
Chapter 4 

Techniques for survival analysis 

Survival analysis in descriptive epidemiology 

The need for the estimation of survival rates' is twofold: the first objective is 
to describe the outcome, with time, of a given disease in a group of patients. The 
mortality associated with the disease can then be assessed in terms of setting public 
health priorities or providing prognostic information for a patient newly diagnosed 
with the disease. The second objective is to compare mortality between various 
groups of patients or to study survival according to individual characteristics such 
as sex, age, diagnosis or type of treatment in order to identify prognostic factors. 
Cancer registries are primarily concerned with the first, descriptive objective. 

From this point of view, it is important to remember that survival rates routinely 
calculated from incident cases in a population should be distinguished from data of 
the same kind established from a series of hospital patients or from patients included 
in clinical trials. 

Although the methods used in the two situations are identical, the groups 
studied in treatment evaluation are submitted to numerous selection criteria (recog- 
nized or unrecognized) and only rarely represent the full epidemiological diversity 
of the patient population. Survival rates estimated from incident cases (from which 
it is standard practice to remove cases discovered at death) can thus be noticeably 
different from hospital results, with the extent of difference depending on  the selec- 
tion process which affects the hospital population under study (see page 268). Con- 
versely, survival rates established in an epidemiological context can only be used 
to estimate the overall efficiency of the health system, which depends not only on  
the quality of care but also on the accessibility of the system and the consequent 
likelihood of early diagnosis. For this reason, these rates do not lend themselves 
to retrospective evaluation of treatment even if  the necessary information is available 
for some or all of the incident cases. 

The analysis of survival data, like all epidemiological analysis, requires stand- 
ardization of the case definitions. In particular, the diagnostic classification, including 

The expression "survival rates" will be used in this chapter as meaning survival probability, 
as it is current practice among clinicians, despite the fact that rate and probability are different 
concepts in theory. 
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site, subsite and histological type, may give rise to heterogeneity in the groups being 
studied. This issue will not be considered here. 

We must also acknowledge the fundamental role of the stage of disease at 
the time of diagnosis. The apparent benefit of an early diagnosis, as measured by 
an increase in survival time, may be misleading if it only reflects the addition to the 
survival time of the lead time which separates early detection time from the time at 
which diagnosis is usually made clinically. Thus, screening and early detection may 
in reality be prolonging the period of morbidity while having no effect whatsoever 
on the natural history of the disease [I] .  In fact, such arguments are not always 
easy to challenge in the absence of good information on the distribution of the time 
spent in the preclinical phase of the disease. However, i f  such were the situation, 
the survival curve would have about the same shape after the lead time for patients 
diagnosed early, and their age at death would not be changed [ 2 ] .  In any case, the 
standardization of criteria defining date of incidence remains a fundamental objec- 
tive. 

The problems associated with data collection must not be ignored. In the study 
of survival, as in the study of disease incidence, it is essential to  question the 
reliability of the data. In order to avoid bias, data collection systems should allow 
not only for the routine registration of death but also for the active verification of 
the status of cases for which no information on death has been received. 

The primary objective of this chapter is to provide the means to calculate as 
precisely as possible the survival probability as a function of the time elapsed since 
the occurrence of the event marking the beginning of follow-up. This function of time 
defines the survival curve of the group under study. The necessary material is 
covered from page 216 to 222. 

Survival data, like incidence data, are subject to sampling variation, that is, 
they can provide only an estimate of an unknown, underlying reality. For this reason, 
the degree of confidence to be attached to the results is also considered (confidence 
interval). 

We will then examine (see page 231) methods that have been proposed to 
take account of the effect of competing causes of death, in order to provide a better 
understanding of the phenomenon under study: a cancer patient is not protected 
from other risks of death and adjustment for these is needed for assessing the 
specific effect of the cancer on the risk of death. Some authors calculate cause- 
specific survival, which only takes into account death due to the disease being 
studied. Among alternative methods that have been proposed, the most widely used 
is that of relative survival, based on the use of the life table, the principal concepts 
of which have been presented in Chapter 1. The reader will find the methods to 
overcome the possible lack of published life tables on page 236. 

Methods to compare survival in two or more groups are dealt with in the second 
part of this chapter. These problems are very similar to those which were considered 
under the comparison of age incidence curves. Just as one might prefer the com- 
parison of incidence curves as a whole to the comparison of cumulative risks alone, 
comparison involving whole survival curves is preferable to a comparison which only 
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concerns survival probabilities at a given time point. However, one is often restricted 
to this latter comparison in the absence of appropriate data, resulting in the need 
for methods described briefly on page 246; unfortunately, routinely published data 
do not always provide all the details needed for making this point comparison. 

When comparison is carried out over entire survival curves, the assumption is 
often made that the instantaneous mortality rates are proportional. In this situation, 
the optimal test, known as the log rank test, is effectively identical to the Mantel- 
Haenszel test discussed in Chapter 2. We will re-examine it in the context of survival 
distribution (see page 247). 

Populations that are being compared sometimes experience different mortality 
patterns after the time of diagnosis: some are subject to a very high initial mortality 
followed by a long remission; others, in contrast, experience a more regular occur- 
rence of deaths. In the former case, the Gehan-Breslow test, also presented in this 
section, is in principle more appropriate. 

In certain situations, if the necessary information is available, survival compari- 
sons can be made taking confounding factors into account. A further section dis- 
cusses methods of adjustment or stratification which allow us to take account of 
confounding factors (see page 255). 

When individual characteristics which might affect survival ('prognostic factors') 
are available for each case under follow-up, it is usual to assess the specific role 
played by each factor in the prediction of survival time. The stratification approach 
is however rapidly limited by sample size while it is still possible in some situations 
to use a modelling approach, despite the small number of subjects available. Cox's 
multiplicative model provides the necessary tool in this context and is discussed 
from page . 

Calculation of long-term survival raises particular problems: because of ageing, 
the group is subject to an increasing risk of mortality from causes other than the 
disease under study. In this situation it becomes important to base comparisons on  
net survival, requiring the application of specific methods (see page 272). 

A number of data sets obtained from cancer registries will be used to illustrate 
methods that have been mentioned: the first set of data refers to survival of incident 
cases of colon cancer in the French department of C6te-d'Or. This example il- 
lustrates the mathematical calculations required to establish survival probabilities by 
the actuarial method and their confidence limits. Survival of incident cases of skin 
melanoma in Geneva (Switzerland) will provide an example of the use of the Ka- 
plan-Meier method. Data on colon cancer in Geneva will serve to' illustrate the com- 
putation of relative survival rates and similar data from the canton of Vaud 
(Switzerland) will be considered with those from C6te-d'Or and Geneva to show how 
to carry out a comparative analysis. 

Finally, we will use data from the Geneva cancer registry on various cancer 
sites to compare the results obtained by the relative survival method and those 
obtained by the cause-specific survival method where deaths not attributable to the 
disease are taken as censored observations. 

Stratification methods will be illustrated by the comparison of survival distribu- 
tion for men and women with melanoma, taking subsite as the confounding factor. 
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The more general modelling approach will be illustrated by the analysis of breast 
cancer survival in Geneva according to the type of health care system providing the 
treatment. 

Estimation of survival distribution 

When concepts associated with the study and interpretation of individual fol- 
low-up were discussed in Chapter 1, we presented the notion of censored observa- 
tions, that is, observations which are incomplete and which require a specific 
methodology. In this section, we will illustrate different techniques proposed for the 
analysis of survival data. Although some of these techniques have been developed 
for clinical trials, they ca'n be used in the present context with minor adjustments. 
Nevertheless, the choice of an analytical method and the interpretation of the results 
require a specific approach, because of the way the data are obtained, the size of 
the groups under study and the absence of randomization. 

When there are no censored observations, survival probability after a given 
time is estimated simply by the ratio between the number of survivors at a specific 
date and the number in the group at the beginning of the study. This probability, 
called by some authors the direct survival rate, obviously cannot b e  calculated for 
individuals in the group for whom the period of follow-up is less than the time interval 
being considered. The group under study is therefore subdivided into subgroups in 
which the subjects have the same potential follow-up time and the survival probability 
calculated in each subgroup is assumed to be an estimate of the survival rate for 
the corresponding length of time. However, as the resulting probabilities have been 
obtained from different groups of patients, they will not in general provide a con- 
sistent survival curve, that is, the survival probability will not necessarily decrease 
with time. 

In fact, observations with incomplete follow-up can still contribute to the esti- 
mation of survival for time intervals greater than the duration of their follow-up. This 
idea is being used in the following two methods which are also described in a more 
formal context in Chapter 1. 

Estimation of crude survival 

Actuarial method 

The aim of this method is to study the survival of a group of subjects for whom 
a common event has occurred; for each subject the date of occurrences marks the 
beginning of follow-up. In the present context the common event which characterizes 
the group will be the diagnosis of cancer. 
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Follow-up of individuals comes to an end either at death, or on the date at 
which the individual is lost to follow-up, or on the date at which the individual is 
withdrawn from follow-up, for example for the purpose of analysis of the survival 
data. In fact, the date of withdrawal may be specific to each individual if assessment 
of status (living, deceased or lost to follow-up) is only carried out at regular intervals 
following the date of diagnosis; there may also be a single date of withdrawal if this 
assessment is carried out on the same date for all individuals (see page 227). The 
time between the date of diagnosis and the end of follow-up is called the follow-up 
time. Figure 4.1 illustrates the two follow-up procedures discussed above. Note that 
the recruitment period is generally less than the study period, for example, when 
we only want to consider cases which have a minimum follow-up time. On the graph, 
el, e2 and e, represent the entry dates of new cases, fl, f2 and fg the end of 
individual observation periods, and the solid circles represent dates of assessment 
of status. 

Theoretically, the method is applicable when new cases are recruited who have 
been diagnosed before their inclusion in the study group. These cases are only 
included in the calculation from the time when they are actually under observation 
and not from the date of their diagnosis. If such a precaution is not taken, mortality 

Figure 4.1 Principles of follow-up of cases in a survival study 

STATUS 

ASSESSMENT 

AT REGULAR ( a )  

INTERVALS 

STATUS 

ASSESSMENT 

AT END ( a )  OF 

STUDY PERIOD 

<---------------STUDY PERIOD-- --- - 

---------- RECRUITMENT INTERVAL- -- -- - - - - - > 

a A - I - - - - I- * 
e 1 f l  

deceased 

I a a a - - $ - a  
e2 f2 

lost to follow-up 

I a - - - 
e3 

I 
e 1 f l  

deceased 

I 
e 2 f2 

lost  to  follow-up 

I 
e 3 

-- - --- ---- > 

a A - - -  - 
f3 

wthdrawn 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 
f3 

withdrawn 



21 8 TECHNIQUES FOR SURVIVAL ANALYSIS 

during the period prior to their inclusion would be underestimated. Apart from the 
increased complexity in the calculations, it is generally preferable not to take these 
cases into consideration because of the selection biases to -which they may be 
subject. 

The first step of the actuarial method is the subdivision of the maximum ob- 
served survival time into intervals; the length of the intervals is set a priori taking 
into account the distribution of deaths over time, so that each interval, on average, 
has at least some deaths. If necessary, the intervals can be of unequal size. 

