
Chapter 3 

Space-time variations and correlations 

Geographical analysis 

The objectives of cartography 

Like all phenomena which vary across regions, spatial differences in cancer 
occurrence can be represented on a map. A remarkable degree of sophistication 
has been achieved in this area. Geographers are convinced that a map can provide, 
through the simple play of colours, both an overall impression of major differences 
between regions (such as the juxtaposition of plains and mountains on a geophysical 
map) as well as a partial or detailed view of the characteristics of a given region. 

The design of a map is not only based on aesthetic concerns. In contrast to 
a table of regional results, a map provides supplementary information on the con- 
tiguity and the proximity of regions. The fact that neighbouring regions might be 
similar with regard to the phenomenon under study can be an essential element in 
interpretation. 

The cartographic illustration of mortality by cause is not a new idea. It has for 
some time formed the basis for political discussions on inequalities between regions 
and been a tool for health planners, for example, in the regional planning of health 
services. There has been a revival of interest in this approach over the past few 
years mainly as a result of the development of specific computing techniques. In 
the field of cancer, the development of cartography is relatively recent, with some 
notable exceptions such as Figure 3.1, showing crude cancer mortality in Switzer- 
land for the period 1911-1914 [I]. 

Over the past few years, a number of cancer atlases have been produced, 
generally from mortality data. Examination of these atlases reveals many differences 
in the methods used, suggesting that their objectives differed somewhat. Some are 
designed to show only broad spatial patterns (for example, through a limited number 
of regions or colours), others indicate a systematic attempt to show, by magnification, 
highly localized differences through the use of a rich array of colours or a fine 
division of geographical units. Despite these differences, it seems obvious that the 
main objective of cancer atlases is to provide basic information for etiological re- 
search. Their implicit goal is therefore to allow the image of geographical variation 
in the rate of a given cancer to be superposed on other maps, real or imaginary, 
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of one or more environmental characteristics or individual behaviour potentially im- 
plicated in the variation of cancer risk. It is not certain that such superposition of 
these factors can be achieved with a single cartographical representation, since all 
the evidence suggests that exposure to diverse etiological factors can be distributed 
at different scales. 

If interest is in factors which vary locally, the map would be expected to define 
zones in which the incriminated exposure can be found. In this case, a detailed 
subdivision is adopted to obtain relatively homogeneous zones with respect to the 
exposure under consideration. For example, mesothelioma is particularly frequent 
in Italy in coastal areas where naval construction, known as a source of exposure 
to asbestos, is concentrated [2] (Figure 3.2). 

If, on the other hand, interest is in factors which are distributed more widely 
over the spatial map (such as cultural and regional behaviour, or climatic conditions), 
the objective will no longer be to show the level of risk in a particular area compared 
to adjacent areas but to provide a more homogeneous representation of broad pat- 
terns in the phenomenon. If the intensity of the phenomenon varies progressively 
from one region to another across all or part of the country under consideration, 
the differentiation of the areas should visually show this gradient. Such a progression 

Figure 3.2 Mesothelioma mortality, men, 1975 - 1977 
Source : Cislaghi et al. [2] 
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could in fact suggest a dose-response relationship with the level of exposure, 
whereas a finer subdivision could be influenced by local variations which are ir- 
relevant to the phenomenon under consideration. An interesting example of geo- 
graphical variation on a large scale is provided by mortality for malignant melanoma 
of the skin [3,4]. In the USA (Figure 3.3a), mortality due to this cancer increases 
as the latitude decreases, while in Europe (Figure 3.3b), the phenomenon is in- 
verted. In the USA, increased exposure to ultraviolet light in the more southern 
regions results in a detectable increase in melanoma mortality. The way in which 
this country has been populated by migrants of different origins has led to an un- 
planned adjustment for ethnicity. Immigrants from different ethnic backgrounds are 
effectively distributed randomly throughout the country. In Europe, in contrast, factors 
linked to ethnicity are the most important determinant of melanoma risk and mask 
the effect of place of residence; individuals most susceptible to ultraviolet light have 
remained in the north, while recently adopting a life style involving significant expo- 
sure to the sun. 

Beyond the objectives illustrated by these examples, cancer atlases which have 
appeared so far have been works of general scope destined for a wide readership. 
Thus their authors have often made compromises such that the atlases do not nec- 
essarily answer the needs of etiological researchers. Nevertheless, the techniques 
which they apply are fundamental tools which have been used for a long time in 
descriptive epidemiology to solve etiological problems. As early as 1848, John Snow 
identified the source of the epidemic which ravaged London by using a map by 
district of mortality rates due to the disease. Joint study of this map and that of the 
areas covered by different water suppliers revealed similarities which convinced 
Snow to follow his investigations at the level not only of the district but also of 
individual houses [ 5 ] .  This more detailed approach was rendered necessary because 
the old part of London was served by two companies, the Lambeth Society and the 
Southwark and Vauxhall Society. Analysis of the water showed among other things 
differences between the companies not only in the content of organic material but 
also its acidity, which undoubtedly affected the conditions for bacteria growth. These 
geographical observations led Snow to identify the vehicle of the then unknown 
agent of the disease, Vibrio cholerae. 

Since that time, the representation of risk or exposure by means of a geo- 
graphical map and the tools for analysing geographical distributions have advanced 
considerably. The following sections describe both aspects. 

Methods 

Geographical division 

Geographical representation of cancer frequency is provided by the juxtaposi- 
tion of areas of different colours or shades, each of which represents a level of 
frequency. The boundaries and especially the number of the areas determine the 
degree of detail of the map and thus its overall appearance. As has been indicated, 
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the issues are different when the goal is to produce a series of maps fulfilling a 
purely descriptive need, such as an atlas of selected cancer sites, or to indicate 
regions corresponding to a risk or to a given exposure in the context of a specific 
etiological investigation. The geographical level at which data are available (numer- 
ator and denominator) is not always the most important constraint. In practice, dif- 
ficulties are more likely to occur because of the need to ensure statistical stability 
for the risk estimates in each, or at least most, areas. It is important to maintain 
an appropriate ratio between the incidence or mortality from one region to another 
and the corresponding random variation. For example, it would be unreasonable to 
define areas which only include four expected cases on average, if the objective is 
to classify areas into categories representing relative differences of 25%. In this 
situation, the coefficient of variation of the rate is of the order of lla = 50% (see 
Chapter 2, page 53). Accordingly, geographical units which are sparsely populated 
are often grouped together. 

If data are available, it is sometimes preferable not to work with administrative 
subdivisions. For example, in the Finnish study on the relationship between life style 
and cancer incidence, communities have been grouped together to form areas of 
10000 people, characterized by their geographical proximity as well as their simi- 
larity with respect to appropriately selected socioeconomic variables [6]. 

In some situations, the definition of areas is in response to a specific etiological 
problem. The goal of cartography is then to illustrate a specific hypothesis, for ex- 
ample, to evaluate the effect of radiation around a nuclear power station or of pol- 
lution on the frequency of respiratory cancer. The objective then is to form one or 
more areas in which the exposure being studied is homogeneous. Recording infor- 
mation from small geographical units becomes essential. Because of this require- 
ment, many countries have introduced systems by which data from population 
censuses and periodic reports (such as death by cause) are available for geographi- 
cal units defined by appropriate cartesian coordinates [7 ] .  When the source of risk 
is at a specific point, the usual approach would be to define the area as all squares 
located within a circle around this point (Figure 3.4) or between concentric circles, 
in order to demonstrate a dose-response relationship. 

In other examples, the whole region is divided into areas depending on the 
intensity of exposure, as determined by measurements made at specific points in  
the region (e.g., measurement of ultraviolet light at meteorological stations). The 
aim is to divide the region into homogeneous areas around points where measure- 
ments have been carried out. Dirichlet's mosaic provides a simple and elegant so- 
lution [8 ] :  the region to be mapped is divided into areas such that each point in a 
specific area is closer to the measurement point situated in it than to any other 
measurement point. This tiled area is obtained by connecting the perpendicular 
bisectors of the sides of triangles formed by the measurement points. A more sophis- 
ticated solution is based on interpolation from the measurements using polynomial 
regression. Division into areas of homogenous exposure can be constructed from 
contour lines of the resulting surface. This method can also be used after having 
artificially localized a regional measurement (e.g., rate per resident) at the centre 
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Figure 3.3 Melanoma mortality; women 
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Figure 3.4 Construction of a circle with a radius of 5 km from a 1 km-grid square 
Source:  Carstairs e t  al. [7] 

of gravity of the region, which is obtained by weighting according to population 
density. 

When small adjacent geographical areas are grouped together to create ho- 
mogeneous aggregates with respect to exposure, it is obviously important to check 
that the level of exposure can be considered equal in the areas which have been 
grouped together. One method of grouping based on the statistical significance of 
the differences in exposure between adjacent regions will be discussed below (see 
page 134). 

The first objective of these diverse techniques is thus to create areas of more 
homogeneous risk by departing from the constraints of the politico-administrative 
subdivisions. Note that when the techniques involve grouping or interpolation, they 
have the additional advantage of smoothing the exposure data, eliminating the in- 
convenience of large random fluctuations which usually affect small area statistics. 



I I 4  SPACE-TIME VARIATIONS AND GROUP CORRELATIONS 

This is even more evident when the methodology is used for the description of 
incidence or mortality; for example, a polynomial regression has been used to rep- 
resent curves of stomach cancer mortality in Italy [9] in a purely descriptive context 
(Figure 3.5). 

Choice of a risk indicator 

When the objective is to show variation in risk as opposed to crude rate or 
number of cases, the graphical representation should use a risk indicator which is 
adjusted for age. Both direct and indirect standardization methods have been used 
for this purpose in published atlases. 

For direct standardization, either the world or European population is most 
often used. This choice undoubtedly reflects the desire to expand the atlas's role 
to international comparisons. Nevertheless, the various atlases which have appeared 
are seldom comparable, because of the large variation in the choice of the risk 
categories and colours. None is based on the cumulative rate (Chapter 2, page 60) 
which would be the most readily interpretable index on a probability scale and make 
the various maps directly comparable. 

Many authors have chosen indirect standardization. This option is justified if 
the primary objective of a cancer atlas is to represent risk variations within a country. 
Geographical areas are then classified by their standardized mortality or morbidity 
ratio (SMR). This index generally has the advantage of providing more precise statis- 
tical estimates than the directly standardized rate (Chapter 2, page 100). The ref- 
erence rate adopted for the calculation of the SMR is in general the incidence or 
mortality estimated in the region being mapped. 

Definition of risk classes 

We have already seen that the number of risk classes cannot be  determined 
without taking into account the statistical precision of the risk indicator. Precision is 
equally relevant in the choice of scale and class limits, as we shall see below. 

A priori, a larger number of classes should provide a more detailed picture of 
risk variation. However, dividing the area too finely diminishes the effect of the colour 
or shading contrasts required to distinguish the risk variation clearly. Moreover, as 
a general rule, the homogeneity of classes is proportional to their number: if there 
are few classes, differences between values in the same class could be much larger 
than those existing between the central values of two adjacent classes, which are 

1 

I 
nevertheless represented by different colours. 

The colours chosen to represent the various levels of risk differ substantially 
from one atlas to the next. A principle generally applied is to make the zone repre- 
senting average risk the least coloured. Zones of increasing (or respectively decreas- 
ing) risk are represented by colours which are arbitrarily chosen, but sufficiently 
contrasting visually. The chromatic intensity progressively decreases from extreme 
risk classes to intermediate classes. 
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b: Linear model, 

d: Quintic model 

Figure 3.5 Stomach cancer mortality in Italy; men, 1975-1977 
Source: Cislaghi et al. [2] and personal communication 
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It is not surprising that many authors choose red and green to characterize 
respectively an increase or a decrease compared to a standard risk. Culturally, red 
indicates danger while green represents ecology. Note also that the range of shades 
is not obligatorily centred on the average index value but can be distributed asym- 
metrically around the average index value such that those classes representing risk 
increase are broken down more finely, as has been done in the Chinese cancer 
atlas [ I  01. The subtlety of options used in the various atlases reveals an intention 
to use the physiology of visual perception, particularly in the choice of colours, to 
best communicate the desired message [ I l l  121. 

The simplest procedure involves setting the limits of the classes based on an 
equal division of all risk index values after disregarding extreme values when they 
are outliers. Under this method, the scale depends on the data, and does not lend 
itself to comparison between maps of different cancer sites or the two sexes. 

When the index is a relative measure (for example, an SMR), the same scale 
is adopted for all sites. Transition between colours is then immediately interpretable 
in terms of relative risk increases: for example, a relative risk scale increasing by 
steps of 25% from left to right open-ended categories. These categories at the ex- 
tremities of the scale are defined by the maximum number of classes to be used 
in mapping. This approach has been frequently used in atlases, as it has the advan- 
tage of allowing comparisons to be made between sites and between sexes. In the 
French atlas [ I  31, for example, it can be seen that stomach cancer mortality is one 
and a half times higher in Brittany than in the rest of the country for both men and 
women, and that the maps for both sexes are similar. However, this type of com- 
parison is of little value when the standard levels used in the maps being compared 
(SMR = 1) are very different from each other. For example, for lung cancer in 
France, the comparison of zones characterized by values between 125 and 150 of 
the SMR for men and women is not directly informative, because of the difference 
in background risk between the two groups. 

An examination of maps using fixed limits for risk categories shows that the 
geographical variation in risk is extremely variable between sites. Thus in the French 
atlas, maps representing oesophageal cancer are more variegated than those for 
colon cancer. This methodology may be better suited to a public health perspective 
than to etiological research, in which all real risk differences can be of interest. 

The proportion of each colour on the map is directly dependent on whether or 
not a fixed scale is adopted. If distribution of risk is narrow, the map will be largely 
monochromatic. If the distribution tends to be bimodal, the map will be largely made 
up of colour zones representing high and low risk respectively. If the distribution is 
equally spread, all the selected colours will be almost equally used. 

In order to describe all observed variability, the original scale has been replaced 
in some atlases by grouping together risk classes based on percentiles. For ex- 
ample, in the Scottish atlas directly standardized rates have been divided into seven 
classes with limits determined by the 5, 15, 35, 65, 85 and 95 percentiles [ I l l .  The 
middle class therefore includes 30% of the values. By definition, this method leads 
to the use of a different scale for each site and for both sexes. Each of these scales 
is a function not only of the risk values but also of the shape of their distribution. 
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For a given number of classes, the use of percentiles makes the apparent variability 
of the risk index equal and maximal. It is thus impossible to judge the size of this 
variability visually, as each map makes the same use of the different colours and 
extreme values are no longer apparent. On the other hand, when variations in risk 
are small, any contrasts, gradients or autocorrelative phenomena can be clearly 
appreciated. 

In order to reconcile the advantages of a relative measure with those of a 
measure expressed on an absolute scale, a division based on a logarithmic scale 
has been used in the Chinese atlas. All maps can then be built with one scale 
regardless of site or sex. In this system, the increase in risk for a class compared 
to the level of risk of the class immediately preceding it is represented on a multi- 
plicative and not an additive scale, so that only pronounced variations are apparent; 
this is well illustrated by the map of oesophageal cancer in China (Figure 3.6) [lo]. 

We have noted on several occasions that risk estimates are subject to statis- 
tical fluctuations that can be of different magnitude in different regions. Taking this 
variability into account will modify the interpretation of the map. For example, little 
significance will be attached to the high value of female mortality for cancer of the 
buccal cavity in France in the departement of Cantal [13]: the value of the SMR is 
equal to 1.75 but its confidence interval (0.98; 2.88) does not exclude unity. 

It is generally accepted that maps produced by the principles described above 
are usefully complemented by information on variability of the risk indices. In some 
situations, maps can be simply accompanied by an appended table providing the 
required data, such as the standard error or the confidence interval of the index. 
Others attempt to give a geographical view of variability by juxtaposing a map of 
risk with a map of degree of significance for the same areas [14]. Interpreting the 
two maps together is not always easy, but it can demonstrate that differences can 
be significant without being large, i f  the number of cases is high and/or the popu- 
lations under study large. Thus the majority of European atlases show significant 
differences between regions for colon cancer, even though the variation in risk for 
this cancer is generally relatively small. 

Some maps attempt to combine the size of the variation and its degree of 
significance on one single scale. The atlas of cancer mortality in  England and Wales 
used the following four categories [15]: significantly increased risk; increased risk, 
but not significant; not increased risk; significantly decreased risk. Such a scale 
allows all rates significantly increased with respect to the reference rate to be placed 
at the top of the colour hierarchy even if the increase is in reality very small. Risks 
which are substantially increased, but not significantly so, will appear lower down 
in this hierarchy. In practice, the procedure is acceptable only if the geographical 
areas are divided equally (in terms of population), such that the statistical variability 
is of the same order for a given site. 

The difficulties described above can be minimized or avoided in the interest 
of compromise. However, the study of spatial data, especially for specific problems, 
requires a more rational approach to account for random variability. The methods 
described below are more suitable in these situations. 



Figure 3.6 Oesophageal cancer mortality in China; men, 1973-1975 
Source: China Map Press [lo] 
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Tools to interpret geographical data 

A utocorrelations 

Graphical representation of disease frequency is not the only objective of the 
geographical study of the disease. Although this objective is important, quantitative 
answers to certain simple questions should also accompany the presentation of the 
data, to facilitate their interpretation. 

The first of these questions concerns geographical variability: are rates different 
from one region to another? A homogeneity test such as that given in Chapter 2 
(page 87) can obviously be carried out, but is of little value because it does not 
take into account the spatial structure of the geographical un-its being studied. As 
has been suggested previously, neighbouring regions are often subject to similar 
cancer risks: exposure to factors influencing the level of incidence or mortality is 
often more similar in neighbouring regions than in distant regions. Exposure can 
also vary continuously in a particular direction, resulting in a risk gradient such as 
those cited for melanoma mortality in the USA and Europe (Figures 3.3a and 3.3b) 
[4]. When the direction of the gradient is already known, as in this example, the 
significance of the variation in risk can be evaluated using a test on one degree of 
freedom (Chapter 2, page 90). However, in the majority of situations, no assumptions 
can be made about the direction of the gradient and the validity of the test can be 
questioned if the direction was suggested by observation of the map. 

The spatial distribution of risk factors leading to local correlations in disease 
rates will generally be more complex than the risk factor distributions which deter- 
mine larger-scale geographical patterns described above. For small areas it is of 
interest to measure and test the similarity of disease rates on a much finer scale. 
Local variations in processes which determine cancer incidence or mortality in the 
area under study are the focus of interest rather than overall trends. We therefore 
need to evaluate the correlation of risks in adjoining regions, also referred to as the 
spatial autocorrelation of the random process which gives rise to the observed geo- 
graphical variations of incidence. A significant autocorrelation is frequently found. 
Taking this correlation into account using methods described be-low results in a more 
satisfactory description of the spatial distribution of risks and thus a better repre- 
sentation of incidence. 

Even when the risks are the same over all regions studied, their estimation 
can result in a spatial correlation simply because the most accurate estimates, which 
are those in the most populated regions, are also found most often in neighbouring 
regions. The values observed in these regions will therefore be close simply because 
they estimate the common risk value better. This autocorrelation of the population 
sizes in the different geographical units is common and should be kept in mind, 
since, in this situation, the spatial autocorrelation observed is not in the risks but 
only in their estimates. 

If there is no autocorrelation in risks, the test of geographical homogeneity 
reduces to the classical comparison of several groups. The presence of spatial cor- 
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relation in risk establishes heterogeneity de facto, but its absence does not confirm 
homogeneity. 

Finally, it is possible that a substantial variation on a large scale and spatial 
autocorrelation on a finer scale can be observed simultaneously. Methods described 
below for modelling spatial processes can be used in this situation. Here, we will 
simply show how to evaluate spatial autocorrelation from risk estimates based on 
the SMR. We first describe the different indices available, as if the risks were directly 
observable. 

Suppose that the spatial structure of the geographical units is defined by a 
matrix of weights W, the elements Wij of which measure the geographical proximity 
of the regions i and j. Most often, W will be an adjacency matrix whose elements 
wij are equal to 1 if i and j are adjacent and zero otherwise. Moreover, let Xi be 
the spatial process defined by the relative risks of disease pi in the different regions 
(i = 1 ,..., n) (for example, Xi = log(pi) or Xi = rank (pi)]. Moran's coefficient [I61 meas- 
ures autocorrelation of the spatial process Xi using an index which is very close to 
the classical correlation coefficient : 

where So is the sum z wij which, in the case of an adjacency matrix, is the number 
i4 

of pairs of areas with a common border. 

Geary's coefficient [ I  71 measures the average squared difference between risks 
observed in adjacent areas, and should be small in the case of spatial correlation: 

Two other indices have been used for investigating the geographical distribution 
of cancer risks. Ohno [I81 suggested using the number of adjacent areas sf the 
same colour on a map of incidence or mortality. Smans [ I91 recommended calcu- 
lating the average difference in ranks of adjacent areas. As we shall see below, 
these statistics are in fact similar to the statistics used to evaluate time-space clus- 
tering. The first is similar to that introduced by Knox to analyse time-space clustering 
(see page 131) [20] and the second can be written: 

1 
D = - z wijl rank (pi) - rank (p,) I so . .  

'+I 
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Assuming that Xi have independent and identical normal distributions (under 
the null hypothesis of no autocorrelation), the means and variances of I and C are 
given by the formulae: 

where S1 and S2 are functions of wij defined by 

S2 = C (wi + w , ~ ) ~  with W i  = C Wij and W.i= C Wji 

The means and variances of the statistics proposed by Ohno and Smans can be 
obtained directly from the formulae given by Mantel in the context of detecting time- 
space clustering (see page 133, formulae (3.22) and (3.23)). 

Unfortunately, these formulae which only depend on the spatial structure W, 
are of little more than theoretical interest. As we saw above, spatial autocorrelation 
in risk estimates caused by heterogeneity in population sizes can be detected by 
these tests even if the risks are identical across areas. These theoretical values 
would only be valid if the population density was constant. 

