=5 3 t (2.5)
x=1 x=1
to estimate the cumulative rate from zero to the upper limit b of age group j, and
j
tap=5 D, t (2.6)
X=i

to estimate the cumulative rate from the lower limit a of age group i to the upper
limit b of the age group j.

For example, the cumulative rate of stomach cancer between 35 and 65 years
of age can be calculated from the data in Table 2.2 by adding up the numbers in
column 5 from line 8 to line 13 and multiplying the result by 5/100 000, i.e.

t35,65 = 00068 = 0.680/0
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Estimation of the cumulative rate over a whole lifetime presents a problem
because the last age group is open and, unlike the other age-groups, does not
contain five years. If the last age-group is 80 years and over, we can suppose that
the estimate of the rate in this age-group is almost identical to the rate in the age
group 80-85 years, and consider that the value we obtain is the cumulative rate up
to 85 years. With this convention, the cumulative rate over life of stomach cancer
can be estimated by

to.gs = 0.0390 = 3.90%.

In practice, it is preferable not to calculate the cumulative rates beyond the
upper limit of the last closed age group. In fact, cumulative rates are rarely published
above 75 years, the age at which competing causes of death begin to play a major
role (see Chapter 1, page 34).

Note that the cumulative rate is proportional to the arithmetic average of the
age-specific rates, that is, to a rate that would be standardized to a population in
which every age-group contained the same proportion of individuals (‘rectangular’
population). Note also that the probabilistic interpretation mentioned above assumes
that the cross-sectional incidence curve, constructed for a given time period from
different cohorts, correctly represents the force of incidence applicable to an in-
dividual for whom we wish to evaluate risk; in fact, the risk obtained in this way is
that of a ‘fictitious’ individual who synthesizes the experience of several cohorts.

The standard error and confidence interval of a cumulative rate are obtained
in the same way as those for a direct standardized rate; the application of formula
(2.4) with wy, = 5 gives

J ok
Var (tap) = 25 3, —5 (2.7)

X=i X

for example, the standard error of the cumulative rate of stomach cancer between
age 35 and 65 years is

Var (t35,65) = 0,0009

from which we derive a confidence interval of [0.51% ; 0.85%].

Indirect standardization

While direct standardization could be called the method of the standard popu-
lation, the procedure described in this paragraph could be called the method of
standard incidence. The principle is based on the comparison between the total
number of cases observed in the population under study and the number that could
be expected if the population was subject to a given force of incidence (Ay), the
standard incidence.
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The number of expected cases in the population under study is
g
E= ) muy (2.8)
x=1

where A, is the incidence rate of group x in the standard population, and m, is the
number of person-years accumulated by group x in the population under study.

The ratio between the total number of cases observed in the population under
study (O) and the expected number (E) is called the standardized incidence ratio
(SIR). Like the CIF, it is a measure of relative risk of the population under study
compared with the standard population. It is usually expressed as a percentage,

sm:%moo (2.9)

Therefore, a value of 150 for this index means that 50% more cases were
observed in the population under study than if the incidence was that of the standard
population.

For reasons already discussed, the variability of the SIR depends only on the
numerator, whose distribution can be considered to be Poisson. The estimate of the
SIR variability can be obtained accurately from Table 2.3 which gives the 95% con-
fidence interval of the expectation u of a Poisson variable given an observed number
of cases O.

The results in Table 2.3 are obtained by defining the lower and upper limits of
the confidence interval pg and p4 according to the formulae:

P[X> Olugl= a/2; P[X< Olwy]= /2

such an interval will contain the true value p with probability 1 — o. On the other
hand, the Poisson distribution is related to the X2 distribution by the relation:

PriXz klul= Pr[y5, < 2u]

in other words, if Fy is the distribution function of %° with 2k degrees of freedom,
we can write:

D e i Fok (2u)
x=K )

Foo (2Ho) = o/2
Foory Ru) = 1- a/2
therefore, if F~' denotes the reciprocal function of F:

1 _
o= 5 F2b (a/2)

\V]

1.
g = §F2(10+1)(1 — o/2)
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Table 2.3 Exact 95 % confidence interval for the expectation (u)
of a Poisson distribution according to the number of observed cases (O)

Observed 95 % Confidence Observed 95% confidence
cases interval cases interval
(O) Ko M1 (O) Lo i
0 0.00 3.00 31 21.06 44.00
1 0.03 5.57 32 21.89 4517
2 0.24 7.22 33 22.72 46.34
3 0.62 8.77 34 23.55 47.51
4 1.09 10.24 35 24.38 48.68
5 1.62 11.67 36 25.21 49.84
6 2.20 13.06 37 26.05 51.00
7 2.81 14.42 38 26.89 52.16
8 3.45 15.76 39 27.73 53.31
9 412 17.08 40 28.58 54.47
10 4.80 18.39 41 29.42 55.62
11 5.49 19.68 42 30.27 56.77
12 6.20 20.96 43 31.12 57.92
13 6.92 22.23 44 31.97 59.07
14 7.65 23.49 45 32.82 60.21
15 8.40 24.74 46 33.68 61.36
16 9.15 25.98 47 34.53 62.50
17 9.90 27.22 48 35.39 63.64
18 10.67 28.45 49 36.25 64.78
19 11.44 29.67 50 37.11 65.92
20 12.22 30.89 51 37.97 67.06
21 13.00 32.10 52 38.84 68.19
22 13.79 33.31 53 39.70 69.33
23 14.58 34.51 54 40.57 70.46
24 15.38 35.71 55 41.43 71.59
25 16.18 36.90 56 42.30 72.72
26 16.98 38.10 57 43.17 73.85
27 17.79 39.28 58 44.04 74.98
28 18.61 40.47 59 44,91 76.11
29 19.42 41.65 60 4578 77.23
30 20.24 42.83 61 46.66 78.36

When the number of observed cases is zero, X is greater than the observed number
with probability 1 whatever g may be. To keep the correct level of confidence 1 — o,
we construct the interval [0 ; u4] such that P[X = Oly4] = e ™ = . This interval
covers the theoretical value u with probability 1 — o. For example, when o = 5%,
uy = —Log (0.05) = 3.00.

When O is greater than 50, we can assume that Log (O) follows a normal
distribution with expectation Log(u) and variance 1/u. Thus, to obtain a 95% confi-
dence interval we make use of the inequality

| Log(O) — Log () |
1/\/11— < 1.96
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which gives after replacing p with its estimate O

1.96 1.96
Oel Vo |<u<Oe o

for example, when O = 50 and E = 45.6, the 95% confidence interval of uis
[Lo 5 4] = [37.9; 66.0]

therefore, the interval of the corresponding SIR is [83.1; 144.7]. If instead we use
Table 2.3, the confidence intervals are respectively

[37.1;65.9] and [81.4 ; 144.5].

Another more reliable approach is based on the approximation of the distribu-
tion of VX by a normal distribution with mean Vit and variance 1/4 [8]; the confidence
interval is then

2 2
[uo ; 4l = MZ;”— VGJ : [Z—g_‘& vO—Jﬁ] }

for O = 50, this method gives [37.1 ; 66.0].

The calculation of the SIR requires only the number of person-years accumu-
lated in each of the different groups x in the population under study and not the
number of cases occurring in these groups. It requires the choice of a standard
distribution which, in practice, is dictated by the use that we intend to make of the
SIR, as will be shown subsequently.

As the SIR is an estimate of relative risk with respect to a reference force of
incidence, the product of the SIR and the crude rate in the standard population
which provides the standard incidence rates is in fact a form of standardized rate
known as the indirectly standardized rate.

Table 2.4 provides the data required to calculate the standardized incidence
ratio of colon cancer for males in the French city of Dijon between 1976 and 1980,
using rates observed in the whole region of the Cote-d’Or as a standard. We obtain

123
SIR =100 x 98.7—124'6

and the 95% confidence interval of the SIR is [104.5 ; 148.9] obtained using the first
normal approximation above. We can calculate the indirect standardized rate from
the crude rate of 24.3 (see Table 2.4) and we can obtain the indirectly standardized
rate

1=1.246x24.3=30.3
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Table 2.4 Calculation of a standardized incidence ratio (SIR)
for colon cancer in the town of Dijon for the period 1976-1980
with the overall incidence in the French département of Cote-d’Or as a standard

X Kx My 105 Ax €x
0-4 0 45 626 0.0 0.00
5-9 0 41 145 0.0 0.00

10-14 0 39 284 0.0 0.00
15-19 0 43 469 0.0 0.00
20-24 0 52794 1.0 0.53
25-29 0 54 321 1.0 0.54
30-34 0 40 848 0.0 0.00
35-39 2 31559 5.9 1.86
40-44 2 30 703 4.4 1.35
45-49 3 29 875 14.7 4.39
50-54 10 27 228 22.0 5.99
55-59 17 21808 47 1 10.27
60-64 7 15002 45.2 6.78
65-69 17 14 556 81.2 11.82
70-74 33 11 841 206.7 24 .47
75-79 20 7762 214.9 16.68
80 + 12 6 112 228.8 13.98
Total O =123 513 933 24.3 E = 98.70

kx : observed number of cases in age group x in Dijon.

my . person-years of observation in age group x in Dijon.

Ax : observed colon cancer rate in age group x in Céte-d’Or.

ex : expected number of cases in age group x in Dijon if the incidence rates were Ax (i.e., that of Céte-d’Or).

Probability of developing a specific form of cancer

The cumulative rate discussed previously is an approximation to the net cancer
risk, that is, of the probability of developing cancer in the absence of mortality. In
fact, we may also be concerned with the crude probability of developing a particular
form of cancer; in other words, the risk actually incurred by an individual subjected
not only to the risk of cancer but also to the risk of death. For a given level of
incidence, this probability will be higher when the general mortality is low and vice
versa.

The method of calculation of this probability is derived directly from formula 1.4
of Chapter 1. It was shown there that the raw probability of developing cancer is
the sum for all ages of the product of the age-specific rate and the probability of
survival without cancer up to this age. In practice, we shall estimate the probability
of cancer from the life table neglecting the probability of not having cancer at age
X which is close to 1 for most cancer sites.

Let:
» t, be the incidence rate in the age group x;
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e L, be the number of years lived by the survivors of age x during the age interval
starting at x if they are subject only to the force of mortality of the general population.

e {y be the size of this population at the beginning of the first age interval under
consideration (€, and the Ly are provided by the life table, see Chapter 1, page 26).
Then the probability of developing a given cancer is

g
1 K
pZEE;Lthze_O (211)
X=

In fact, the summation in formula (2.11) gives the number K of expected
cancers between the beginning of the first age interval and the end of the last if Ly
is an acceptable approximation of person-years lived in each age group by cancer-
free survivors.