The second step is the computation of the conditional probabilities in each 
interval which are defined by the proportion of those living at the start of the interval 
who were still living at the end of it. However, in order to account for subjects with 
shorter follow-up time, the number at risk at the beginning of the interval is reduced 
by half the number of subjects who were withdrawn or lost to follow-up during the 
interval. The total thus obtained is known as the corrected number of subjects at 
risk or the effective number at risk. 

The probability of surviving to the end of a given interval is obtained by mul- 
tiplying together the conditional probabilities over all the intervals preceding this time 
point. Survival is obtained by linear interpolation for all other time. 

Table 4.1 Calculation of survival probabilities by the actuarial method 
(incidence of colon cancer in males in Cdte-d'Or, France, between 1976 and 1982) 

Interval Number Number Death Effective Conditional Conditional Survival 
(months) at risk censored number probability probability of rate 

in ti at risk of death survival 
ti, ti+? ni Ti di Ni (7 i Si Si+l 

(1 ) (2)  (3) (4) (5) (6) (7) (8) 

Columns (1) to (4) give observed data; data in columns (5) to (8) have been calculated. 

Let: 

ti, ti+, be the interval end-points (0 5 i 5 I - I ) ,  

ni be the number of subjects surviving and followed up at date ti (number at risk), 

ri be the number of subjects withdrawn or lost to follow-up in the interval ]ti, ti+,], 

di be the number of deaths in the interval ]ti, ti+,], 

Ni = ni - (ri / 2) be the corrected number at risk, 
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qi = di 1 Ni be the estimates of the conditional probability of dying in the interval 

]ti, ti+tl, 
si = 1 - qi be the conditional probability of being alive at ti+l given that the subject 

was at risk at ti, and 

Si+, = n s, , the survival probability at tiit. 
j = 0 

The method has the advantage of using all available information, as opposed 
to the direct survival method, which is based only on cases which have a follow-up 
time at least equal to the time for which survival probability is being calculated. On 
the other hand, the method relies on the assumption, sometimes debatable, that 
those for whom observations are censored are subject to the same force of mortality 
as cases for whom follow-up is complete. 

Table 4.1 shows the details of this calculation using data from the C6te-d'Or 
on colon cancer in males. Figure 4.2 shows the corresponding survival curve. An 
interval of six months has been used. Cases lost to follow-up and cases withdrawn 
from follow-up are treated in the same way and considered to be censored obser- 
vations. 

0 6 12 18 24 30 36 42 48 54 60 

Time since diagnosis (months) 

Figure 4.2 Survival of male colon cancer patients in C6te-d'Or, 
diagnosed between 1976 and 1982 

Kaplan-Meier Method 

This procedure relies on the same principles as the actuarial method. However, 
the time intervals are not set a priori but are determined by the occurrence of death: 
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the conditional probabilities of surviving between two dates of death are estimated 
every time a death occurs. As in the actuarial method, the probability of survival, 
from the start of follow-up, is obtained by the product of probabilities calculated for 
each successive interval. 

Intervals are usually defined in days. The method requires the calculation of 
as many survival probabilities as there are deaths, except if several deaths occur 
on the same day. It is particularly suited to analysing data from small groups. An 
observation which is censored between two deaths does not affect the cumulative 
probability of survival, which remains constant in this interval; in principle, it is not 
necessary to know the exact dates when such observations are censored. However, 
it is necessary to know the number of censored observations between two deaths 
which is subtracted from the number at risk at the start of the next interval. 

Let: 

ti be the ith observed time of deaths 1 I i 5 I, 

di be the number of observed deaths at ti, 

ri be the number of censored observations in interval [ti, ti+l[, 
n. = n. 

I - diPl - ri-l be the number at risk just before time of deaths occurring 
in ti: to obtain ni, subtract from ni-1 the deaths which took place at ti-, and all other 
cases for which follow-up ended in the interval [ti-1, ti[ 

si = 1 - (di/ni) be the conditional probability of being alive in ]ti,ti+,] given the 
subject was at risk at ti, and 

I 

Si= n s, be the probability of surviving after ti. This probability is constant up to 
j = 1  

date ti+l inclusive. 

The details of the computation are shown in Table 4.2 which refers to data 
from Geneva for skin melanoma in males. The corresponding survival curve is 
graphed in Figure 4.3. 

We can see that the successive conditional probabilities are calculated here 
from the true number at risk at the moment when death takes place and not from 
a number obtained by subtracting half those censored in the interval, as is done in 
the actuarial method. Furthermore, the latter method assumes a constant force of 
mortality by interval, while the Kaplan-Meier method makes no assumption about 
the underlying instantaneous rate. 

In practice, both methods give very similar results when they are applied to 
large groups, which is one of the reasons why most registries traditionally use the 
actuarial method, the application of which in medicine goes back to J. Graunt [4]. 
The fixed intervals of the actuarial method are perfectly suited .to the classic pre- 
sentation of survival probability for a given number of years after diagnosis, for 
example, 1, 3 or 5 year survival. However, the existence of modern computer soft- 
ware makes the application of the Kaplan-Meier method much easier than in the 
past, and it may be better to consider using it more widely, even for large groups, 
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Table 4.2 Calculation of the probabilities of survival by the Kaplan-Meier method 
(incidence of skin melanoma for males, Geneva, Switzerland, 1970) 

Day of Day (number) Number of Number Number Conditional Survival 
death of censored deaths of censored at risk survival probability 

observations observations at ti between 
ti and ti+, 

ti di Ti-I ni si s i 
(1 ) (2) (3) (4) (5) (6) (7) 

Columns 1 to 3 as well as the first line of column 5 (actual size of the group) give observed data; other 
values are calculated. 
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both for its greater precision and because it is more appealing than the actuarial 
method in the context of modern tools of survival data analysis. 

Confidence interval for a survival rate 

The estimation of variability of a survival rate becomes essential when its cal- 
culation is carried out on small groups of patients. The computation of confidence 
limits is usually undertaken for estimating the cumulative survival rates at a given 
time point. Determining several successive intervals gives an approximate idea of 
the 'confidence band' within which the real survival curve is taken to be, although, 
strictly speaking, it does not define the 95% confidence interval of the curve. It is 
sometimes useful to estimate the confidence intervals of the conditional probabilities 
of survival, cumulative not from the date of origin but from a given time. For example, 
one might focus on subjects who have survived for at least two years after diagnosis. 
The calculations are based on the same methodology. 

The estimation of a confidence interval for a cumulative rate Si  is based on 
the estimation of its variance, which depends in turn on whether the group is open 
or closed2. 

In a closed group, survival at time ti is the proportion of those surviving: 
Si = ni/nol where no is the initial number and ni is the number of survivors at time 
ti. In this situation, the variance of Si is simply: 

that is, the variance of the estimated probability from no trials among which there 
are ni successes (Binomial law). 

In the usual situation where the group is open, the number of subjects at risk 
is decreased over time by censoring; the variance is thus larger than if  the entire 
group had been followed up. Nevertheless, it is smaller than it would be in a closed 
group which would also have counted ni survivors and which would have produced 
the same estimate of survival. In this situation, the initial size of the group would 
have been 

ni n'o = - (4.2) 

S i 

Peto [5] suggests using this theoretical number to determine an upper bound 
for the variance. Thus, the corresponding standard error is 

See the definition of these terms in Chapter I, page 22 
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Greenwood [6] based an estimate of the variance of Si on the estimated var- 
iance of the conditional probabilities Sj, which are directly derived as variances of 
a proportion, since at each time ti, Sj is the proportion of survivors in the group of 
subjects at risk of death just before tj. 

Thus: 

Furthermore, since: 

the standard method [7] of calculating the variance of Log (sj) based on the variance 
of sj (4.4) can be used to show that 

I I 
Va r (sj) 

Var [Log (Si)] = z 
j = 1  sf 

z '.I:' 
j = 1 

and, consequently, that 

which is the formula that Greenwood established for the actuarial method by replac- 
ing nj, the number at risk at the beginning of the interval, by the effective number 
at risk Nj. Insofar as this result depends on the estimate of the variance (4.6) being 
valid for large samples only, this formula can lead to an under-estimation of the 
variance for long time intervals when the group size is not sufficiently large [8]. This 
estimate and that proposed by Peto are shown in Table 4.3, in which calculations 
of variance are made from the data in Table 4.1. 

Colurnn 5 of Table 4.3 is obtained by induction: 

The number calculated in column 6 and the standard error in column 7 are obtained 
from (4.2) and (4.3). 

In general, the confidence interval of size a for a survival rate 8 can be cal- 
culated by 
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Table 4.3 Calculation of standard errors by Greenwood's and Peto's methods 

i ni Si si+~ Greenwood - Peto Peto 
(1) (2) (3) (4) nb Ei+l 

(5) (6) (7) 

The numbers in columns 1 to 4 are from Table 4.1 and those in the remaining columns have been derived 
from formulae 4.8, 4.2 and 4.3. 

where 0 is the probability of survival to be estimated at ti and SE(Si) is the standard 
error of its estimator Si. If SE(Si) is replaced by one or another of the standard 
errors in Table 4.3 (columns 5 and 7 ) ,  a symmetric interval is obtained as: 

since when time t is fixed, the estimate of the survival rate at time t is approximately 
normally distributed. 

As Rothman suggests [9], it is also possible to calculate an interval whose 

limits always lie between 0 and 1, by substituting the quantity d y  for SE(S~) 

in equation (4.9) with 

where Vi is either Greenwood's variance or the maximum variance postulated by 
Peto. The confidence interval is then obtained by solving equation (4.9) for 0: 

The choice between the many different ways of calculating the confidence in- 
terval depends on practical considerations and on how conservative an estimate is 
required. For routine calculations, most scientists in cancer registries use the wider 
symmetric confidence interval (4.10) with the Greenwood standard error. We prefer 
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to use (4.12) with the theoretical number n'b derived from Greenwood's variance 

(4.11). In fact it has been shown that this method on average provides the most 
satisfactory result [ I  01. Note however that the symmetric confidence interval derived 
by Peto is an easily-obtained estimate of the magnitude of the variability of the 
survival probability estimate. 

Table 4.4 shows survival probability at 12, 30 and 60 months for cancer of the 
colon in men in Gate-d'Or between January 1976 and December 1982, and confi- 
dence intervals obtained using the three methods discussed. The differences are 
only noteworthy after 60 months, when Peto's interval is substantially wider. 

Table 4.4 Confidence intervals for survival; data from Table 4.1. 

Time since Survival Greenwood Greenwood Peto 
diagnosis probability Rothman symmetric symmetric 
(months) 

ti Si 

Median survival time 

With the preceding methods, the distribution of survival times can be correctly 
estimated in the presence of censoring without making assumptions about the an- 
alytical shape of this distribution. However, by not adopting parametric models, we 
cannot use the method of maximum likelihood, which is an effective tool for esti- 
mating parameters such as life expectancy and its confidence interval. In all the 
methods previously described, it is accepted practice to estimate quantiles of the 
distribution of survival. In particular, the median survival time is the time at which 
the survival rate is equal to 50%. This value can be estimated from the curve cal- 
culated using one of the methods previously described. The median survival time 
is a readily calculated location parameter which provides an easily interpretable 
summary of the data. 