In practice, spatial autocorrelation in risks can only be tested by randomization 
procedure using the correct null hypothesis described below. 

Let kxi, m,i be the number of cases and the person-years in the population of 
age x of area i. To test the existence of spatial autocorrelation against the null 
hypothesis of homogeneity. The total number of cases k,, in the different areas are 
distributed proportionally to the populations mxi according to the multinomial model 
(Chapter 2, page 87). The estimates of pi in each area are calculated for each 
simulation and, from these, the autocorrelation statistic and its distribution under the 
null hypothesis are calculated. Table 3.1 gives the mean and the standard error of 
the statistics I and D obtained by the above method for some cancer sites in the 
departement of lsere in France [21]. 

Several patterns emerge from this analysis : in men, testicular cancer has a 
distribution with a significantly positive autocorrelation, while the homogeneity test 
detects no difference. This finding is noteworthy, given that this cancer is of such 
low incidence that the homogeneity test has in any case little power. Autocorrelation 
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Table 3.1 Autocorrelation of risks for selected cancer sites 
in the departement of Isere in France 

K Moran statistic: I (a) Smans statistic: D Homo- 
geneity 

Observed Expected Standard Z Observed Expected Standard Z 
error error 

(") 
(b) ( b, 

Males 
Testis 8 7 
Brain 164 
Kidney 217 
Mouth 431 
Colon-rectum 1 081 

Females 
Brain 11 9 
Kidney 1 24 
Colon-rectum 985 
Breast 2 208 

(a) I is the autocorrelation of the logarithm of the SMRs, multiplied by 100 
(b) Under the assumption of a uniform risk in the departement. Under the assumption of a normal distribution 
with uniform variance but no autocorrelation, the mean and standard error of I would be -2.27 and 9.12; 
those of D would be 15.33 and 0.93 
(") This column gives the value of X2 for homogeneity (Chapter 2, page 89); the critical value at the 5% 
level is 60.5. 

indicated by high values for I and D is illustrated in Figure 3.7 showing the geo- 
graphical variation of testicular cancer incidence in the departement of Isere. In 
males, oral and brain cancers have nonhomogeneous distributions without autocor- 
relation; the distribution of kidney cancer seems completely random. In females, 
brain cancer also has a random distribution. The statistic D detects a significant 
autocorrelation for kidney cancer, suggesting that in this case it is more powerful 
than I, which detects no autocorrelation. Colorectal cancer has geographical varia- 
tion without significant autocorrelation while breast cancer shows both heterogeneity 
and autocorrelation. It is worth noting that the means of I and D can deviate from 
their theoretical values obtained by formulae (3.4) and (3.22) considerably when the 
number of cases is small but only slightly for more frequent cancers such as colorec- 
tal and breast. At the same time, the variances of I and D remain approximately 
constant and close to their theoretical values (see table 3.1, note (b)). 

Identifying risk clusters 

The preceding sections have shown how to describe and interpret the spatial 
distribution of incidence or mortality using the basic geographical unit from which 
the data are usually collected. The aim of this section is to present methods for 
studying spatial distribution on a finer scale. These methods may require a knowl- 
edge of the place of incidence for each case. 
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a: SMR b: Huel's method (a = 5%) 

c: Empirical Bayes method 
(without autocorrelation) 

d: Empirical Bayes method 
(with autocorrelation) 

Figure 3.7 Testicular cancer incidence in lsere (France), 1979-1984 
Source: Colonna [21] 
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Methods for studying the spatial distribution of biological or economical phe- 
nomena have been developed principally in the specific context of ecology and geo- 
graphy. In the medical area, this type of research has been car-ried out mainly for 
communicable diseases, with the goals of identifying clusters of infection and de- 
scribing routes of transmission. The use of these methods in the epidemiology of 
noncommunicable diseases is relatively new. It is due mainly to the recognition of 
a geographical component among the risk determinants of these diseases. 

The existence of apparently unusual clusters of cases in some regions and 
the concern caused by such aggregations among the resident populations are at 
the basis of this type of epidemiological research. Thus, the observation of a cluster 
of leukaemia cases around the nuclear installation at Sellafield in the UK [22] has 
led to much controversy and used as a further argument for the creation of a national 
system for collecting incidence and mortality data from small geographical areas [7] .  
Many epidemiologists were dissatisfied that the cluster had not been detected by 
the existing surveillance system and that it was ultimately revealed to the public by 
the lay press. Although the causes of this increased incidence remain to be estab- 
lished, the resulting research has led to new results, in particular concerning the 
spatial distribution of leukaemia. 

Before describing the methods of analysis, the notion of case aggregation or 
clustering should be clearly defined. A number of clusters are nothing more than a 
misinterpretation of the observations, often as a result of confusing random phe- 
nomenon with regular or uniform phenomenon. This difficulty arises because of our 
frequently inaccurate picture of what is taken to be the normal reference situation, 
against which unusual rates of incidence are judged. 

The problem of demonstrating the existence of a cluster often arises in the 
following circumstances: 

a geographical region exists in which disease incidence is a priori homogeneous 
over all areas within it. 

the disease is of unknown etiology and rare in each unit of the geographical 
region. 

the number of units in the region is sufficiently large to allow the geographical 
distribution of the disease to be studied. 

A cluster is thus made up of one or more adjacent units in which the number 
of cases observed is inconsistent with the possibility of an homogeneous risk in the 
region under study, that is, of a random distribution of cases in all units of the 
region. Thus testicular cancer incidence in lsere [21], discussed in the preceding 
section and on page 140 clusters around canton 11, as demonstrated by bayesian 
methods given in this section (Figure 3.7 d). 

It is necessary to distinguish the situation in which data are collected to test 
the possible excess of cases around the source of exposure that is, the hypothesis 
is proposed before observing the data, from that in which the hypothesis about the 
origin of the observed increase in risk is formulated after making the observations. 
In the latter situation, study of the distribution of cases in the whole geographical 
region can provide the basis for confirming or denying the unusual nature of the 
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observation. This approach, which inevitably leads to statistical tests on a large 
number of degrees of freedom, is extremely conservative. On the other hand, tests 
on one degree of freedom, based on a more specific alternative, are-not acceptable 
as they are designed for the situation in which the hypothesis precedes the obser- 
vation (for example, variation of risk with distance from a source of exposure). Thus, 
specific methods are required. 

The distinction between the two situations cited above is not always obvious. 
For example, the existence of a nuclear reactor or a toxic waste outlet in the vicinity 
of a leukaemia cluster might not always provide an a priori hypothesis. A systematic 
study of suspect environmental situations and the bias caused by the selective publi- 
cation of significant results can lead to confusing interpretations. In the following 
section we provide a brief survey of the principal methods used to examine such 
clustering. 

When the hypothesis precedes the observation, we would generally attempt to 
verify that risk increases with proximity to the source of the exposure. A trend test, 
in which the weights are the distances between the study areas and the source of 
exposure, can be used for this purpose [23]. The test's power nevertheless depends 
on the way in which risk decreases with distance and on the distribution of population 
density according to distance. Schulmann and coworkers [24] have suggested trans- 
forming the distances in such a way that the population density remains constant 
while still maintaining the topological structure of the area (sometimes known as 
isodemographical maps). There has been little research on the influence of the 
choice of proximity measurement on the power of corresponding tests. 

Stone has proposed a method which is largely independent of the relationship 
between risk and distance [25]. Although it could be presented in a rather theoretical 
framework (estimation of risk under the constraint that it decreases with increasing 
distance), the method is based on a fairly intuitive principle; the essential idea is 
to construct a sequence of areas of increasing size around a source of exposure 
using available incidence or mortality data, then to choose the area for which the 
ratio between observed and expected cases or deaths is highest. In other words, 
the SMR is evaluated for that area for which the effect is maximum. The statistic 
thus accumulates the information available to test the assumption of homogeneity 
of the risk. This function of the observations no longer follows a Poisson distribution, 
given the way in which the area on which it is based was selected. Stone has shown 
how the level of significance of the test can be calculated exactly. In practice, it is 
often simpler to proceed by simulating the multinomial distribution of the number of 
cases observed in the constructed sequence of non-overlapping areas, conditional 
on the total number of cases observed in the region under study. 

When several identical sources of exposure can be studied, the fact of living 
close to one of these sources can be considered a potential risk factor and the 
statistical significance of its effect can be evaluated in a geographical analysis. For 
example, the risk of leukaemia in small geographical areas as a function of the 
proportion of people living near a nuclear installation has been studied using a 
log-linear model [26] or more traditional approaches based on the SMR [27]. These 
methods can nevertheless suffer from methodological weaknesses inherent in eco- 
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logical studies (see page 148). Kinlen [28,29] has shown that other conditions, such 
as living in a 'new town' created in the middle of a rural area, can also be linked 
to a high risk of childhood leukaemia. This factor could be canfounded with the 
proximity of nuclear installations in the evaluation of leukaemia risk; its effect might 
be difficult to separate from the potential effect of radiation in an ecological study. 

The problem of spatial aggregation of leukaemias and lymphomas has often 
been raised. In particular, an attempt has been made to evaluate the hypothesis 
that these diseases have a viral etiology, by assessing whether the spatial distribu- 
tion of cases is random or is a cluster distribution. In this approach it is implicitly 
accepted that the viral hypothesis automatically leads to clustering; this latter infer- 
ence can be questioned today in the light of recent findings on viral mechanisms 
and of the existence of a long latency period between infection and disease. Irre- 
spective of any specific hypotheses, however, such studies are of value: beyond 
the test of randomness of the spatial distribution, it is of interest to identify clusters 
of disease, which can lead to further investigation in the geographical areas thus 
identified. A better understanding of the aggregative structure of the spatial distribu- 
tion of a disease results in a more objective analysis of any supposed excess in 
risk. 

The methods proposed rely on the study either of the distribution of cases in 
small geographical areas defined a priori or of the distribution of distances between 
cases observed over the whole geographical area under consideration. Generally 
speaking, the studies of homogeneity in risk are based on geographical areas with 
small populations and limited numbers of cases. Usually, about half the areas do 
not contain a single case. The test of homogeneity described in Chapter 2 (see 
page 87) is clearly inappropriate. An acceptable test should be able to detect de- 
viations from randomness, which could either result from the preferential occurrence 
of excess cases in geographical units where there were already subjects with the 
disease, or be the consequence of small excess risk in several areas, the overall 
distribution of risk having however a small variance. In this second situation, few 
excess cases would be found in each unit, but cases in excess of the expected 
number would be found in the units where risks were higher. These alternatives to 
randomness are known as contagious distributions; the second differs however from 
the strict concept of contagion for which it is the presence of a subject with the 
disease which increases the probability of healthy subjects developing the disease. 
A powerful test against the alternative of heterogeneous risks with a small variance 
distributed around a common value has been proposed by Potthoff and Whittinghill 
[30,31] and used in the above context by Muirhead and Ball [32]. 

Recall that heterogeneity is demonstrated when the g multinomial distributions 
corresponding to g age groups (or more generally to g risk categories) 
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are not compatible with the hypothesis pi = 1 ,  1 5 i 5 n. Potthoff and Whittinghill 
have shown that for such a distribution a powerful test against the alternative of 
small variation of p around 1 is based on the statistic [30] 

where pEi is the value specified by the null hypothesis pi = 1, 1 I i _< n 

Thus, U, in this situation becomes: 

Note that Ux is based on the number of pairs of cases observed in different 
units, weighted by the inverse of the number of person-years accumulated by the 
corresponding population. This weighting has an intuitive explanation, the occurrence 
of a pair of cases being all the more indicative of clustering i f  the population is 
small. Note also that units with only 0 or 1 case make no contribution to this statistic. 
It can be shown that the mean and variance of Ux, under the null hypothesis, are: 

Var (Ux) = 2 (n - I )  E (Ux) (3.9) 

The test of homogeneity is thus constructed by summing the information from 
different age groups as has been done several times previously: 

Table 3.2 shows brain cancer incidence in five cantons of the departement of 
lsere and Potthoff and Whittinghill's test applied to these data. Numbers in 
parentheses have been observed while those which precede them correspond to a 
fictitious incidence, constructed to provide an example of a contagious distribution. 

With TI equal to 3.488, the distribution of cases does not appear to be random, 
even though the classic test of homogeneity gives the value 1.63 for a X2 on four 
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Table 3.2 Potthoff and Wittinghill's test using data on brain cancer 
from five cantons of the departement of Isere, France (a) 

Age Canton Potthoff andewhittinghill's test 
group , 

2 3 4 5 kx . ux E(Ux) Var(Ux) TI (b) 

Total 10 (20) 5 (4) 11 (5) 30 (34) 12 (5) 68 445.1 280 2 240 3.488 
105 029 65 604 130 308 448 768 165 073 

(a) Fictitious incidence cot 
observed are in brackets; 
(b) This column gives the 
formula (3.1 0). 

.responding to a contagious distribution. The number of cases which were actually 
the second line gives the person-years of observation. 
T i  test for each age group separately. The total value of T i  is calculated from 

degrees of freedom (p = 0.80). On the other hand, this test statistic is equal to 25.1 
when applied to observed data (p = 0.00005). The Potthoff and Whittinghill test on 
these same data gives a value of TI equal to 0.55. As the value is not significant 
it shows that this test is not powerful enough to detect certain types of heterogeneity. 
It is important to realize that TI is a powerful test only against the alternative of 
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risk dispersion discussed at the beginning of this section. The statistic is constructed 
to detect a trend towards contagion and cannot detect even substantial heterogeneity 
in the absence of aggregation of this type. In particular, it can beshown that the 
application of this method to testicular cancer data does not provide a significant 
result (TI = 1.405; p = 0.1 6) despite clustering of cases (Table 3.1 ; Figure 3.7d). 

The test does not take into consideration the spatial structure of the geographi- 
cal units being analysed. It is therefore not constructed specifically for geographical 
analyses. Muirhead and Butland [33] have suggested that the test be applied to 
several different levels of geographical grouping in order to define the scale on 
which the phenomenon of aggregation occurs. 

A related approach to that described above consists of regrouping the geo- 
graphical units in such a way that the expected numbers based on a homogeneous 
distribution of risk are identical in the newly-formed groups. The problem of heter- 
ogeneity of populations is thus removed. The randomness of the distribution of the 
number of cases can then be tested simply by verifying that it follows a Poisson 
distribution. Such a test based on the same principle as above [31] is given by a 
statistic known in plant ecology as the dispersion index, defined as the ratio of the 
observed variance to the observed mean [34]. When $ is calculated over n units 
and n is large, (n - 1) $ is approximately distributed as a X2 on (n - 1) degrees of 
freedom. Then : 

T2= 1/2(n- I )$-  62(n-  1 ) -  1 (3.11) 

can be considered to be a standard normal random variable. When several risk 
groups are to be distinguished (for example, age groups), stratification can be used, 
as before. 

Urquardt and coworkers [35] developed this approach further, including an al- 
gorithm to group units. This procedure takes into account the variations in population 
density, to construct study units which lead back to the simple case of the Poisson 
distribution. This idea has also been used in the dual approach, which involves 
working with distances between cases. If the population density is uniform in the 
geographical area under study, the distribution of the number of cases in each unit 
of area would be Poisson, with the mean given by the product of the surface area 
and the average number of cases per unit surface area. Thus, the number of cases 
in a circle with a radius r would follow a Poisson distribution with mean hnr2. The 
probability that the distance from a given point to the closest case was less than r 
would be equal to the probability that the corresponding circle only contained one 

2 

case, that is e-"'. In other words, the square of the distance from a given point 
to the nearest case has an exponential distribution with parameter EL. More gener- 
ally, when distances are ranked, if Rj is the distance from a given point to the jth 
nearest case (neighbour of order j), it can be shown by using the same principle 
(see Chapter 2, page the relationship between X2 and Poisson distributions) that 

2nh R: has a X2 distribution on 2j degrees of freedom. Thus, study of the distribution 
of distances between neighbouring cases (from the first or jth order) provides a 
means of evaluating the randomness of a spatial distribution. Unless distances are 
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transformed appropriately, population density cannot be considered constant and the 
distance to the jth case will not have the stated property. Nevertheless, the method 
still provides a useful statistic to define a test of randomness or-to characterize the 
geographical units which are at excess risk and which need further investigation. 

Cuzick and Edwards [36] have proposed to comparing the proximity of no cases 
to that of n, controls representing of the population residing in the region under 
study. For example, for a childhood disease, these controls could be births of the 
same sex preceding and following the case in the regional birth register. A test of 
spatial aggregation is constructed by determining the pairs of subjects (cases and 
controls) which are neighbours of order j, and counting among these pairs those in 
which both members are cases. An excess of such pairs compared to the expected 
number under the assumption of no aggregation (i.e., if the labels 'case' or 'control' 
are randomly distributed among the no + nl subjects) will indicate spatial aggrega- 
tion of cases. The statistic is then defined by: 

where Xii = 1 if j is the label of a kth order neighbour of i, and 0 otherwise, and 
Yij = 1 if i and j are cases, and 0 otherwise. 

Cuzick and Edwards also suggest other statistics to analyse the structure of 
distances in the group of cases and controls. They describe the distribution of these 
statistics under the null hypothesis of no spatial aggregation, and analyse their 
power to detect certain types of spatial aggregation. The controls in this approach 
are used to evaluate the density of people at risk in the area under consideration. 
A similar approach would be possible if this density was known from other sources : 
the expected number could then be calculated and it would not be necessary to 
resort to a sample of controls. 

Besag and Newel1 1371 suggested defining areas of investigation around each 
case by circles with radius given by the distance to the nearest neighbour of order 
j. The possibility of a cluster around the case under consideration can then be  
identified from the evaluation of the population at risk in this circle, and hence the 
number of expected cases, under the hypothesis of homogeneity of risks. In fact, 
because of the nature of the available data, the region being examined around a 
given case is not exactly a circle : it is constructed by successive accumulation of 
small areas of known population. At each stage, the centre of gravity of the area 
being added is the closest one to the area added at the previous stage. The pro- 
cedure stops when j cases are obtained in the resulting region (the initial case being 
excluded) and the expected number is calculated. A circle around the case under 
consideration is then drawn on the map each time that the probability of observing 
j cases in the region is less than a specified probability level (for example a = 5%). 
The number of expected cases in the region at the level a can obviously be calcu- 
lated taking into account the presence of several risk classes (e.g., age, sex, urban 
or rural residence) if the population at risk can be characterized according to the 
values of these parameters. The method is well suited to detect potential clusters 
in a region for which the population is known on a small geographical scale. In 
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particular, it can be used to identify clusters when the contagious nature of the 
distribution has already been demonstrated (this last condition is in fact necessary 
because if a = 5'/0, Besag and Newell's test will identify 5% of cases as defining a 
cluster in a purely random distribution). 

In practice, these methods are limited by the imprecise information available 
on the location of cases, and the necessity of placing them at the centres of gravity 
of the geographical units being studied. The references cited in the bibliography 
provide more details in this regard. 

Time-space clustering 

If differences in demographic structure and the prevalence of risk factors across 
regions are sufficiently stable over time, the spatial distribution of incidence tends 
to remain constant. Further, time trends will tend to be identical between geographi- 
cal units. This baseline situation corresponds to the absence of time-space interac- 
tion. One pcssible disruption to this state of equilibrium is the occurrence of change 
in risk at a given time in one area of the geographical region being studied. The 
resulting excess of cases defines time-space clustering. In investigation of cancer, 
for which the latency period between the start of exposure and the onset of disease 
is usually very long, it is uncertain that the identification of such clusters has led 
to meaningful epidemiological results. Nevertheless, the statistical methods sug- 
gested for this type of data merits a brief review. 

One of the first studies in this area was by Knox [20] who examined the dis- 
tribution in space and time of 96 cases of childhood leukaemia. He assumed that 
any two cases within a kilometre of each other were spatially close and that any 
two cases occurring within a month of each other were close in time. He then noted 
152 pairs which were close in time and 25 pairs close in space. The observation 
of five pairs close in both time and space led him to the conclusion that there was 
time-space interaction. He based his conclusion on an analysis of the 2 x 2 table, 
classifying the 4560 pairs of subjects (96 x 9512) into four categories according to 
their spatial and temporal proximity. Under the assumption of absence of interaction 
between these two variables, the expected number of subjects close in space and 
time was estimated as 25 x 15214560 = 0.83. Furthermore, considering that the 
number of occurrences of such pairs follows a Poisson distribution, he calculated 
that the probability of observing a value greater than or equal to five was 0.001 7, 
and thus highly improbable under the null hypothesis. 

In fact, David and Barton [38] have shown that the mean and variance of the 
number of pairs belonging simultaneously to two distinct and independent relation- 
ships (for example, time and space) can be derived from the number of subjects N 
and the number of edges ai and bi 15 i 5 N connecting related subjects in the 
respective graphs' of the two relations S and T which define proximity in space and 

A relationship can be represented graphically by a set of points (subjects, 1 S i 5 N), and 
by a set of segments linking points which are in the relation. The subjects are the vertices of the 
graph and the segments are its edges. When the relationship is not symmetrical, the segments are 
replaced by vectors when (i,j) is in the relation and (j,i) is not. 
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time. Specifically, by characterizing the graph of a relationship by a matrix with 
elements equal to 1 if the pair (i,j) is in the relationship and 0 when it is not, U, 
the number of pairs which are in both relationships S and T, can be written in the 
form: 

where Xij and Yij are the elements of the matrices of the graphs of S and T. Let P 
be the number of edges of a relationship and Q be the number of pairs of edges 
of this same relationship, then the number of edges connecting i, the total number 
of edges and the number of pairs of edges in the relation S can be written in the 
form: 

with similar relationships holding for PT and QT as functions of Yij through bi, the 
number of edges connecting i in the realation T. David and Barton's result can then 
be written: 

where 

In the example given by Knox, we have P, = 25, and PT = 152; Barton and 
David calculate Qs and QT to obtain a variance of 0.802, showing that the hypothesis 
of Poisson variation is acceptable and that consequently Knox's conclusions are 
correct. 