When the probability of cancer (all sites) is being calculated, it might be better
to construct a life table giving at each age the number of cancer-free survivors. The
improvement obtained in this way is, however, somewhat ilusory, as we shall see
below.

When the current life table (see Chapter 1) is used in this calculation, the
predictive value of this parameter should be viewed with caution. The actual mortality
that will be experienced by cohorts for which the prediction is carried out may differ
substantially from the reference mortality which has been used in the standard life
table. This is why it is important to clarify the concept and to refer to it as being
the current probability of developing cancer.

If we wish to compare probabilities in several regions or from several time
periods, we can use the same life table; in this way, we obtain adjusted probabilities
that play the same role as standardized rates. Note, however, that the stand-
ardization refers to mortality and not age, for which control is implicitly assured by
the very definition of the parameter. For comparisons of this kind, it is much more
simple to use the cumulative rates defined previously which provides the same type
of information. When they are low, they actually provide a good approximation to
the net probability R, of developing a disease before a given age b, also known as
the cumulative risk.

We shall give below a simple proof of this result that has previously been
discussed in Chapter 1. First of all, consider an age group [X, X + Ax] in which the
incidence rate is constant, and subdivide this interval into n equal parts; the proba-
bility of not developing the cancer under consideration at age x + Ax is the product
of the probabilities of remaining healthy throughout each of the successive intervals
thus defined. This probability is approximately

n
AX
Sp = (1 - 7»7)—)

the smaller the interval Ax/n, the more accurate the approximation will be. Now, it
is known that the limit of s, when n tends to infinity is e™**. In other words, the
probability of developing cancer between x and x + Ax is equal to (1 — e_MX).
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Secondly, suppose that the age interval [0 — b] can be subdivided into j age
groups of length Ax; in which the rate A; is considered to be constant; the probability
of not developing cancer before age b is obtained using the same principle as
before:

j
1- Rp= H e‘xiAXi
i=1

i
1 _ Rb — e—iixiAXi

If the Ay correspond to five-year age groups, the argument of the exponential is,
except for the minus sign, the cumulative rate.

In practice, we calculate the estimate ty, of the cumulative rate as was shown
on page 61 and the estimate of the cumulative risk R, according to the formula:

{:\{b = 1- glob (2.12)

Up to a cumulative rate of 10%, the two numbers tq, and Ry, are very close:
the approximation of the cumulative risk Ry, by the cumulative rate top is therefore
good for most cancer sites. As an example, the cumulative risk of stomach cancer
between 35 and 65 years for the Cote-d’Or is 0.68%, while the life-time cumulative
risk for the same region is 3.83% (the corresponding cumulative rates are respec-
tively 0.68% and 3.90%; see Table 2.2).

Table 2.5 presents the three indexes that have been discussed, to evaluate
the overall life-time cancer risk from data from New York State between 1969 and
1971 [9,10]. Note that the values of the two indexes defined by probabilities (cu-
mulative risk and current probability) are relatively close to each other before 65

Table 2.5 Cumulative rate, cumulative risk, and current probability of cancer
in New York State, USA (1969-1971) [6]

Males Females
All Lung All Breast
sites sites

Cumulative rate (%)

0-65 years 12.3 3.0 12.8 4.0

0-75 years 28.8 7.0 22.6 6.2
Cumulative risk

0-65 years 11.6 3.0 12.0 3.9

0-75 years 25.0 6.8 20.2 6.0

0-85 years 42.0 10.6 30.7 8.7
Current probability

0-65 years 10.0 2.4 11.6 3.6

0+ (% 27 1 5.8 27.8 7.2

(®) In this instance, the probability is calculated up to the terminal age of the table (see page 27).
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years, particularly for females. Beyond this age, mortality has played a greater role
effectively preventing incidence to manifest itself. In addition, we can see that the
approximation of the cumulative risk by the cumulative rate is not-very satisfactory
when incidence is high, such as occurs when all cancer sites are combined.

As an index of comparison between populations, the cumulative risk has two
main advantages over the standardized rate; it avoids the arbitrary choice of the
weighting and it expresses the risk on a probability scale which is interpretable
immediately.

The number of years of life lost

Descriptive epidemiology is fundamental to etiologic research. In this capacity,
it attempts to link characteristics of time and place to cancer development. It is
therefore natural that the measurement of incidence or, failing that, the measurement
of mortality will be the key instrument of the epidemiologist. But descriptive epidemi-
ology should also provide information that could be useful in the establishment of
public health priorities and policies, by addressing the consequences of cancer, the
main one from a public health perspective being the amount of human life lost from
the disease. This objective is already partially achieved by the determination of
survival rates, but they do not provide an overall picture of the impact of cancer on
the general population. In order to obtain this picture, we must measure the impact
of cancer on the potential duration of life that individuals of the given population
should have, on average, in the absence of the disease. The concept of potential
years of life lost (PYLL) has exactly this objective, since it measures the average
reduction of duration of life due to premature death caused by the given disease.

In order to assess the reduction in duration of life, two conceptual approaches
have been proposed. The first suggests that the years lost from death due to the
cause under study should only be taken into consideration up to an age limit that
is arbitrarily fixed to mark the normal end of life; only deaths occurring at ages lower
than this limit are then taken into account in the estimation of the reduction of
duration of life. The second approach assumes that the reduction in potential life is
equal to the number of years which the individual would otherwise have expected
to live at the age of death. Thus this approach takes into account the force of
general mortality exerted on the population under consideration. The two concepts
differ in the same way as do the net and crude probabilities of dying from a certain
cause of death,since the parameter is calculated respectively without and with taking
other causes into account (see Chapter 1, page 34).

Several upper limits have been proposed in the context of the fixed age limit
method. It has also been suggested to adopt a lower limit in order to exclude infant
mortality from the definition of premature death. The approach based on life expec-
tancy also has several variants. We will, however, only discuss the most common
ones here.
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Years of life lost with respect to a fixed age limit

If h is the fixed age limit, then the number of years potentially lost for an
individual in age group x dying from a certain cause can be denoted by

h — ay

where a, is the average age of death in age group x, which is, in practice, taken
as the centre of the age interval. If d, denotes the number of deaths in age group
X, then the total number of years of life lost in the population may be written

PYLL= D dy(h— ay (2.13)

a,<h

and, consequently, the number of years of life lost per death on average is

PYLL

PILH
X

which is simply h—a, where a is the average age of death from the cause under
consideration.

Rather than calculating this number of years per number of deaths, some
authors prefer to compute years lost per number of person-years M which has pro-
duced these deaths. The number (10° x PYLL)/M then measures the number of
years of life lost in a year per 100000 people who have the same age structure
and mortality as the population under consideration. This ratio is described as the

S,
PYLL  «x
M M
product of the crude mortality rate and the average number of years lost by the
individuals who have died from the given cause.

rate of years of life lost. Note that the index (h— a) is in fact the

The rate of life years lost can be standardized for the purpose of comparison
between groups. Let m, be the number of person-years of age x in the given group,
and L, be the number of person-years of age x in the standard population and

L= Z Ly; the standardized rate of years of life lost may then be written
X

1 dx 1 , -,
EZLX E(h—ax)zt[idx](h_a) (2.14)
a,<h a<h
where d’y and @’ are, respectively, the age-specific number of deaths and the average
age of death which would be observed in a population with the age structure of the
standard population, and the mortality rate of the given group.

d

X
dy=L,—
X X,
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Table 2.6 Calculation of number and standardized (*) rate of potential years
of life lost with a fixed limit at age 70
(male, lung cancer, canton of Neuchatel, Switzerland, 1974-1976)

x ay 70— a, Oy My PYLLy Wy 105 pyLL  ¥x
X My

(1) 2) (3) (4) %) (6) (7) (8)
40-44 425 27.5 5 15270  137.5 0.214 192.7
45-49 47.5 225 4 15102 90.0 0.214 127.5
50-54 52.5 17.5 12 14946  210.0 0.179 251.3
55-59 57.5 12.5 18 13044 2250 0.143 046.7
60-64 62.5 7.5 31 10830 2325 0.143 307.0
65-69 67.5 2.5 38 9843 95.0 0.107 103.3
Total 108 990.0 1.000 12085

Columns 1, 4, 5, 7 are given and columns 2, 3, 6, 8 are calculated.
(?) World population 40-69 years.

D dy ay
X
2, dx
X

7

a

Formula (2.14) is therefore the product of the standardized mortality rate and the
average number of years of life lost in a population that would have the standard
age structure and experience the mortality of the given group.

When they are calculated in this way, the rates from different causes have the
advantage of being additive. In other words, the sum of the rates corresponding to
several given causes is equal to the rate which is calculated from the sum of deaths
due to these combined causes.

As an example, Table 2.6 presents the calculation of the years of life lost from
lung cancer for Neuchatel, Switzerland; only deaths occurring after 40 years are
taken into consideration and the age limit is 70 years. Years of life lost are also
expressed as rates, standardized to the European population. This example shows
the weight that is given to deaths, however few in number, occurring long before
the age limit.

Years of life lost with respect to life expectancy

In this situation, potential life is the number of years which would theoretically
be left to live at the time of death, according to the life table.

If we let 8X (see Chapter 1, page 27) be the life expectancy at the mid-point
ay of age group X, then, as previously explained, the years of life lost from a given
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cause are the sum of the potential duration of life of all those who have died from
this cause

g
PYLL = Y dé, (2.15)
x=1

For comparisons between populations, rates and standardized rates can of
course be calculated, although the justification for doing so is not obvious when the
life expectancy differs among the populations being compared. Table 2.7 shows the
calculation of the rates and standardized rates from data for lung cancer in Neu-
chétel, taking values of life expectancy from the life table for the whole of Switzer-
land (see Appendix 1).

The rate obtained (2395 years per 100000) is twice that given by the fixed
limit method. The difference arises partly from the fact that deaths are taken into
account at whatever age they occur, including those well after the fixed age limit.
However, it also results from the fact that, for all ages less than 70 years, the life
expectancy is greater than that which would be obtained with a life potential limited
to 70 years. A higher fixed limit could possibly have led to the opposite conclusion.