In the actuarial method, a unique value of this median is usually obtained 
because the survival curve is continuous and, more often than not, strictly decreas- 
ing. If Si and Si+, are respectively the survival rates at the end points of the intervals 
which include the value 0.5, then the median of the observed distribution is obtained 
by linear interpolation: 
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for data relating to cancer of the colon in C6te-dlOr (Table 4.1), the observed median 
is 

m = 1 2 +  0'549- 0.500 (1 8 - 12) = 15.77 months 
0.549- 0.471 

If the survival probability is estimated by the Kaplan-Meier method, there is in 
general no time for which the observed survival rate is exactly equal to 0.5. The 
observed median can be taken as the date of the first death corresponding to a 
survival rate less than or equal to 0.50. For the data on melanoma (Table 4.2), the 
survival rate is not less than 0.5 before the last observed event, which is a death 
at 2481 days. Strictly speaking, the median survival is thus 2481 days, or six years 
and nine months. In fact, in this example, it is clear that the estimate is imprecise 
because of the small number of observed cases. As a general rule, the variability 
of this parameter can be substantial. Therefore, it is important that it be accompanied 
by its confidence interval. 

Figure 4.4, based on hypothetical data, shows that a confidence interval for 
the median can be obtained by simply inverting the functions representing the lower 
and upper confidence limits of the survival probability. The confidence region R, for 
the median is thus contructed from the confidence interval of the survival probability 
defined as in the previous paragraph. A time point t is included in the confidence 
region of the median if the confidence interval for St includes 0.50: 

" 
mi m m, 

Time since diagnosis 

Figure 4.4 Confidence interval of median survival 
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When the actuarial method is used, the upper and lower confidence limits of 
the median are determined by interpolation. For example, survival following cancer 
of the colon in C6te-d'Or is greater than 0.501 at 12 months and greater than 0.423 
at 18 months (lower bound of the confidence interval) (Table 4.4); the survival time 
for which the lower bound of the confidence interval is exactly equal to 0.5 is thus 
found between 12 and 18 months. This time is obtained by linear interpolation: 

12+ 0'501 - 0'500 x 6 = 12.08 months 
0.501 - 0.423 

Similarly, survival is less than 0.519 at 18 months and less than 0.480 at 24 
months (upper bound of the confidence interval) (Table 4.4). Survival will thus be 
less than 0.50 at 20.85 months. Therefore the confidence interval of the median is 
[ I  2.08 ; 20.851. 

When the Kaplan-Meier method is used, the upper and lower confidence limits 
of the median are obtained by determining respectively the first and last date of 
death for which the confidence interval of survival includes the value 0.50 [11,12]. 
When this method is applied to the data in Table 4.2, it is seen that the confidence 
interval of St includes 0.50 from t = 975 days and that all the subsequent time points 
are those which correspond to survival probabilities for which the confidence interval 
includes 0.5. As a result, the confidence interval of the median extends from two 
years and eight months to infinity, illustrating the imprecision obtained with a small 
number of cases. 

Collecting data for survival analysis 

In the usual situation of an open group, we have just seen that the calculation 
of survival rates requires specific variables for each member of the group: 

date at which follow-up started (date of incidence) 

date when follow-up ended 

status of the subject at this date (dead, living, lost to follow-up). 

we have also seen that the date at which follow-up ended for each individual is 
either the date of death, the last date at which the subject was known to be alive 
for those who were lost to follow-up, or the date at which follow-up is ended for all 
subjects as a result of the study being concluded. 

This information can be obtained either on an ongoing basis or retrospectively. 
It comes in general from a variety of sources. These sources are rarely perfect and 
can give rise to selection biases of different kinds, especially when they involve 
routine forms of data reporting. For example, failure to notify certain deaths results 
in the overestimation of survival. The same effect occurs indirectly when the number 
of individuals lost to follow-up is underestimated, since these cases are then wrongly 
counted in the numerator and denominator of the survival probabilities. More subtle 
biases can arise when the amount of information obtained on an individual depends 
on his or her status. For example, the status of a patient may be better known 
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simply because of a regular presentation to an oncology department or, conversely, 
because a death has been recorded. Consequently, no matter how good routine 
reporting sources may be, it is advisable to carry out a regular update to check the 
status of all subjects not known to have died, probably using reporting sources 
independent of those already employed routinely. In other words, for these cases, 
passive follow-up should be complemented by active follow-up which may involve 
searches of official records, direct contact with the patient or the patient's family or 
other sources. 

From an administrative point of view, it is sensible to carry out these updates 
individually at regular intervals from the date at which follow-up started, for example 
at every fifth anniversary of the date of incidence. This procedure ensures that the 
tasks required for active follow-up are ongoing throughout the year rather than all 
being carried out at once when it is time to analyse the data. Whatever procedure 
is used, the duration of follow-up should be ended at the date of the last update 
which ends the follow-up period for the subject. 

When the survival probability is calculated for all incident cases, follow-up of 
subjects who are officially recorded as having left the geographic area covered by 
registration should be censored at the date of departure, and should be treated as 
lost to follow-up. Following subjects outside this area can introduce a bias if it is 
routinely easier to obtain information on death or, conversely, on the surviving 
patients. A death which occurs outside the registration area obviously should not be 
counted even if it is known to have occurred. Updates should be organised in such 
a way that cases lost to follow-up in the literal sense of the term, that is, those 
cases for which it is not known whether they have left the area or not, are the 
exception. 

Calculating survival probability solely from cases residing in an area for the 
whole follow-up period has the apparent advantage of characterising the effective- 
ness of regional medical care. However, when departure from the area is linked to 
stage of disease (and to the survival probability which follows from it), this way of 
proceeding might plausibly introduce a bias in the results. For example, suppose 
that foreign workers with cancer routinely return home, as soon as their condition 
worsens, to die in their own country. There is unfortunately no ideal solution to 
resolve this difficulty; only the appraisal of each individual situation ensures that 
resulting biases are appropriately evaluated. 

The mode of follow-up can have a considerable effect on the reliability of re- 
sults obtained in survival analysis. It is instructive to compare the follow-up pro- 
cedures used in C6te-d'Or, Geneva and the Swiss canton of Vaud (from where the 
data used as examples in this chapter have been drawn). Following accepted prac- 
tice, incident cases in the three regions which are known only from death certificates 
are excluded from calculation. 

In C6te-dlOr, follow-up of patients is based on routine registration of deaths 
and on an annual update at a fixed time to check the status of all cases. Routine 
registration identifies approximately 75% of deaths occurring in patients with cancer 
of the colon. This percentage varies with age, treatment and survival time. The 
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status of patients for whom there is no report of death is obtained on a fixed date, 
partially from government registry offices at the place of birth (except for foreign-born 
subjects) and partially from clinicians (gastroenterologists, surgeons and general 
medical practitioners). Alltogether, in 98% of cases it is thus known whether the 
patient is living or dead. 

In Geneva, follow-up is carried out from two sources of information, one being 
the updating of the database from routine notification of death, the second resulting 
from a regular check-up at five-yearly intervals from the date at which follow-up 
started, for subjects believed to be alive. There are multiple sources of information 
on deaths: the cancer registry has the right to obtain from the health authority a 
copy of all death certificates which mention cancer as a cause of death. The registry 
can be incidentally informed of death when collecting missing data from the hospital 
records. Finally, information on death is obtained annually by merging records of 
incident cases with death records at a national level. This link-up of data is based 
on the date and place of birth. The five-year update is done by manually consulting 
population records, allowing the registry to note dates of any definite departures 
and to stop follow-up accordingly. Deaths which might otherwise have escaped de- 
tection can also be detected by this manual consultation. It is important to emphasise 
that cases are only included in the calculation of survival for the period covered by 
the five-year update. Events which follow this update are not taken into consideration 
even if they are already registered. In particular, deaths occurring after the time 
when the update takes place must not be included in the analysis. 

In the canton of Vaud, follow-up is based principally on the regular linkage 
between mortality files held by the Federal Swiss Office of Statistics, and the registry 
of incident cases. Linkage is achieved by a series of computer processes accom- 
panied by manual verification. The routine update also involves an investigation of 
cases presumed living, through the municipal population registries in order to de- 
termine status and dates of any departures from the canton. Active follow-up is 
organized and status is determined at a single fixed date for all cases (31 Decem- 
be r) . 

Estimation of net survival 

The study of survival in a population subgroup is often motivated by the sup- 
position that the subgroup is subject to a risk of death different from that experienced 
by other individuals in the population. For example, people with cancer generally 
experience a much higher mortality than the general population in the years imme- 
diately following diagnosis. Insofar as the increase in risk due to the disease being 
studied tends to diminish, mortality progressively returns to 'normal'. Overall survival 
probability should therefore be considered as the result of two components, corres- 
ponding respectively to the disease being studied and to all other causes taken 
together. 
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Thus a net survival can be defined as that which might occur if the risks of 
death other than the cancer were removed. Its complement is none other than the 
net probability of death (see Chapter 1, page 34). Analysing the net survival proba- 
bility is thus equivalent to the analysis of the excess mortality in the group under 
study. 

To the extent that it is accurately estimated, net survival probability tends to 
become constant as deaths due to cancer decrease. It then represents the percent- 
age of subjects who can be considered to be cured of the cancer under study. The 
time period corresponding to the point when net survival probability becomes con- 
stant can thus be interpreted as a recovery period. As for all estimates, this value 
is only valid as an average for the group; it does not exclude the possibility of a 
fatal recurrence for certain individuals outside this time period. 

The justification for calculating the additional risk due to the cancer under study 
is particularly clear when considering an older age group, because the force of 
mortality from other causes increases with age. As a group ages over time, net 
survival probability tends to be decreasingly well represented by observed survival 
probability, which is increasingly determined by death from other causes. The esti- 
mation of net survival probability also responds to the need to make comparisons 
between subpopulations from the same region or between populations from different 
regions where the mortality due to other causes may differ such that the comparison 
of overall survival probabilities might lead to biased conclusions. 

The determination of net survival probabilities implicitly assumes that the risk 
of death from the cancer being studied and the risk of death from other causes are 
independent, that is, not interactive (see Chapter 1, page 34 for the definition of 
this term). In fact, with cancer, the two risks seem to be positively correlated: the 
presence of cancer and its treatment cause an increase in the force of mortality 
from other causes. The inverse situation cannot however be excluded. When survival 
time increases, the survivors of the group might benefit from a reduction in the risk 
of death from other causes, because of better medical care or a decrease of risk- 
related behaviour. It will be seen later that such interactions cannot be totally ignored 
when deciding which method to use in estimating net survival or when interpreting 
the results. 

There are two classical methods available to estimate the probability of sur- 
viving a given disease: the method of cause-specific survival and that of relative 
survival. 

Cause-specific survival 

The principle of this method is simple: the cause of each death is assessed 
and only those deaths that can be attributed to the disease under study are counted. 
Other deaths are considered as simply termination of follow-up (in the same way 
as cases lost to follow-up and observations which are censored at the end of the 
study). Calculation of cause-specific survival can also be carried out by the actuarial 
method or by the Kaplan-Meier method. Under both methods, survival rates are 
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obtained disregarding deaths from other causes. However, if these methods are 
used, note that it is assumed that the process leading to death from cancer is 
independent of the process leading to death from other causes, an assumption which 
is often only approximately true (for example, when a suicide occurs following the 
diagnosis of advanced cancer). 