This approach can obviously be applied to situations other than the evaluation 
of time-space clustering. For example, to test the homogeneity of risk in a series 
of g families, each of size nj and including kj subjects with a genetic defect, we 
calculate the number of pairs of affected subjects in the same family 

if  S denotes the relationship of belonging to the same family and T is the relationship 
of sharing a genetic defect, then ai = nj - 1 for all members of family j. If, in addition, 
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K is the total number of cases, then bi = K - 1 when i is a case and bi = 0 for 
other subjects. Application of formulae (3.13) then gives: 

- 

which immediately gives the mean and variance of U, from formulae (3.14) and 
(3.15) above. 

The statistic U has been generalized by Mantel [39] by allowing Xi, and Yij, 
the indicators of proximity in space and time of the pair (i, j), to assume values 
other than 0 and 1. Furthermore, Mantel's method does not require the relationships 
S and T to be symmetric, so that it can account for very general situations such as 
the relationship of proximity discussed in the previous section. Cuzick and Edwards' 
method [36], presented earlier, is within the scope of this approach. Mantel's result 
is discussed by Cliff and Ord [40], whose work we will return to in more detail. 
Below, the method for calculating the moments of the statistic U are given. 

First, the quantities So, S1, S2 defined by the following formulae, are calcu- 
lated: 

SP= C (Xi. + x.d2 

The quantities To, TI and T2 are defined by similar formulae as functions of Y. Mantel 
has shown that under the hypothesis of no correlation between Xij and Yij, the ex- 
pected value and variance of U are given by: 

where N ( ~ )  is defined as in formula (3.15). Smans and Ohno's statistics given in the 
previous section are of this kind. In particular, the mean and the variance of D is 
derived from formulae (3.22) and (3.23) in the case of uniform population density. 
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Smoothing and the empirical Bayes method 

Data from small geographical areas can be more informative in the analysis 
of disease occurrence than those for larger geographical areas, for example by 
allowing more homogeneous risk groups to be constructed. However, the size of 
the populations in these areas being studied then implies that most statistics, in 
particular measures of incidence and mortality, are subject to large random variability 
that makes the direct interpretation of data difficult. Use of a smoothing procedure 
then becomes necessary. 

Although numerous smoothing methods have been proposed, their statistical 
properties have been relatively poorly investigated. The polynomial regression 
method discussed above (Figure 3.5) and the moving average method used in the 
Finnish cancer atlas [41] and elsewhere do not totally address the problem of inho- 
mogeneity of populations. These methods can therefore produce extreme risk esti- 
mates for areas with small populations. 

When sufficient information is available, groups of contiguous geographical 
zones can be formed by objectively defining similarity based on determinants of risk 
as geographical or socioeconomic variables. The SMR can then be calculated in 
the resulting areas to obtain more stable estimates, as was done for the atlas of 
cancer incidence in the Isere [42]. In a related approach, Huel 1431 proposed group,- 
ing geographical zones based on similarity of incidence or mortality itself. This 
method assumes an extremely strong autocorrelation since it is based on the idea 
that contiguous geographical zones are a priori alike, in the absence of evidence 
to the contrary. Contiguous zones are grouped according to the following algorithm : 

Define a coefficient of similarity or distance between areas which measures their 
proximity with regard to the variable being considered (e.g., the Mantel-Haenszel 
statistic comparing incidence or mortality in two neighbouring areas; see page 77). 

Choose a cut-off point in the coefficient beyond which two areas cannot be 
grouped (e.g., significant difference at level a).  

Group two contiguous areas when their similarity is greater than that between 
each of the two areas with all other neighbours. 

Iteration of step 3 leads to a unique solution if, at each step, all distances 
between neighbouring areas formed at the previous step are different. In this situa- 
tion, one area can be grouped with only one of its neighbours. 

This method has several advantages. It can eliminate spurious excesses of 
risk that a simple description using SMRs might produce. It can also reveal the 
minimal spatial structure compatible with the precision of the observations. On the 
other hand, the method suffers the inevitable arbitrariness of the choice of the cut-off 
point for similarity. The variability in the number of neighbours across regions raises 
another problem: a region with few neighbours probably has a greater chance of 
remaining isolated and thus attracting attention. This method has been systematically 
used in the atlas of cancer incidence in the Isere in France and the results appear 
to confirm this point. Figures 3.7a and 3.7b show the map of testicular cancer in- 
cidence based on SMRs and the smoothed map using Huel's method as applied by 
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Colonna [21]. The method confirms the existence of a spatial structure which had 
previously been detected by Moran and Smans' coefficients of autocorrelation. 
Furthermore, it shows a high-risk region. Note that the SMRs do not provide any 
clear indication of spatial structure because of the small observed numbers available 
in each geographical unit. 

As noted previously, the description of risk in a group of geographical units 
raises the problem of simultaneous estimation of a series of values for which the 
available statistical information is of variable precision. Furthermore, a series of 
comparisons of geographical units taken two at a time does not necessarily lead to 
a ranking. It is likely that Huel's method provides the best solution that can be 
obtained using a series of tests of this kind. 

The preceding discussion has also shown that the construction of a map im- 
plicitly or explicitly involves two steps: firstly, the establishment of a class of geo- 
graphical units by risk level, then a grouping of these units into large risk categories 
from which the scale of the map is constructed. If this grouping is carried out on 
the basis of centiles, two methods to estimate incidence or mortality which rank the 
geographical units in the same order, or almost the same order, are equivalent and 
lead to the same graphical representation. As a consequence, the choice between 
various methods of standardization is not a major problem, since the rank correlation 
between the resulting measure of risk is usually high. Similarly, the fact that the 
random variability of the estimators is large compared to that of the underlying risks 
that they estimate only causes difficulty when the units contain populations of varying 
sizes: in this situation, estimates of risk in small population units based on small 
numbers are likely to be misclassified and have an unjustified weight in the final 
definition of risk categories. In this case, the classification of regions by incidence 
or mortality level should take into account not only the estimated value of the risk, 
but also the precision with which risk is estimated. 

The empirical Bayes approach is probably the most satisfactory solution which 
has been proposed to date for this problem. Basically, this method [44] does not 
allow imprecise estimates to appear among the extreme values simply on the basis 
of their imprecision. 

Suppose the map is defined by n geographical units in which Oi cases have 
been observed and Ei cases were expected under the hypothesis of equality of risk 
in different units. Then the relative risk pi of each area compared to the standard 
risk is classically estimated by the SMR, Oi/Ei (see Chapter 2, page 100). We have 
seen that Oi can be considered to have a Poisson distribution with mean piEi. Up 
to this point, in the classical approach, pi was considered fixed and totally unknown. 
Now we suppose that the observations are the result of two successive, random 
mechanisms. The first, determined by the risk factors for the disease, generates the 
values pi which then become the n realizations of the same underlying random 
variable determining the risk levels in different regions. The second mechanism leads 
to observations Oi from the Poisson distribution with mean piEi. The geographical 
variability to be described obviously corresponds to the first of these mechanisms. 
In practice a model is chosen to describe the distribution of the relative risks pi, 
which relies on available a priori information about them such as the prevalence of 
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the risk factors in the regions, or a possible autocorrelation -in risks detected by one 
of the methods discussed above. Several classes of distribution can appear to be 
reasonable in this context. If the aim is simply to impose some form of cohesion 
on the estimates and avoid extreme estimates from lightly populated regions, the 
gamma distribution is an appropriate choice, for reasons explained below. Its density 
is: 

where the function r is classically defined by the integral 

The mean and the variance of this distribution are r and rs, as can be verified by  
recalling that T(x + 1) = xT(x). Thus r is the mean risk in the group of regions under 
study and s is a scale factor indicating the size of the geographical variability relative 
to this mean risk. 

If the risks in different regions constitute a sample from this distribution, the 
probability that k deaths (or cases) are observed in region i is: 

that is 

which can be written : 

Thus, the marginal distribution of Oi is a negative binomial distribution with 
parameters sEi and r/s having mean rEi and variance rEi(l + sEi). This distribution, 
which serves as a paradigm for cluster distributions, is particularly appropriate here. 
Effectively, if there is heterogeneity in risks, the distribution of cases in the different 
geographical units will differ from the random scatter represented by the Poisson 
distribution, and the cases will tend to group together in higher-risk regions. 

Using the distribution of observations in the set of geographical units allows r 
and s to be estimated by the method of maximum likelihood, thus giving the mean 
risk and the variance of the distribution of p. This marginal distribution is however 
of limited interest. The main aim of disease mapping in this case is to  obtain an 
estimate of risk in the area i which takes into account both a priori information about 
the distribution of p and a posteriori information provided by the value k taken by 
Oi. The a posteriori distribution of p in this region is used for this purpose, using 
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the fact that the observed value of Oi is k. From Bayes' theorem, the probability 
density of p can be written: 

n (pl k) = 
Y (P) Pr (Oi = kl p) 

Pr (Oi = k) 

where 

This is the density of a gamma distribution with parameters k + r/s and ui. The a 
posteriori mean and the variance of p are therefore: 

If r and s are known, these formulae will provide a Bayesian estimate of pi, 
that is, both a value for pi and the variance of the chosen estimator. In fact, r and 
s must be estimated from the marginal distribution as indicated above, explaining 
the use of the term 'empirical' in this method. Similarly, the variability of the estimator 
cannot be characterized by ci, since, the estimation of r and s introduces additional 
variation which is not taken into account in ti. 

Replacing k by Oi in (3.31), the estimator Si can be written 

that is, as the weighted average of the mean risk r and of the ratio Oi/Ei, the SMR 
of the region i. Since s is the parameter characterizing the variance rs of the a 
priori risk distribution, the following observations can be made: 

For a given variance of the geographical distribution, the estimates will be closer 
to the SMR as Ei increases; however, on the other hand, less precise estimates are 
moved closer to the mean risk (r). 

If the variance of the geographical distribution (s) is very large, there is effectively 
no a priori information and the empirical Bayes estimates are close to the SMRs. 

When all the SMRs are equally precise, the only effect of their collective estimation 
will be to reduce the range of the estimates by bringing them all closer to the mean 
risk. 
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In spite of its attractive features, the gamma distribution can still be questioned 
as the only constraint it imposes on the estimates is in their variances. Generally, 
it would be of interest to incorporate in the a priori distribution of p additional data 
concerning the spatial structure under study or a series of covariables characterizing 
the geographical units being described. These objectives could be achieved by 
making the parameters r and s of the gamma distribution depend on the spatial 
structure and covariables. However, because of technical difficulties in incorporating 
the spatial structure, studies of this type have generally resorted to the arsenal of 
autoregressive Gaussian spatial processes used in other areas of investigation. 

In this context, suppose that the variables Xi = Log pi are Gaussian, with mean 
depending on a number of covariables ( z )  and correlation depending on the spatial 
structure (W). Besag [45] has shown that such a model can be specified using the 
conditional expectation of Xi in the form: 

Var (Xi I Xj , j # i) = o 2 

where W, with elements wij, is most often the indicator matrix of proximity and p is 
a set of parameters to be estimated. More precisely, this specification is equivalent 
to a Gaussian model with mean p and variancecovariance matrix a2(1 - a ~ ) - ' .  

This model is especially appropriate for regular geographical subdivisions in 
which each unit has the same number of neighbours. In practice, this condition is 
rarely met, and it seems more satisfactory to suppose that the conditional variance 
of Xi increases as the number of neighbouring regions decreases. A model proposed 
by Besag and Kempton [47] and examined in detail by Mollie [48] fulfils this objec- 
tive. This model (mixed model) assumes that the observations result from the sum 
of two processes : the first Ti is a normal random process with mean pi, constant 
variance o2 and without autocorrelation. The second, Ui, which has zero mean and 
maximal autocorrelation, is obtained by supposing that the conditional expectation 
of the Ui is the mean of observations Uj in the neighbouring units, and that the 

conditional variance of Ui is r2/wi., where W i . 1  Wij is the number of neighbours of 
j 

unit i. The conditional variance of Xi then depends on the number of neighbours, 
and the autocorrelation of the process Xi = Ti + Ui depends on the relative size of 
the variances a2 and T*. The bigger the ratio a2/r2, the smaller is the spatial auto- 
correlation, while it is maximized for O* =.0.  

The use of such an a priori model for the distribution of risks requires numerical 
methods, because the marginal and a posteriori distributions are no longer ex- 
pressed in a simple analytical form [44, 461. 
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In practice, the method gives estimates influenced not only by the mean risk 
of the region under study but also mean risks in areas neighbouring the unit where 
the risk is being estimated. This method is especially useful in preventing undue 
attention being focused on areas with small numbers and randomly raised SMR, 
when they are surrounded by areas of low risk. 

Mollie 1481 provides a particularly convincing example of the effectiveness of 
these methods, using gall bladder cancer mortality in French men. Figure 3.8 shows 
the SMR for 94 French departements, as well as smoothed estimates produced by 
the methods described above. The gamma distribution provides little insight into the 
spatial structure while this structure becomes apparent using models which take into 

a: SMR 

b: Empirical Bayes method 
Mixed model 

Figure 3.8 Gallbladder cancer mortality in France; men, 1971-1978 
Source: Mollie [48] 
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account the strong autocorrelation of the spatial process. It is worth noting that the 
indicated gradient continues beyond the regional borders, the mortality rate for this 
cancer being particularly high in north east Europe. 

The example of testicular cancer in the lsere used above [21,42] is also helpful 
in demonstrating how this method may incorporate the a priori information. The 
SMRs by canton vary from 0 to 628.7 but are considered not to differ from 1 by 
the homogeneity test (Table 3.1). The choice of the gamma distribution as the a 
priori description of risk is not justified because of the autocorrelation demonstrated 
previously. Its use gives risk estimates between 96.9 and 101.6 within the departe- 
ment; they are much more compatible with homogeneity of risk than the crude esti- 
mates but they completely ignore the local characteristics of the risk process. On 
the other hand, using the above model (formulae 3.34, 3.35, and 3.36) as a priori 
distribution provides estimates with a strong spatial autocorrelation and suggests 
the existence of higher-risk areas. This is reflected in the range of estimates (95.4; 
162.0) which is larger than that obtained from the a priori gamma distribution. The 
second set of estimates should be preferred because the data are not compatible 
with an absence of autocorrelation. It is clearly more logical in this case to use an 
estimation method which takes into account the spatial organization of the geo- 
graphical units, to allow a better appreciation of the geographical variation in risk. 

Concluding remark 

We conclude this section on geographical methods with a cautionary remark. 
The recent rapid development of these methods results more from a preoccupation 
with the environment than from new biological knowledge generating hypotheses to 
be examined. Although legitimate, these preoccupations have led to the introduction 
of some confusion and may well generate substantial report bias. The increase in 
the number of situations in which excess risk is investigated has tended to invalidate 
the statistical methods used in this context which are not designed to deal with this 
multiple test of randomness. 

In these situations, epidemiologists can be caught between two extreme posi- 
tions : either they may accept as having been stated a priori a hypothesis which 
was in reality suggested by the observations; from this point on, the hypothesis will 
be confirmed simply by a suitably chosen test. Alternatively, they can deny the exis- 
tence of any excess risk in the particular case presented to them and look in the 
armoury of available tests for the most conservative one which will simply show that 
their own a priori ideas cannot be disproven by statistics. This ambiguity emphasizes 
the need to adopt an approach dictated by a biological hypothesis which integrates 
research from other disciplines. When there are no data of this kind, a good theoreti- 
cal knowledge of the tools being used is the only support available. With this knowl- 
edge, wrong conclusions resulting from excessive confidence in statistical 
significance alone can be avoided. Thus, for many reasons, the contribution of geo- 
graphical studies to etiological research is uneven, and depends on the context in 
which they are applied. Although they are useful, a number of these methods are 
at best tools of preliminary investigation. 
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Ecological studies 

Aim and methodological principles 

Correlation studies, also called ecological studies, have fundamentally the 
same objective as the methods of analytical epidemiology, that is, to detect asso- 
ciations between risk and exposure levels and then suggest, or preferably confirm, 
explanatory hypotheses. As with all methods in descriptive epidemiology, it is the 
group rather than the individual which constitutes the basic statistical unit. 

Correlation studies are often seen as equivalent to geographical analyses of 
the determinants of risk. Indeed, the procedure is frequently used with groups that 
are geographically defined, whether by region or by country. It is a logical develop- 
ment of the studies described in the previous sections, and represents the most 
straightforward approach to try to explain geographical heterogeneity. Nevertheless, 
the methods have a much wider use, applying to all situations which involve inves- 
tigating the relationship between the frequency of an event in several groups and 
a parameter characterizing the average exposure of individuals in the groups, no 
matter how the groups are defined. 

Ecological studies also represent a natural extension of the pairwise compari- 
sons often made in descriptive epidemiology, in that they provide a synthesis of the 
information obtained from these comparisons. Their advantage is especially obvious 
when many factors are presumed to act simultaneously and the average exposure 
of the group can be determined for each one of them. In this situation, it is not 
particularly informative to simply examine rates and levels of exposure to different 
factors. In theory, the specific effects of each factor could be assessed by simul- 
taneously accounting for them in a multivariate analysis. In addition, correlations 
across groups should offer a further opportunity to confirm the existence of a rela- 
tionship between exposure and risk if it is possible to demonstrate a dose-response 
relationship. In the following section, however, it will be seen that ecological studies 
are subject to a number of weaknesses which limit their value and make their in- 
terpretation difficult. 

Correlation studies are often justified on the grounds that they use available 
data on groups which have been formed for other reasons, but nevertheless reflect 
different levels of the exposure being studied. As with other methods in descriptive 
epidemiology, ecological studies are based on the implicit assumption that the 
groups on which the study is based correspond to a categorization of exposure of 
acceptable specificity. It will be seen later that the homogeneity of exposure within 
groups is an important determinant of the method's success. 

When groups are not defined a prior;, the way in which they are formed using 
available data is obviously of crucial importance. In an ideal situation where these 
data are available at an individual level, groups could be formed by categorizing 
individuals with respect to increasing, if not homogeneous, exposure levels. The 
situation arising in this case is then strictly identical to that of an analytical study. 
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In general, study of the relationship between exposure and risk level is based 
on a graphical representation, in which each group under consideration appears as 
a point, situated on two axes characterizing respectively the two measures in ques- 
tion. For example, in Figure 3.9, data on tobacco consumption and the cumulative 
risk of lung cancer are shown for European countries. An important feature is the 
shape of the resulting scatter of points : concentration of points around a simple, 
especially linear, function tends to support the determining role of the exposure in 
the statistical explanation of risk level. 

The effect of exposure can be quantified by fitting a regression line which 
predicts incidence or mortality as a function of the level of exposure. Later, we will 
see that this method is more appropriate than the calculation of the correlation 
coefficient, which is nevertheless the procedure most often used. 

Technical aspects of the calculation and interpretation of regression and cor- 
relation are presented briefly below. 

Figure 3.10a shows the linear function Y = 2X + 1 when X is between 0 to 1; 
the value of Y depends only on X and its variability is similarly defined by that of X: 

Figures 3.10b, c and d show how such a relationship is changed when a ran- 
dom component of increasing variance is added to the deterministic element 2X + 1 
defining Y. Table 3.3 provides numerical values corresponding to these figures and 
details of the calculations for Figure 3 . 1 0 ~ .  In this example X is assumed to be 
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Figure 3.9 National sales of cigarettes (1955-1 964) 
and risk of lung cancer in European countries 

(average risk in males and females born around 1925; see Table 1.1) 
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a: Var E = 0 b: Var E = Var X 

X 

c: Var E = 4 Var X 

X 

d: Var E = 16 Var X 

Figure 3.10 Least squares estimate of the linear relationship 
Y = 2X + 1 + E, simulated data 

controlled, that is, it takes the values Xi, i = 1, n defined a priori (here from 0 to 1 
by steps of 0.1). The classical model used to represent this type of data is 

where the errors E are assumed to be independent with the same normal distribution 
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It expresses a relationship in which the mean of the normal variable Y depends 

linearly on the variable X and the conditional variance 0: is the same for all values 
of X. The variability of Y is thus the result of its structural variability due to the 
relationship with X and the random variability added by the error r, which may be 
due to other determinants of Y not accounted for by the model: 

In Figure 3.10, o: respectively has the value Var(X) (Figure 3.10b), 4Var(X) 
(Figure 3 . 1 0 ~ )  and 1 GVar(X) (Figure 3.10d). In Figure 3.10c, only half of the variance 
of Y is due to the structural relationship linking X and Y. 

The accuracy of the prediction of Y that can be made from knowing X is often 
measured by the percentage of the variance of Y which is due to its relationship 
with X. This relationship is written as p2 = a2var(x) /var(~) .  Its values are respec- 
tively 100°h, 80%, 50% and 20% in the four diagrammes of figure 3.10 above. This 
figure show that the accuracy of the prediction, therefore p2, depends on the random 

variability 02. The above formula indicates that it is also a function of the structural 
variance. The less the slope, the smaller the value of p2, for given random variability 
and variance of X; p2 is obviously zero when the slope is horizontal, because X no  
longer provides any information on Y. 

In practice, a and b are not known. They can be estimated by the maximum 
likelihood method which, for the model (3.37), is equivalent to the method of least 
squares: the estimates 2 and % of a and b are the values which minimize the de- 
viance D(a,b), that is, the sum of squares of the differences in the model 

A simple rearrangement shows that 

where X and Y are the observed averages of X and Y. 