We have stated that life expectancy implicitly took into account competing risks
due to other causes that could manifest their effects at any age, including the years
before the arbitrarily fixed age-limit. From this perspective, it would be more appro-
priate to recalculate the life expectancy at each age from a life table that excludes
the deaths for which the years of life lost are calculated. This approach has some
connection with the concept of additional years of life due to elimination of a cause

Table 2.7 Calculation of number and standardized rate of potential years
of life lost compared to life expectancy (%) at age of death
(male, lung cancer, canton of Neuchéatel, Switzerland — 1974-1976)

W
Age (X) ey dy My PYLL, Wy 105 PYLL, #
X
(1) ?) (3) (4) (5) ) ™)

40-44 32.77 5 15 270 163.9 0.188 201.8
45-49 28.24 4 15 102 113.0 0.188 140.7
50-54 23.89 12 14 946 286.7 0.156 299.2
55-59 19.85 18 13 044 357.3 0.125 342.4
60-64 16.12 31 10 830 499.7 0.125 576.8
65-69 12.78 38 9 843 485.6 0.094 463.7
70-74 9.84 29 7 656 285.4 0.063 234.9
75-79 7.35 22 5787 161.7 0.031 86.6
80-84 5.38 13 2721 69.9 0.015 38.5
85 + 4.59 2 1323 9.2 0.015 10.4
Total 24324 1.000 2 395.0

(®) Swiss life table, 1978-1983. Office fédéral de la Statistique, Berne, 1985; see Annex 1.
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of death (see Chapter 1, page 35). In practice, this subtlety is only necessary for
the causes of death that themselves play an appreciable role in the life table, and
besides, it has the disadvantage of making the procedure lose its additive property:
the estimate of the years of life lost from a combination of causes could then be
less than the sum of the individual estimates [11].

Methods for comparison

When we wish to compare incidence in several populations, the first step is
to examine standardized rates. However, as explained in the previous section, these
rates are affected by random variability. It is therefore important to know if an ob-
served difference between two incidence curves described in this way is real or only
due to chance. Knowing the confidence intervals of the rates being compared is not
always sufficient to make a judgement about the difference: there exist situations
in which incidence curves are significantly different even when the confidence in-
tervals of the rates overlap.

The statistical significance of an observed difference between two rates can
be roughly estimated by a method that requires only the total number of cases in
both populations in addition to the two rates under study. Because it is not precise,
this method, described in the next paragraph, should be reserved for use in situa-
tions in which age-specific data are unavailable. We discuss therefore in a following
section the methods that are appropriate when age-specific data are available (see
page 77).

Finding a statistically significant difference generally leads us to attempt to
define the nature of the difference. Although age-specific rates are obtained from
cross-sectional data, it is not unusual for them to differ in a constant ratio between
the two populations (the proportionality assumption). When such a model (known
as the multiplicative model) is acceptable, it is reasonable to estimate the constant
factor, that is simply the relative rate of one population compared with another (see
page 79) When it is not acceptable, the incidence ratio varies with age; this situation
is known as interaction between group and age. On page 81, we present a general
test to decide wether the assumption of proportionality is acceptable and in a fol-
lowing paragraph a test against the more specific assumption of increasing or
decreasing trend of the incidence ratio with age; the test against the existence of
a linear trend, which is the model most frequently considered, is discussed. Lastly,
we give an example on page 83 to show the practical use in a complex situation
of the tests that have been discussed.

In the second part of this section we deal with the problems that arise from
the comparison of incidence in several populations or in different subgroups of the
same population. A series of pairwise comparison of rates can actually produce
contradictory results, as well as being inappropriate: by multiplying the number of
comparisons that have been made, we increase the risk of concluding wrongly that
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a difference is significant. We first consider an approximate method which involves
the comparison of the incidence of all the subgroups of a population with a standard
incidence, which is usually that of the whole population. Then-the correct test for
deciding wether several forces of incidence can be considered identical is introduced
on page 87. In a final paragraph of this section we briefly introduce the analysis of
incidence using the log-linear model which allow this type of problem to be ap-
proached in a more systematic fashion (see page 90).

Comparison of incidence of a disease in two groups

The approximate method

We can obtain a rough idea of the significance of the difference between two
standardized rates when we only have these rates and the total number of individu-
als in the populations in which the incidence was measured.

If we were comparing crude rates, it would be sufficient to know their variances
(page 51). Let t; and t, be the rates to be compared and m; and m, the person-years
of observation. Since the variance of a difference of independent variables is equal
to the sum of their variances, we may write

Var (ty — 1) = {_nl—fL %2)%:%7» (2.16)

where A is the theoretical common rate in the two populations and h the harmonic
mean of my; and my. Then if we replace A by its estimate under the null hypothesis

A= (mqty + matz) / (M4 + mpy)

we can write

mqty + moto (217)

Var (t1 — 1) = My Mo

Thus, the variable

t1—- b

»\/m1t1 + mols
myMma

has a standard normal distribution and we shall reject the hypothesis of equality of
the rate in the two populations at the o = 5% significance level when [Z] is greater
than 1.96.

When the rates to be compared ty and t, are standardized, the variance of the
denominator calculated in this way is only an approximation to the variance of the

Z=
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difference of the two rates. Writing t; and t, as an explicit function of the age-specific
rates tiy and i,y the expression (2.17) becomes

Mitix + Moloy
mympo

Vaty = to) = 3, wy

X
2 —
= Hz Wxtx (218)
X

where t, is the mean of t;, and tox weighted by my and m,, the size of the groups
to be compared.
The average of the t, in (2.18) gives only a partial description of the variability

of t1 — to. Its exact variance is slightly different and is obtained from the variance
of the differences of the specific rates; using formula (2.16) in each age group and
replacing A by its estimate, we get

2 A Kix+ ko
Ve (t1 - tz)ziwi[h—xkx]= Do = (2.19)

X X

AN
where Ay is the estimate of the common rate &, and hy the harmonic mean of my,
and moy,. Writing wy, = L,/ h, we get

A

2 L 7\‘ 2 Ed
Vo(ti = to) = {1 2 wy—p == 1 2wt
X

a formula which suggests that the values V, and Vo may be close together if the
structure of the standard population is not too different from that corresponding to
the harmonic mean of the populations being compared.

As an example, consider the rates of stomach cancer for males in Zaragoza
and Geneva, standardized to the world population restricted to the age range 35 to
74 years (see Table 2.8 and Figure 2.4). We obtain respectively t; = 56.82/100 000
and t, = 43.52/100 000. The approximate variance of the difference between the
rates is thus (see (2.17))

(5x167022x 56.82)+ (b x71298x43.52)
5x 71298x5x 167022

Vo (t— to) = x 107°=212x 107

5 _ 156.82- 43.52]x 107°
@ V2.12x 107°

= 2.89

whereas the exact variance calculated using formula (2.18) above is
Ve (1 —to) = 2.11x 107°

, _ 156.82— 43.521x 10
© V2.11x 1070

= 2.89
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Table 2.8 Cases of stomach cancer in males and population size by age group
in Zaragoza, Spain, and Geneva, Switzerland.

Incident cases 1973-77 [6]

X Age Incident cases Population size 1975

Zaragoza Geneva Zaragoza Geneva
Kix Kox m1x/5 Mox/5

1 35-39 8 10 22 801 13 506
2 40-44 8 6 27 291 12 480
3 45-49 36 7 26 762 11012
4 50-54 54 18 25 899 9887
5 55-59 53 17 19 853 7010
6 60-64 96 25 17 431 6 845
7 65-69 115 35 15 024 6 066
8 70-74 145 37 11 961 4 492
Total 515 155 167 022 71298

kix : Observed cases in age group x in Zaragoza between 1973 and 1977.
m1ix : number of person-years of observation in age group x in Zaragoza between 1973 and 1977.
kox and moy : similar definition for Geneva. ’
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Figure 2.4 Age-specific incidence of stomach cancer in Zaragoza (Spain) and Geneva
(Switzerland) males, 1973-1977

In this case, we see that the two values calculated from the variance are almost
identical. The comparison of the two standardized rates by this method leads us
to conclude that the incidence rate of stomach cancer observed in Zaragoza
(66.82/100000) is significantly greater than that observed in Geneva

(43.52/100 000). It could, however, happen that t, and ty have different mean values.
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Therefore the approximate method is not recommended when the data permit the
correct calculation to be carried out.

Mantel-Haenszel test

Standardized rates have a descriptive function and the method of comparison
previously proposed above is essentially aimed at avoiding gross errors in inter-
pretation. When a comparative study of incidence is envisaged, the comparison
problem should be approached in another way that requires knowing the age-specific
rates and the number of person-years from which they were calculated.

Cochran [12] has shown how the performance of the x2 test could be improved
by explicitly taking into account alternatives to the null hypothesis that we are trying
to test. He proposed a method for the combination of 2 x 2 tables that was adapted
by Mantel and Haenszel [13] in the context of case-control studies. It can also be
applied with little change for the comparisons of incidence. The numerous applica-
tions of the Mantel-Haenszel method justify the amount of attention that we will give
to its presentation. '

Often incidence curves are approximately parallel when they are represented
on a logarithmic scale. This overall shift in the curve corresponds to the fact that
the ratio of the age-specific rates in the two populations being compared is more
or less constant. The Mantel-Haenszel test basically involves testing the alternative
assumption of proportionality of age-specific rates against the null hypothesis of
equal rates.

The method involves summing the observed differences in each age group; if
the differences tend to be of the same sign, as is supposed under the alternative
hypothesis, their cumulative value will not be compatible with the null hypothesis of
equality of age-specific rates. Small differences can thus be identified more easily
whereas, if they were considered individually or incorporated into a sum of squared
differences, no conclusions could be drawn.

Suppose that the hypothesis of equal rates is true. Then, apart from random
variation, the total number of observed cases in each age-group is divided between
the two populations in proportion to the number of person-years accumulated in
each one. Summing these expected numbers over all age groups will provide the
overall expected difference between the two populations which must be compared
to the overall observed difference. Since the total number of expected cases is made
equal to the total number of observed cases, it is sufficient, in practice, to calculate
the difference between the total number of cases observed and the total number of
cases expected under the hypothesis of equal rates in just one of the populations.
We illustrate this method using data presented in Tables 2.8 and 2.9.