The method of cause-specific survival is sometimes used in a clinical setting 
if follow-up is of sufficient quality to distinguish between deaths due to the disease 
under study and other deaths. The method can only be applied to epidemiological 
data when the cause of death is routinely recorded, a situation which does not 
generally hold in population registries. Whatever the situation, the method of cause- 
specific survival comes up against the difficulties of determining cause of death such 
as the doubtful reliability of information supplied by the certifying doctor and the 
arbitrary choice of the primary cause of death when there are multiple or associated 
pathologies. Moreover, it would seem practically impossible, as much as it would 
be appropriate, to take into consideration deaths caused by secondary effects of 
treatment. 

Relative survival 

The method of relative survival [13] does not require knowledge of the cause 
of death and thus avoids the difficulties associated with its determination. The 
method involves calculating, at each time period t, the relative survival probabilities 
defined by the relationship 

where S,(t) and Se(t) are respectively observed survival and expected survival at 
time t. 

Expected survival corresponds to the mortality of the general population, taking 
into account the initial distribution in the group of prognostic factors which one 
wishes to control for. If only age (the effects of which should always be accounted 
for) is considered, the expected survival Se(t) is provided by the proportion of sur- 
vivors that would be predicted at time t in a group having the same initial age 
structure as the group under study, but subject only to the force of mortality of the 
general population. The adjustment is thus a standardisation of the indirect type. 
The calculation of the expected number of survivors is firstly done for each subgroup 
defined by age at diagnosis in single years or by larger age groups according to 
the available life tables. Expected deaths are then summed. If nx is the number of 
subjects of age x at the beginning of follow-up and Sex(t) is the probability of survival 
at time t for a subject with initial age x, then the number of survivors at time t for 
this age group is 
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The total number of survivors at this time is thus: 

Consequently, the overall expected survival is 

that is, the average survival probability at time point t, weighted by the initial number. 

Remember that survival after t years of a group of individuals aged x at diag- 
nosis whose follow-up can only terminate only with the death of the subjects (ie, a 
closed group) is equal to the ratio of the number of survivors of age x+t to the 
number of survivors of age x. Thus 

by using the data and expressions of the life table (see page in this chapter and 
Chapter 1). The half year results from the fact that the table is related to the birthday, 
while in fact an individual considered to be aged x is, on average, aged x + 0.5. 
The number of survivors at age x + 0.5 is obtained by linear interpolation of the 
values given in the table: 

Even if the calculation of expected survival does not have to be very precise 
(in particular concerning relatively short survival times, for which observed survival 
is generally substantially less than expected survival), the simplest method is to use 
a table which gives the number of survivors at each birthday. When the computation 
is carried out from a table in which the age groups are of a duration Ax greater 
than one year (known as an abridged life table, for example, by five-yearly age 
groups), the correction is made in the same way and the value will correspond to 
the number of survivors at age x + Ax12. 

The life table which is used should reflect the general mortality of the region 
at the appropriate time. If the rate of mortality does not change too quickly and if  
follow-up is over a long time, adopting a life table which relates to the middle of 
this time period will be adequate. For example, a table based on a population census 
carried out in 1980 can be suitable for a cohort recruited in 1975 and followed up 
for ten years. If the time for which survival probability is calculated increases, it 
might be necessary to adopt mortality rates derived from several successive tables. 
If the survival of the general population improves, the use of only one table could 
produce an artificial improvement in the relative survival by underestimating the 
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expected survival of more recent cohorts. Furthermore, it will be seen in the following 
section that the construction of a life table does not present any special difficulties 
when complete data on the population and deaths are available, and that large 
numbers guarantee precise results. 

When prognostic factors other than age and sex are identified, it is preferable 
to calculate expected survival by taking them into account. Examples of such factors 
are marital status, ethnicity and socioeconomic status. Their incorporation in the 
analysis can be achieved if the data necessary to construct the life tables are avail- 
able as a function of these variables. 

As an example, Table 4.5 shows some of the calculations used to establish 
expected survival for cancer of the colon for males in Geneva between 1970 and 
1979. 

Table 4.5 Calculation of the expected number of survivors(a) for cancer of the colon 
for males in Geneva, Switzerland; incident cases 1970-1979 

Age Survivor Number Expected pro ortion 
(years) function at risk of survivors [by after: 

Expected number 
of survivors (b)  after: 

x,x+l 
1 2 3 4 5 1 2 3 4 5 

N x ex year years years years years year years years years years 

Total 

(a) Life table for Geneva 1976-80 (Table 4.9). 
tb) Columns 4 to 8 are derived from column 2; columns 9 to 13 are derived from the preceding columns. 
For example, the expected proportion of survivors after three years for the age group 50 to 54 years is: 

The number of expected survivors is therefore 29 x 0.9764 = 28.32. Columns 4 to 8 of the last line are obtained 
from the last five columns. Expected survival at five years for the whole group is 342.431454 = 0.7543. 
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The above calculations have been obtained from the life table based on five- 
yearly age intervals shown in Table 4.9. This table has been constructed using the 
method described below (see page 236). When a life table b y  single years of age 
is available, the calculations are based on annual and not five-yearly interpolations 
and are slightly more accurate. As an example, the expected survival of the same 
group has also been estimated from the Swiss life table (1 978-1983) by single years 
of age in Annex 1. Initially, the survivors at regular yearly intervals are used and 
then those at five-yearly anniversaries as if the life table had been abridged. 
Table 4.6 shows the results using these different methods. 

Table 4.6 Expected number of survivors from two life tables for cancer 
of the colon in men in Geneva, Switzerland (incident cases 1970-1979) 

Expected number of survivors 

Time since Geneva table 
diagnosis 1976-1 980 

Swiss table (a) 

1978-1 983 
(years) 

.- 

Quinquennial Annual Quinquennial 

(a) See Annex 1. 

The results obtained from the Swiss life table show that the use of a five-yearly 
table hardly changes the estimate of the expected number of survivors obtained 
from the annual life table. On the other hand, the earlier Geneva life table (1976- 
1980) gives estimates which are noticeably less than those obtained from the Swiss 
life table (1 978-1 983). The observed differences probably reflect real differences in 
mortality both between Switzerland as a whole and Geneva, and between time pe- 
riods. However, Table 4.7 shows that the differences between the relative survival 
probabilities are no more than 2%, which is certainly smaller than the differences 
between the results obtained with this method and alternative methods described 
below. 

The confidence interval of the relative survival probability is proportional to that 
of the observed survival if the random variation in expected survival can be assumed 
to be negligible. The standard error for S, is thus 

Table 4.8 gives cause-specific and relative survival for various cancer sites at 
five years estimated from data from Geneva. For cause-specific survival, deaths 
have been attributed to the cancer concerned when the first three numbers of the 
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Table 4.7 Expected and relative survival probabilities from two life tables 
for cancer of the colon in men in Geneva, Switzerland (incident cases 1970-1979) 

Time since Observed Expected survival Relative survival 
diagnosis - 

(years) 1976-1 980(~ )  1978-1 983(') 1976-1 980(~)  1978-1983(') 

(a) Actuarial survival probability calculated from three-monthly intervals. 
(b) Geneva life table (Table 4.9). 
(') Annual Swiss life table (Annex 1). 

Table 4.8 Cause-specific and relative survival probabi- 
lities; Geneva, Switzerland (incident cases 1970-1977) 

Survival probabilities at 5 years 
Site (sex) 

Relative Cause-specific 

Stomach (M) 
Colon (M) 
Colon (F) 
Lung (M) 
Breast (F) 
Prostate 
Ovary 
Bladder (F) 

ICD 8 code for the primary cause of death (coded by the Registry according to the 
WHO rules) correspond to the code for the site. Note that under this procedure, 
carried out in a registry where the causes of death are systematically verified and 
corrected if necessary, the specific rates for most sites are more optimistic than 
those obtained by the method of relative survival. This difference can be explained 
by the fact that, in contrast to cause-specific survival, the method of relative survival 
attributes to the cancer any deaths resulting from the secondary effects of treatment 
or from diseases caused by the same risk factors as the cancer. 

The method of relative survival is also based on the assumption that the 
general mortality, as it is described by the life table of the population adequately 
takes account of all causes of mortality, except for the specific cause under study. 
This cause is considered to be negligible in comparison to all other causes of death. 
Only on this condition can relative survival provide an acceptable approximation to 
net survival. If this assumption does not hold, net survival will be overestimated as 
a result of the overestimation of the mortality due to other causes. For example, it 
is known that in women aged 50 to 54 years mortality from breast cancer is re- 
sponsible for approximately one death in six. If the method of relative survival is 



236 TECHNIQUES FOR SURVIVAL ANALYSIS 

applied to this cause in this age group, net survival will be markedly overestimated. 
If death rates by cause are available for the general population, it is possible to 
calculate probabilities of death and then of survival by subtracting the risk of death 
due to the cancer under study. However, this precaution is rarely taken in practice. 
Indeed, it has been suggested that this correction is excessive, because the group 
under follow-up is still at risk of developing a second malignancy at the same site 
[13]. In addition, the life expectancy of a group of patients may in fact be less than 
that in the general population, as a result of the factors to which the patients have 
been exposed. These factors can lead to an increase in the risk of dying from other 
causes (for example, other diseases related to tobacco in people with lung cancer). 
In this case, the relative survival could be less favourable because of factors as- 
sociated with the disease rather than because of the disease itself. The cause- 
specific survival, on the other hand, would not be affected by the occurrence of 
these deaths, since they would be attributed to other causes. 

As we have indicated above, the determination of the time point t at which 
relative survival becomes constant leads to an estimate of the percentage S,(t) of 
people cured, because t corresponds to the moment at which deaths due to the 
cause under study are no longer recorded. Graphically, from t onwards the observed 
and expected survival curves become parallel on a logarithmic scale. In practice, a 
plateau of this kind in the relative survival is not uncommon even when deaths due 
to the cancer under study continue to be recorded. Furthermore, the relative survival 
may even start rising from a certain point onwards. Some authors have attributed 
this increase to the fact that mortality in surviving patients, who are receiving good 
medical care, can in the long term be less that that in the general population. This 
explanation is nonetheless incompatible with the interpretation of relative survival 
as an estimate of net survival. We will see (page 242) that this effect is more 
frequently due to a methodological bias [14]. 

Constructing a life table 

Life tables established by national statistical services are usually available to 
calculate expected survival in the absence of cancer. However, it can happen that 
there is no life table suitable for the population being studied, either because the 
last official table is out of date or because the population being followed is too 
selected for its mortality to be described by the official table available. In this sit- 
uation, a table can be built from available mortality rates (or calculated specifically 
for the purpose) provided they are sufficiently reliable and statistically accurate. 
Frequently, these conditions can only be fulfilled by using a table abridged in five- 
year age groups, and a long period of follow-up to calculate the mortality rates. 