Calculation of the regression line from data shown in Figure 3.10 c is given 
in Table 3.3. 
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Table 3.3 Data from Figures 3.10(b,c,d) 
and calculation of the regression line for Figure 3 . 1 0 ~  

A 

Unit yb yc yd x x2 ( Y " ) ~  XY yc 
(1 ) (2) (3) (4) (5) (6) (7) (8) 

-- 

Total 21.89 23.67 25.63 5.5 3.85 61.739 14.386 23.67 

The regression of YC on X is obtained from columns 5, 6 and 7 of Table 3.3 
using the following calculation: 

Then, column 8 gives estimated values of Y which define the observed regression 
line: 

A 
Yi = ;xi + 6 

By writing: 

and by developing the second member of the equation, the relationship analagous 
to (3.38) is obtained: 
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which explains the fact that the observed variance of Y is made up of the variance 
due to the regression and the residual variance; in the present example, this is 
written: - 

The value 4.89 obtained for D($, 6) can be calculated in principle from the 
A 

formula (Yi - Y~)'. In practice, rounding errors prevent a precise result from being 
I 

obtained in this way and the value is obtained by subtraction using formula (3.41). 
The percentage of variance explained by the regression is therefore: 

this equation provides an estimate of the exact value p2 which, in this example, was 
set a priori to 0.50. 

The correlation coefficient, classically defined by the formula: 

Cov (X, Y) 
= d ~ a r  (X) . Var (Y) 

is estimated by: 

which is the square root of the percentage of variance explained, and has the same 
sign as a. 

Variations of $ ,6  around their respective expected values a = 2 and b = 1 are 
described by a bivariate normal distribution. In particular, the variance of the estimate 
of the slope can be shown to be 

A 
Var (a) = 

0 ;  

(Xi - X12 

this result, which can be easily obtained from formula (3.40), shows that the estimate 
of a is more precise when the variance of X is large. In other words, a is estimated 
more accurately when the range of values of X is wide, as intuition would suggest. 

Further, D (2, 6) /o: can be shown to follow a X2 distribution on n - 2 degrees 

of freedom, leading to an estimate of o: (which has a value in this example of 
4Var(X) = 0.40) equal to 

A 1 - a level confidence interval around 2 can be constructed as 
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where 

is the standard error of 2 and tai2(n - 2) is the value exceeded with probability a12 
by a Student t distribution on n - 2 degrees of freedom. From data in Figure 3 . 1 0 ~  
where n = 11 and to,025(9) = 2.26, the confidence interval of a is equal to 
[0.74 ; 3.901. 

From data in Figures 3.10 b and d, a calculation not shown here leads to 
estimates of p2 respectively equal to 0.88 and 0.23, as compared to the true values 
which are 0.80 and 0.20. 

Now suppose that the data in Figure 3.10 c give an incidence or mortality rate 
Y calculated in n groups characterized by the proportion X of subjects exposed to 
a risk factor; such a relationship obviously expresses a positive association between 
risk and exposure. The statistical significance of the increase in this risk is evaluated 
by testing the hypothesis a = 0. This test is simply carried out by calculating: 

which can be compared to the critical value of a Student t distribution on n - 2 = 9 
degrees of freedom. In this example, the test leads to rejection of the hypothesis 
a = 0. On the other hand, in Figure 3.10 d, although the estimate of a is 1.61, the 
hypothesis a = 0 cannot be rejected as the formula above provides a value of t 
equal to 1.64 for p2 = 0.23. The random component has blurred the structural re- 
lationship between X and Y. Here, the confidence interval of the slope [-0.60 ; 3.821 
is probably more informative than the probability associated with Student's t test 
(p = 0.14), which reveals nothing about the power of the test carried out and a 
fortiori about the precision of the estimate obtained. 

This model is nevertheless not really suitable for describing random fluctuations 
of incidence or mortality, which are a function of the number of expected cases. It 
may seem preferable to suppose that ki, the number of cases (or deaths) observed 
in each group, follows a Poisson distribution with mean Mi(aXi + b), where Mi is the 
corresponding number of person-years, and to account for the heterogeneity in the 
variances implied by this distribution, if the sizes of the groups being studied are 
very different. This would be particularly relevant if the relationship were log-linear 
instead of linear; calculation of the regression line could then be  modified by taking 
the predicted variable as Y = Log(k1M) and by supposing that the error variance is 
proportional to that predicted by the Poisson distribution. This leads to a weighted 
regression in which the function D(a,b) becomes: 
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where the weights wi are proportional to the information provided by each observa- 
tion, or, as a first approximation,proportional to the number of cases observed. In 
fact, it is unfortunately unlikely that the random component of the number of cases 
is limited to its Poisson part: other factors which have not been taken into account 
possibly play a more important role. Consequently the difference between I 

Y = Log(K/M) and a x  + b is the sum of a first component due to the random var- 
iation of KIM and a second attributable to geographical variation in risk associated 
with factors other than X. In practice, this second error, sometimes called extra- 
Poisson variation, renders the suggested weight insufficient and its advantages de- 
batable (see page 182 for a discussion of this problem in the context of time trends). 
Furthermore, in practice, Y is often the logarithm of a directly standardized rate; its 
random variability can then no longer be of the Poisson type. 

Examples of the use of this method will be given later. Firstly, we turn attention 
to a specific problem raised by the inherent nature of ecological studies. 

Strengths and limitations of a measure of group exposure 

Group versus individual exposure 

Most often, exposure is individual in nature and rarely homogeneous within a 
group, either because all members are exposed but at very different levels, or be- 

The effect of errors in the measurement of exposure on the risk estimates has 1 
been largely studied in the context of analytical studies. It has been shown that 
these errors lead systematically to underestimation of risk when they are nondiffer- 
ential, ie, independent of the status - case or non-case - of the individuals being 
studied. The problem is just as common, but rarely discussed in the context of 
ecological studies. In this situation, exposure is most often estimated from data 
collected for other reasons, which generally provide only an indirect measure of 
possible risk factors. For example, sales of a given product only partially reflect its 
consumption, because losses and unregistered imports are not taken into account. 
Furthermore, exposure is only characterized by a single value for the whole group, 
leading to more or less serious consequences depending on the type of exposure 
being considered. 

When the exposure is collective by definition, it is often reasonable to assume 
that this single collective value is a good measure of individual exposure for all 
members of the group. Thus, in the study already cited of the association between 
water hardness and the incidence of cardiovascular disorders, there is little doubt 
that the quality of the local water is a good indicator of individual exposure for the 
residents of the district. A similar situation would apply in a study of the effects of 
sun exposure or natural radiation. A descriptive study in this case is conceptually 
the same as an analytical study. In the examples given, research carried out o n  
individuals would rely on exactly the same data. 

I 
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amounts to the proportion of exposed individuals. In practice, distribution of exposure 
can often have both characteristics. Cigarette consumption represents an example 
of a heterogeneous distribution of individual exposure, but the heterogeneity may 
be even more marked as, for example, in the study of occupational risks. In fact, 
heterogeneity of exposure is the norm in ecological studies, generally as a result 
of the fact that groups are defined using available data, which usually characterize 
the exposure only indirectly. 

Under these conditions, it is not appropriate to assume that all individuals 
classified as belonging to a given group have actually experienced the same extent 
of exposure, as is done in an analytical study: as a consequence, when it is stated 
that group A is defined as more exposed than group B, it is actually known that 
group B will include subjects more exposed than some subjects in group A and vice 
versa. Most often in an ecological study, hierarchical classification of groups based 
on the degree of exposure is thus only valid for the averages. 

Intuitively, the quality of the information that can be derived from an ecological 
study based on group measurements depends on the relative magnitude of the var- 
iability of exposure within groups with respect to its variability between groups. For 
example, it is doubtful whether a correlation study of the relationship between meat 
consumption and colon cancer, conducted in districts of the same country, could 
provide an interpretable result because variations in average consumption between 
districts would probably be too small in comparison to individual differences within 
districts. 

On the other hand, the more the groups formed for the study can provide a 
representative classification of individual exposure, the more one is tempted not 
only to establish the existence of a relationship between exposure and risk, but also 
to quantify the relationship. 

Risk estimation in the context of an ecological study 

Consider the situation in which individual exposure is characterized by a di- 
chotomous variable (exposed/unexposed) and where therefore the exposure in each 
group is defined by the proportion of exposed subjects. 

In contrast to a study based on individual follow-up (cohort study), a correlation 
study cannot use the distribution of events (whether deaths or incident cases) in  
exposed and unexposed subjects to calculate risk in the two subgroups and the 
relative risk of exposure. Nevertheless, it is still possible to estimate the relationship 
between risk and the factor under study when event data are available for a series 
of n groups. Table 3.4 presents data for the ith group. 

Table 3.4 Distribution (a) of events (deaths or incident cases) 
and person-years in a cohort study and a correlation study 

Exposed Unexposed Total 

Events 
Person-years 

(a) Data available from correlation study are in bold type. 
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If hli and hoi are the unknown rates for the exposed and unexposed, the expected 
number of events in group i can be written: 

If pi = mli/Mi characterizes the proportion of exposed subjects in a group i, the rate 
in this group is: 

that is, the sum of the baseline risk and the additional risk attributable to exposure 
for a subset of the group. If risk in the different groups depends entirely on whether 
or not an individual is exposed, it is independent of other individual characteristics. 
hoi and hli then do not depend on i and the incidence rate pi is a linear function of 
pi, the proportion exposed in the group. In fact, i f  6 = hli - hoi, we have the model: 

where 6 is independent of i. In other words, i f  the baseline risk is constant (IOi = pO), 
and if the relative risk (R = hli / hoi) of exposed subjects does not depend on the 
group, the relationship (3.47) can be written: 

and thus R can be estimated by: 

This estimate of relative risk is based on the assumption that the expected 
number of cases in each group depends only on the proportion of exposed and on 
absolutely no other characteristic of the group. Although this condition is often ac- 
cepted implicitly, it is not routinely satisfied: hence the limited value in practice of 
this type of relationship (see the following section). On the other hand, these cal- 
culations have a theoretical value in showing that when the assumption is true, the 
relationship between risk and exposure is linear and the slope of the regression line 
is the important parameter. 

The ecological fallacy 

A number of authors have noted that the study of the association between 
exposure and risk based on grouped data can lead to false conclusions. An example 
frequently cited in this context [49] is Durkheim's study on suicide rates in four areas 
of western Europe in the nineteenth century [50]. Durkheim relied on the observation 
that the suicide rate increased with the proportion of Protestants in a given region 
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to conclude that Protestants committed suicide more often than Catholics. Was this 
conclusion valid? It may have been that suicide was in fact more frequent among 
Catholics and increased the more they found themselves in the minority and ex- 
perienced social pressures predisposing to suicide. This explanation is nevertheless 
unlikely, because it would require an extremely rapid increase in the suicide rate 
among Catholics as the proportion of Protestants increased. Indeed, Durkheim ulti- 
mately showed that this was not the case. Logically, it was not implausible and 
reveals one of the major contradictions in the ecological approach: the average level 
of an exposure factor can have a positive association with the incidence rate in the 
group, even when the same factor is associated negatively with individual risk within 
the group. This paradox has many causes. As an example, imagine that the in- 
creases in the average income of a group can lead to increased risk behaviour 
among the poorest of the group. The study of cervical cancer in Finland illustrates 
this situation (see below, page 157). This intrinsic weakness of correlation studies 
is known as the ecological fallacy. 

Secondly, it should be emphasized that the ecological approach is particularly 
vulnerable to the effects of confounding variables; not only does the approach not 
allow for control as does a study carried out at an individual level, but it also tends 
to transform other risk factors into confounding variables, even when they are inde- 
pendent of the factor being studied at an individual level. For example, in an inves- 
tigation of the relationship between the proportion of wood workers and lung cancer 
incidence using data from 25 Swiss cantons, smoking will induce confounding if 
consumption changes with the proportion of wood workers in each canton, even if 
the two factors in question are independent at the individual level. 

To illustrate this point, consider the situation of two dichotomous factors given 
in Table 3.5. In an ecological study, only the data in bold type are known for each 
group in the study. If the two factors are independent and there is no interaction 
(on a multiplicative scale), it is clear that the relative risk for one of them can be 
estimated from the complete data without taking account of the other. 

The marginal estimate of relative risk corresponding to the first factor 
(dl,/ml~)/(do~/mo.) is equal to the estimate obtained after stratifying by the second; 

Table 3.5 Distribution (a) of events (d) and person-years (m) 
in the presence of two risk factors 

Factor No 1 Factor No 2 

Exposed Unexposed 

Total 

Exposed 
Unexposed 

Total 

(a) Data available from correlation study are in bold type. 
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since the independence of the exposure factors implies an equal distribution of per- 
son-years, we can write: 

m01 moo mo. - - 

m l l  m10 m1. 

furthermore, as an absence of interaction between the two factors implies that the 
relative rates are equal in the groups exposed and unexposed to the second factor, 
the above formula shows that the relative rate which would be obtained after strati- 
fication is also the marginal relative rate. 

This property is important for the validity of analytical studies where there are 
several risk factors under study which are independent within groups, but which 
have a different distribution from one group to another. Membership in the group 
can then be taken as a categorical confounding variable. In such studies where data 
for a given factor are available at an individual level, it is possible to calculate an 
unbiased estimate of the overall relative risk after adjusting for the group as a factor, 
in the absence of precise information about any other factors. In an ecological study, 
where the group itself is the unit of analysis, it is by definition impossible to proceed 
in this way. 

Using the example in Table 3.5, let the relative risks corresponding to the two 
factors be R1 and R2, and the proportions exposed to each factor in group i be pli 
and p2i, Then the relationship previously established between baseline risk and risk 
in the group becomes (see 3.49): 

This relationship shows not only the need to introduce p2i in the regression 
equation despite the independence of the two factors at an individual level but also 
the inadequacy of linear adjustment2. 

Table 3.6 illustrates this situation from fictitious data. Five groups, each com- 
prising 100 000 person-years, are divided according to level of exposure to a factor 
for which the relative risk is constant and equal to 2 in each group. The regression 
of the death rate against the proportion exposed leads to estimates: 

A A 

PO=-0.1367 and 6=7.56 

these values are not ~ean ing fu l ,  because they provide a negative value for the 
estimated relative risk R (3.50). If the baseline risk is taken to have the value po = 1, 
which was used to generate the data for Table 3.6, the relative risk estimated from 
equation (3.49) is 4.43, a number much greater than its true value of 2. 

In reality, the data have been generated assuming that two factors distributed 
independently in each group act multiplicatively on the risk of death. The proportions 

Formula (3.51) is only valid for two independent factors with a multiplicative effect. I t  can 
be checked that, in general, the last term of (3.51) is p12i [R12 - ( R I  + R2 - I ) ] ;  i t  is equal to zero 
only when the effects are additive. 
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Table 3.6 Correlation study. Example of a possible relationship between mortality rate 
and percentage of exposed subjects 

Deaths Person-years 
(thousands) 

Group Exposed U n- Exposed U n- Relative Rate 
exposed exposed risk (per 1 000) 

Total 1 140 530 230 270 1.96 3.34 

of subjects exposed to the second factor in the five groups were respectively lo%,  
lo%, 30%, 50%, 50% and the relative risk corresponding to the second factor was 5. 

If a linear model with two factors is fitted to the data, by an extension of the 
procedure used above (see page 158 and formula (3.56) for the method to estimate 
coefficients), the following relationship is obtained: 

which does not provide correct relative risks. Only fitting p,, p2 and p1p2 would in 
principle result in an exact estimation of the coefficients of the relationship (3.51), 
respectively 1, 1, 4, 4. In fact, models of this type are rarely fitted, either because 
the factors to be taken into consideration are not known or because the necessary 
data are not available. 

In addition, factors associated with the group which act on the variable of 
interest are not necessarily dichotomous, but are often defined by a number of 
categories or are of a quantitative nature. Equation (3.46) can be generalized to 
account for these situations if the distribution of exposure is known in each group, 
through a model linking exposure and incidence. In the same way as before, 

E(Di) = I mi (e) hi (e) de 
e 

where Mi=J mi(e) de is the total number of person-years of exposure and 
e 

1 
dpi =- mi(e) de characterizes the distribution of exposure e in group i. 

Mi 
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If the baseline risk hi(0) and the relative risk ri(e) are not dependent on the 
group, we have, as before: 

Moreover, if risk is a simple function of exposure (for example, r(e) = 1 + ae), the 
incidence rate in group i can be written as a function of the mean exposure in the 

Pi group (in the preceding example: -= 1 + aGi). Again, this relationship is only valid 
Po 

in the absence of confounding factors. 

In conclusion, caution is required in the interpretation of correlation studies, 
as a number of risk factors which are known to be independent at the individual 
level can be associated at the group level. It is only under particular conditions of 
independence of the factors at a group level, such as when they are equally dis- 
tributed throughout the groups, that this confounding effect is no longer present. For 
example, failure to account for sex would produce substantial bias in an analytical 
study of health in relation to an occupational exposure but would probably be without 
consequence in a geographical correlation study of the same exposure, because 
the sex ratio varies little from one population to another. 

Despite these critical remarks, ecological studies can play an important role in 
epidemiological research. Some factors exhibit weak interindividual variation within 
populations, whereas the populations differ substantially in terms of mean levels of 
exposure. In this situation, the ecological approach can be very informative if carried 
out in conjunction with study on individuals. In addition to environmental factors, 
culturally determined behavioural factors, such as diet or sexual practice, can some- 
times lend themselves to group studies with regard to exposure measurement. Eco- 
logical studies are not necessarily less accurate than studies of individuals. Some 
biases due to self-reporting, such as interviewer bias and recall bias, may even be 
avoided. 

A review of the literature in this area shows the wide diversity in the applica- 
tions of the basic principle. In most situations, the method is justified by the need 
to control for the effects of potential confounding factors. Some of the techniques 
used will be described in the following section. 

Specific techniques and examples 

Definition of groups 

An example of the grouping of the subjects is provided by an ecological study 
of occupational risk of nasal cancer by Gardner and Winter [51]. The population 
census in England and Wales (carried out by sampling) provided the percentage of 
the male population employed in different occupations for each of 1366 local ad- 
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Table 3.7 Number of deaths from nasal cancer in the male population as a function 
of the percentage of workers employed in the furniture and upholstery industry 15111 

Cate- Percentage Number of Total Number of Observed Observed 
gory of workers workers number of districts number expected 

in the industry (a) workers (b) of deaths radio 
( 7  

(a) Furniture and upholstery. 
(b) Based on the 1971 census of 10% of the male population aged between 15 and 64 years. 
(') Expected number of deaths in each group is 77.8. 

ministrative districts. The authors grouped these geographical units into a small 
number of areas which would have had the same risk for the cancer under study 
if age had been the only determinant of the disease. This grouping was carried out 
using the following procedure for each occupational category for which the risk was 
to be investigated. First, the districts were ranked according to the percentage of 
the population employed in the category. The number of expected deaths was then 
calculated for each district based on national age-specific rates. Finally, the districts 
were grouped such that each of the newly formed units had the same number of 
expected deaths from nasal cancer. In order to get this result, the total expected 
cases in some districts could not be allocated to one unit and had to be divided 
between two successive units. The observed numbers in these districts were then 
allocated to the two units in proportion to the expected number of cases. The 20 
new units thus formed were then considered to have the same a priori risk, with 
age no longer having a confounding effect in the correlation study. 

Having formed the groups, the authors carried out a regression of the observed 
number of deaths on the percentage exposed in the 20 groups, and tested the 
significance of the slope. As a result, they showed an association between mortality 

I 
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due to nasal cancer and employment in the furniture and upholstery industry, and 
the leather industry, which is free of the confounding effect of age. 

The classical regression of age-adjusted rates on the proportion of people em- 
ployed in a given sector of activity may appear a priori equivalent and simpler than 
the above procedure.However,while adjusting for age takes account of the differing 
proportion of younger people across districts, it does not account for the fact that 
the proportion of the population employed in the relevant sector of activity is highest 
in groups with the largest proportion of younger people (see formula 3.51). This 
method of forming groups thus has specific advantages from the point of view of 
eliminating the effect of age. In addition, combining groups can in some circum- 
stances eliminate other confounding factors, especially those which have geographi- 
cal autocorrelation. 

The detailed results given by the authors (Table 3.7) illustrate the calculation 
of relative risk by fitting a regression line of risk against the proportion exposed, as 
described above. For the furniture and upholstery industry, the mortality rate of group 
i is defined by the fitted line (using the notation in formula 3.48): 

where pi is the proportion of workers in this occupational category. The increase in 
risk with this proportion is highly significant (X2 = 20.02 on one degree of freedom). 
Note that the authors could have estimated the relative risk by: 

This relatively small increase in risk is surprising, especially as it relates to an 
industry for which the association with nasal cancer has already been established. 
It is possible that the percentage of workers actually exposed to the carcinogens 
(such as wood dust and leather dust) represents only a small fraction of the workers 
employed in this sector; this dilution effect is the most likely explanation for the 
underestimation of true risk. 

The authors of this study propose that the idea of combining groups into 
homogeneous units could be extended to the situation where control for confounding 
factors, such as socioeconomic status, is required. They recognize, however, that 
the combination is much more difficult to achieve, and that true homogeneity of 
groups cannot be attained. Generalizability of the approach is, in any case, limited 
by the requirement that data are available for small geographical units. 

In some situations, exposure is so poorly characterized by the defined exposure 
variable that erroneous conclusions can result. The study of breast and cervical 
cancer incidence in Finnish municipalities as a function of a socioeconomic indicator 
illustrates this phenomenon. Teppo and coworkers grouped 500 Finnish communes 
into five categories by percentage of inhabitants in the upper social class. When 
they examined variations in breast cancer incidence, they found, as expected, an 
increase in risk with the proportion of women 'exposed' according to the above 
definition. It is known that women at higher risk of breast cancer are generally from 
the well-off classes (where risk factors such as lower parity and later marriage are 
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more prevalent). On the other hand, the gradient observed for cervical cancer was 
in the same direction as that for breast cancer (Figure 3.11), and contrary to the 
relationship between high incidence and lower socioeconomic classes established 
in previous studies. 