If we use data for the second population, that is, in Geneva (Table 2.8), the
number of cases expected in age group X is
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where My = myy+ moy and Ky =kqx + Kox. The test is then based on the overall differ-

ence between observed and expected cases in the second populatlon that is, if g
age groups are used:

g
T= Y (kox— €20= Op— Ep

X=1

It is then evident from this latter formula that the statistic T is designed to
detect systematic differences of the same sign between the observed and expected
numbers in the different age-groups. In order to find out if the value of the statistic
is significantly different from zero, we need to know its variability under the null
hypothesis. Under this hypothesis, the total information available on the common
rate A, in age group x is contained in the variable K,. Therefore, K, being fixed at
its observed value, the statistical distribution of the number of cases in the age
group x of the second population is independent of A,; it may be described as the
result of K, independent choices between the two populations with probability m,,/M,
that the second population is chosen. In other words, ko, has a binomial distribution
with mean e,y and variance

Moy My (2.21)

Var (kax) = Ky M. M
X X

and consequently, the variance of the statistic T is

g
Var(T)= > Var (kox — €2y) = 2 Ky

x=1

Moy X Moy
MZ

Z=T/~Var() approximately follows a standard normal distribution; thus, if we ob-
serve an absolute value of Z greater than 1.96, we can reject the null hypothesis
of equality of rates at the 0.05 level (two-sided test).

This statistic has low power if the alternative hypothesis is not the one specified
above; for example, an incidence that is clearly higher at young ages and clearly
lower in older age groups might give a result which is not statistically significant,
even though the null hypothesis is not true. The test is actually much less effective
the further one moves away from the assumption of proportionality of rates. We
examine its use in particular situations, notably when curves cross over, on page 83.

Table 2.9 gives the various steps of the calculation of the Mantel-Haenszel
test, using the data presented in Table 2.8.

The value of the statistic Z is therefore:

155 188.7
Z= 135.3 —2.90

The differences observed cannot therefore be attributed to random variation
and we can conclude that the incidence of stomach cancer is higher in Zaragoza
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Table 2.9 Comparison of incidence rates in two populations;
Mantel-Haenszel test. Data from Table 2.8

X My/5 Kx Kox €2x Var(kox)

(1) 2) 3) (4) (5)
1 36 307 18 10 6.7 4.2
2 39 771 14 6 4.4 3.0
3 37 774 43 7 12.5 8.9
4 35 786 72 18 19.9 14.4
5 26 863 70 17 18.3 13.5
6 24 276 121 25 34.1 24.5
7 21090 150 35 431 30.7
8 16 453 182 37 49.7 36.1
Total 238 320 670 O, = 155 E»= 1887 135.3

than in Geneva. Note that in this case the value of 1Z| only differs slightly from that
obtained by the approximate method (see page 75).

Overall measure of incidence ratio

When the multiplicative model is acceptable, the rate ratio of the two popula-
tions is independent of age:

it is therefore natural to try to estimate p. Mantel and Haenszel have proposed a
weighted average of the ratio of the age-specific rates which proved to be very
efficient:

i Koy Mx
x=1 My (2.22)

g
K1x Moy
My

A
p =
x=1

From data in Table 2.8 and from intermediate calculations presented in the
first two columns of Table 2.10, we obtain

A 110.73
P= 34446

=0.766

which means that the risk of stomach cancer is 1.3 times (1/6) greater in Zaragoza
than in Geneva. We can easily calculate a confidence level for p, although it would
mainly be of theoretical interest in the context of most descriptive analysis.
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Table 2.10 Calculation of the relative risk of stomach cancer in Geneva, Switzerland,
with Zaragoza, Spain, as baseline. Data from Tables 2.8 and 2.9

A

X Kox M1x Kix Max M1ix + P Moy Kx M1x Mox
My Mx 5 My (myy + /P\ Moyx)
(1) @) 3) @)

1 6.28 2.98 33 146.60 4.61

2 4.12 2.51 36 850.68 3.25

3 4.96 10.49 35197.19 9.53

4 13.03 14.92 33472.44 15.39

5 12.56 13.83 - 25 222.66 14.38

6 17.95 27.07 ) 22 674.27 26.23

7 24 .93 33.08 19670.56 32.95

8 26.90 39.59 15401.87 38.59

Total 110.73 144.47 221 636.27 144.93

In fact, the variance of Log(ﬁ) is approximately [14-16]:

9
2. Var (kax)
V= x=1 (2.23)

KyM1xMoy

A
p
et Mx(mix + m2x6)

which, using the data in Table 2.9 (column 5) and 2.10, gives

_ 1353  135.3
0.766(144.93% 16094.95

= 0.0084

from which we obtain the standard error VYV = 0.0917,

Considering that Log(S) has a normal distribution with mean Log(p) and vari-
ance V, a confidence interval [py;po] at the (1 — o) level can then be derived as

I:S e_ Zoc/Z\IV; 6 e+ Za/2 \Y

which gives, for o = 0.05, the lower and upper confidence bounds, respectively:

[I/J\ . 1.96\/7; 661.96J—\7]

in the above example
py= 0.766x 0.835=0.64
and

po= 0.766x 1.1969=0.92
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Test of a multiplicative model

The assumption of proportionality also can be tested using the same principle
as before. Under the hypothesis of a constant relative risk regardless of the age
group, the means of the Poisson distributions in the two populations for age group
X are respectively A,mqy and pA,mo,, where A, is the age-specific rate in the first
population and p is the rate ratio. The K, cases observed will tend to be distributed
among the two populations in proportion to these values, so that,using the same
principle as in the previous paragraph,

Koyx ~> Binom (K,,py)

where

PAxMoy pMoy (2.24)

Mix+ phyMoy  Myyx+ pmoy

Px

Therefore, under the assumption of proportionality, the expectation and variance of
the number of cases in age group x of population 2 are now dependent on p and
are respectively:

92x<p) = Kybx
Var (Kox 5 p) = Kypyx(1 — py)
and will be estimated by replacing p in (2.24) by 6 given by (2.22).

If the hypothesis of a constant risk ratio is not true, we will observe substantial
differences between the observed and the expected numbers of cases in some age
groups; overall, these differences will be detected by the sum of standardized

squared differences df in each age group,

[kox — €2x (6 )]1
X2= di=
% 2{ Var (kay D) (2:25)

Table 2.11 Calculation for interaction tests. Data from Tables 2.8, 2.9 and 2.10

A AN

X - e2dp)  Var(eip) o (x(8)  (x(@) (@)
(1) 2) 3) @) (5) (6) ) ®)

1 10 5.62 3.87 4.96 4.38 3.87 3.87
2 6 3.63 2.69 2.09 4.74 5.38 10.76
3 7 10.31 7.84 1.40 — 9.93 23.52 70.56
4 18 16.29 12.60 0.23 6.84 50.40 201.60
5 17 14.90 11.73 0.38 10.50 58.65 293.25
6 25 27.98 21.51 0.41 —17.88 129.06 774.36
7 35 35.43 27.06 0.01 — 3.01 189.42 1 325.94
8

37 40.66 31.58 0.42 —29.28 252.64 2021.12

Total 155 154.82 118.88 9.90 —33.64 712.94 4701.46
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which is approximately distributed as a Xz with g-1 degrees of freedom. This test is
also known as the homogeneity test.

In the above example, its value can be calculated from Table 2.11 (column 5):

> d5=9.90

X

as this value is lower than the critical value 14.07 at the significance level o = 0.05
for a x2 with seven degrees of freedom, we cannot reject the null hypothesis of
proportionality.

Trend test

The test with (g — 1) degrees of freedom described above is not very sensitive
to small departures from proportionality; nevertheless, even small differences can
be interpretable if they increase or decrease systematically with age. If such a sit-
uation is expected, it is preferable to use a trend test (with one degree of freedom)
which is aimed more specifically at this alternative hypothesis. The relevant statistic
is given by the weighted sum of the differences between observed and expected
numbers

g
T=3 uylkox— eax (0)]

x=1

where u, varies with age according to a specified structure; for example, it could
be assigned the age group’s number if one was allowing for a linear divergence of
the two curves with age.

We can show that

2
J AN
) uy Var (koy ; p)
d ) A X=T1
Var(T)= 2 ux Var (ko p )~ — (2.26)
= > Var (ko )
x=1

Z=T/~Var(T) is a standard normal variable that we will use to test for the alternative
hypothesis specified by the series of coefficients u,; this test is also known as the
Armitage test [17]. Details of the calculations are presented in Table 2.11 (columns
6 to 8); from these data we obtain

- 33.64

(712.9°
118.9

The hypothesis of proportionality can therefore not be rejected even when the
alternative hypothesis is more narrowly specified. However, the value of Z is rela-

z

= - 1.63

* \/4 701.5—-



METHODS FOR COMPARISON 83

tively high; this can be understood well enough by examining Figure 2.4 where we
can see that, because incidence is initially higher in Geneva, there is a slight de-
parture from the null hypothesis of proportionality. N

Example : Hodgkin’s lymphoma

The methods that we introduced above might seem unnecessarily sophisticated
for estimating differences as obvious as those which appear between Zaragoza and
Geneva with regard to stomach cancer. Their usefulness does not appear in routine
contexts, but is apparent in borderline or complex situations. For example, a more
precise method is needed to interpret population differences when incidence in differ-
ent periods of life is described by different models. The above approach may then
be extremely useful. To illustrate this idea, consider the comparison of incidence of
Hodgkin's disease for males in Connecticut and the province of Zaragoza for the
time period 1973 to 1977 [7] (see also Figure 2.5).

If we use the method described on page 76, we obtain a value Z = 0.56 for
the Mantel-Haenszel test, which tempts us to conclude that there is no difference
in incidence between the two populations. Note also that the standardized rates
(respectively 3.8 and 4.0 per 100000 in Zaragoza and Connecticut) yield the same
interpretation. On the other hand, one should be warned by the high value (53.65
with seventeen degrees of freedom) obtained with the homogeneity test, suggesting
that the incidence curves very likely cross; this phenomenon, which can be clearly

15

— Zaragoza
——-Connecticut

124

Rate per 100 000 person—years

0 10 20 30 40 50 60 70 80 90
Age (years)

Figure 2.5 Age-specific incidence of Hodgkin’s disease in Zaragoza (Spain) and
Connecticut (USA) males, 1973-1977
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seen on the graph in Figure 2.5 is not a priori surprising since we know that Hodg-
kin’s disease has at least two forms with different etiologies. It is then natural that
we should look separately at differences in younger age groups and in older age
groups.