The method described below provides approximate results but sufficient ac- 
curacy for the objective. The results differ by definition from those which official 
statistical services would calculate from similar data; national tables are in fact made 
by using various methods to smooth the data and, especially in older age groups, 
are based on mathematical models of mortality. These procedures are not discussed 
here. 
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We saw in Chapter 1 that the life table was defined entirely by the probabilities 
of dying in the different age groups and that these probabilities could be directly 
estimated from mortality rates (Chapter 1, formula 1.31): 

where 1, is the annual mortality rate for the age group x and A, the length in years 
of the age interval. In a five-yearly table, the probability of dying for each age group 
is obtained by 

1 Oh, 
qx = 5- 

It is usual however to break down the first five-year interval by estimating the 
probability of dying in the first year of life separately. Thus, for the first age group 
(x = O), and taking into account the concentration of deaths in the first days of life, 
it may be accepted that 

and, from the formula above, the probability of dying during the four following years 
is estimated as 

Up until the age group 70-74 years, this formula provides sufficient accuracy. 
For older age groups, Reed and Merre17s formula is recommended [15]. For A, = 5 
this formula gives: 

2 

q', = 1 - e (- 5 h, - h,) 

The number of survivors at the beginning of each five-year period can then be 
calculated by applying the successive probabilities of death starting with the initial 
number (root of the table), equal for example to 10 000: 

As an example, Table 4.9 shows the results obtained from mortality rates ob- 
served in Geneva between 1976 and 1980. The calculation of the probability of 
death q, is based on formula (4.24) up to q 7 ~  and on formula (4.27) after that. 

Alternative methods 

As we have seen, the method described previously for calculating cause- 
specific and relative survival probabilities raise problems of interpretation which have 
led many authors to look for alternative solutions to the estimation of net survival. 
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Table 4.9 Calculations of the probability of death and of survivors by age from morta- 
lity rates observed in men in Geneva, Switzerland, between 1976 and 1980 

- - - - 

Age Mortality rate Probability of death Survivor f ~ n c t i o n ( ~ )  
X J.x q x  e x  

(a) The number of survivors at a given age is obtained by linear interpolation from these numbers. For 
example, the number of survivors at 33 years is given by: 

Results obtained by the method of cause-specific survival depend closely upon the 
quality of information available on causes of death. Systematic national differences 
in the coding of causes of death make this method unsuited to comparisons between 
registries. Relative survival, derived from expected survival as in the previous sec- 
tion, is equally subject to methodological biases which will be briefly discussed 
before presenting other methods. 

The group being followed is often heterogeneous with respect to factors in- 
fluencing both net survival and survival from competing causes, and hence observed 
survival. Observed survival is consequently an average value which depends not 
only on the initial structure of the group but also on the changes that the group 
experiences over time with respect to these different factors. For obvious reasons, 
the force of mortality acting on the group in the long term is generally closest to 
the mortality in the group with the longest lifespan [14,16]. The calculation of ex- 
pected survival as described above does not take into account changes in the group 
over time, consequently the ratio between observed and expected survival will gener- 
ally lead to overestimation of net survival over long time periods. 
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When age is the factor being considered, the consequences of this phenome- 
non can be easily demonstrated. Individuals in the group under study may end 
follow-up for one of three reasons, all of which are dependent on age: death from 
the disease under study, death from other causes and withdrawal from follow-up for 
reasons other than death. If hx(t), yx(t) and yx(t) are the corresponding instantaneous 
rates for each age x, then the force of mortality to which the group is subject at 
time t is a weighted average for which the weight wx(t) changes over time. This can 
be written 

where wx(t) is the proportion of individuals aged x years present in the population 
at time t. Using the notation of formula (4.17), this proportion is equal to 

wx (0) Scx (t) Sex (t) r x  (t) 
Wx (f) = g 

C wx (0) ~ c x  (t) Sex (t) r x  (1) 
x = l  

where Tx(t) is the probability that an individual aged x years has a potential follow-up 
time greater than t. 

If the net survival and the potential follow-up time are independent of age, the 
weighting becomes proportional to the expected number of survivors: 

Wx (0) Sex (f) 
wx (t) = g 

C wx (0) Sex 0) 
x =  1 

and the net mortality rate comes out from the summation over age: 

Therefore, the observable survival probability can be written 

t 

S, (t> = e - jo V(U)  du 
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Furthermore, since 

it follows that 

s'ex (t) 
Px (f) = - 

s e x  (t) 

Since the term to be integrated is equal to the derivative of the logarithm of 

wx ( 0 )  Sex (u), 
g 

s o  (t) = sc (t) x wx (0) Sex (t) (4.31) 
x = l  

This formula implies that the observed survival is the result of two independent 
forces of mortality and that in this case relative survival correctly estimates net 
survival. 

When the net survival or potential follow-up time depend on age, this relation- 
ship no longer holds true. In the long term, relative survival then tends to estimate 
the net survival of age groups which have the greatest life expectancy. In particular, 
if the potential follow-up time depends on age when the net survival is constant, 
the estimate of net survival by relative survival is biased. 

In principle, the changes in the group over time can be accounted for in the 
calculation of expected survival, as in the method proposed by Ederer and Heise 
[I71 and programmed by Rothman and Boice [18]. Instead of calculating expected 
survival from the initial number in each age group (Nx(0)), it is estimated at time 
t + At for subjects still living at time t. Conditional expected survival Se(t +At) is then 
the average of expected survival probabilities at different ages, weighted by the 
proportion of subjects still subject to the risk of dying at time t: 

- 
g 

se (t + A t) = x WX (t) Sex (At) (4.32) 
x = l  

The probability sex(At) that an individual aged x years living at time t will still 
be living at the end of the time period (t + At) is obtained from the life table. For 
example, i f  a five-yearly table is used 

Expected survival of the group is then given by the cumulative product of the average 
survival over each five-year interval: 
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This method will be termed Ederer 1 1 ,  as opposed to Ederer's method previously 
described (Ederer I, see page 231). 

It can be seen that if the net mortality rate hx(t) does not depend on age, Sc(t) 
is factorised as before: 

where S,(t) now denotes expected survival after taking into account the group struc- 
ture at each time point t. This last formula holds whether or not the follow-up time 
depends on age. This characteristic was noted by Hakulinen [I61 who proposed 

replacing wx(t) by wz(t) in the calculation of expected survival where 

z Wx (0) Sex (t) r x  (t) 
i = l  

that is, by a weight which corrects for the distortion of age structure caused by 
censoring but in which net survival no longer plays a role. This expression gives 
the same result as (4.33) if net survival does not depend on age. It also provides 
an expected survival which is not affected by the value of net survival when it 
depends on age. In contrast, the Ederer II estimate derived in (4.32) and (4.33) 
provides an expected survival which depends on net survival and thus on the cancer 
being studied. 

When Sc,(t) does not depend on x but T,(t) does, for example when the popu- 
lation ages and increasingly older patients enter the study, Ederer ll and the method 
of Hakulinen are preferable to Ederer I, which can lead to biases of the order of 
10% [16]. 

When ScX(t) depends on x, Ederer II will systematically give results which are 
less than those of Hakulinen's method if net survival decreases with age. In fact, 
because they experience a larger number of deaths from cancer, the oldest subjects 
will be withdrawn more quickly from the calculation of expected survival, which will 
consequently be overestimated. 

The original proponent of relative survival [I91 clearly intended to calculate the 
net survival of a group of patients and not simply to provide an indicator of relative 
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risk of dying. However, the parameter being estimated when net survival depends 
on age has never been clearly defined. Implicitly, most authors are in favour of 
estimating the net survival of the group by the ratio of observ-ed and expected sur- 
vival. Explicitly taking age into account, this ratio can be written 

g 

C n, Sex (1) Scx (t) 

and thus corresponds to the average of net survival probabilities weighted by the 
expected number of survivors. 

As stated before and shown by formula (4.36), the estimate of G( t )  will always 
be closest to the net survival of the subgroup that has the greatest life expectancy. 
Considering the goal of this type of calculation, it would seem preferable to calculate 
the average of net survival probabilities, weighted by the initial numbers of subjects 
followed up and not by the expected number of survivors at time t: 

A relative survival estimate based on direct standardisation of relative survival cal- 
culated separately for each age group can in theory be obtained in this way. How- 
ever, it is less likely that this calculation can be made in practice, because of the 
statistical instability of the estimates for the older age groups. In addition, it can be 
questioned whether subjects who are diagnosed with cancer at 80 years should play 
the same role in the calculation of survival in  the long term as those who were 
diagnosed with cancer at 40 years. The expected survival of elderly patients is 
moreover difficult to estimate from available data. 

This discussion shows that the calculation of relative survival should be placed 
in the context of the classical methods for estimating the parameters of a survival 
model. This would have the two-fold advantage of providing both a better definition 
of the concept and a standard method for calculation. It seems natural in this context 
to estimate the net probability rate using a proportional hazards model (see 
page 260) where baseline hazard is a step function: 

where z is a vector of covariates including age which might influence net survival, 
Ik(t) is the indicator function of the kth interval (Ik(t) = 1 if t is in the interval, Ik(t) = 0 
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if it is not), and m the number of intervals being considered in the whole period 
under study. 

Estimating such a model from individual observations (for subject i, ti is survival 
time, 6; the status living or dead in ti, zi the vector of covariates and xi the initial 
age) is easily achieved by the maximum likelihood method. The logarithm of the 
likelihood can be written (see Chapter 1, page 19): 

n n 

L(P77) = - C A (ti 9 zi) + C 109 [h(ti , ~ i )  + (ti + xi , (4.39) 
i =  1 i =  1 

where p(ti + Xi, zli) is the mortality rate at age ti + xi for a subject in the general 
population characterized by Z l i ,  the value of the covariate zl, subvector of the covar- 
iate z for which these data are available (e.g., sex and ethnic group). 

After substituting (4.38) for h in (4.39), the first and second derivatives of L ( ~ , T )  
A A 

are obtained. Then, using the Newton Raphson method, the values P, I ,  which max- 
imize L(P, T) are derived. The confidence intervals of these parameters are obtained 
simultaneously by inversion of the matrix of second derivatives with respect to P 
and T at the maximum. It can be shown that in practice this method amounts to 
describing observed deaths in each interval by the sum of expected deaths based 
on the risk of overall mortality (pTk) and of deaths resulting from the disease under 
study (ATk), where Tk is the time spent in this interval by patients in the cohort who 
have respectively rates p and h [20]. 

Applying this method to the survival data for cancer of the colon in Geneva 
(1970-1979) shows that net survival does not depend on sex but strongly depends 
on age (appropriate significance tests are given below, see page 274). The mortality 
rate for age group 65 to 74 years is e0.59 = 1.8 times bigger than that for age group 
0 to 64 years and for age group 75 to 99 years is eO." = 2.5 times bigger 
(Table 4.1 0). 

The cumulative mortality rate, the corresponding net survival and their confi- 
dence intervals are obtained from h(t,z) and from the standard errors of f3 and T by 
using the formulae already described in Chapter 1 (see for example formula 1.36) 
as well as the standard procedures for calculating asymptotic variances [7]. 