Discussing later the results of this ecological study in the light of an analytical 
study of the above association, the same authors [52]  concluded that the risk factors 
for cervical cancer are more difficult to identify by the ecological approach than 
those of breast cancer. Under the assumption that cervical cancer is primarily as- 
sociated with sexual history, it is possible that the diversity of individual exposure 
resulting from different sexual behaviour is greater than for breast cancer risk factors 
like parity and dietary factors even in small geographical units such as municipalities. 
In other words, the ratio between inter- and intra-municipality variation in exposure 
to breast cancer risk factors could be greater than the corresponding ratio for cer- 
vical cancer. This explanation is, however, only partially satisfactory, and raises 
questions about the characterization of exposure in the ecological study. In partic- 
ular, the reduction to two social classes undoubtedly yields a measure of low speci- 
ficity for exposure to risk factors for cervical cancer, and it is likely that in the group 
defined as exposed, there is in fact a heterogeneous exposure to the true risk factors 
for cervical cancer. In addition, this heterogeneity can differ from one municipality 
to another. Finally, it can be assumed that the population subgroups for which cer- 
vical cancer risk is particularly high (marginal groups, prostitutes) are generally more 
represented in urban municipalities. Given that these municipalities are defined as 
most exposed on the basis of having a large proportion of residents from the upper 
social class, an apparently positive relationship between cervical cancer risk and 
upper social class is the result. In fact, the number of subjects actually exposed to 
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Figure 3.11 Standardized incidence rates of breast and cervical cancer 
by socioeconomic characteristics in  Finnish municipalities, 1955-1974 

(Finnish population as standard) 
Source: Teppo et al. [6] 
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risk factors for cervical cancer increases with the proportion of persons in the upper 
social class, at the same time as the heterogeneity of the group increases. 

The exposure indicator used is therefore doubly inadequ-ate: not only does it 
not define the populations at risk, but it cannot characterize exposure to cervical 
cancer risk factors. We are faced here with the same type of problems as were 
discussed above in the context of Durkheim's study of the relationship between 
suicide and religion. Subjects actually exposed cannot be those identified by the 
defined exposure criteria. In this situation, a hasty interpretation of observed relative 
risk will inevitably lead to an ecological fallacy. 

Multivariate analysis 

When potential confounding factors cannot be controlled for by an appropriate 
grouping, the necessary adjustment must be carried out in the statistical analyses. 
The regression method described on page 142 for a single variable can be extended 
without difficulty to several variables, and appear, a priori, to be an appropriate tool 
for studying the relationship between cancer risk and multiple environmental factors. 
This method has been used often, mainly in exploratory epidemiological analyses. 
Its methodological principles will be explained using an example in which the method 
discussed on page 142 is extended to two variables. The only new concept required 
when going from one variable to two or more is that of partial correlation, which 
expresses the specific association between a single exposure variable and the risk 
measure, that is, the association which would be observed if all other factors were 
held constant. 

Firstly, suppose that we wish to estimate the association of Y with two variables 
XI and X2. As previously, the estimates of a, and a2 in the relationship: 

Y=alX1 + a 2 X 2 + b + r  (3.54) 

are obtained by minimizing the deviance D(al,a2,b) corresponding to the sum of the 
squares of the deviations in the model: 

If Var and Cov are the estimates of variance and covariance, then: 

D(al, a2, b) = n[Var (Y) + Var (alXl + a2X2) - 2 Cov (Y, alXl + a2X2)] 

From this last expression, and setting the derivatives with respect to al, a2 
A 

and b equal to zero, it can be verified that GI, $2 and b are given by the equations: 

A 
a1 Var (Xl) + $2 Cov (XI, X2) = COV (Y, XI) 
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Letting: 

and 

Cov(Y, XI) 
syx = [ cov (Y, x,] 

we can write: 

a formula which, when added to the third of the equations (3.56) above forms the 
analogue of formula (3.40). The minimum value of D(al,a2,b) can similarly be written 
with the same notation: 

A A "  
D ( a,, an, b) = n [Var (Y) + Var ( Glxl + g2x2) - 2 COV (Y, GIxl + &x2)] 

which leads to the relationship: 

This formula, analogous to formula (3.41), shows how the total variance can be 
decomposed into two terms: the variance due to regression and the residual vari- 
ance. As before, the quantity: 

'"2 syyx B - 
- 1- 

D ($1, 22.6, 

Pyx= ~ a r  (Y) n Var (Y) 

is the percentage of variance explained by the regression. Its positive square root, 
called the multiple correlation between Y and XI, X2, is the correlation between Y 
and the function GI XI +g2 X2; it is equal to the maximum correlation that can be 
obtained between Y and all functions of the form a l X l  + a2X2. Table 3.8 uses data 
from Figure 3 . 1 0 ~  (Table 3.3) to which is added a second predictor X2 of Y. 

Columns 4, 5 and 6 are obtained directly from columns 1, 2 and 3. The data 
from Table 3.3 combined with these results gives: 
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the value of the other coefficients of equation (3.56) have been obtained previously 
(see Table 3.3). Ignoring the factor 1/11, the first two equations can be written: 

A 
1.102, + 2.30a2= 2.55 

2.302, + 25.14& = 12.60 

leading to the estimates: 
A A 
a1 = 1.57 and a2 = 0.36 

The third of these equations gives: 

From (3.58), the component of variation explained by the regression can then be 
calculated: 

and similarly the square of the multiple correlation coefficient: 

A2 8.54 
Pyx = 10.81 = o.79 

Table 3.8 An example of the calculation of multiple regression 
(Y and XI are columns 2 and 4 in Table 3.3) 

Unit x I x2 Y XI x2 x2y X$ ? 
(1) (2) (3) (4) (5) (6) (7) 

Total 5.5 29.5 23.67 17.05 76.08 104.25 23.67 
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In the same way, from (3.58) it can be verified that 

It is then important to be able to evaluate the role of each variable in the 
prediction of Y and in particular, the improvement in this prediction when the variable 
X2 is added to the variable XI in the regression equation. The correlation of Y and 
X2 (r = 0.76) shows that X2 is a predictor of Y. However, as X1 and X2 are correlated 
(r = 0.44), it is probable that XI and X2 provide partially the same information about 
Y. The independent relationship between X2 and Y should therefore be evaluated. 

When X2 is added to the model equation, the deviance is reduced by 2.62, 
the difference between the deviance of the model not containing X2 
(Dl = D(&,, 0.6) = 4.89) and that of the model above (D2 = D($~ ,  i2, 6) = 2.27). This 

reduction expresses the additional role of X2 after taking X1 into account. By ex- 
pressing the reduction in relation to the deviance of the initial model, a measure of 
the specific contribution of X2 is obtained: 

Dividing by Viir(Y) shows that: 

where = 0.55 is the square of the correlation of Y with X1 

"2 A The square root of pyx, I with the same sign as a2 is called the partial cor- 

relation of Y with X2, holding XI constant. Furthermore, it is the correlation between 
the residuals of the regressions of Y on XI and of X2 on XI and is given by the 
formula: 

PYX, - PYX, Px,x, 
PYX, I Xi = 

( 1  - X I  (1 - P2X1x2) 

from which we get the estimate 

A 0 . 7 6  0'74x 0'44= 0.72 (= 
up to rounding errors) 

"'2 ''1 = 40.45 x 0.81 

Many authors have used the techniques of multivariate analysis to try to dis- 
tinguish the roles of multiple factors or to better estimate the effect of a given factor 
by controlling for confounding effects. Two examples illustrating the use of these 
methods are given below. 

A 

Note that the direct application of the formula C (Yi - Y12 would lead to the value 2.29. 
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Blot and Fraumeni [53] estimated the effect of industrial exposure on lung 
cancer mortality using data from 3056 US counties, attempting to control for 
sociodemographic factors. Firstly, they estimated the total number of workers in each 
of 18 industrial sectors in each county, based on the census of industrial employ- 
ment. For each of the 18 sectors, they then grouped the 3056 counties into three 
exposure categories: those in which less than 0.l0/0 of the total residential population 
worked in the sector; those in which between 0.1 and 1% were so employed; and 
thirdly those with more than 1% of the population employed in the sector. 

The estimation of risk associated with the 18 industrial sectors was carried out 
using a weighted multiple regression model including the exposure variable as well 
as the main factors to be controlled for. The dependent variable to be fitted was 
age-standardized lung cancer mortality for the period 1950 to 1969. The exposure 
variable was included in the model as a categorical variable with three levels defined 
as above by the proportion of the population working in the sector. The factors to 
be controlled for were population density, degree of urbanization and proportion of 
non-whites. A further indicator, situating the county in one of seven broad areas 
reflecting differences in lung cancer mortality in the USA, was introduced to take 
large-scale geographical variation into account. The model was thus intended to 
evaluate the risk associated with industrial activities after adjusting for potential con- 
founding factors. Examination of the residuals, after initially fitting linear terms, led 
the authors to add quadratic factors to the regression. The weighted regression 
method was used, with weights defined by the square roots of the number of per- 
son-years accumulated in each county during the period under study, giving weights 
inversely proportional to the standard errors of the mortality rate estimates. The 
authors did not explain why they chose this type of weighting. 

On the basis of the fitted models, the authors concluded that, after accounting 
for sociodemographic factors, the lung cancer mortality rate increased significantly 
for four of the 18 industrial sectors: paper, chemicals, petroleum and transport 
(Table 3.9) 

Results of this kind should obviously be interpreted with caution. It is particu- 
larly advisable to question the ability of this multivariate analysis to effectively control 
for the known etiological factors for lung cancer. The authors considered that differ- 

Table 3.9 Regression coefficients (a) of the standardized rate (b) of lung cancer 
by percentage of workers employed in four manufacturing industries 

Industry Percentage employed in industry 

Paper 0.24 (0.36) 1.02 (0.50) 
Chemical 1.49 (0.31) 2.26 (0.49) 
Petroleum 0.98 (0.45) 1.32 (1 .OO) 
Transportation 1.22 (0.32) 0.84 (0.46) 

(a) Estimated coefficients (standard error). 
(b) Standardized with respect to the white male population of USA. 
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ences in tobacco consumption between counties were partially associated with the 
degree of urbanization, which was accounted for in the model. It should also be 
noted that the classical approach adopted by Blot and Fraumeni considers each 
county as a statistically independent unit. It takes large-scale geographical variation 
into account in a way that differs from Gardner's approach described above. The 
integration of areas into non-contiguous zones, as in Gardner's method, can, to a 
certain extent, be thought of as a random assignment of spatially autocorrelated 
factors. On the other hand, the approach described here can be interpreted as an 
attempt to adjust the risk for confounding factors using large geographical zones in 
which they remain approximately constant; thus it indirectly accounts for the corre- 
lation in risk which might exist between geographically neighbouring units. 

Other approaches which avoid the difficulties of interpretation created by spatial 
autocorrelation have been described; that proposed by Richardson [54] is described 
here. First, remember how confounding factors intervene in the equation relating 
the exposure of interest and the risk of disease in an ecological study. 

It has been shown previously (3.53) that the relationship between risk and 
exposure, under general assumptions, can be written: 

where Gi characterizes the average exposure in group i, Mi and Di are the numbers 
of person-years and deaths in the group, and po is the baseline mortality rate. 

If only this exposure plays a role in the determination of risk, the observations 
Di would have independent Poisson distributions and estimation of the parameters 
po and a would not present any particular difficulty. In practice, other factors con- 
found their effect with that of the exposure under study and should in principle be 
included in the equation. As they are generally not measured, the equation becomes: 

where fi is a random variable which is included as an error term, in the absence of 
more specific data on the confounding variables. Thus, we are led back to the 
estimation of a regression equation with correlated errors if, as is generally the case, 
the unmeasured confounding factors have spatial autocorrelation. If we do not take 
this correlation into consideration in the analysis, the result will be excessively liberal 
tests of significance, because the improvement in the deviance will be evaluated 
with respect to an underestimated error. This phenomenon will be systematic if the 
Poisson distribution is used as an error model. It will also occur in the situation of 
positive autocorrelation if  the normal approximation for the distribution of incidence 
or mortality rates is used. 

Some authors have proposed regression models with correlated errors [55,56]. 
However, fitting these models is often unduly complicated in relation to the impor- 
tance of the results which are expected. In contrast, Richardson's approach is ap- 
pealing because of its simplicity and the fact that it provides a rapid means of 
evaluating the significance of an association. 
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The test of the association is based on the variance of of the empirical cor- 
relation coefficient r between incidence (or mortality) and exposure, considered as 
two spatially autocorrelated processes X and Y. It can be shown that: 

where SXY, SX2, SY2 are the empirical covariance and variances of the two processes. 

In the absence of autocorrelation, of = 1 / ( N  I ) ,  where N is the number of 

observations XilYi. In the presence of autocorrelation, 0: is estimated from the ob- 
A2 servations and used to calculate N:!: = I +  l /or from which the significance of the 

correlation is tested with the statistic: 

considered as a Student's variable on N:;: - 2 degrees of freedom. The method thus 
proceeds as if the number of autocorrelated observations made were equivalent to 
a smaller number N* of independent observations. In the same article the author 
showed that the method can be extended to any number of variables. If, for example, 
the significance of the association between X and Y after adjustment for Z is to be 
evaluated, the correlation of residuals of the regressions of X and Y on Z could be 
assessed directly by the method. 

In practice, SX2 and SY2 are used to estimate their expected values. The cal- 
culation of the variance of SXY requires an additional assumption; by calculating this 
variance conditional on X, we obtain: 

C (Xi - X) (Xi - X) COV (YiYi) 
. . 

Var (Sxy) = 
1,J 

N~ (3 .65)  

that is, s:, as an estimate of the variance of Sxy. When the Yi are independent, 
1 

Cov(YiYj) = 0 i f  i # j. Var(Sxy) has the value -- (Xi - X)2 Var (Y) and we find (hat 
N~ 

r is the standard normal variable corresponding to SXY. When the Yi are not 
independent, formula (3.65) is only informative under specific assumptions about 
the structure of the covariance of the Yi. Accordingly, suppose that N(N - 1)/2 pairs 
of geographical units can be stratified into subgroups in which the covariances of 
the Xi and the Yi are constant. This grouping is generally based on the distance 
between the administrative centres of the geographical units being studied, under 
the assumption that the intensity of the autocorrelation only depends on distance. 
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The estimate of c$ is then written, using (3.63), (3.65) and the constancy of the 

covariances: 

where 

and 

are the respective empirical covariances of the Xi and the Yi in subgroup k and Nk 
is the number of pairs of units in this subgroup. 

Applying these principles to the study of the association between lung cancer 
and occupational exposure, Richardson [54] showed that the percentage of men 
employed in the metal industry was correlated with lung cancer mortality across 
French departments (Table 3.1 0). The classical test overestimates the intensity of 
the association but the corrected test is highly significant and remains so even after 
adjustment for cigarette sales. Since adjustment for a confounding variable partially 
accounts for autocorrelation of errors, it should be expected that the total corrected 

Table 3.10 Correlation between risk of dying from lung cancer (a) 

and employment in selected industries (b) in France [54] 

Correlation Classical test 
(N = 82) 

Corrected test 

Metal industry 
Crude 
Ajusted (') 

Mining Industry 
Crude 
Adjusted (') 

Textile industry 
Crude 
Adjusted (') 

(a )  Lung cancer mortality rate (35-74 truncated rate) for 1968-69. 
(b) As measured by percentage of men employed in the industry indicated. 
(') Adjusted for the sales of cigarettes (number per inhabitant in 1953 ; source : SEITA). 
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number of observations in the test increases after this adjustment, which is in fact 
the case. Correlations with the mining and textile industries are weaker and the 
second is eliminated altogether by the corrected test. Richardson shows that the 
first of these two associations also disappears after adjustment for a geographical 
gradient. However, it might be questioned whether such a procedure might have led 
to overadjustment, and hence the elimination of the real associations, if the variable 
being studied has a large geographical autocorrelation, and possibly a strong covar- 
iation with the variable describing the geographical gradient. 

Migrant studies 

Migrant studies are based on the idea that immigrants are, by their life style 
and culture, exposed to risk factors which differ from those prevailing in the host 
country. Thus evidence for risk levels specific to immigrants can indirectly suggest 
or confirm etiological hypotheses. In general, the risk to which immigrants are subject 
is recognized by comparison with the risk in the host country, but it is sometimes 
compared with the risk in the country of origin. 

Immigrants are identified by their nationality when they keep it, or by their 
place of birth. Some studies are exclusively based on surname. In certain situations, 
first-generation immigrants (born in the country of origin), can be distinguished from 
their children, often born in the host country, who are described as second-genera- 
tion immigrants. This distinction sometimes provides information on the effects of 
behaviour changes resulting from the cultural integration, which act more profoundly 
on the second generation. 

This technique has been used by Buell and Dunn [57] in their study of Ja- 
panese migrants living in California. The incidence of common forms of cancer in 
first and second-generation migrants was compared with the corresponding rates 
for California and Japan. The main results, shown in Figure 3.12 have been dis- 
cussed by Cairns [58] .  They show that the risk to which migrants are exposed con- 
verges towards the risk in the host country, passing through intermediate risk levels. 
These findings demonstrate the importance of environmental factors over factors 
linked to ethnicity. The change in risk is shown to differing degrees for cancers at 
four sites, the stomach, liver, colon and prostate. Incidence of colon cancer, much 
rarer in Japan than in the USA, increases markedly for first-generation migrants; 
the second generation has approximately the same rate as Californians. The tran- 
sition is much slower for stomach cancer. The risk is extremely high in Japan, and 
remains much higher for Japanese migrants, even those of the second generation, 
than for Californians. This phenomenon can obviously be explained by the main- 
tenance of risk behaviour or the failure to adopt protective behaviour, for example, 
dietary habits. On the other hand, based on these data, the hypothesis of an ethnic 
susceptibility for stomach cancer cannot be completely excluded. 

The principle of migrant studies has been extended to cultural and religious 
minorities. Cancer risk has been studied among Mormons and Seventh Day Adven- 
tists, who are recognized as consuming little or no alcohol, tobacco, coffee or other 
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Figure 3.12 Relative risk of death from various cancers 
for male Japanese migrants to California compared to white Californian males 

Source: Buell and Dunn [57] 

stimulants. Research of this kind has largely confirmed the importance of lifestyle 
on cancer risk. For example, it has been shown that cancers of the upper aero- 
digestive tract were much less frequent in Californian Seventh Day Adventists than 
in the Californian population as a whole [59]. 

This type of study has sometimes allowed the effects of closely associated 
factors to be distinguished. In Chapter 1 ,  it was noted that the apparent effect of 
urbanization on lung cancer disappeared when the association was studied in Mor- 
mons who were living in the same environment but were nonsmokers. The effect 
originally observed was thus largely due to the fact that smoking is more frequent 
in urban populations (see page 10). 

In terms of methodology, migrant studies can be classified according to whether 
or not denominators are available. Given the numbers in each group for which risk 
is to be estimated, the appropriate analysis is the calculation of rates and their 
comparisons (see Chapter 2, page 85). In practice, the groups being studied are 
often small and indirect age standardization using the SMR or log-linear modelling 
based on the Poisson distribution is used. When denominators are not available, 
study of the relationship between risk and membership in specific groups can b e  
carried out by the PMR method described on page 96 in Chapter 2. As we have 
seen, it is actually preferable to carry out the analysis using logistic regression 
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identical to that used in case-control studies. A study of Italian migrants in Geneva 
illustrates this double approach4. 

The Geneva cancer registry has been operating since 1970 and identifies cases 
by nationality. Swiss nationality is not granted automatically after a certain length 
of residence, even for foreigners born on Swiss territory. Therefore most immigrants 
keep their original nationality for one or more decades, as do their descendants. 
Numbers of foreigners by sex, age and nationality living in Geneva have been esti- 
mated regularly since 1976. 

Standardized morbidity ratios for immigrants of Italian nationality were first cal- 
culated for the main digestive tract cancers over the period during which denomi- 
nators were available (1976-1987). The calculation was carried out by comparison 
with the incidence rates established for the total resident population of the Geneva 
canton. Although this population includes Italians who represented goh of all resi- 
dents, the potential diluting effect in the risks was not considered to be large. 
Table 3.11 shows that significant differences only emerged for gastric cancer, there- 
fore subsequent investigations were restricted to this site alone. 

Although the etiology of stomach cancer is not well understood, research has 
focused mainly on dietary factors. Consumption of salted or smoked food, particularly 
in places where refrigeration is not widely available, might be a risk factor; fresh 
fruit and vegetables, on the other hand, could have a protective effect. An often 
observed increase in risk in lower socioeconomic classes could simply be a marker 
of dietary practice associated with access to refrigeration. Relatively marked geo- 
graphical differences have nevertheless been observed between countries, ap- 
parently independent of living standards. In Italy, in particular, differences in mortality 
are substantial from one province to another, with the highest rates observed in 
regions in the centre of the country. It is also widely accepted, notably from Buell 

Table 3.11 Standardized incidence ratio (a) for Italians living in Geneva, Switzerland, 
by sex and site (1976-1987) 

Men Women 

ICD-9 Site Relative risk 95% CI Relative risk 95% CI 

1 50 Oesophagus 0.79 10.43 ; 1.331 0.83 [0.10 ; 2.991 
151 Stomach 1.61 [1.18 ; 2.141 1.81 [0.92 ; 2.331 
153 Colon 0.97 [0.71 ; 1.301 0.71 [0.45 ; 1.051 
1 54 Rectum 0.88 [0.56 ; 1.321 0.94 [0.56 ; 1.491 
155 Liver 1.21 [0.75 ; 1.851 0.85 [0.18 ; 2.481 
156 Gall-bladder 1.48 [0.60 ; 2.841 1.12 [0.41 ; 2.551 

(a) Geneva resident population incidence rates as standard rates. 

See Sarti e t  al. chapter 16 in [60] 
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and Dunn's study [57] described above, that the period of induction of gastric cancer 
is particularly long. 

In Geneva, several characteristics routinely recorded for each registered case 
enable the role played by the above factors in gastric cancer carcinogenesis to be 
studied. They include socioeconomic status, country of birth and duration of resi- 
dence since migration. Other information relating to the above hypotheses, such as 
province of birth and spouse's nationality, was obtained from local files of residents 
by ad hoc inquiries. Because it was not feasible to construct denominators for these 
additional variables, study of their effects could be carried out only by using an 
analysis of relative frequencies. 