If we use the Mantel-Haenszel test on the age groups from one to 24 years,
we obtam 85 observed cases as opposed to 83.22 expected in Connecticut and a
value of p—1 13 with Z = 0.45. Although the test is not significant, given the ap-
pearance of the two incidence curves, it is still advisable to continue the analysis
using the methods presented page and ; the homogeneity test gives a value of
38.85 with four degrees of freedom (p < 0.001), and the linear trend test gives 5.65
for one degree of freedom. This last value means that the difference between ob-
served and expected numbers increased significantly with age. The observed and
expected values under the hypothesis of parallel curves with 6:1.13 are shown in
Table 2.12 and, from close examination, it can be clearly seen why the hypothesis
of proportionality is not justifiable. Actually, the disease is significantly more frequent
in children in Zaragoza (Z = —5.40 with the Mantel-Haenszel test performed on the
first two age groups); a reversal of risk takes place at adolescence. In Connecticut,
the risk is significantly higher for young adults: if we restrict our analysis to age
groups 20-34 years, the disease is three times more frequent in Connecticut
((p 3.06, Z=3.41). On the other hand, differences between the two countries are
no longer observed after 35 years: the homogeneity test gives values of Z = —1.05

and x§0:6.59. These diverse results force us to suspect that Hodgkin's disease
might involve a group of three pathological entities with different etiologies and not
two as was previously assumed [18]. The observed difference could also originate
in different definitions of the disease in the two countries.

The example demonstrates that the procedures introduced in this section can
be valuable tools to help avoid erroneous interpretations when random variation are
substantial and when the pattern of incidence deviates markedly from the simple
shapes observed for epithelial tumours. They must nevertheless be applied with
caution and their use be motivated by biological hypotheses defined a priori.

Table 2.12 Hodgkin’s disease in Connecticut (USA)
and Zaragoza (Spain). Male, 1973-1977 [7]

Connecticut Zaragoza
Age Observed Expected Rate Rate
cases cases
for p=1.13
1-4 0 4.74 0.00 3.67
5-9 1 3.38 0.13 1.89
10-14 6 6.65 0.85 1.23
15-19 32 29.20 4.51 1.88
20-24 46 41.07 7.02 2.10
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Comparison of incidence among several populations

Often in descriptive epidemiology we have to interpret differences in incidence
among a series of populations, or subgroups of the same population. This is a
standard procedure when routinely published data are studied. Therefore, the analy-
sis has no longer the goal of studying specific differences between a few given
groups. lts objective is instead to find all differences which may exist. We present
below the standard methods that can evaluate whether each incidence rate in a
series of groups or populations is significantly different from an overall expected
value. The problem with these methods, like all those which involve multiple com-
parisons, is that they are bound to identify some differences produced by random
fluctuations as being significant. It is therefore preferable to use a test that provides
an overall assessment of the homogeneity of incidence. This is introduced on
page 87. We shall also discuss in Chapter 3 (see page 134) other methods which
are appropriate in this context.

Comparison with an overall expected value

If the total number of cases is available in a subpopulation whose age structure
is known, then it is possible to check if this observation is compatible with a given
incidence rate, such as the incidence rate of the whole population. It is straightfor-
ward to use this incidence rate to calculate the number of expected cases in each
age group, their total E, the SIR and its confidence interval in the subpopulation.
We will take it that the SIR is different from 100 when its confidence interval does
not include 100 (see page 64). When the total number O of observed cases is
sufficiently large, the normal approximation to the Poisson distribution can be used.
In other words, we consider that O is a normal variable with expectation E and

2
variance E; accordingly, we can calculate the quantity: XZ:(O—EEL which follows

a x? distribution with one degree of freedom.

Because of its simplicity, this method is often used systematically to find out
if the incidence rate in selected subpopulations deviates significantly from the total
population incidence rate, as though this incidence were known a priori and not
calculated from the observations themselves.

To illustrate the method, let us consider the regional subdivisions of the French
departement of Céte-d’Or that is covered by the Burgundy Registry of digestive tract
tumours. The number of cases of colon cancer observed in each five-year age group,
from 1976 to 1980, as well as the number of person-years accumulated in each
age-group for the same period are summarized in Table 2.13. The total number of
observed cases in each region, and the calculations of expected value under the
hypothesis that the rates in the whole département of Cote-d’Or apply to each region
of the département, are given in Table 2.14.
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Table 2.13 Colon cancer cases and person-years (°) in Céte-d’Or, France,
Male, incident cases 1976-1980

Dijon Céte Chatillonnais | Plaine de Auxois Morvan Cote-d’Or
Viticole fa Sabdne (Total)

X kx My kx My Kx My Kx My kx My kx My Ky M
0-4 0 45626 | 0O 9273 O 7309 0 19970, O 8094 0 205 0 91 177
5-9 0 41145] O 9653, 0 9683 0 24135| 0 9500 0 1171 0 95 287

10-14 0 39284 0 10255 O 10758 | 0 23297 0 10483 0 1819 0 95 896
15-19 0 43469| 0 11054 O 10360 0 21195 0 10870 O 1770 0 98718
20-24 0 52794 0 10073| O 8402 | 0 19034 1 9539 0 1186 1 101 028
25-29 0 54321 0 10499 O 7984 | 1 19009 O 7936 0 1345 1 101 094
30-34 0 40848 0O 8588| O 7482 0 19040 O 6633 0 979 0 83570
35-39 2 31559 1 6459| O 6707 0 16017 O 6012 1 779 4 67 533
40-44 2 30703| O 6860| O 72731 0 15762| 1 6775 0 1120 3 68 493
45-49 3 29875| 1 71814 O 6869 3 15242 3 73777 0 1481 10 68 025
50-54 10 27228 2 6955 O 7313 1 13265 1 74891 0 1422 | 14 63 672
55-59 17 21808| O 5636| 1 5211 | 5 10951 1 6066 0 1275 24 50 947
60-64 7 15002 | 2 4 041 0 4638 5 8249| 3 4729 0 975 | 17 37 634
65-69 17 14 556 | 4 5203} 3 6322 7 10287 4 6350 1 1595 | 36 44 313
70-74 33 118411 4 4310 7 5129 {18 839713 57641 1 1336 | 76 36777
75-79 20 7762 3 2425|110 3375 |11 5625| 6 4187 2 825 | 52 24 199
80 + 12 6112 |10 1894 4 2167 |11 3913} 3 27951 0 604 | 40 17 485
Total 123 513933 |27 120359 25 116982 {62 253 38836 120599| 5 20587 |278 2245 848

(®) Person-years of observation were calculated by summing the mid-year populations from 1976 to 1980.

Table 2.14 Calculation of the SIRs in the different regions of Céte-d’Or (France)
with the overall incidence in the département
as standard, males, colon cancer, 1976-1980

Region Observed Expected SIR 95% confidence
number number interval (%)
Dijon 123 98.7 124.6 [103.6 ; 148.7]
Céte viticole 27 30.6 88.2 [ 58.1;128.4]
Chatillonnais 25 36.0 69.4 [ 44.9;102.5]
Plaine de Sabne 62 62.8 98.7 [ 75.7; 126.6]
Auxois 36 41.0 87.8 [ 61.5;121.6]
Morvan 5 8.9 56.2 [ 18.2;131.1]

(3} Exact method (Poisson distribution).

As the confidence interval of the SIR for Dijon excludes 100, we conclude that
the incidence of colon cancer is higher here than in the whole département. We
could also have tested the observed difference by calculating x* with one degree
of freedom; its observed value (123 — 98.7)2/98.7 = 5.98 leads to the same conclu-
sion. However, observations in the other cantons of Cbéte-d’Or are compatible with
the overall incidence in this département.
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Note that an analysis of the SIR without an indication of its precision would
not be sufficient to provide the correct conclusion about the variation of incidence
in the region. For example, the value of 56.2, that appears to indicate that Morvan
is a low-risk area, is actually only due to the low value of the expected number
which, in turn, implies large random variation in the observed number. In this case,
the probability of obtaining five or fewer cases simply by chance, when the expected
number is E = 8.9, is actually 13%, therefore too high to reject the null hypothesis
of equality of the incidence rate in Morvan and in the whole département.

Although interpretation of the values obtained for the different SIRs is much
more convincing when their confidence intervals are taken into account, the method
is still approximate. In fact, the incidence for the whole of the Cote-d’Or that is used
as a standard is calculated from observations made in the different subgroups; the
SIR obtained for each of the subgroups is by definition systematically closer to unity
than it would be if the standard incidence had been defined a priori. To avoid this
problem, which is more significant when the subpopulation consists of a larger pro-
portion of the total, some authors have proposed taking as a standard the incidence
in the population complementary to the subpopulation for which the SIR is calculated.
In other words, to use the incidence in all of the other populations as the standard
incidence. As the variability of the rates in the complementary population is not
taken into account, this approach is unfortunately not much more satisfying. The
first approach is conservative, as it too often tends to favour the null hypothesis,
while the second method is too liberal as it often wrongly rejects the null hypo-
thesis.

Homogeneity test for incidence

The appropriate method is actually quite similar in conception to that previously
described for the situation of two populations (see page 77). lts principle has been
mainly applied to survival analyses (log rank test, see Chapter 4, page 247) and
case-control studies, but its application to descriptive incidence or mortality data is
also straightforward.

If the theoretical incidence is the same in all groups, the total number of ob-
served cases K, in each age group x would be divided among the different groups
in proportion to the person-years accumulated in each of them. It can then be shown
that the distribution of observed cases follows a multinomial distribution. To be de-
fined completely, the distribution should be specified by the expected number in
each group and by the variance-covariance matrix which quantifies not only the
variability but also the correlation of the observed numbers in these groups.