If ul, u2 ... urn are the limits of the intervals used to define the baseline hazard 
step function and if t E [ue, ~ e + ~ ]  

Table 4.1 0 gives values calculated for five and ten years and survival protja- 
bilities obtained by other methods. It will be seen in the present case that relative 



244 TECHNIQUES FOR SURVIVAL ANALYSIS 

Table 4.10 Survival p r~bab i l i t y (~ )  of patients with cancer of the colon in Geneva, 
both sexes, 1970-1 979 

Age at time 0 (years) Total 

Numbers 
At risk 
expected at 10 yeastb) 

Crude survival(c) 
5 years 
10 years 

Net survival 
Ederer I(') 
5 years 
10 years 
Likelihood method(d) 
tl 
5 years 
10 years 

Cause-specific survival 
5 years 
10 years 

(a) The standard error of each estimate is given in brackets. 
(b) Calculations from the Swiss life table (1978-83). 
(') Crude survival is calculated by the actuarial method with intervals of three months. Relative survival is 
obtained by the Ederer I method (4.17). 
(d) Estimation of p is obtained by the maximum likelihood method and survival analysis is deduced from 
these values and from that of T (not reproduced here) by using (4.39) and (4.40). 

survival is more optimistic than net survival obtained by the maximum likelihood 
method (Figure 4.5). The difference is particularly noticeable for older age groups. 
In this situation, the cause-specific survival can be calculated from the same data 
using causes of death as assessed by nosologists at the Geneva registry. Specific 
survival is slightly higher for the younger age groups than the estimate obtained by 
the maximum likelihood method but it is the same for the group as a whole. For 
the oldest age group, cause-specific survival is closer to the maximum likelihood 
estimate than the relative survival calculated by the Ederer I method. 

Calculations not given here show that in this case the Hakulinen method pro- 
vides results which are close to those of the Ederer I method (0.42 to 5 years and 
0.42 to 10 years for the whole group). The last two methods would suggest that 
the time at which cancer of the colon can be considered to be cured is five years, 
because relative survival is then no longer decreasing. The maximum likelihood 
method is in fact stricter and would reject this assumption. The estimate of the 
average rate of mortality T in the interval 5 to 10 years is 0.019 with a standard 
error equal to 0.008. In fact, the Ederer method overestimates relative survival for 
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Figure 4.5 Observed and relative survival of colon cancer patients diagnosed 
between 1970 and 1979 in Geneva, Switzerland; both sexes 

" L 20 - 

10 - 

the oldest age group on the one hand and overall relative survival on the other 
hand by weighting each age group with expected survivors 

- - Net (Maximum likelihood) 
- Observed 
- - - Relative (Ederer) 

(while the average weighted by the initial numbers would be 0.37). 

Other alternatives to the Ederer method have been proposed. Breslow [21], 
Andersen and coworkers [22], and Hill and coworkers [23] proposed a model in 
which the presence of the disease multiplies the risk in the general population by 
a constant. Pocock and coworkers [24] have suggested a model similar to that 
described in this section, in which the risk added by the disease decreases ex- 
ponentially with time. We would also suggest that the additive model is more natural 
in this context. However, the multiplicative model has certain advantages which have 
already been explained in detail [22]. 

0 ,  I I I I I I I I I I 

0 6 12 18 2 4  30 3 6  42 48 5 4  60 

Time since diagnosis (months) 

Methods of comparison 

Introduction 

In some situations, comparison of survival between two groups can only be  
made at one time point on the survival curve, for example at five years. The method 
used in this situation is described below. Generalization from this comparison to the 
whole survival curve can nonetheless lead to incorrect results : survival probabilities 
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at five years in the two groups might be the same even though the two survival 
curves are different as a whole. This is a common situation in clinical practice, 
especially when two groups are treated with different therapies- (e.g., surgery versus 
radiography) having effects which may be unequally distributed over time. The choice 
of a specific time point to evaluate survival will thus be arbitrary. Furthermore, when 
the groups are small in size, a survival rate at a given time point is subject to a 
relatively large random error and observed differences may appear to be due to 
chance, while the more powerful overall comparison between survival curves might 
lead to a significant difference. 

Except in particular situations, there is therefore a strong argument to compar- 
ing the whole of the two curves, provided that the necessary data are available. 
The problem is then to summarize all differences between the curves by a suitable 
indicator and then to use an appropriate test. The methods described below (see 
page 248) illustrated with data on cancer of the colon in C6te-dlOr, Geneva and 
the canton of Vaud provide a way to answer these questions. 

Furthermore, it is not unusual for the groups being compared to be unequally 
distributed with regard to age, sex and stage of disease at diagnosis. The compari- 
son should take these prognostic factors into account by a method based on  an 
appropriate stratification, provided that the necessary information is available for 
each subject. This method will be illustrated by data from Geneva on the survival 
of subjects with malignant melanoma by site and sex (see page 255). 

A substantial amount of research has been carried out over the last two de- 
cades in the area of semiparametric models of survival, which simultaneously take 
into account various prognostic factors defined on an individual basis [ 25 ,  261. 
Among these, the proportional hazards model has been of particular interest because 
of its simplicity and effectiveness (see page 260). We will present this model using 
breast cancer data from the Geneva Cancer Registry to assess the influence of 
health care systems on survival. 

Long-term survival cannot be compared between groups without considering 
competing causes of death. This consideration leads to the comparison of relative 
survival between groups, (see page 272). Despite the above-mentioned difficulties, 
it may be that a point comparison of two rates is appropriate or that, as is often 
the case, the basic data are not available to make an overall comparison. The 
method to be used in this situation will be presented briefly below. 

Comparison of crude survival probabilities 

Test to compare two survival rates 

Observed survival probabilities are often only published in the form of an 
actuarial rate at a given time (e.g., survival rate at five years). Evaluating the statis- 
tical significance of the observed differences between two or more populations re- 
quires information on the variability of the rates, which unfortunately is rarely 
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available. Knowledge of the number of cases initially entered in the study is not 
sufficient to correctly estimate the variability. If the observed number of survivors at 
a given time is known, the upper limit of the variance of the survival rate can be 
calculated (see page 222) and a slightly conservative comparison can be made. 
Implementation of the test is straightforward as soon as an estimate of the variability 
of the rates is available. 

Let S,(t) and S2(t) be the survival rates at time t, estimated using one of the 
two methods described in the first part of this chapter (see pages 216 and 219) 
and let V,(t) and V2(t) be the estimates of their variance. For a given value to of t, 
the quantity 

follows an approximately normal distribution and provides an appropriate statistic to 
test the hypothesis of equality of the rates in to. For example, the five-year survival 
rates in men following cancer of the colon are obtained using the actuarial method 
as 0.324 (Geneva) and 0.348 (canton of Vaud). As the standard errors obtained by 
Greenwood's method are 0.0228 and 0.021 6, we have : 

It is therefore concluded from this value that five-year colon cancer survival for men 
does not differ significantly between the canton of Vaud and Geneva. 

When standard errors are estimated from initial numbers (as if there were no 
censored observations), the standard error for Geneva is 0.0220. The proximity of 
this value to 0.0228 can be explained by the fact that the majority of subjects were 
followed up for five years. Conversely, the standard error in the canton of Vaud is  
0.0187 instead of 0.0216 because the percentage of censored observations is high 
among the 650 cases. In this situation, it is particularly important to provide a correct 
estimate of variance. In fact, the upper limit of the variance calculated solely from 
the 114 survivors observed at 60 months would be 0.0263 which is a slight over- 
estimation. 

In general, it is highly recommended that survival rates be presented with their 
standard errors to provide the basis for making more reliable comparisons. 

Rank tests to compare survival curves 

The objective of these tests is to compare two or more survival curves making 
optimum use of the available information about the survival of patients in the different 
groups. They are part of a family of tests which are the extensions to censored data 
of methods based on ranks [27]. Even if the data were not censored, it is inappro- 
priate to make a simple comparison of average survival times of two populations, 
because survival times do not follow the normal distribution which is a prerequisite 
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for the validity of classical tests. Non-parametric procedures (rank tests in particular) 
allow us to overcome this difficulty. 

When observations are complete, the implementation of a rank test requires 
ordering all survival times within the two groups in ascending order, assigning a 
score ci to the observation of rank i, then calculating the observed sum C of ci for 
one of the samples and, finally, comparing C to its expected value E(C) under the 
assumption that ranks are randomly assigned between the two samples. If, in reality 
the survival times in one of the samples are on average greater than in the other, 
their ranks will be on average higher and C will be significantly greater than E(C). 
The scores ci are chosen in such a way that the resulting tests are efficient against 
certain alternatives in the framework of the largest possible family of survival dis- 
tributions. In the Mann-Whitney test, for example, the score Ci of an observation is 
simply its rank i in the classification. In the Savage test, the score ci is equal to 
the expectation of the observation of rank i in a sample from a distribution with a 
constant mortality rate (that is, an exponential distribution). For n observations, this 
score is equal to: 

The extension of these methods to censored data requires the assignment of 
a score to observations censored between the ith and the (i + 1)th survival time, 
for which it is only known that survival time exceeds ti. When the Savage test is 
extended to censored data, it becomes very similar to the Mantel-Haenszel test 
described in Chapter II (see page 77). In the framework of survival comparisons it 
is known as the logrank test [28]. The generalization proposed by Gehan and 
Breslow [29, 301 of the Mann-Whitney test (or the Kruskal-Wallis test for more than 
two populations) is similar to the logrank test. Both tests are based on a comparison 
of observed deaths di with expected deaths ei in a group, at each time point ti where 
at least one death is observed. The two tests only differ in the weight given to the 
observed differences (di - ei). Application of the logrank test to the comparison of 
three populations is given below. 

Let: 

k = 1,2,3 be the three groups being compared, 

ti be the dates at which at least one death occurred, 

dki be the number of observed deaths at ti in group k, 

eki be the number of expected deaths at ti in group k, 

Di be the total number of deaths occurring at ti, 

nki be the number of subjects at risk just before ti in group k, and 

Ni be the total number of subjects at risk just before ti. 

The test is based on the comparison of the total number of observed deaths 

in each group k, (Ok = dki), with the number of deaths (Ek = 2 eki) that might 
I I 

have been observed if the force of mortality was the same in the three groups. The 
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number of expected deaths in each group should be calculated at each time point 
ti when at least one death occurred. The comparison takes into account not only 
the total number of observed deaths in each group before a given date but' also the 
date at which these deaths occurred. It is possible that the overall proportion of 
deaths is the same in the three groups over the entire time period under colilsidera- 
tion, but that there is an unequal distribution of survival times in the groups due to 
differences between the instantaneous mortality rates. Figure 4.6 shows ten-year 
survival for men with colon cancer in Geneva, C6te-d'Or and the canton of Vaud. 
The observed rates are practically identical in the three registries after the fifth year, 
while survival is better in the canton of Vaud before this date. 

Table 4.11 gives the breakdown of counts used in the test at a time point ti 
when at least one death occurred. 