This analysis was carried out with 100 cases of stomach cancers occurring 
between 1970 and 1978 among Italian nationals residing in Geneva and 300 controls 
drawn randomly from 11 61 cancers of other sites registered among Italian nationals 
during the same period. The number of controls was kept to three per case to 
minimize the manual investigation of data files. No matching was carried out. Ana- 
lyses were carried out by unconditional logistic regression (see Chapter 2, page 98). 

The evaluation of living standard was based on three socioeconomic categories 
(manual labourers; clerical workers; management and professional) and from a vari- 
able distinguishing five regions of birthplace (southern Italy; central Italy; northern 
Italy; Switzerland; other), which defined a gradient of socioeconomic status from 
most socioeconomically deprived to most socioeconomically privileged, that is, from 
southern Italy to Switzerland. For men, after taking age into account, neither of 
these variables significantly modified gastric cancer risk; a nonsignificant increase 
in risk was noted for central Italy. For women, no significant variation in risk was 
observed with social class, but the risk was significantly higher for women born in 
central Italy. 

The degree of cultural integration was measured by the number of years of 
residence and by the fact of being married to a Swiss national. No significant as- 
sociation was found from the analysis of these two variables, despite a decreasing 
trend in risk with duration of residence (both sexes), and with a Swiss spouse (men 
only). 

To investigate differences in risk with place of birth, the 95 Italian provinces 
were grouped by relative mortality rates, available for the period 1975 to 1977 into 
three categories: less than 80% of the national average (low); between 80 and 120% 
of the national average (medium); and more than 120% (high). Separate scales were 
constructed for both sexes. This breakdown was completed by a fourth class corres- 
ponding to cases born in Geneva, where stomach cancer mortality is particularly 
low, and this category was used as the reference. 

This indicator was shown to be highly significantly associated with risk (after 
accounting for age). For provinces of birth characterized by the highest mortality 
rates, relative risk was estimated as 4.0 for men and 6.8 for women. The trend of 
increasing risk across categories was also significant. 

In order to judge their effects in the presence of other factors, the variables 
under study were introduced simultaneously in the same model, with the exception 
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of social class which was assumed to be represented largely by the place of birth. 
Because no interaction between these factors and sex was significant, an analysis 
was undertaken with both sexes combined. The results of this analysis (Table 3.12) 
confirmed the importance of province of birth as a risk factor for gastric cancer. 
There remained, however, an indeperident effect of region of birth (highest risk for 
central and southern Italy), which may reflect a residual role of the birth province, 
if this factor was too broadly categorized. The dominant role of birth province sup- 
ports the results of analytical studies, which have demonstrated the local specificity 
of dietary habits in central Italy, suggesting that they play an important role in the 
mechanism of gastric cancer [61]. The apparent absence of effect of variables meas- 
uring the degree of integration (length of residence and Swiss spouse) is not sur- 
prising, considering that gastric cancer has a long latency period. 

Table 3.12 Distribution of cases and controls and risk estimates associated 
with selected factors (both sexes combined) [60] 

Cases 
(1 00) 

Controls Relative risk (a) 
(300) 

Level of risk of Italian province of 
origin 

Low (b) 43 
Medium 23 
High 34 

Italian region of origin 
North (b) 
Central and South 

Length of residence - 

Spouse 
Non-Swiss 
Swiss 

(a) Adjusted for age and the other factors in the table. 
(b) Includes those born in Switzerland and elsewhere, except Italy. 

Time trends 

Objectives 

In the context of descriptive epidemiology, there are many reasons for studying 
time trends. Firstly, information on the historical evolution of risk (incidence or mor- 
tality) can generate etiological hypotheses or confirmation of suspected associations 
between risk factors and disease. While the existence of geographical variation in 
incidence between populations might be explained by genetic differences, changes 



TIME TRENDS 171 

in incidence in single populations imply the introduction or disappearance of envi- 
ronmental risk factors much more clearly. Comparison of the development of en- 
vironmental factors with the development of the frequency of different types of 
cancer should therefore be profitable. For example, the increase in lung cancer 
mortality parallels the progressive introduction of cigarette smoking, while its 
decrease quickly follows a decrease in the proportion of smokers. 

However, in etiological research, the interpretation of chronological covariation 
remains delicate. It would be simple to show that the incidence of melanoma has 
undergone an increase identical to that of many changes in lifestyle which cannot 
be incriminated in the etiology of this cancer. Similarly, the general decrease in 
frequency of stomach cancer could be related to the modification of many en- 
vironmental factors which accompany higher living standards; its etiology neverthe- 
less remains largely unexplained. The existence of a direct link between the 
evolution in risk of a given cancer and that of a suspected etiological factor may 
be less questionable when they both show the same inversions of trend. For ex- 
ample, the parallel trends in incidence of larynx and oesophageal cancers 
(Figure 1.3) clearly suggests a common etiology, in this case alcohol consumption. 
Alcohol consumption has in fact declined substantially in the period when the genera- 
tions at lowest risk of these cancers were between 20 and 25 years of age 
(Figure 3.13). When the joint evolution of a cancer and a risk factor are studied, i t  

World 
War I1 

Figure 3.13 Change in alcohol consumption in France between 1860 and 1989 
Source : Hill et al. [64] 
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is necessary to consider the mechanism of action of the risk factor and particularly 
the latency period. Thus, in contrast to the previous observation on alcohol-related 
cancers, the large decrease in tobacco consumption during the second world war 
did not have a marked effect on lung cancer mortality. In fact, it is difficult to detect 
joint evolution : risks and etiological factors generally undergo a slow, steady evo- 
lution. 

The observation of time series can also be seen as an instrument for epidemi- 
ological surveillance of the population with the aim of detecting new risk factors. 
However, in addition to the difficulties created by the delayed effects of the latency 
period, it should be emphasized that rapid detection of changes in trends is not 
easily achieved. In particular, when monitoring relates to a relatively small population 
or a small risk, observed variations are often simply a reflection of purely random 
fluctuations. 

The study of time trends is of particular interest in the evaluation of primary 
prevention, which involves the reduction in exposure to risk factors, and of secondary 
prevention (screening) which is aimed at reducing mortality. It is anticipated that the 
intervention will cause a more or less generalized shift in the existing trend in inci- 
dence or mortality. Before-and-after designs, aimed at identifying such shifts, have 
generally been used for this purpose. 

The study of time trends is not limited to incidence or mortality. Descriptive 
epidemiology is increasingly concerned with the overall assessment of progress 
made through improved treatment or earlier detection of disease. This requires 
methods for quantifying the corresponding increase in survival rates calculated for 
all cases in the population in which the evaluation is being carried out. 

Finally, from the public health viewpoint, the observation of changes in risk in 
the recent past leads naturally to a desire to predict its future development, in order 
to determine budget priorities and plan necessary services. 

The following sections are devoted to definitions and basic concepts, which 
are of fundamental importance in the development of modelling methods, particularly 
those used in identifying age, period and cohort effects. 

Methods 

Components of temporal evolution 

From 1955 to 1959, 41 7438 deaths from cancer were registered in France. 
Twenty-five years later, between 1980 and 1984, these deaths numbered 638 01 2. 
In other words, cancer deaths increased 53% over 25 years, or 1.7O/0 per year (see 
formulae 3.68 and 3.69). To varying degrees, the same phenomena occurred in 
other Latin countries (Table 3.13). The increase concerned not only numbers of 
deaths for each type of cancer but also their proportion in all-cause mortality and 
crude rates. 
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Table 3.13 Changes in number of deaths (a) 

for cancer between 1955 and 1984 in selected European countries 

Men Women 

1955-59 1980-84 (b) Variation (') 1955-59 1 980-84 (b) Variation (') 
(% per year) (% per year) 

Spain 
Number 
Crude rate 
Proportion (d) 

France 
Number 
Crude rate 
Proportion (d) 

Italy 
Number 
Crude rate 
Proportion (d) 

Switzerland 
Number 
Crude rate 
Proportion (d) 

WHO mortality data bank. 
Spain 1980-81 ; Italy: 1980-83. 
Average annual rate of change over the period of n = tl-to years, calculated according to formula (3.69). 
Proportion of deaths from cancer among deaths from all causes in the period. 

These observations are important from the public health viewpoint. However, 
they do not reveal anything about the way in which cancer risk evolved over the 
course of the 25 years, and can even lead to errors in interpretation. The proportion 
of deaths due to cancer increases partly because of a decrease in the number of 
deaths from competing causes, while the increase in crude rates is largely explained 
by the ageing of the population. An examination of trends in the net risk of cancer 
mortality which leaves aside competing causes ends up with rather different conclu- 
sions (Table 3.14). In particular, net cancer mortality decreases when cancers as- 
sociated with tobacco use are excluded. Similar conclusions were reached by a 
study carried out some years ago in the USA: while the number of cancer deaths 
increased 181 % between 1930 and 1970, an analysis of the components of the 
increase shows that 10% was due to change of risk, 74% to population growth, 46% 
to the ageing of the population, 17% to the amplification of changes in risk resulting 
from demographic changes and finally 34% to interactions between demographic 
factors (62). A recent study carried out for the European Community predicted that 
cancer mortality would increase 48% for men and 20% for women between 1980 
and 2000, with approximately half of this variation due to demographic changes 
expected during this time. 
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Table 3.14 Change in net risk (a) of dying from cancer 
between 1955 and 1984 in selected European countries 

Country Men Women 

1955-59 1980-84 (b) Variation (') 1955-59 1980-84 (b) Variation (') 
(% per year) (% per year) 

Spain 
Tobacco- 
related (d) 
Other 
Total 

France 
Tobacco- 
related (d) 
Other 
Total 

Italy 
Tobacco- 
related (d) 
Other 
Total 

Switzerland 
Tobacco- 
related (d) 

Other 
Total 

(a) Net risk 1s measured by the cumulative r~sk  from 0 to 75 years ; source : WHO mortality data bank. 
(b) Spaln: 1980-81; Italy: 1980-83. 
(') Average annual rate of change over the per~od of n = ti-to years, calculated according to formula (3.69). 
(d) Sites for wh~ch the effect of tobacco use has been established (mouth and pharynx, oesophagus, lung, 
larynx and bladder). 

In etiological research, the focus should be on the risk of disease and not only 
the risk of death. Unfortunately, trends in incidence can be studied in only a few 
countries, because of the relatively recent establishment of cancer registration. In 
addition, results can rarely be generalized because registries often cover subpopu- 
lations chosen by circumstance, not necessarily corresponding to regions that would 
have been selected for the study of specific hypotheses. Therefore, we are often 
forced to rely on mortality data, which are available over long time periods for both 
national and regional populations. Nevertheless, it should be kept in mind that the 
risk of death is only an indirect, and even a biased measure, of the risk of cancer 
occurrence, particularly because of the increase in survival. 

The methods proposed in Chapter 2 for comparing incidence between popula- 
tions should in principle be suitable for studying changes over time. However, most 
of these methods rely on the assumption that ratios of incidence (or mortality) remain 
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more or less constant with age. In fact, it is far from certain that risk alters in the 
same way for all age groups in a changing environment. Indeed, there are, in 
general, good reasons to assume that different age groups behave in different ways. 

The epidemic of lung cancer illustrates this point. At first, the older age groups 
were unaffected and the increase in risk was observed only in younger age groups. 
Signs that the epidemic is declining are now obvious, for example, in the UK and 
the USA, and again in the youngest age groups which are decreasingly exposed to 
the carcinogenic effects of tobacco. In the oldest groups, on the other hand, the 
increase in risk is sustained for much longer, as they are still experiencing the 
consequences of high tobacco consumption twenty years ago. In France, where the 
smoking epidemic occurred later, there is still an increase in risk in the younger age 
groups (Figure 3.14). In such circumstances, neither crude nor standardized rates 
can provide an appropriate assessment of trend. Calculations based on age-adjusted 
rates, which in principle control for the effects of population ageing, provide an 
incomplete picture of the phenomenon, and hide its more interesting components. 

This example underlines the importance of observing changes in risk in young 
adults when the consequences of a new risk factor or protective agent are to be 
assessed (or predicted). For cancer, as for most non-transmissible diseases, etio- 
logical factors are often linked to forms of social behaviour which come and go with 
passing generations. 

These considerations are illustrated in Figure 3.15, which shows cancer mor- 
tality over time in Scotland. If we only consider overall trends, the patterns in three 
usual standardized rates (African, European and world standards) are similar and 
indicate a regular and relatively small increase in risk. On the other hand, exami- 
nation of rates calculated for less than and greater than 65 years of age shows that 
the trend in standardized rates is due to changes which diverge with age, with an 

cd 

Scotland 

- Fitted rate 

1955 1960 1965 1970 1975 1980 1985 

Time period 

Figure 3.14 Lung cancer mortality trend in France, the USA and Scotland 
in 40- 44-year-old men 
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Figure 3.15 Lung cancer mortality trend in Scotland; men, 1955-1984 
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increase in risk for the oldest age groups and a decrease for the youngest. It is 
likely that this decline signals an inversion of trend which will ultimately affect other 
age groups. 
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In addition to real trends in risk and random variations, changes in data quality 
over time affect the observed trend in incidence or mortality. These effects can 
create apparent increases or decreases in risk, when the true risk is actually 
completely stable. 

For incidence data, time series partially reflect progressive improvements in 
the registration rate, whether resulting from the development of diagnostic tech- 
niques or improved reporting systems for the registry. The newer the registry, the 
stronger this effect is likely to be. In some situations, the very existence of the 
registry creates an awareness which increases the proportion of cases diagnosed 
(such as through post-mortem examinations). In most registries, there has been a 
progressive decrease in the proportion of registered cases on the sole basis of 
death certificates. In Connecticut, the proportion declined from 35% in the first years 
after the registry was established (1935) to 1% in the 1980s 1631. This improvement 
in the rate of registration of cases during their lifetime has led to a temporary and 
artificial increase in the number of incident cases. It has been proposed that the 
standard indices calculated to assess the completeness of registration (proportion 
of cases registered from death certificates only and frequency of autopsy) be used 
to correct incidence rates. 
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As a registry develops, there is also an improvement in the quality of diagnostic 
information obtained for each cancer registered, and a consequent increase in the 
precision in coding of the site and type of the tumour. Codes corresponding to poorly 
defined sites are progressively less used as the percentage of histologically 
confirmed cases rises. An artificial increase in the frequency of well specified sites 
will therefore be seen. In the Connecticut registry, the percentage of histologi- 
cally confirmed cases increased from 73% to 93% during the period mentioned 
above [63]. 

Finally, incidence can fluctuate as a result of changes in the stage at which 
cancer is detected, particularly for slow-growing tumours. For example, it is known 
that the incidence of in situ cervical tumours can increase explosively during cyto- 
logical screening campaigns, because of the inclusion of prevalent cases which are 
not detected clinically. The detection of early stage disease has an even greater 
effect in the study of time trends in survival. 

The quality of cancer mortality data has undoubtedly also improved over time, 
but the improvement has occurred more in the precision of diagnosis than in the 
number of registered deaths. As with incidence, there have probably been artificial 
increases in the number of deaths from better defined causes. Thus, increased 
mortality from ovarian cancer observed in France between 1950 and 1985 in women 
over 50 years might be due partially to the introduction of systematic surgical in- 
vestigation of abdominal masses. Previously, some ovarian cancers discovered at 
an advanced stage were wrongly classified as peritoneal cancer [64]. 

Problems in classification have been discussed too extensively elsewhere to 
justify detailed review here. We simply note that all changes in classification, or 
even coding practices, can affect the number of cases at a given site or due to a 
specific cause of death and distort trends. The decision to register papillomas or 
non-infiltrating lesions has clearly played a role in the apparent increase in the 
incidence of bladder cancer. Also well known are the difficulties which arise in the 
study of trends in non-Hodgkin lymphoma, which is sometimes coded according to 
topographical site and other times as a tumour of the haematopoietic system. 

The problem of imprecise data is accentuated by the differences in the evolu- 
tion of precision with region or age. Errors in diagnosis are generally more serious 
in older people, and improvements in diagnostic precision can therefore have a 
fundamental effect on incidence rates in this age group. The phenomenon is prob- 
ably a partial explanation for the recent increase in multiple myeloma in the elderly 
[65]. As a final point, it should be noted that chronological patterns in incidence or 
mortality rates depend on the quality of the denominators over time. Population 
estimates provided by statistical services may be increasingly distorted the further 
they are from the date of the census. This distortion often results in an underesti- 
mation of the denominators, because enumeration is not as accurate for persons 
leaving the population as it is for those arriving. 
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Role of modelling 

Observed time trends should be evaluated in the context of the problem under 
study : sometimes it is sufficient to describe long-term trends; in other situations, 
interest might focus on variation over a more limited time period, in particular the 
recent past, if the goal is to predict new directions of the phenomenon. Apart from 
the simple description of changes in risk over time, the study of trends should there- 
fore involve the search for models which can describe observed data via plausible 
hypotheses about the causes of observed changes. Under this approach, the rele- 
vant components of the time trend can effectively be separated from the random or 
systematic (e.g., seasonal fluctuations), allowing a more complete interpretation of 
the observed data. 

Models of risk evolution over successive generations have a particularly im- 
portant place in the study of cancer incidence, because of the long latency period 
between the start of exposure to a risk factor and the occurrence of the disease. 
When interest focuses on the generation effect, also known as the cohort effect, 
the inevitable presence of period effects created by, for example, changes in diag- 
nostic practice or the appearance of an environmental risk factor which could simul- 
taneously affect all age groups, necessitates the combined analysis of both the 
cohort and period components of risk. In other situations, the period effect may be 
of primary interest and the cohort effect is only a confounding factor that must be 
controlled for. An example of this situation is the evaluation of the effect of screening 
for cervical cancer (see page 202). 

The use of models in the study of trends has not been widespread, because 
of two fundamental problems which will be discussed in this section. 

The first is the difficulty of separating meaningful variations from those which 
can be considered to be random fluctuations. Simpler models might be discarded 
because the random component is in fact greater than that predicted by the Poisson 
distribution which is used to assess significance of the terms included in the model. 
In such a situation, it might be wrongly concluded that specific factors play a sig- 
nificant role in the explanation of the observed phenomenon. 

The second difficulty lies in the impossibility of satisfactoriiy separating cohort 
and period effects from the data alone, when hypotheses on the nature of these 
components cannot be formulated a priori. It is for this reason that some authors 
have questioned the value of modelling over traditional graphical approaches to 
carry out this type of investigation [66].  This point of view, however, ignores the fact 
that exclusive use of graphical methods can also lead to subjective interpretations 
which an appropriate model may avoid. 

The following section presents the tools required for the quantitative description 
of trends and the evaluation of the adequacy of the underlying models. Data on 
lung cancer in young adults are used to show how the analysis of trends in the 
logarithms of age-specific rates can display several types of time trend, and ulti- 
mately allow different components of this evolution to be revealed. This analysis 
naturally leads to a discussion of age-period, age-cohort and age-period-cohort 
models. 
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Description of trend by period 

First, recall the concept of rate of change, which summarizes exponential in- 
crease in incidence or mortality. If N(to) cancers were observed in year to, and N(t,) 
cancers in year t, = to -c n, the relative change is measured by: 

or by the corresponding percentage 100 x T. 

To derive the constant annual rate of change r that must apply each year to 
observe this relative change after n years, write: 

given that t, - to is equal to n, we have 

Log (1 + r) = 
Log [N(tl)l - Log [N(to)l 

t l  - to 

in other words, the slope of the line linking the logarithm of incidence at the two 
time points under consideration is practically equal to the average annual rate of 
change in incidence, since Log(1 + r) - r when the rate is small. If the rate is not 
small, and if  I3 denotes this slope, we have the relationship r = eP - 1. The calcu- 
lation above based on number of incident cases can obviously be carried out with 
all other indices of incidence or mortality. 

When the numbers of cases occurring in the intervening years are known and 
if the logarithm of incidence varies linearly between the two dates, the rate of in- 
crease can be estimated by the slope of the line which best represents the logarithm 
of incidence as a linear function of year of diagnosis or death. Estimation of this 
regression line can be based on either maximum likelihood or weighted least 
squares. 

As an example, we calculated the annual rate of change in lung cancer mor- 
tality among males in the USA, France and Scotland in the 40-44 years age group. 
The data for six successive five-year periods appear in Table 3.15 and in 
Figure 3.14. 

Let kt, m,, ht be the numbers of cases and person-years and the incidence 
rate for the age group under consideration for the period t. As was described above, 

the rate of change is the value eBl - I = PI in the equation : 



180 SPACE-TIME VARIATIONS AND GROUP CORRELATIONS 

Table 3.15 Change in lung cancer mortality over 25 years 
for men aged between 40 and 45 years 

USA Scotland France 

Number M x Y 
(") 

Rate 
(b) 

Number M x Y 
("1 

Rate 
(b) 

29.8 
27.6 
30.9 
26.1 
19.2 
16.0 

Number M x Y 
(") 

Rate 
(b> 

Rate of 4.95 % - 

change (') 

(") Man-years in thousands. 
(b) Death rate per 100 000 man-years. 
(') Five-yearly percentage change 100(eP1 - 1) estimated by the method of maximum likelihood using the 
linear model (3.70). 

The parameter PI is estimated by maximum likelihood, supposing that kt has 

a Poisson distribution with mean mt ePltIPO, or by using weighted least squares, min- 
imizing: 

where w, is proportional to the inverse of the variance of the logarithm of the ob- 
served rate, that is : 

The calculations were carried out with the software GLIM, using a program 
given in Appendix 2. Table 3.16 shows that the estimate of the rate of change and 
the deviance (an overall measure of the quality of the model's fit) are almost identical 
for the methods of maximum likelihood and weighted least squares when the model 
specifies a linear change in rates. On the other hand, the precision of the estimate, 
as indicated by the standard error, appears much greater when the method of max- 
imum likelihood is used. In fact, this method assumes that the model is appropriate 
and that the variation observed around the values calculated for each period using 
equation (3.70) are those predicted by the Poisson distribution. In this situation, the 
deviance indicates that the differences between observed and expected numbers 
are too big for the model to be acceptable. This statistic should be of the order of 
4 (the mean of a x2 distribution on four degrees of freedom), if the logarithms of 
the rates really varied linearly with time. Figure 3.14 suggests that the linear model 
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Table 3.16 Modelling of data from Table 3.15 

Country Method Model Coefficients (b)  Deviance d.f. 
(") P 2 PI 

USA ML Linear 

Quadratic 

LS Linear 

Quadratic 

Scotland ML Linear 

Quadratic 

LS Linear 

Quadratic 

France ML Linear 

Quadratic 

LS Linear 

Quadratic 

(") ML = maximum likelihood method based on the Poisson distribution; LS = method of weighted least 
squares. 
(b) Standard error in brackets. 

is quite good for France but not for the USA and Scotland. The measure of fit 
(deviation) is very bad for the USA (553.1 for a X2 on four degrees of freedom) but 
also poor for Scotland and France (approximately 15 on four degrees of freedom). 