Letting
* | be the number of subgroups to be compared (1< i < |),

* kix be the number of observed cases in the xth age interval of the ith subgroup,
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e mi be the number of person-years accumulated in the xth age interval of the ith
subgroup,
l l -
. KX:EKiX and MX:ZmiX the total number of cases and person-years in age-
i=1 i=1
group X,
the mean and the variance of the observed number of cases in each age interval
of each subgroup may be written (1 <i <1l and 1 < x < g):

KMy (2.27)
€ix = Mx
and
K,mi, (M, — m; 2.28
Var (kix): X IX( ; IX) ( )
\i

Furthermore, the covariance between observations in two subgroups is

- meixmjx (2.29)
M

COV (kIX ’ kJX) =

As was done in the situation of two populations, we sum the quantities e, over
all age groups to obtain the expected numbers E; in subpopulation i. The variance
and covariance of the observed numbers calculated under the assumption of equality
of incidence are also summed over the age groups in order to obtain the variance-
covariance matrix of the total number of cases in the subpopulations. The expected
numbers are obviously the same as those given in Table 2.14, which were also
defined by the overall incidence rate in the département of the Céte-d’Or:

KxMix
2,

X

Table 2.15 gives the variance-covariance matrix V of the observed numbers
O;; it shows on the one hand that the variances are lower than the expected num-
bers. In other words, they are lower than the variance under the Poisson distribution;
on the other hand, the table shows that all the covariances are negative, a predict-
able result since the total observed number in age group x is fixed at its observed
value K, (see (2.29)). If the observed numbers had themselves been allocated in
the various populations. according to a multinomial distribution, we would have the
classic Xz test obtained from the normal approximation to the multinomial. Thus, we
would calculate the test statistic

' 2
O~ E .
I - 2( ) (2.30)
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Table 2.15 Variance-covariance of the observed numbers of colon cancer cases
in Cote-d’Or, France, under the hypothesis of risk homogeneity (?)
within the département. Data from Table 2.13

Dijon 63.03

Cote viticole -10.85 27.24

Chatillonnais —~12.59 — 3.97 31.27

Plaine de la Sadne —22.22 - 6.92 - 8.15 48.6

Auxois -14.30 — 4.52 — 5.38 - 9.29 34.83

Morvan - 3.09 — 0.99 - 1.17 - 2.02 —1.34 8.61

(®) The variance of observed numbers is on the diagonal. The covariance of one region with the regions
preceding it in the first column is under the diagonal. For example, in Auxois, the variance is 34.83: the
covariance of observed numbers in Auxois and Morvan is —1.34.

which, in the present example, is 12.10, a value that is greater than 11.07, the 5%
critical value of XQ with five degrees of freedom. This leads us to reject the hypothe-
sis of homogeneity of the incidence rates in the six cantons of Céte-d’Or.

However, as the total number of cases K, is fixed, the O; are distributed as
the sum of multinomial variables and T4 is on average smaller than X2 with 1-1
degrees of freedom. The appropriate calculation is based on another quadratic func-
tion T, of the (O; —~ E;) where these differences are weighted inversely to their var-
iances. Calculation of this statistic therefore requires the inverse of the
variance-covariance matrix of the differences O; — E;; the elements w;j; of this in-
verted matrix provide the necessary weights. The statistic can thus be written:

-1
To= >, wi (O - E)°+ 23 w;j(O;— E) (O~ E) (2.31)

i=1 i<

Note that the restriction of the sum to the first I-1 populations is related to
the same principle involved in the Mantel-Haenszel test where only one group is
used for calculating the test statistic. Because the sum of O; is fixed, the last region
does not contribute any further information to the test. The matrix inversion can be
computed with readily available software. In the present example, the weights are
provided by the inverse of the matrix in Table 2.15 and the statistic T, has a value
of 12.25 which follows a X2 distribution with five degrees of freedom and, like Ty,
leads us to reject the homogeneity hypothesis. In this situation, the calculation of
T4 would have been sufficient.

In practice, we often need to find the basis for this demonstrated heterogeneity,
particularly to determine whether one or a few regions are responsible for the statis-
tical significance of the test. The appropriate tool to answer the question is similar

to a trend test with one degree of freedom; Z uiO; is compared with its expectation
i

ZuiEi where the coefficients u; which equal + 1, —1 or zero are chosen such that
i
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the statistic will enhance the contrast between the regions which are suspected to
be different for a priori reasons. We thus calculate the statistic

fre-s]
SE- Y FI Uieixr
i o T

X

Ty = (2.32)

where the denominator, which is U’VU in matrix notation, is the variance of
ZuiOi.
i

For example, for comparing Morvan (i = 6) with the rest of Cote-d’Or, we set
ug = 1 and u; = =1 if i is different from 6. We obtain T3 = 1.77, a value which is
not significant. The use of the same principle to compare the city of Dijon with the
rest of the département gives T3 = 9.4, a highly significant value for ¥° with one
degree of freedom (p = 0.002). For Chatillonnais, we obtain a borderline value, that

is, x? = 3.86. Although formally significant, a value of this kind should be treated with

caution because the multiplicity of the tests carried out increases the chance of
wrongly rejecting the hypothesis of equality. Strictly speaking, the test has one
degree of freedom only if the comparisons result from hypotheses defined a priori.
For example, if the subgroups could be characterized according to a sociodemo-
graphic variable, such as the average income, a test with a single degree of freedom
could be carried out by choosing for the u; the rank of the regions after ordering
them according to the value of this variable. In the same manner, if we wanted to
compare northern and southern areas of a region, we could perform the test choos-
ing u; = 1 for the north and u; = -1 for the south.

A further hypothesis which could be considered in the context of this example
is whether the rural regions (all except Dijon) are homogeneous with respect to the
incidence of colon cancer. The above approach would lead to a X2 with four degrees
of freedom with the value 3.26 for the test of homogeneity of incidence in rural
areas. The conclusion of the analysis is therefore that the incidence is different in
the rural and urban regions of the département (see below).

Use of the log-linear model

The analysis of descriptive incidence data can also be conducted with model-
ling techniques that allow for greater flexibility in interpretation. As a rule, the idea
is to look for a model which provides the estimate of the parameters of interest in
particular the relative rate and to select the simplest among those that are statisti-
cally compatible with the observations. This approach is particularly easy with access
to modern computer software.
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The linear regression, a widely used statistical tool, consists of modelling the
expectation of a normal variable, using a linear function of the covariates that in-
fluence its value (see Chapter 3, page 158). it has been proposed to generalize
this technique to other probability distributions, including the binomial distribution
and the Poisson distribution. It can be shown that, in order to obtain the optimal
statistical properties, it is more effective to model a function of expectation rather
than expectation itself; thus, for a binomial distribution, the logit of the probability
is modelled, and for the Poisson distribution it is the logarithm of the mean which
is modelled as a linear function of the relevant covariables.

The observations in the context of this manual are most often Poisson varia-
bles, whose expectation depends on the unknown incidence rate and person-years
of observation according to the formula
A E(Kix) = mydix

that is
Log [E(Kin] = Log (mjy) + Log (Aiy)

The aim of this section is to show how Log(\y) can be modelled finearly to
provide most of the results which have been previously presented. The hypothesis
of proportional incidence rates that has been introduced on several occasions may
be written

Aoy = Phix
thus

Log (Aox) = Log (A4y) + Log ) (2.33)

Formula (2.33) is therefore a particular log-linear model which describes the inci-
dence rate in group 1 (L4,) and the relative rate p of group 2 with respect to group
1. It can easily be generalized to more than two groups in the following form:

Log (M) = LogA(1n + Log(p) 2<i<l (2.34)

where p; is the relative rate of group i with respect to group 1. In practice,
By = /l\_og (L1x) and 6; = Log(p;) are estimated by the maximum likelihood method,
then Ayx and p; are derived by exponentiation. In the present situation involving two

factors, age and subgroups /?\wx and ﬁi are in fact given by close formulae

po 9 O
=9 T TE (2.35)
z M1
x=1
Z Kix
A i
Mx= (2.36)
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where O; is the total number of observed cases in group i and E; is the expected
number, taking x1x as a standard. It can be seen that this method provides a statistic

related to the SIR; it serves the same purpose of locating the-subpopulation on the
risk scale. It is known as the internal method of standardization {19,20]. The special
role given to the first subgroup is obviously the result of an arbitrary choice. An
appropriate computer programme is required to estimate the parameters by the max-
imum likelihood method; the calculations reported below have been carried out using
the program GLIM [21] and are described in detail in Appendix 2.

When the rates of stomach cancer in Geneva and Zaragoza are compared,
the value of the parameter p is found to be 0.77 which means that there is about
30% more stomach cancer in Zaragoza. This value can be compared with results
obtained from other methods previously presented in this chapter:

¢ SIR, using the marginal incidence rate as standard is

155 515
188.73 ~ 481.26 O'7

° 6 according to Mantel-Haenszel formula: 0.77
e Ratio of cumulative rates: 2.38/3.20 = 0.74
» Ratio of rates standardized to world population:

CIF = 43.52/56.82 = 0.77

When the two incidence curves are parallel, as in this example (see Figure
2.4), these various estimates are close together. It is however recommended to use
the internal standardization, i.e., the log-linear model, which has optimal statistical
properties in this context or to use the Mantel-Haenszel estimate which has been
shown to be particularly robust.

The vahdlty of the model (2.34) may be judged by comparing observed values
kix and values k,x calculated from the model itself. The ordinary goodness of fit statistic
k. _ k-
T= Z LJ%L) may be used for this purpose. The measure of goodness of fit may
i,x Kix
also be based on the ratio between the likelihood of the accepted model and the
likelihood of a model that would describe the observations exactly; this latter is
known as a saturated model. This statistic

D = -2 Log[V(model) / V(saturated model)]

is referred to as the deviance. In the context of the classical linear model with
normal error, it coincides with the above x2 for goodness of fit T. In the present
situation, both T and the deviance D have a chi-squared distribution whose number
of degrees of freedom is the number of observations h less the number of estlmated
parameters \%

T,D~ %f_y
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When testing the goodness of fit of the proportional hazards model to the data
from Geneva and Zaragoza, we obtain D = 9.392. The corresponding number of
degrees of freedom is 7: 16 observations minus 9 fitted parameters (eight age
groups + the relative risk). This value suggests an acceptable fit (p = 0.23): the
difference between the values estimated by the model and the observed values is
of an order of magnitude compatible with the random fluctuations allowed for by the
Poisson distribution.

An hypothesis about the value of a parameter, for example, p = 1, can be
tested by evaluating the significance of the increase in deviance which results from
giving the tested value to the parameter of interest. When the increase is too large
the proposed value is rejected. Thus, the comparison of deviance between the two
models: (1): Aoy = phyyx and (2): Ay = A4y is equivalent to the test of the hypothesis
p = 1. In practice, the more general model is fitted (model 1) and the increase in
deviance evaluated by fitting the restricted model (model 2). The calculations for
the above examples are listed in Appendix 2.

When fitting model 2 to the present data, the deviance changes from 9.392 to
18.14. The difference of 8.75, value of a X2 variable with one degree of freedom,
is highly significant and leads to reject the hypothesis of equality of the incidence
rates (p = 1).

The variance and covariance of the parameter estimates are also derived from
the likelihood (see Chapter 1, page 17). The variable

,_ Log® -~ Log (p)

VVar (Log (p))

is approximately a standard normal variate. We can then construct a 100 (1 - o) %
confidence interval:

Log (B) % Zs> \Var (Log (B) )

The value of Log(f)\) and its standard error are provided by the computer program
GLIM (see Appendix 2) and are respectively for the current example Log(S) = — 0.2651
and Var(Log(ﬁ)) = 0.00841. Therefore, if the theoretical value of p were equal to
one,

~0.2651

£=0.09168 "

-2.89

a value which is too large for a standard normal deviate. We therefore conclude
that p is significantly lower than 1 and its value is estimated at 0.77. This second
way of testing the hypothesis p = 1 is known as the Wald test which here is the
same as checking whether this confidence interval includes one.