Under the null hypothesis, the observed number of deaths in each of the three 
groups would be proportional to the respective numbers of subjects at risk in each 
group at this date. The numbers eki of expected deaths under this hypothesis are 
therefore: 

Table 4.11 Logrank test. Breakdown of counts at each time point ti when one or more 
deaths occurred 

Group 1 Group 2 Group 3 Total 

Deceased dl i d2i d3i Di 
Alive nii - dii nni - d2i nsi - d3i Ni - Di 

Total nii n2i n3i Ni 

- Canton de T'aud 
- - -  Geneva 
-- Cote d ' O r  

Time since diagnosis (years) 

Figure 4.6 Survival of male colon cancer patients in the canton of Vaud, Switzerland 
(1 974-1 983), Geneva, Switzerland (1970-1979) and C6te-d'Or, France (1 976-1982) 
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giving the total numbers of expected deaths: 

The objective of the test is to judge whether the sum of the differences between 
the observed and expected numbers in each group (Ok - Ek) differs significantly 
from zero. The test is identical in principle to the Mantel-Haenszel test described in 
Chapter 2 (see page 77). However, the distribution of deaths in this case is multi- 
nomial leading to a three-dimensional hypergeometric distribution for dki when the 
total number of deaths Di is fixed, rather than the multinomial distribution which 
results when the number of deaths follows a Poisson distribution. The variances 
and covariances of dki are thus : 

from this, we derive the symmetric variance-covariance matrix V of (Ok - Ek) which, 
when comparing three groups, is of dimension 3 x 3; the diagonal elements are 

and the remaining elements 

The definition of the expected numbers implies that the sum of Ok is equal to 
the sum of Ek : it is therefore sufficient to know the deviations (Ok - Ek) in two of 
the groups in order to know the deviation in the third. To assess the size of the 
deviation between all pairs of observed and expected values, it is therefore sufficient 
to retain two of the three groups. The significance is determined from the statistic: 

where whk are the elements of the inverse of the variance-covariance matrix of 
(01 - El) and ( 0 2  - E2): 
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under the null hypothesis of equal survival, the statistic TI follows a X2 law on two 
degrees of freedom. Formula (4.47) can be easily generalized to r groups and is 
expressed in matrix form as: 

TI = ( 0  - E)' W (0 - E) (4.49) 

where (0 - E) is the vector made up of the r - 1 differences between the observed 
and expected numbers in the first r - 1 groups, and W is the inverse of the vari- 
ance-covariance matrix of the first r - 1 differences of (Ok - Ek). When TI exceeds 
the critical value corresponding to X2 on r - I degrees of freedom, it can be con- 
cluded that the r survival curves are different. The test of a more specific alternative 
hypothesis is carried out in a way analogous to that in Chapter 2, page 90. For 
example, a trend test is based on the statistic : 

where X' = (xi, ... x,) is the vector corresponding to the r levels of a quantitative 
variable such as disease stage or age group which may have an influence on sur- 

vival. T; follows a X2 distribution on one degree of freedom and provides a more 

powerful test than TI for specific alternative hypotheses defined a priori. Contrasts, 
particularly pairwise comparisons, between groups can be tested with the same 
statistic. It is worth noting however that if a large number of comparisons of this 
kind are made, the type one error associated with the final result could be seriously 
underestimated. 

The homogeneity of survival rates in 2 groups can be evaluated by a conser- 
vative test, approximating formula (4.49) by 

under the assumption that T, is distributed as X2 on r - 1 degrees of freedom 
[31,32]. Because of its simplicity, the statistic T2 is sometimes calculated first when 
a rapid result is needed; if it gives a non-significant result, more precise tests can 
still be carried out. 

Table 4.12 shows some of the calculations involved in the comparison of five- 
year survival following cancer of the colon in males in Geneva (incident cases 1970- 
83), CGte-d'Or (incident cases 1976-80) and the canton of Vaud (incident cases 
1 974-83). 
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Table 4.12 Comparison of survival following cancer of the colon among males 
in the canton of Vaud, Switzerland (incident cases 1974-83), Geneva, Switzerland 

(incident cases 1970-83), and in C8te-d'Or, France (incident cases 1976-80) 

Vaud Geneva C6te-d'Or Total Expected 

ti(month) 
nvi dvi ngi dgi nci dci N i D i evi egi eci 

Total 0, = 369 0, = 292 Oc = 270 931 E"z406.6 E,=279.6 E,=244.8 

The logrank test is calculated from the variance-covariance matrix of the 
observations: 

If the test is calculated from the first two groups, we obtain (cf formula 4.48): 

Applying formula (4.47) gives: 

The simplified test (formula 4.51) gives: 

which, as stated previously, is slightly less than the result of the exact test. 
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Overall, survival differs between the three groups (p = 0.029). The test T; 
applied with values of X' equal to (1, -1, 0) and (0, 1 ,  -1) shows that survival 

differs between the canton of Vaud and Geneva (T: =3.99, using the first value of 

X', p < 0.05), but not between Geneva and C6te-d'Or (T; = 0.34, using the second 
value of X'). Figure 4.6 showing ten-year survival demonstrates clearly the reason 
for this apparent contradiction: mortality is initially less in the canton of Vaud, while 
the five-year survival rate here is almost the same as in Geneva (see the test 
described above page 247). 

The difference between survival curves is often characterized by a constant 
ratio R between instantaneous death rates. This ratio is a measure of the relative 
risk of death in one group compared to another. The quantity 

can be taken as an estimate of this ratio if it is between 0.5 and 2, but it has been 
shown to be an underestimate when it is too far from unity [21]. In this latter case, 
estimation of the relative rate by maximum likelihood in the context of the Cox model 
(see page 263) is preferable. The Mantel-Haenszel estimate can also be calculated 
from the series of contingency tables obtained for each date of death as in 
Table 4.1 1 : 

where Ni' = nki + nhi 

The force of mortality in group k is Rkh times higher than that to which group 
h is subjected. The logrank test evaluates the hypothesis Rkh = 1 against the alter- 
native Rkh f l .  It is optimum in this situation. 

When rates are not proportional and the ratio of the forces of mortality 
decreases over time as in the example above, the difference between curves will 
be more correctly determined by the Gehan-Breslow test, which only differs from 
the logrank test in the weighting of the differences between the observed and ex- 
pected numbers. The principle of this test is based on the calculation of a score for 
each of the groups being compared. This score summarizes all possible pairwise 
comparisons of survival times: all follow-up times tkj in group k are compared to all 
follow-up times tlh in the other groups and: 

v(k,j,l,h) = + 1 if the comparison of tkj and tlh indicates that subject j has a better 
survival probability, and 

v(k,j,l,h) = -1 if the comparison of fkj and tlh indicates that subject j has poorer 
survival; 
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the value 0 is given to y, when the comparison is inconclusive, either because of 
equal survival times or censored observations. The score associated with group k 

? [? Y (k, j, I, h) is higher to the extent that survival times i n  the group are on I 
average greater than those of all the other groups. It is easy enough to verify that, 
ignoring its sign, this score is equal to 

where the summation extends over all the dates of death. In other words, Ck  is 
again obtained as a sum of the differences between observed and expected numbers 
over all time points at which a death occurs. However, unlike the logrank test, this 
sum is weighted by the total number of subjects still at risk at this date. Any given 
difference will thus have a weight which is higher for short follow-up times, when 
Ni is still large, while its effect on the score will be negligible for long follow-up 
times if the number of subjects still under observation is small. Figure 4.6 suggests 
that this statistic will be particularly sensitive in the first years to large observed 
differences between the canton of Vaud, Geneva and C6te-d'Or. 

The score Ck is calculated for each of the first r - 1 groups, and the variance- 
covariance matrix of the Ck is constructed from: 

where the variance and covariance are defined by formulas (4.43) and (4.44). When 
comparing three groups, the statistic T3, analogous to TI, is written: 

where, as previously described, Wij denotes the terms of W, the inverse of the 
variance-covariance matrix of the parameter estimates for the two groups involved 
in the calculation. 

As the value of Ck is generally very high, each score in the numerical appii- 
cation given below has been divided by the number of thousands of conclusive 
comparisons carried out (with score equal to either + I  or -1). This operation ob- 
viously does not change the proposed weighting and reduces the differences t o  an 
order comparable to that obtained for the logrank test. The calculations were carried 
out with data from the canton of Vaud, Geneva and C6te-dlOr; 1 156 446 conclusive 
comparisons were carried out and the modified score (per 1000) in each of the 
groups is: 
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which indicates that survival time is on average longer in the first group. To evaluate 
the significance of this difference, the variance and covariance of these scores are 
calculated using (4.55) and (4.56) modified by the weighting above. The result is 
the matrix 

W being the inverse of the matrix V defined by the first two rows and columns of 
the matrix above, we have: 

and the value of the statistic: 

The three global tests thus lead to the conclusion that survival in the first five 
years is significantly different between the three registries. Gehan-Breslow's test 
provides a much larger value (Tg = 14.17) than that obtained for TI (TI = 7.07) or 
T2 (T2 = 6.62) as it takes greater account of differences observed at the beginning 
of the curve and, as Figure 4.6 shows, differences between the Canton of Vaud and 
the other two registries are present mainly in the initial period. These results suggest 
that long-term survival is actually the same in the three registries but that artefacts 
linked to the definition of the date of incidence and to the mechanisms of follow-up 
may have led to the differences observed in the initial period. 

Obviously not every test described in this section needs to be used for each 
data set under study, nor should a test be selected solely for its convenience. In 
fact, the choice of a test should, as always, be dictated by a hypothesis made prior 
to the examination of the survival curves. As Gehan-Breslow's test can behave un- 
predictably in certain circumstances [26], caution is recommended in its use. In 
particular, the result of this test should be ignored if it does not produce significance 
when the logrank test does, especially when there is a large number of censored 
observations. 

Stratified comparison of crude survival 

The survival of a group of patients is generally associated with many prognostic 
factors which are themselves related. When survival of two or more groups are 
compared, it is crucial to take into account known prognostic factors. Thus, the 
difference of colon cancer survival between Geneva and the canton of Vaud might 
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be partially explained by differences in the distribution of clinical stages between 
the two regions: it would be preferable to compare the two geographic areas 'holding 
stage constant'. The opposite situation can also occur: a difference in survival be- 
tween groups may go unrecognized if a major determinant of survival within groups 
is ignored. 

Regardless of the distribution of the prognostic factors in the various groups, 
a comparison holding these factors constant will tend to increase the power of the 
test that is used by decreasing the within group variability. Accounting for these 
factors in the analysis is achieved through an adjustment based on an appropriate 
stratification as follows. 

For each category (or stratum) of the factor under consideration, the approach 
described in the previous paragraph is used (see page). We calculate, for each 
group k and stratum j, the number of observed deaths (Okj) and the number of 
deaths that would occur (Ekj) if, in each stratum, the force of mortality had been 
the same in each of the groups being compared. In other words, the expected 
number ekji of deaths at date ti in group k is calculated and summed separately for 
each stratum j. Evaluation of the difference between observed and expected num- 
bers is based on the sum of results from all strata. 

In order to simplify the notation, we first show how to carry out the adjustment 
for a two-group comparison in the presence of a two-category prognostic factor. 
Generalization to any number of groups and categories is immediate. The method 
is illustrated by comparing survival between patients with malignant melanoma of 
the legs and patients with melanoma at another site (using data from Geneva). As 
sex is known to be a prognostic factor for melanoma, it should be considered in 
the comparison. 

In the case of two groups, only one needs to be considered. we take the group 
(k = 1) of patients with melanoma of the legs. Thus: 

for males (stratum j = 1)  

for females (stratum j = 2) 

variances in each stratum being calculated using formula (4.43). 
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Observed and expected number of deaths in the group of patients with skin 
melanoma of the legs are added over the two strata: 

similarly, the variance of 0 1 ,  (the within-stratum variance) is obtained by addition of 
the variances of 011 and OI2 

then the quantity 

TI = 
(01. - El  .12 

Var(O1.- El.) 

is calculated; under the null hypothesis of equal survival, the statistic TI follows a 
X2 distribution with one degree of freedom. Comparison of TI with the critical value 
of the corresponding X2 distribution tells us if the two survival curves differ overall, 
after correcting for sex. 