In the present situation, the poor fit observed for the USA and Scotland is  
partly due to the inversion of trends observed in these two countries during the 
period being studied. A linear model is therefore inadequate, and a second-order 
term must be added in the model to account for the concave curve representing 
this phenomenon: 

Fitting this quadratic model, represented geometrically by a parabola, signifi- 
cantly improves the deviance compared to the linear model, as judged by maximum 
likelihood. This result suggests that the trend inversion is real. 
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The validity of this conclusion is difficult to challenge for Scotland because the 
second-degree model fits the data perfectly (x' = 4.1 for three degrees of freedom). 
The conclusion is also confirmed by the standard error of the quadratic term obtained 
from the method of least squares (t test = -0.041/O.C)14 = -2.9). This method as- 
sumes that log(kt / m,) has a normal distribution with mean p2t2 + Pit + PO and var- 
iance 02/kt. As G~ is estimated by the quotient of the deviance and its number of 
degrees of freedom, it will not be very different from 1 when the model with Poisson 
error is satisfactory. The result is that, in this situation, the standard error of the 
parameters obtained with the method of least squares will be close to the standard 
error estimated under the method of maximum likelihood, as can be seen from the 
Scottish data. Therefore, when the deviance suggests a good fit, the two methods 
are practically equivalent. 

For the USA, and to a lesser extent for France, the problem of lack of fit 
remains. The test of the quadratic term based on the standard error obtained from 
the method of maximum likelihood is therefore not valid. For the French data, the 
coefficient of the quadratic term is not significant when evaluated by the method of 

least squares (FA = (15.0 - 6.5)1(6.513) = 3.92). but it is highly significant by the 

method of maximum likelihood (X2 = 14.9 - 6.5 = 8.4 on one degree of freedom). 
Similarly, the standard error obtained using the method of maximum likelihood for 
the linear coefficient in the US data is obviously incorrect, while that obtained by 
the method of least squares correctly indicates the poor fit of this model. The two 
methods thus lead to contradictory results with neither being truly satisfactory. 

For the USA and France, a large number of person-years of observation are 
available from populations that are a priori quite heterogeneous with respect to lung 
cancer risk. It is therefore likely that the randomness predicted by the Poisson dis- 
tribution accounts only for a small portion of the random variation in the data. In 
particular, the assumption of a constant risk h, for all individuals is an oversimplifi- 
cation which masks a much more complex reality. For these two countries, the size 
of the populations being studied allows the rates to be estimated more precisely, 
showing that the observed variability is significantly greater than that predicted by 
the Poisson distribution. 

The fit could certainly be improved by constructing a more complex model, 
especially by adding higher degree terms to describe observed variations more pre- 
cisely; however, this approach is contrary to the principle of simplicity which is fun- 
damental to all modelling, and can lead to a good but useless description of purely 
random variation. 

In order to take the excess variability into account, it is preferable to conclude 
explicitly that It, a fixed parameter to be estimated in the previous calculations, is 
in fact a random variable describing the distribution of risk in the population under 
study. Equations (3.70) and (3.72) are then only true on average. Effectively, we 
have: 

Log (At) = f (t) + €t = Log (vt) + (3.73) 
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where f(t) is the model proposed for the change over time in the mean of Log(v,), 
the logarithm of the rate, and r, is a random variable of unknown distribution and 
constant variance 02 [67,68]. Hinde assumes, in addition, that the distribution of r, 
is normal [67]. 

As a first approximation, Log(kt / m,) can be assumed to have a normal dis- 
tribution with mean f(t) and variance l/vtm, + 02, the sum of the Poisson and extra- 
Poisson variance. 

Calculations not shown here show that estimation of this model by the maxi- 
mum likelihood method from data given in Table 3.15 gives a2 equal to 0.260 x loF3 
for the US data. This value corresponds to extra-Poisson variation of between 30 
and 50%, but the likelihood is not significantly improved by the introduction of this 
additional parameter (X2 = 2.92 on one degree of freedom). 

The estimate of a2 is null for the Scottish data, as would be expected given 
the excellent fit of the quadratic model without an extra Poisson variation obtained 
previously (Table 3.16). 

The French data are as well described by a quadratic model without extra 
Poisson variation as by a linear model which includes variation of this type between 

30 and 60% (G2= 0 . 1 4 4 ~  lov2). This result proves that the slowing of the increase 
in lung cancer mortality, suggested by the more recent data, requires further con- 
firmation before being unequivocally accepted. 

From this discussion, it is clear that the rate of change alone is rarely sufficient 
to comprehensively describe the data, even within a single age group. A fortiori, a 
method which describes the evolution of the logarithm of a standardized rate using 
a linear regression can conceal interesting aspects of a time trend. In the Scottish 
data (Figure 3.15), it can be seen that standardization leads to an estimated increase 
of between 0.90 and 1.52% per year, depending on the standard population. How- 
ever, the cumulative rate between 65 and 84 years of age increases by more than 
4% per year, while the rate from 0 to 64 years decreases by nearly 0.6% per year, 
as shown in Table 3.17. Note that the trend in the cumulative rate between 0 and 
84 years depends largely on the trend observed in the elderly and, consequently, 

Table 3.17 Change in lung cancer mortality in men in Scotland (a) 

Standard population Rate of Standard 'error 
change (b) 

1.52 0.4 1 European 
World 1.19 0:42 
African 0.90 0.40 
Cumulative rate 0-64 years -0.61 0.32 

65-84 years 4.10 0.65 
0-84 years 2.70 0.47 

(a)  Mortality data in six five-yearly periods from 1955 to 1984 (see 
Figure 3.1 5).WHO mortality data bank. 
(b) Estimated by the method of least squares assuming that the 
logarithm of the standardized rate varies linearly; the result is ex- 
pressed as a percentage change per year. 
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completely disregards the important epidemiological fact that the lung cancer rate 
is decreasing in young people, as might be predicted by the changing smoking 
habits of this generation. 

The preceding discussion underlines the importance of studying time trends 
with respect to age. Three examples corresponding to different epidemiological sit- 
uations are shown in Figure 3.16. The first example concerns the incidence of blad- 
der cancer in Birmingham, UK. The incidence of this cancer increased sharply for 
all age groups from the end of the 1960s, due to the inclusion of papillomas. The 
calculated rates of change are thus positive and of the same order of magnitude at 
each age; the curve obtained is approximately a horizontal line. The second example 
concerns the evolution of lung cancer mortality in Scotland, already discussed on 
several occasions. The graph shows that the rates of change increase strongly with 
age, and become positive after 65 years. The third example is provided b y  the 
incidence of cervical cancer in Birmingham, UK. The graph is a complex curve with 
a minimum at around 40 years. This shape could be partially explained by the pro- 
gressive extension of screening to successive generations, and partly by increased 
exposure among young women to risk factors linked to sexual behaviour. 

To obtain the data in Figure 3.16, rates of change have been calculated for 
each age group by fitting of the log-linear model : 

where the rate of change Px depends on the age group x. 
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Figure 3.16 Trend in the age-specific incidence of bladder cancer in men 
and cervical cancer (Birmingham,UK), and of lung cancer in men (Scotland) 
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For bladder cancer in Birmingham, UK, the constant rate of change with age 
suggests that a model in which P is constant will provide an equally good description 
of the data. This model is written: 

Log (Axt) = a, + Pt (3.75) 

Fitting the models (3.74) and (3.75) gives x2 values of 70.28 and 80.69 re- 
spectively, on (4 x 11 - (2 x 11) = 22 and (4 x 11 - (11 + 1)) = 32 degrees of 
freedom, showing that the improvement in fit created by introducing a different slope 
for each age group is negligible. Nevertheless, the size of the deviance indicates 
that the linear model does not adequately describe the data. 

A careful examination of the data given in Table 3.18 and Figure 3.17 shows 
that the increase, although similar in all age groups, was greater between the second 
and third time periods. The absence of linearity is not surprising in that it corres- 
ponds to a change in the case definition which occurred precisely between the 
second and third period, and resulted in the inclusion of papillomas, previously con- 
sidered benign. The constant rate of change observed before indicates that this 
event has produced an effect which is proportional to the existing incidence. This 
finding was not obvious a priori: the relationship between papillomas and invasive 
cases could have varied with age. We therefore adopt a multiplicative model, in  
which the incidence rate is multiplied by a factor independent of age. In addition, 
the poor fit of the linear model leads us to calculate a relative rate for each period, 
rather than a single parameter summarizing the increase over the 15 years of reg- 

0.1 ! I I I I I I I I I I i 

35 40 45 50 55 60 65 70 75 80 

Age (years) 

Figure 3.17 Bladder cancer incidence in Birmingham, UK; men, 1960-1976 
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istration. This way of describing the rates is usually called an age-period model. It 
is written: 

Log (Ixt) = a, + pt XI 5 x I xg 
t, 5 t l th 

Pt, = 0 

where g and h are respectively the number of age groups and the number of study 
periods. The term 13t in the linear model is thus replaced by a term P, indicating 
changes of unspecified shape over time which are nevertheless identicai in all age 
groups. 

Maximum likelihood estimates of px = 1 OOOOOeUx and pt = ept are given in 

Table 3.18. The values of px provide a smoothed incidence curve for the first reg- 
istration period and pt provide a description of the increase similar to that given by 
the SIR in the same Table. 

The goodness-of-fit of the multiplicative age-period model can be assessed 
from the results. For example, incidence for the age group 60 to 64 years in the 
third period is estimated by: 

Table 3.18 Incidence ~f bladder cancer; men, Birmingham, UK, 1960-1976 (a) 

Registration period 
(t) 

- - 

Estimated rates (b) 

(PA 

Relative rate (b) : pt 1 .OO 1.09 1.62 1.65 

SIR (') 71.47 78.00 11 5.91 11 7.98 

Observed cumulative 1.84 1.95 2.82 2.93 
rate 25-79 years 

(a) Rates as number of cases per 100 000. 
(b) Estimated using an age-period model (3.76). 
(') Using observed incidence between 1970 and 1976 as standard. 
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as compared to the observed number of 71.39. The deviance of this model is 41.17 
on (4 x 11 - (11 + 3)) = 30 degrees of freedom. Despite being somewhat large for 
a X2 on 30 degrees of freedom, this value (p = 0.08) confirms that the multiplicative 
model is a good description of the data. As the SIRS have been designed for such 
a situation, they obviously provide a good description of the time trend. A detailed 
discussion of the adequacy of this model for the Birmingham incidence data can be 
found in a recent article which, to a large extent, inspired these developments [70]. 

At this stage, it is important to ask why an age-period model has been adopted 
to describe this data set. The presence of a clear change in rates for all ages 
between the second and third registration period excluded the model (3.75). In other 
words, it was necessary to introduce the effect of period as a non linear function 
of time, leading to model (3.76), which has an acceptable fit because of the pro- 
portionality of the observed incidence curves. 

It is worth dwelling a little longer on model (3.75) which, as we will see below, 
can be equally well interpreted as an age-period or an age-cohort model. This model, 
known as an age-drift model [70, 711, implies the same linear change in the loga- 
rithms of incidence rates over time for all age groups. In this situation, the estimate 
of the rate of change p (or eP - 1, if P is large) is a complete summary of the time 
trend. This model and an example of its application are presented below in detail. 

Table 3.19 gives the incidence rate and the number of observed cases by 
five-year age group from 30 to 74 years for malignant melanoma in Norwegian 
women, for five time periods from 1960 to 1980. From the Table, it can be seen 
that incidence of this cancer has approximately quadrupled between 1960 and 1980 
and that the increase has been very regular. This four-fold increase over 20 years 
corresponds to a growth of approximately 7% per year (4"20 = 1.07). 

We have seen that under model (3.75),  Log(h,,) depends linearly on the period. 
On the other hand, the age effect is represented by separate parameters a, for 
each age group, with no a priori assumptions about the shape of the age-incidence 
relationship. Just as we have considered other assumptions about the relationship 
with time, there are various ways of incorporating age in the model. Here, an age- 
drift model of the form: 

Log (hx3 = a0 + a, x + a2 x2 + a3 x3 + Pt 

where the logarithm of age-specific incidence is modelled by a polynomial of degree 
3, provides a satisfactory fit for this data set. The deviance of the model fitted by 
maximum likelihood is 45.87 on 40 degrees of freedom (p > 0.20) and leads to an 
estimated annual rate of increase of 7.4%. 

The age-drift model, shown in equation (3.75) in its age-period form, can be 
immediately transformed into an age-cohort model by writing: 

Log (Ax,) = (ax + px) + pu = a', + pu (3.78) 

where u = t - x is the year of birth of an individual aged x at time t. Thus, by 
adopting a different model of age-specific incidence, the age-drift model becomes 
an age-cohort model in which the change in risk depends linearly on the date of 
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Table 3.19 lncidence (a) of malignant melanoma in Norwegian women 
aged 30 to 74 years between 1959 and 1982 

Registration period 
Age 

1 959-61 1964-66 1968-72 1973-77 1978-82 

(a) Rates per 100 000 person-years. Number of observed cases in brackets. 
(b) Rates standardized to the truncated world population 30 to 74 years. 

birth. If risk increases with time, incidence increases more rapidly with age if risk 
is measured longitudinally (intra-cohort); conversely, if incidence decreases, the 
cross-sectional incidence (intra-period) will have a steeper slope. The two curves 
differ by the quantity px, a linear function of age (Figure 3.18), and serve to remind 
us that the real increase in risk of a given cancer with age cannot be determined 
when its incidence changes over time. Unless it is specified a priori, based on other 
observations, that the changes are due to either cohort or period effects, the in- 
crease in risk can only be measured up to a term px. 

Table 3.20 gives cross-sectional incidence estimated for the year 1975 based 
on model (3.77) and longitudinal incidence for the cohort born around 1925, calcu- 

Table 3.20 lncidence of malignant melanoma by age for women in Norway (a) 

30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 

Cross-sectional 1975 (b) 9.76 13.96 16.54 17.11 16.31 15.11 14.35 14.73 17.25 
Longitudinal 1925 (') 2.80 5.72 9.68 14.32 19.50 25.80 35.01 51.34 85.89 

(a) Rate per 100 000 person-years. 
(b) lncidence estimated for the year 1975 from model 3.77. 
(') lncidence estimated for the cohort born in 1925 from the model 3.78. 
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Figure 3.18 Skin melanoma incidence in Norway, women; 1975 
(cross-sectional curve), and for the generation born in 1925 (longitudinal curve) 

lated from the cohort version of the model given in formula (3.78). Here, the increase 
in risk with age is a priori better described by the longitudinal curve, insofar as sun 
exposure practices tend to change over generations. Furthermore, the cross- 
sectional curve gives a rather implausible description of the increase in risk with 
age. If this interpretation is correct, the cumulative risk of malignant melanoma for 
women aged between 30 and 74 years born in 1925 based on Table 3.20 is 1.25%. 
This risk has therefore increased from (1.251(1.077)~~) = O.ZO/O for the generation 
born in 1900 to (1.25 x (1 .077)15) = 3.8% for the generation of women born in 1940. 

Table 3.19 can be reconstructed very accurately from the age-drift model using 
the data of Table 3.20 and a drift of 7.4%, except for the incidence over the first 
period in the age group 70-74 years, which is abnormally high. The estimated rate 
is in fact 17.25 x e [0.074(1960 - 1975)] - 5.68. - 

Figure 3.19 shows rates estimated by cohort, under the longitudinal hypothesis. 
The change in shape observed between the oldest and youngest generations is 
quite likely to be mostly an artefact. This phenomenon once again shows how hard 
it is to model changes in risk with age: fitting a third-degree polynomial, which on 
average describes the data well in the observation period, undoubtedly leads to 
somewhat pessimistic estimates when extrapolated to young generations. Unfor- 
tunately, this uncertainty in the calculation of lifetime risk is inevitable, given that 
each cohort can only be observed over a limited age range. 

Description of trend by cohort 

Just as non-linear changes in risk with time leads to an age-period model, 
non-linear progression of risk with date of birth points to an age-cohort model. This 
model is satisfactory if the corresponding portions of the longitudinal incidence 
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Age (years) 

Figure 3.19 Skin melanoma incidence in Norway; 
estimated age-specific rate by birth cohort, women 

curves are parallel. In certain situations, a graphical representation can often show 
to what extent this condition is fulfilled [72]. Thus, Figure 3.20 shows the time trend 
of lung cancer incidence in Scotland by age group according to calendar period 
(Figure 3.20a) and date of birth (Figure 3.20b). Diverging curves in Figure 3.20a 
clearly show the inadequacy of an age-period model. On the other hand, the parallel 
segments in the corresponding parts of the curves seen in Figure 3.20b suggest 
that an age-cohort model fits well. 
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Figure 3.20 Trend in the age-specific incidence of lung cancer in Scotland; men 
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The age-cohort model is written: 

or, by writing explicitly the drift in the equation, as before (see formula 3.78): 

Log (hxu) = a', + pu + non-linear terms in u (3.80) 

As already mentioned, the use of this model is illustrated with data on lung 
cancer incidence in Scotland between 1964 and 1980 among men aged between 
30 and 74 years (see Table 3.21). 

Table 3.21 Incidence rates (a) of lung cancer in men in Scotland 

Registration period Estimated rate 
Age 

1963-66 1970-72 1973-77 1978-82 
(b) 

u = 1925 

WTR (') 5.27 7.52 10.75 15.35 21.93 

Observed rate per 100 000 person-years ; observed number in brackets. 
Age-specific rate estimated for the generation born in 1925. Rates underlined correspond approximately. 
the ages for which this cohort is actually observed. 
Rates standardized to the truncated world population 30 to 74 years. 

Note that the data used are not available at equidistant dates; it has therefore 
been necessary to reconstruct the cohorts, by dividing up the observation periods 
according to the cohorts that they include, and interpolating the corresponding per- 
son-years [73]. When there are three cohorts, the expectation of the observation kXt 
for age x and time t can be written 
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where: 

ul, u2, u3 and XI, x2, x3 are respectively the average birth dates and average 
ages in this period-time interval of the three cohorts spanning this observation period 
at age x; 

MI, M2, M3 are the estimated person-years of observation in the corresponding 
sub-regions of the lexis diagram; and 

I,, is the incidence rate from the chosen model. 

Estimation of the model is then straightforward using maximum likelihood as 
before. The likelihood based on the Poisson distribution is, apart from a constant 
term, 

A 

where kxt is the value of k,, estimated from the model. 

For the data of table 3.21, the model: 

Log (Ax,) = a(x) + y(u) 

where a(x) is a second-degree polynomial in x and y(u) a fifth-degree polynomial in 
u, provides a satisfactory fit (X2 = 24.8 on 28 degrees of freedom). 

Incidence rates and observed numbers are given in Table 3.21, as well as 
age-specific rates estimated for the cohort born in 1925. Relative risks for other 
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Table 3.22 Lung cancer risk (a) in Scotland by cohort, 
for men born between 1905 and 1945 

Year of birth 

1905 1910 1915 1920 1925 1930 1935 1940 1945 

Relative risk 0,93 0.97 1.00 1.02 1.00 0.93 0.81 0.68 0.59 
Cumulative risk 

30-74 years 10.50 11.00 11.30 11.50 11.30 10.40 9.10 7.60 6.70 
- 

(a) Relative risk (reference 1925) and cumulative risk (%) are estimated from the age-cohort model 

cohorts and corresponding cumulative risks from 30 to 74 years are given in 
Table 3.22 and Figure 3.21. Estimated rates corresponding to the observations are 
shown in Figure 3.22. This Figure shows the extent and the nature of the extrapola- 
tions carried out to obtain the cumulative risk for a given cohort. 

In this example, a knowledge of the epidemiology of lung cancer would strongly 
suggest that risk has changed over successive cohorts. The fact remains that the 
fitting of a model, regardless of how good it is, does not prove whether an observed 

Age (years) 

Figure 3.22 Estimated age-specific incidence of lung cancer in Scotland 
by birth cohort in men 
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effect is due to period or cohort. For instance, in this example, the absence of 
non-linear effects associated with period implies that the a priori hypothesis of a 
multiplicative age-cohort model (equation 3.82) can be accepted. Taken in isolation, 
the quality of the fit tells little about the validity of this last model. 

Often, however, non-linear changes occur over time in factors related to period 
and cohort, necessitating their simultaneous introduction into the model; we are then 
led to consider age-period-cohort models. 

Age-period-cohort models 

We saw that when an age-period or age-cohort model describes the data well, 
it is possible to summarize the data simply, either by cross-sectional mortality or 
incidence rate and a series of standardized rates for each period, or by a longitudinal 
mortality or incidence rate and a series of cumulative risks for each cohort. Even if 
there is no ultimate proof of the models' validity, they provide a more or less full 
reconstruction of the information present in the data, and an accurate representation 
of the time trend. We have also seen that when the nature of the model is known 
a priori, estimates of the corresponding parameters can be obtained. 