The confidence interval of Log(p) calculated as shown above is [-0.448 ; —0.0854]
from which we can derive the confidence interval of p by exponentiation [0.64 ; 0.92]
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which is identical in the present case to that obtained earlier from the Mantel-Haens-
zel estimate (see page 80).

As a second example, we return to previous data on colon cancer incidence
in Cote-d’Or (Table 2.13). We shall describe the incidence data observed among
men older than 20 years by a proportional hazards model:

Nix = Pi My 2< i< 6
that is, since E(Kjy) = Aiymix:
Log [E(Kiy] = Log (mjy) + Log (Ax) + Log (p)

This is an 18 parameter model (13 parameters for age and 5 for the relative rates)
we have 78 observations available to carry out their estimation.

3

The fit of the model (see Appendix 2) leads to a deviance of 68.20 for 60
degrees of freedom; the goodness of fit is satisfactory (p = 0.219) showing that the
proportional hazards model is acceptable. The relative rate of the 5 cantons with
respect to Dijon (taken as a reference) are respectively 0.70 (cote Viticole), 0.55
(Chatillonnais), 0.79 (Plaine de la Sadne), 0.70 (Auxois) and 0.45 (Morvan). How-
ever, only the risk for Chatillonnais is significantly less than 1.

The confidence intervals of these parameters, which are obtained as explained
above in the context of the comparison of two populations, confirm our previous
conclusion. Only the relative rate for Chatillonnais is significantly less than one (see
Appendix 2). This result implies logically that the rates of colon cancer are not
homogeneous; it is however preferred to test formally this hypothesis by fitting the
previous model under the constraint:

pi=1 2<i< 6

We find a deviance of 80.78 for this new model; the increase 80.78 — 68.20 = 12.58
is significant when compared to the critical value of X2 with 65 — 60 = 5 degrees
of freedom (p = 0.08). This confirms the heterogeneity of the rates.

The modelling approach is particularly well suited for carrying out the test of
homogeneity of the rural regions made previously (see page 90). The hypothesis is
then written:

pi= pj= p* pr# 1 2<14,j< 6

The fit of this model increases the deviance of 3.46 which is just below its
expectation (the %2 in this example has 64 — 60 = 4 degrees of freedom). The esti-
mate of p*, relative rate of rural cantons is obtained from the fit and it is equal to
0.69 (95% CI = [0.54 ; 0.88]).

We therefore conclude that Dijon has the greater risk of colon cancer and that
there is no evidence of rate heterogeneity in the rural regions of Cote-d’Or.

The modelling done for the factor region may also have been done for the
factor age; it is clear that 13 parameters are not needed for describing the age
effect which could be smoothed by a polynomial function (the age effect estimates
for younger age groups have in fact a very low precision). The resulting model would
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be more parsimonous and would have the same ability for doing the above geo-
graphical comparison (see Appendix 2).

The mathematical complexity of this approach is largely compensated for by
its interpretative power. The clear terms of the hypotheses, the statistical evaluation
of the results, the flexibility of use and the cohesiveness of the approach are
qualities that make its systematic introduction into descriptive epidemiology worthy
of serious consideration.

Extension and limitations of the present methodology

Risk analyses in the absence of denominators

As we have seen in previous sections, the descriptive analysis of cancer risk
requires the estimation of person-years of observation. For descriptive studies in-
volving large areas, national bureaux of statistics are usually able to provide the
necessary information. in most countries, however, the data are generally not broken
down by variables of epidemiological interest, such as occupation and country of
birth. In contrast, these variables are usually available for incident cases or deaths.
This section will show how it is possible to take advantage of this information to
carry out the analysis of risk despite the lack of corresponding denominators.

The methods which have been proposed are based on an analysis either of
the distribution of cases by site (e.g., correspondence analysis) or, where the interest
is mainly in cancer of a particular site, of the proportion of this cancer occurring
among all other sites. These are known as relative frequency or proportional inci-
dence (or mortality) methods. The discussion will be restricted to the situation where
interest is centred on a specific cancer site.

The relative frequency of a specific cancer in a population is defined as the
ratio between the number of cases of the cancer and the total number of cancer
cases in the population during the same period. The comparison of relative frequen-
cies of a given cancer between two populations is at best an indirect measure of
the absolute risk difference. This comparison will be more reliable when the cancer
site of interest accounts for a small proportion of all cancer cases. For example,
buccal cavity and pharyngeal cancers represent only 2.1% of all cancers in men in
the United Kingdom, whereas in France they represent 8.6%. The corresponding
crude rates in the two countries are respectively 9.2 and 42.4 per 100000 person-
years. In this situation, the information provided by the absolute and relative indices
is identical: this cancer is four times more frequent in France than in the United
Kingdom.

As a rule, however, risk estimates obtained from studies of relative frequency
are less precise. The methods proposed below provide only a partial remedy for
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their intrinsic weakness. We will discuss briefly methods of standardization of relative
frequencies and the modelling of proportional incidence in the following sections.

Standardized indices of relative frequency

The relationship between cancer incidence or mortality and age is generally
site-specific. Consequently, it will generally not be the same for the site of interest
and for all cancers. For example, the proportion of buccal cavity and pharyngeal
cancers in France is 13.9% between 45 and 64 years and only 5.5% after 65 years
[23]. The ratio of the age-specific incidence rate of the cancer under consideration
and all cancers combined (A, / uy) will therefore depend on age; standardization is
necessary to account for confounding by age when comparisons are carried out.

Two standardized indices have been proposed: ASCAR [24], which was initially
developed for studies in developing countries, and the proportional incidence ratio
(PIR). These indices are the equivalents, for relative frequencies, of the direct and
indirect methods of standardization discussed previously.

ASCAR is the average of the age-specific relative frequencies, weighted by a
standard distribution of age at which cancer occurs. If k, is the number of cases of
age x for the cancer of interest, K, the total number of cancer cases and w, the

proportion of cancer of age x in the standard population (Z wy =1), then

X

k
ASCAR= Y wy —KX
X

X

The PIR is the ratio between the total observed number of cancer cases at a
given site and the number expected if the cases occurred according to a standard
relative frequency p, which was a function of age:

P
PIR= ———
szpx
X

The total number of cancer cases K, in age group x being fixed at its observed
value, the number k, of cancer cases at a given site is distributed as a binomial
variable. It is possible to make statistical inferences based on ASCAR and PIR using
this distribution. This approach is however of limited interest since neither ASCAR
nor PIR estimates population parameters which are interpretable in terms of risk or
relative risk. The following approach overcomes this difficulty to some extent.

Modelling incidence data in the absence of the denominator

Suppose that we are studying the risk of a specific cancer C in two populations
Po and Py in which cancer incidence rates are respectively Ay and A; for cancer C



EXTENSION AND LIMITATIONS OF THE PRESENT METHODOLOGY 97

and po and p4 for all cancers (Table 2.16). Let vy = uy — Ay and vy = pg — Ao be
the incidence rate for all cancers other than C (denoted A), and p and 6 be respec-
tively the relative rates of cancers C and A, that is, Ay = pAg and vy = 0v,. If a
cancer occurs in population P4, the probability that it is the specific cancer C is:

o= M_ P (2.37)
W pAg+ OBvg
and therefore
Pt _p M _p Po (2.38)
1 —P1 h 0 Vo 01— Po

The odds of cancer C occurring in population Py are p/6 times the odds of its
occurring in population Py. This odds ratio is equal to the relative risk only if 6 = 1,
that is, if the incidence rate of other cancers A is the same in the two populations.
The observed odds ratio ki€g / ko€, which is an estimate of p/0, is therefore some-
what difficult to interpret. When cancer C is rare and other cancers have approxi-
mately the same incidence in the populations being compared, the method is
perfectly adequate.

When a confounding variable is considered, tables similar to Table 2.16 are
constructed for each category of this variable and the Mantel-Haenszel method is
used to provide an estimate of p/0 [25], for example if the number of cases are
distributed by age group (x):

PAN
Pl ~ Kkixfox Kox€ 1x (2.39)
TR

In practice, the logistic model is preferable, since formula (2.38) is equivalent to

Logit (py) = Logit (pg) + Log[g]

More generally, if we adapt the model for confounding variables and study the risk
in more than two groups, the probability of cancer C occurring in group j at age x
is: '

Table 2.16 Distribution of cancer cases in age group x

Number of cases

Population P4 Population Pg Total
Cancer under study (C) Kix Kox [ K.x
Other cancers (A) €1y €ox : € x

Total Kix Kox K x
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which leads to the logistic model
Logit(pj) = o + Bj
where

. Pj
oy = Logit(poy)  Bj= Log[j]
i
The parameters of the logistic model may be estimated from data Kix for cancer C
and € for other cancers A over exposure categories |.

This methodology is exactly that of a case-control study in which cases are
patients with cancer C and controls are all other cancer patients. Given the similarity,
this approach will not be developed further. A detailed discussion can be found in
Chapter 6 of Breslow and Day [25]. An example of the use of this method is found
in Chapter 3, page 168 where it is applied to a study of migrants. The proportional
mortality method has also been extensively used in the estimation of occupational
risk [26].

Choosing between various risk measures

Describing a complex situation by a single value is inevitably a difficult exercise
and the interpretation of such a numerical summary should be made with great care.
Standardization is a step towards a better understanding of the phenomena under
study, but it is certainly not the universal method used to solve problems of com-
parison of incidence. Epidemiologists should be aware of the limitations of this
method and should not ignore the fact that, in extreme situations, these statistics
can behave pathologically.

We have introduced three principal index classes in this Chapter: i) indices of
risk that are based on probability, such as cumulative risk; ii) average rates based
on standard populations that give more or less importance to different subgroups
of the population under study, such as direct standardized rates; and iii) relative
measures of incidence, such as the standardized incidence ratio (SIR), whose ob-
jective is to measure the risk of disease relative to a standard incidence that can
be interpreted in other respects. In this section, we examine the respective advan-
tages and disadvantages of these indices, and, in particular, the interpretability, the
absence of bias and the precision of the indices, three essential requirements of
statistics intended to summarize disease incidence in a population.

Cumulative risk places the population under consideration on an immediately
interpretable scale of risk. Moreover, it has the advantage of being consistent, since
truncated risk is less than total risk. However, a truncated standardized rate ob-
viously does not have this property; its value is inevitably arbitrary since it provides
only a rough estimate of the annual number of cases that might be observed in a
fictitious population. So, in Céte-d’Or, an individual has 38 chances out of 1000 of
developing stomach cancer before 85 years of age, if he does not die before this




EXTENSION AND LIMITATIONS OF THE PRESENT METHODOLOGY 99

age and he has 6.8 chances out of 1000 of developing it between the ages of 35
and 65 years. Among 100 000 persons in the same population and given the present
level of risk, there would be 14.0 stomach cancers per year if the age structure was
that of the world population, and 18.9 stomach cancers if the population comprised
only individuals aged from 35 to 65 with the same age structure as the world popu-
lation. Cumulative risk can be interpreted in a practical way by anyone who has an
understanding of the concept of risk. Conversely, standardized rates appear as more
abstract indices whose interpretation demands some epidemiological training and a
familiarity with their orders of magnitude.

Furthermore, the situation is considerably complicated by the existence of a
multitude of standards. For example, using the European standard, the same com-
parative rates discussed in the previous paragraph become 23.5 and 19.8, illustrating
how important the choice of a standard population is in the interpretation of the
number of cases observed. We should remember that a standardized rate is an
average of values that varies with age in a ratio of 1:1000 for most cancers under
study and it is not surprising that the weights used play a large role in the deter-
mination of the rate. In the situation where the differences of specific rates being
compared do not all have the same sign, it can be shown that any desired result
can be obtained by manipulating the standard population. Remember too that all
the indices are summaries of the incidence curve at a given point in time and syn-
thesize estimates of rates from various cohorts, which might have been exposed to
different risk factors or to different levels of the same risk factor. One should be
extremely cautious when using the indices to analyse temporal trends in cancer risk,
or to examine the covariation with the level of a factor (see Chapter 1, page 8, and
Chapter 3).

All these direct measures of incidence are also sensitive to random variation,
and the combination of a substantial weight w, and a very imprecise specific rate
can cause surprising results (see Table 2.16 below). This is a problem to which
routinely produced indices are particularly sensitive because they are not necessarily
subjected to close examination before publication.

Relative measures of incidence are generally used when we want to compare
subgroups of a population with its overall incidence that is considered to be free of
random fluctuations. The standardized incidence ratio (SIR) is by its construction
such a measure, and the comparative incidence figure (CIF) can also be used for
this purpose. If the ratio of incidence rates does not depend on age, these relative
measures are estimates of this ratio, and the SIR is constructed for this particular
situation. Conversely, when this hypothesis does not hold, the SIR can behave
pathologically.

If t, denotes the incidence rate observed in the age group x and A, denotes
the standard incidence, the SIR may be written

g
ty
SIR= Uy T
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where u, is a weighting factor proportional to m,A,, the inverse of the variance of
t, / M. It is therefore a minimum variance estimator of the relative rate. Note here
that this estimate can provide an absolute measure of risk if it is multiplied by the
crude rate in the standard population.

With the same notation, let hy, and L, denote the observed number of cases

h
and the number of person-years in the standard population (kxz f] and
X

H= Z h,. The CIF may then be written

X

g g
Z Wiy 2 Ltx
x=1 _

CIF="4 - H " H %hx Aox
zwxxx .
x=1

If t,/ A, was strictly constant, the CIF would be equal to it; however, as ty is
subject to random variation, the CIF is a relative rate estimate which can be quite
inaccurate, since, when it is expressed as a weighted average of the relative rates
ty / Ay

J ot
CIF= > ug™
Ax
x=1
the weight u, are proportional to h, the number of expected cases in the standard
population. Once again we have the problem that has already been mentioned of
heavily weighting very imprecise estimates. These difficulties are illustrated in the
following example.

Suppose we study a young, healthy population such as that described in Table
2.17:

Table 2.17 Example of data distribution leading
to a directly standardized rate of low precision

Age Study population Standard population
kx My 10° t Wy 10%
15-24 196 98 000 2.00 0.24 3
25-34 2 1000 2.00 0.20 3
35-44 2 600 3.30 0.19 7
45-54 3 300 10.00 0.19 22
55-64 2 100 20.00 0.18 62
Total 205 100 000 - 1.00 -

Crude rate - - ' 2.05 - 18
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the direct standardized rate is then

t= (0.24%x2)+(0.20x2) + (0.19%x 3.3) + (0.19x 10) + (0.18x20) = 7.01 per 1000
consequently,

CIF= 100 x 71'—21: 38.9%

Furthermore, the expected number of cases if the population is subject to the inci-
dence rate A, is:

g
E= > mdy= (98x 3)+ (1x 3)+ (0.6x 7)+ (0.3x 22)+ (0.1x 62) = 314

X=1
therefore, the SIR can be calculated as

205 .
SIR= 100x 227 = 65%

We can see that the last age group (in which the incidence estimate is very
imprecise) contributes 3.6 cases to the direct standardized rate, that is, more than
all other age groups combined. If no cases were observed in this age-group, the
CIF would be 19%,; if, on the other hand, four cases were observed, the CIF would
be 59%. In fact, both these possibilities are equally and reasonably likely. In contrast,
under such hypotheses, the SIR would only vary from 65% to 66%.

However, it would be a mistake to believe that the SIR has only good qualities
and the direct rate only faults. In reality, as we have said on a number of occasions,
the strengths of the SIR depend on the hypothesis of proportionality of rates. As an
illustration, consider the example in Table 2.18, where two populations with grossly
different age distributions are compared.

The age-specific incidence is the same in both populations (5 and 20 per 1000)
and the direct rates will therefore be the same for both populations, regardless of
the standard population used. The standard rates calculated by the indirect method
will also be the same if the marginal incidence rate is used as the standard inci-
dence. However, because of the inversion of the distribution of person-years, they

Table 2.18 Example of data distribution
leading to meaningless standardized incidence ratios

Age Population 1 Population 2 Total
Kix M1x kox Moy Kx Mmx
1 5 1000 25 5000 30 6 000
2 100 5000 20 1000 120 6 000

Total 105 6 000 45 6 000 150 12 000
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can be very different for standard rates that are not proportional to the common
observed rates; for example, when Ay = 10 and A, = 15,

105
SIR(1)= 100x 75— —== 124
and
45
SIR(2)= 100x zo~ ¢ = 69

The difference in person-years distribution has led to an excess of expected
cases in the first population and a deficit in the second. The direction of the differ-
ence will in fact depend on how the chosen standard differs from the common in-
cidence rate. In other words, two standardized incidence ratios cannot be compared
if the populations under study do not have incidence rates proportional to those of
the standard population. If, however, the hypothesis of proportionality is valid as is
often the case in cancer epidemiology, it is perfectly legitimate to compare two SiRs,
and an appropriate test even exists for assessing their equality.

To test whether the same exposure leads to the same effect in two populations
with different background incidence Lix, Aoy, It is justifiable to test whether the rela-
tive rates of exposed subgroups (the SIRs) are the same in the two populations.

Let K; and K, be the observed numbers of cases in the exposed subgroups
of the two populations; then K; follows a Poisson distribution of parameter p1E;

where Eq = 2m1xk1x and, similarly, K, follows a Poisson distribution of parameter
X

poEo where Ep = Emgx Lox. Consequently, the test of equality of the SIRs py and
X

p, is standard and is based on similar arguments to those developed on page 81

of this chapter: the total number of observed cases K; + Ky being fixed, Ky has a

E
binomial distribution with parameter Ky + Ky and ——1_ where 0= po/p1. The
E{+ 0 Eo
hypothesis of equality of the SIRs can then be tested as the hypothesis 6 = 1 which
is itself equivalent to a test of the parameter of the binomial distribution.

Extreme examples should not make us doubt the efficiency of standardization
methods. In fact, in 80% of situations that we encounter, the SIR and the CIF are
very close [22]. Nevertheless, we should remember that these indices are only sum-
maries of a more complex situation and that they have their limitations. Sometimes
it is advisable to analyse incidence data by age and if necessary by cohort in order
to obtain appropriate results, and in this situation the more specific procedures in-
troduced on page 82 and in Chapter 3 should be used.

A thorough understanding of the concepts that we have discussed should help
to avoid the main pitfalls encountered in the statistical analysis of descriptive epi-
demiological data. It is essential that methods are kept in their proper perspective
when they are used: no statistical recipe book can ever replace a good intuitive
understanding obtained from practical experience.
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Bibliographical notes

As we have already noted, epidemiology, and specifically, descriptive epidemi-
ology, has borrowed a great deal from demography. Direct and indirect standardized
rates, the key tools of the epidemiologist, were devised by demographers. Readers
interested in referring to the source of these techniques can consult two classical
works on demography which remain current in their field: those of Pressat, in French,
and Benjamin, in English [28].

Breslow and Day’s monograph (Volume 1) on the analysis of case-control stu-
dies provides a fundamental description, at both a theoretical and practical level, of
the calculation of risk and its interpretation [25]. Volume 2 by the same authors
deals with cohort studies which, as we have noted in Chapter 1, show the basic
concepts and techniques of descriptive epidemiology [29].

Two articles by these authors usefully complete this bibliographical summary.
The first [16] is a discussion of the statistical tests presented in this chapter, par-
ticularly, the Mantel-Haenszel and related tests. The second [30] discusses the prop-
erties of the standardized incidence ratio and its advantages and disadvantages
compared fo the CIF, the principles of the heterogeneity test for comparing incidence
in several populations, and the use of log-linear models for this type of analysis.
Once again, although the methods are presented in the context of cohort studies,
they are directly applicable to descriptive studies.

In his book on rates and proportions, Fleiss [31] devotes about twenty pages
to standardization, with a special focus on the case where there are several variables
for which adjustment is required. In fact, most epidemiological texts consider the
calculation of direct and indirect standardized rates [32]. Some discuss the problem
of variability of standardized rates, but few clearly explain the conditions necessary
for the application of these methods. The recent publication from the International
Agency for Research on Cancer on the techniques of cancer registration devotes a
chapter to basic statistical methods in this area, and discusses routine techniques
for comparison when denominators are unavailable (ASCAR and PIR) [33]. An older
WHO manual on mortality analysis is out-dated with respect to comparative methods,
but provides a useful description of the calculation of demographic indices and an
empirical approach to the analysis of all-cause mortality, when such data are avail-
able [34].

McCullagh and Nelder’'s monograph provides a deeper analysis of the theory
of log-linear models [35] while Aitkin and coworkers’ introductory work is more
oriented towards practical application [36]. Finally, Healy provides an introduction to
the software GLIM [37], in more detail than the brief description in Appendix 2 of
this book.
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