On the other hand, when neither of the two models is adequate, parameteri- 
zation according to one or another of the time scales is no longer justified. Further- 
more, even when it is known that an age-period-cohort model underlies the data, it 
is impossible to estimate all the parameters, because of the algebraic relationship 
between the three study factors (t = u + x). It has been proposed that the linear 
term, the drift, be partitioned according to the goodness of fit of the age-period and 
age-cohort models (74). Unfortunately, as has already been stated, goodness of fit 
only indicates the size of the contribution of the non-linear terms characterizing 
period or cohort changes, not their respective absolute size. Note, for example, that 
a perfectly linear cohort effect combined with a purely quadratic period effect leads 
to an age-period model with perfect fit. 

To show its various forms, we write the age-period-cohort model in the form : 

Log (hxt,J = a0 + ax + a(x) + pt + p(t) + yu + c(u) (3.83) 

where a(x), p(t) and c(u) are the non-linear effects associated with age, period and 
cohort respectively. Thus written, this model is not identifiable, because t = u + x. 
It can be shown that two versions of this model are: 

the age-cohort model corrected for non-linear period effects, which, using the 
relationship Pt = px + pu, can be written: 

The linear coefficients of age and cohort are thus biased by P. 
the age-period model corrected for non-linear cohort effects, which, using the 

relationship yu = yt - yx, can be written: 
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where the coefficient of the linear term in age is now biased by - y. The coefficient 
of the linear term in period, P + y, is the same as the coefficient corresponding to 
cohort in model (3.84). This coefficient (the drift) is the sum of the rates of change 
according to period and cohort: it is the linear approximation of the trend in the 
neighbourhood of the reference year of observation (t = 0) and year of birth (u = 0) 
respectively, when a, c and p are modelled by polynomials of degree greater than 1 .  

We illustrate the use of the age-period-cohort model with data on cervical 
cancer in Birmingham, UK between 1960 and 1982 (see Table 3.23). Figure 3.23, 
which shows that the trends in each age group are very different, shows that an 
age-period model is certainly not appropriate. Fitting the age-cohort model gives a 
deviance of 51.9 on 30 degrees of freedom, which becomes 38.0 on 27 degrees of 
freedom when period is added as a factor, a significant reduction (p = 0.003). Esti- 
mates from models (3.84) and (3.85) are given in Table 3.24. Following Holford [75 ] ,  
effects of each factor are presented by separating the overall linear trend from the 
'non-linear' effects which correspond here to departures from linearity. This approach 
differs from the polynomial modelling used here in the age-cohort model, particularly 

Table 3.23 Cervical cancer incidence (a) in  women in Birmingham, 
UK, between 1960 and 1982 

Registration period Estimated rate (b) 

Age u = 1920 
1960-62 1963-66 1968-72 1973-76 1979-82 

(a) Observed rates for 100000 person-years; observed numbers in brackets. 
tb) Age-specific rates estimated for the cohort born in 1920. Underlined rates correspond to the age intervals 
for which the cohort is actually observed. 
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with regard to the interpretation of the drift. In this case, it should be considered to 
be the best approximation to the linear change in incidence over the whole obser- 
vation period. The drift is small (P + y = 0.01070), because the decrease observed 
in some age groups is balanced by a substantial increase in other age groups. A 
polynomial model with cohorts centred around 1920 and periods around 1970 would 
give a much larger drift, given that the increase at these dates was already quite 
marked and that this version of the drift estimates local increases. It is important 
to note that, although it is identifiable, the drift depends essentially on the model 
selected, and it must be interpreted with care. 

Fortunately, these subtleties are often irrelevant. In most situations, the struc- 
ture of the time trend is much simpler and the different parameterizations are more 
or less equivalent. In the complex example considered here, change in risk across 
cohorts after correcting for linear effects of period (Table 3.25) still provides quite 
a satisfactory picture of the underlying epidemiological situation. 
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Figure 3.23 Trend in the age-specific incidence of cervical cancer 
in Birmingham, UM, between 1960 and 1982 
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Table 3.24 Cervical cancer in Birmingham, UK. 
Estimation of the age-period-cohort model 

Factor Coding (b) Deviation 
from linearity 

Total (a) 

Age 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 

Linear effect 

Cohort 
1885 
1890 
1895 
1900 
1905 
1910 
191 5 
1920 
1925 
1930 
1935 
1940 
1945 
1950 
1955 

Period t PO) 
1960-62 -2 -0.063 
1963-66 -1 0.054 
1968-72 0 0.040 
1973-76 1 0.01 2 
1979-82 2 -0.042 

Drift p + y = 0.0107 

(a) The effect of the factor is obtained by summing the deviation from linearity and the linear effect corres- 
ponding to each of the models. Thus, the age effect at age 65 years (x = 3) in an age-cohort model 
corrected for nonlinear period effects is : 0.1152 x 3 - 0.111 = 0.235. 
(b) Age, cohort and period variables are coded by corresponding integers, ignoring irregularities created by 
the observation periods. Age, cohort and period factors are centred around the categories 50-54, 1968-72 ~ 

and 1920-25 respectively. 
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Table 3.25 Cervical cancer risk (a) in Birmingham, UK, by year of birth 

Year of birth 

Relative risk 1.20 1.00 0.89 0.77 0.79 0.92 0.97 0.96 0.72 0.57 0.63 0.87 1.46 
Cumulative risk 
25-79 years 1.99 1.66 1.47 1.28 1.31 1.52 1.59 1.58 1.19 0.94 1.03 1.44 2.41 

(a) Relative risk and cumulative risk (O/O) are estimated from the age-period-cohort model. Relative risks are 
normalized by the requirement that the sum of their logarithms is zero over the years considered. 

Specific techniques and examples 

Epidemiological evaluation of a secondary prevention campaign 

The incidence of skin melanoma and associated mortality have shown a marked 
increase since the 1960s in most countries [73,76]. Some of this increase is most 
likely due to exposure to ultraviolet radiation, and another part can be attributed to 
improved diagnosis of these cancers. In theory, earlier detection of cases should 
limit the increase in mortality over time, or even reverse the trend. Accordingly, many 
countries or regions have developed intervention programmes, which in turn require 
evaluation. Even though secondary prevention programmes must ultimately be 
assessed on the basis of changes in mortality, the observation of larger increases 
in early-stage cases can also provide information on the effectiveness of the method 
of implementation of the programme. 

A campaign conducted in Switzerland at the beginning of May 1988 had the 
twin objectives of primary prevention, aimed at educating the population about the 
dangers of prolonged exposure to the sun, and secondary prevention, through in- 
forming the public and the medical profession about the advantages of rapid and 
systematic examination (clinical and, if necessary, histological) of suspicious skin 
lesions. A year after this campaign was launched [77], only the second objective 
could be assessed. The ensuing analysis provides an example of the use of log- 
linear models to evaluate this type of chronological evolution. 

The immediate objective of the campaign was to increase the number of cases 
diagnosed at an early stage, but it might also be expected that the number of 
advanced cases could also increase as a result of the intervention. The evaluation 
thus consisted of checking the assumption that the time trend prevailing before the 
campaign changed immediately after the launch of the campaign (that is, after June 
1988), and that any increase was greater in early cases than in advanced cases. 

For practical reasons, mainly related to the quality of cancer registration, data 
from before 1985 were not used to estimate the pre-campaign trend in incidence. 
Analysis was restricted to cases registered between 1 January 1985 and 30 April 
1988 (three years and four months) and the campaign was assessed over the eight 
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Table 3.26 Skin melanomas by stage and calendar period in four Swiss registries 

Geneva Neuchiitel Vaud St-GallIAppenzell 

Stage 1-2 Other (a) Stage 1-2 Other (a) Stage 1-2 Other (a) Stage 1-2 Other (a) 

1985 
Jan-Apr 
May-Aug 
Sep-Dec 

1986 
Jan-Apr 
May-Aug 
Sep-Dec 

1987 
Jan-Apr 
May-Aug 
Sep-Dec 

1988 
Jan-Apr 
May-Aug 
Sep-Dec 

(a) Includes cases of unknown stage. 

remaining months of 1988, when the effects of the intervention should have been 
apparent. In total, 734 skin melanomas were reported from January 1985 to Decem- 
ber 1988 in the four participating regional registries (Geneva, Neuchatel, St-Gall/Ap- 
penzell and Vaud). Given the short duration of the study period, it was not 
considered necessary to take denominators into account. On the other hand, monthly 
counts of cases were used, to allow for the effects of seasonal fluctuations. 

In Switzerland, the melanoma incidence tends to increase markedly from the 
beginning of summer, and reach its lowest level during winter. It was decided a 
priori that a division of the year into three periods of four months (January to April, 
May to August and September to December) would provide a satisfactory description 
of the seasonal variation. Grouping into four-monthly periods also corresponded to 
the interval during which the effects of the campaign should have been noticeable, 
that is, the second and third periods of 1988. This grouping did not result in a 
significant loss of information compared to an analysis based on monthly data 
(X2 = 12.4 on nine degrees of freedom). All analyses were therefore carried out from 
data grouped in this way. For both practical and theoretical reasons, disease stages 
were also grouped. 'Early' cases were Breslow's stage 1 and 2 (up to and including 
1.5 mm), while 'advanced' cases comprised those of stages 3 and 4 and unknown 
stage (7.9% of the total). Table 3.26 provides the data on which the analysis was 
based (see Table 3.27). 
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Table 3.27 Modelling of data from Table 3.26 

Model Estimate Deviance d.f. 

Model A = Registry + Campaign + Year (conti- 
nuous) + Four-month period 

Four-month period (a) 

Jan-Apr 1 .OO 
May-Aug 1.42 [ 1.1 6 ; 1.731 
Sep-Dec 1.11 [ 0.90;  1.371 

Year (b) 2.30 [-6.60 ; 12.11 
Campaign 114.9 88 

Before campaign 1 .OO 
After campaign (') 1.46 [ 1.13 ; 1.891 

Model B = Model A + registry x campaign 111.0 85 

Model C = Model A + stage 99.0 87 

Model D = Model C + stage x campaign 
Before campaign 1 .OO 
After campaign (') 
- early stages 1.63 [ 1.22 ; 2.191 
- autres stages 1.24 [ 0.90 ; 1.711 96.5 86 

(a) Relative risk. 
(b) Annual rate of increase (%). 
(') Relative increase in number of cases. 

The first step in the analysis was to assess whether there had indeed been 
additional increase in incidence from the start of the campaign, taking into account 
the prior trend and seasonal variation. Trend was modelled using year of incidence 
as a continuous variable, with the four-monthly periods to represent seasonal 
changes. Region of registration was also introduced into this model as a factor to 
take into account both the differences between the size of the populations (denom- 
inators) and possible differences in the prevalence of the risk factors in the popu- 
lations covered by the four registries (model A). The model expresses the logarithm 
of the expected number of cases as a linear function of the various factors: 

where r, q, c are the indices of the region, the four-monthly periods and the campaign 
respectively, and where t is the year of incidence. The model was fitted by maximum 
likelihood assuming that the number of cases follows a Poisson distribution of mean 
p r q  Jt). The result is an estimate of the overall effect of the campaign equal to 1.46 
11.13 ; 1.891, which means that incidence was 46% higher than expected on the 
basis of the pre-campaign trend and seasonal variation. 

The second step was a comparison of the effectiveness of the prevention cam- 
paign in the four registry regions, by adding an interaction term (registry x campaign) 
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D a t e  

All stages, expected 
- - - - -  All stages, observed 

Stage 1, expected - - - 

Figure 3.24 Observed and expected cases of skin melanoma before and after the start 
of a screening programme in Switzerland; both sexes combined; 1985-1988 

, 

to the above model, to allow for a possible different effect in each region (model 
6). The reduction in the deviance of 3.9 on three degrees of freedom led to the 
conclusion that there was no difference between the four regions with respect to 
the effect from the campaign. 

The third step was to address the fundamental question as to whether the 
increase in incidence had been more marked for early stages. To test the hypothesis 
that the increase was identical for all stages, a model which included stage in ad- 
dition to the other four factors included initially (registry, year, four-monthly period 
and campaign (model C)) was compared with a model augmented by an interactive 
term representing a campaign effect which differed for each stage (model D). The 
reduction in the deviance was 2.5 on one degree of freedom (p = 0.10). Despite 
the absence of a formal statistical significance at the 0.05 conventional level, the 
authors were convinced that the effect of the prevention campaign differed with 
respect to stage. The relative increase was estimated to be 1.63 f1.22 ; 2.191 in 
early cases and 1.24 f0.90 ; 1.71 ] in advanced cases, or 63% and 24% respectively. 
The campaign was therefore judged to be doubly effective on the basis of its first 
expected outcomes: (i) increased total incidence and (ii) a more marked increase 
in early cases. 

The estimates obtained from fitting the final model (model D) provide the basis 
for calculating estimates which make up a smoothed curve (Figure 3.24). The num- 
ber of expected cases can be calculated for any combination of values of the terms. 
For example, the number of cases over a whole year can be calculated by stage 
under the assumption that the prevention campaign either worked, or did not work. 
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In other words we can estimate the additional cases that were diagnosed during 
1988, due to the effect of the screening campaign: 

Early Other 
stage 

Total 

No screening 9 7 7 7 1 74 

Screening 159 9 6 255 
Additional cases 6 2 19 8 1 

(% increase) + 64 + 25 + 47 

Trends in cancer of the uterine cervix 

In most western countries, the frequency of invasive cervical cancer has been 
decreasing for many years, almost certainly at least partly as a result of screening. 
However, a rise in incidence has recently been noted among young women in some 
countries. Various explanations have been offered, including an increase in sexual 
activity and the consequent increase in risk of infection by the human papilloma 
virus, an increase in the prevalence of smoking and decreased participation in 
screening programmes. Whatever the reasons for this phenomenon, it is of interest 
to examine the divergence by age of the time trend in different populations. 

In Geneva, reliable incidence data are available from 1970. A study of time 
trends was first carried out on all invasive and microinvasive cases [78]. The time 
trend over the 18 years from 1970 to 1987 was analysed by modelling the logarithm 
of annual incidence rates by a linear function of year of diagnosis and estimating 
the parameters by maximum likelihood. Fitting the model 

Log (hxt) = a + Pt 

gave a rate of change of P = -4.3% per year [-6.0 ; -2.61, indicating a significant 
decrease in the crude incidence rate (Table 3.28, model B). The next step was to 
estimate the rate of change in the age-adjusted incidence from model (3.75): 

Log (hxt) = ax+ Pt 

which led to P = -4.6% [-6.3 ; -2.61 (model C). 

The null hypothesis that the trends did not differ across age groups was tested 
by introducing a term for interaction between age group and year of diagnosis, which 
is equivalent to a different slope for each age group (model D) (see formula 3.74). 
Because of the significant improvement in the model's fit (X2 = 18.3 on six degrees 
of freedom, p < 0.05),  it was concluded that there was a real difference in trends 
between age groups, justifying different estimates of annual rates of change for 
each age group. These estimated rates of change are shown in Figure 3.25; esti- 
mates obtained by applying these rates of change to the incidence by age observed 
in 1970 are shown in Figure 3.26. 
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Figure 3.25 Age-specific rate of change in cervical cancer incidence 
in Geneva between 1970 and 1987 
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Figure 3.26 Trend in the age-specific incidence of cervical cancer 
in Geneva between 1970 and 1987 
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Although the numbers are small (480 cases observed in seven age groups 
over 18 years) and, consequently, the standard errors associated with the rates of 
change for each age group are high, the preceding analysis and data from 
Figures 3.25 and 3.26 suggest that there are three different types of time trend. 
The apparently increasing incidence for women less than 35 years could be a result 
of exposure to risk factors linked to sexual behaviour. In contrast, women aged 65 
years and over, in whom incidence has only slightly decreased, might not have 
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Table 3.28 Modelling time trends by age group from annual rates of cancer 
of the uterine cervix in the canton of Geneva from 1970 to 1987 

(all incident invasive and microinvasive cases) 

Model Rate of change % 95% CI Deviance d.f. 

Model A = Constant 
Log (hxt) = a 

Model 6 = Year 
Log (hxt) = a + pt 

Model C = Year + Age 
Log (hxt) = ax + Pt 

Model D = Age * Year 
Log (hxt) = ax + PX t 

15-24 (4 cases) 
25-29 (9 cases) 
30-34 (22 cases) 
35-44 (84 cases) 
45-54 (92 cases) 
55-64 (101 cases) 
65+ (168 cases) 

benefited from screening as much as younger women either because screening for 
this cohort was not yet routine or, more likely, because they stopped being screened 
after menopause. Incidence decreases substantially and relatively uniformly only in 
women aged between 35 and 65 years. Most of this change can reasonably be 
attributed to screening. 

Bibliographical notes 

A more detailed discussion of the concepts and methods of graphs and spatial 
analysis can be obtained from Cliff and Haggett's Atlas of disease distributions : 
analytical approaches to epidemiological data [79], effectively a manual of statistical 
ecology. While mainly using examples from the field of transmissible diseases, in- 
cluding the historical data of John Snow, the book also deals with problems relevant 
to cancer epidemiology, such as nasopharyngeal cancer in China, clusters of me- 
sothelioma cases in the USA and monitoring risk around nuclear power plants or in 
the region of Chernobyl. The book reviews the principal techniques used to define 
regions and to smooth data, and also considers the problem of detecting outliers 
and clusters, both spatial and spatio-temporal. Also discussed are methods for de- 
tecting autocorrelation, estimating spatial patterns and regression involving exposure 
factors in ecological analyses. 
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Another text brings together a series of papers on cancer mapping, including 
presentations of the principal mortality atlases published at the time [80]. Several 
articles of this latter monograph discuss the various problems raised in the geo- 
graphical representation of epidemiological data on cancer, or comment on methodo- 
logical issues, such as the choice of colour. 

The recent article by Walter and Birnie [81] provides a survey of the 49 atlases 
which appear during the fifteen-year period ending in 1989. The atlases are ex- 
amined and classified by population and disease, and by the mapping and statistical 
techniques adopted. The authors emphasize the diversity of methods used and the 
consequent difficulty in making comparisons across atlases. 

Research into the analysis of the spatial distribution of cancer, and in particular 
on the detection of clusters, has been published recently; two publications of note 
are the proceedings of the meetings organized by the Royal Statistical Society of 
the UK, on cancer incidence near nuclear installations [82], and the review of 
Marshall [83]. 

Applications of the empirical Bayes and grouping methods proposed by Huel 
[43] are presented in a thesis by Colonna on geographical studies in the situation 
where incidence is low [21]. This paper also deals with autocorrelation and its 
measurement. The thesis by Mollie includes a detailed mathematical discussion of 
smoothing based on the Bayesian approach, with an application to cancer mortality 
in France [48]. On the same subject, articles by Clayton and Bernardinelli [84] and 
Bernardinelli and Montomoli [85] provide an original point of view and practical ex- 
amples. 

The epidemiological literature includes many studies which have tried to link 
risk and exposure at the level of groups, mainly defined geographically. These stu- 
dies provide examples of the methods dealt with on page 141 of this chapter. Of 
particular note are three studies on dietary factors which appeared at the time when 
ecological correlation analysis first became widely used, and which clearly illustrate 
the methodological problems raised by measurement of exposure at the group level. 
The first study relates to the geographical correlation observed in the USA (across 
states) and in Europe (across countries) between alcohol and tobacco consumption 
on one hand and various cancer sites on the other [86]. The second study examines 
the relationship between dietary factors and the various types of cancer, using 
national statistics from 32 countries [87]. The third article also considers dietary 
factors, but includes diseases other than cancer [88]. 

A thesis by Viel compares the results of published case-control and cohort 
studies on the effect of pesticides with those that he obtained from ecological analy- 
sis of French data from the departements. These analyses are carried out using the 
method proposed by Gardner [51], a Poisson regression adjusting for latitude and 
longitude, and a correlation test modified to take into account autocorrelation, pro- 
posed by Clifford and coworkers [go]. The work provides a good example of geo- 
graphical correlation methods applied to the study of an association involving an 
exposure which is difficult to quantify at the individual level. 
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There have been a number of studies published on cancer risk in migrants. 
Recent monographs published by the International Agency for Research on Cancer 
have considered Jewish migrants to Israel [91] and Italian migrant populations [60]. 
The first of these monographs is an excellent example of the use of information on 
the country of birth and time since arrival, in a country characterized by immigration 
from many countries. The second only considers one country of origin, Italy, but 
studies their outcome in a range of host countries. 

Data on time trends in cancer incidence and mortality are essential for the 
development of public health policy. For this reason, it is surprising that the literature 
in this area is relatively poor. There has been little research on the simultaneous 
estimation of rates of change having variable precision. There is however a need 
for methods to allow data of this type to be presented in a more convincing manner. 
The only work in this area has been based on empirical Bayes methods, particularly 
in the estimation of cohort effects in the youngest and oldest cohorts. Breslow and 
Clayton have proposed the estimation of random effects based on autoregressive 
models, in which the estimate for each cohort is based on some information from 
earlier and later cohorts [92]. In contrast, Desouza has used data on the trend in 
several geographical areas, to estimate cohort effects in each area by making use 
of information from other study areas [93]. These methods have nonetheless been 
used very little, and their value in practice is still unknown. The current rate of 
progress in the analysis of longitudinal data suggests that there will be a rapid 
improvement in this situation [94]. 

The majority of research on time trends has involved relatively simple methods. 
This lack of sophistication is undoubtedly justified both by the lack of suitable com- 
puter software, and by the desire to publish observed data with only a minimum of 
smoothing compatible with the needs of graphical presentation. Research in this 
area has been published by Hakulinen and coworkers, on trends in cancer incidence 
in Nordic countries [95]; by Osmond and coworkers for trends in cancer mortality 
in England and Wales during 1951-80 [96], by Devesa and coworkers who carried 
out a fairly complete survey of trends of cancer incidence and mortality in the USA 
[97], by Lee and coworkers for trends in cancer incidence in Singapore [98], Hill 
and coworkers for those in France [64], La Vecchia and coworkers for Europe [99] 
and, finally, Coleman and coworkers who reviewed trends in cancer incidence and 
mortality using the data available from all five continents [73]. 

For a general discussion of methodological problems in the study of time 
trends, in particular those which are not statistical, two meeting reports may be  of 
value [100,101]. 
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