An appropriate formula similar to (4.51), based only on observed and expected 
data in the two groups can also be used: 

T2 = 
( 0 1 . - ~ 1 . ) ~  3- ( 0 2 . - ~ 2 . ) ~  

E l .  E2. 

T2, under the null hypothesis, approaches (but is greater than) a X2 with one degree 
of freedom. The significance of T2 is sufficient to conclude that the groups have 
different survival probabilities, but calculation of TI is necessary if T2 is not signif- 
icant. 

When more than two groups are being studied, the calculation of the within- 
group covariance using formulae (4.44) and (4.46) and the generalization of (4.58) 
provides the basis for carrying out the adjusted global test and the associated tests 
on one degree of freedom given on page 251 In this case, the observed and ex- 
pected numbers calculated from the obvious generalization of formula (4.57) to more 
than two groups are used in formulae (4.49) and (4.50). 

Table 4.13 gives survival data by site for incident cases of malignant skin 
melanoma among males and females in Geneva between 1970 and 1982. 
Melanomas of the legs make up group 1; sites from the rest of the body form group 
2. The data are illustrated in Figure 4.7. 

The unadjusted comparison of group 1 (legs) and group 2 (other sites) using 
the logrank test shows significantly better survival in group 1: 

If the comparison is made without taking into account the patients' sex, it could be 
concluded that the mortality rate is approximately twice as high (p < 0.01) in group 
2 than in group 1 (4.52). 
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Table 4.13 Survival of patients with malignant skin melanoma(a) in Geneva, Switzerland. 
Incident cases 1970-1 982 

Year Group I (b) Group 2(b) 

Number Observed Expected Survival Number Observed Expected Survival 
at. risk deaths deaths(c) (standard at risk deaths deaths(c) (standard 

error) error) 

(a) Number of patients living and still under follow-up, cumulative deaths and survival are given for the end 
of the year under consideration. These values are based on calculations using a month as the time unit. 
(b) Group 1: 83 patients with melanoma of the skin of the leg. Group 2: 204 patients with other skin 
melanomas. 
(') Variance in brackets. 

I - Other sites 

0 6 12 18 24 30 36 42 48 54 60 

Time since diagnosis (months) 

Figure 4.7 Survival of skin melanoma patients by site, Geneva, Switzerland 
(incident cases 1970-1 982); both sexes 
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In fact, it is known that sex plays a strong prognostic role in the survival of 
melanoma patients: women have a better survival than men. As melanoma of the 
legs is much more frequent in women (641146 = 43.8%) than in men 
(1 91141 = 13.5%), the observed effect can partially be explained by sex. 

Table 4.14 gives the same survival data for each sex separately. After adjust- 
ment (see formula 4.58), the comparison becomes: 

Thus, the hypothesis of equal survival for the two sites can no longer be rejected 
after taking sex into account. The relative mortality rate is now estimated to be 
1.0810.77 = 1.4, a value which no longer differs significantly from unity. 

Figure 4.8 shows that these results should be examined even more closely 
since, survival for group 1 (legs) is better than that of group 2 (other sites) regardless 
of sex or follow-up time. We see that, in men, there are only 19 cases of melanoma 
of the legs. Thus estimation of survival rates in this stratum is imprecise : for this 
latter patients the confidence intervals of survival probability at five and ten years 

Table 4.14 Comparison of survival of subjects with malignant skin melanoma by site 
and sex in Geneva, Switzerland. Incident cases between 1970 and 1982(a) 

Year Group 1 Group 2 

Number Observed Expected Survival Number Observed Expected Survival 
at risk deaths deaths (') (standard at risk deaths deaths (') (standard 

error) error) 

Males 
1 18 1 

Females 
1 6 2 2 2.6 

(1.5) 
3 6 0 4 8.6 

(4.7) 
5 5 5 9 12.9 

(6.9) 
10 17 13 16.2 

(8.7) 

(a) Number of patients living and still under follow-up, cumulative deaths and survival are given for the end 
of the year under consideration. These values are based on calculations using a month as the time unit. 
(b) Group 1: melanoma of the skin of the leg (18 male and 64 female patients). Group 2 : other skin. 
(') Variance in brakets. 
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the groups will no longer provide subjects at risk of dying, thus making the results 
from the test increasingly imprecise. In describing all the data by one model, the 
comparisons to be made are summarized by those between the few parameters 
which characterize the model itself. The information which was not available in the 
data is effectively replaced by information provided by the equation defining the 
distribution of the survival data under study. The benefit is however only real if the 
model is sufficiently valid. 

The classical analytical models (exponential, Weibull; see Chapter 1 ,  page 29) 
are often too rigid to take into account the diversity of situations which are en- 
countered in practice. Methods with more general applicability, based on principles 
analogous to those used in linear regression, have therefore been developed. The 
most frequently used in survival analysis is the proportional hazards model [25], 
which states that the instantaneous mortality rate depends on covariables through 
a multiplicative parameter applied to an unspecified background or baseline rate 

ho(t): 

where z is a vector of covariables and P a vector of coefficients measuring the 
intensity of the effect of the components of vector z. Thus, when z is the indicator 
of membership in a subgroup, this model implies that, at each time point t, the 
mortality rate in the subgroup (z = 1) is proportional to the mortality rate for the 
rest of the study sample (z = 0): 

where 0 = eP is consequently the relative mortality rate of the subgroup with respect 
to the rest of the sample. 0 is also a good approximation of the relative risk of dying 
at time t when the cumulative mortality rate is small. 

As a rule, the ratio of hazard rates for any two values of z: 

is independent of time, giving rise to the name, proportional hazards model. This 
model is often called semiparametric because the background rate ho(t), unlike the 
relative rate, is not specified by a parametric model. 

When the factor under study is defined by a qualitative variable with r catego- 
ries, the variable z = (z ,... z,), where the zi are r - 1 indicator variables defining 
membership of the subgroups corresponding to r - 1 categories of the factor, is 
constructed: for 2 I i I r, zi = 1 if the subject falls into the ith category and zi = 0 
otherwise. The first category of the factor is characterized by zi = 0, 2 I i I r. The 
choice of the particular role played here by the first category is obviously arbitrary. 
Thus, if the covariable under study is stage at diagnosis, coded into three classes 
of increasing severity, two indicator variables are constructed. A subject in stage 1 
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is coded as z2 = 0 and z3 = 0 ,  a subject in stage 2 as z2 = 1 and z3 = 0 and a 
subject in stage 3 is defined by z2 = 0 and z3 = 1. 

The coefficient Pi corresponding to the indicator variable z i  allows the calcula- 
tion of Oi, the relative mortality rate for patients in the category compared to those 

in the first category. Thus, in the previous example, O2 = e b  is the relative rate of 
subjects in stage 2 with respect to subjects in stage 1. The relative rates of any 
two categories can then be derived from the previously described relative rates by 
simple division, the choice of standard categories being entirely arbitrary. Still using 
the example of disease stage, 03/02 measures the relative rate of the subjects in 
stage 3 compared to those in stage 2, and similarly for all pairs of categories. 

The proportional hazards model has already been discussed in the context of 
incidence data (Chapter 2). There, it was noted that the ratio of incidence rates in 
two populations with different cancer risks was frequently independent of age. This 
variable played the same role as time since diagnosis in the present situation. The 
constancy of the ratio implied that the age-incidence curves for the two populations 
were parallel when plotted on a logarithmic scale. 

In survival analysis, the hazard rate itself is not usually calculated. Neverthe- 
less, analogous graphical properties can be demonstrated from the estimation of 
survival probability itself. Since: 

we have: 

an equation which shows that the proportional hazards model is also a generalized 
linear model in which the intercept with the Y-axis is the logarithm of the cumulative 
background rate at the specified time interval. This relationship also shows that, if 
the negative of the logarithm of survival probability is plotted on a logarithmic scale 
for two values u and v of z ,  the two curves will differ from each other by a translation 
of value p(v - u). Drawing these two curves in practice helps to assess the validity 
of the model. 

Just as the linear regression method is used in the context of normally-dis- 
tributed observations to assess the specific effect of a risk factor (see Chapter 3, 
page 158), fitting the model ho(t) e a x  + pz to survival data allows the effect of a vari- 
able z to be evaluated after correcting for a confounding variable x. The regression 
method is successful where a stratification method would have failed because it 
assumes that the effect of z is the same regardless of the value of x. In contrast, 
the method of stratification evaluates the effect of z for all categories of variable x, 
which means that a larger number of observations is required for the analysis. When 
the model is judged to be inadequate, it is obviously possible to construct a model 
which is slightly modified in each stratum by defining a baseline rate ho(t) exclusive 
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to it. Equivalently, interaction terms expressing that the effect of z is no longer the 
same for different categories of x can be introduced into the model. It should how- 
ever be remembered that overly complicating the model risks sacrificing a large part 
of its value, as much in its interpretability as in its effectiveness. 

Principle of the Cox model estimation 

The estimation of the vector P in the model (4.61) has been described in detail 
in Chapter 1 ,  page 30. In this section, the application of these principles to survival 
analysis is described for malignant melanoma of the lower limbs, already used to 
illustrate comparative methods. The covariable under study here is sex, defined by 
z = 1 for female subjects and z = 0 for male subjects. The model (4.61) implies 
that the instantaneous mortality rate for men is ho(t) and that of women is 8ho(t) 

P where 6 = e . 

Since under the model, two subjects of the same sex have the same mortality 
rate, it is clear that there is one chance in two that one will survive longer than the 
other. Furthermore, since 8 is the relative mortality rate for women with respect to 
men, a man has the probability Ill+ 6 of surviving longer than a woman. Similarly, 
the probability that a woman will survive longer than a man is O/lt..8 

If at the time point ti, n l i  men and n2i women are still under follow-up and if 
a subject characterized by the covariable zi dies, the probability of this death oc- 
curring among the nli + n2i possible deaths is, by extension of the previous concept: 

When the mortality rate ho(t) is not given by a parametric model, the likelihood 
can only be based on the order of the observations. In this case, it is equal to the 
probability that the m deaths occur in the observed order and that they had preceded 
the censored time that followed them. By repeated application of formula (4.66), the 
likelihood is obtained as: 

A 
the estimate p of P is the value which maximizes the logarithm of V(P): 
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A 

To obtain p, the derivative of this function with respect to p is set equal to zero: 

A A 
m 

known as the score. Noting that 8 = ep and d 2 =  2 Zi is the total number of deaths 
i= 1 

observed in women, the equation C(p) = 0 is equivalent to: 

an expression which indicates that the total number of deaths observed in women 
is consistent with the proportions of female deaths predicted by the model at each 
observed date of death. 

A 
The variance of P is obtained from the second derivative of L(P). Thus, in the 

context of this example, we have: 

Since the likelihood curve is concave around its maximum, its second derivative 
is negative (see Figure 4.9). The bigger the absolute value of its second derivative, 
the greater the curvature of L(P) and the more precise is the estimate (see Chapter 1, 

Figure 4.9 Likelihood and associated statistics. Cox model 
for survival of skin melanoma patients by sex, Geneva, Switzerland 

(incident cases 1970-1 982) 
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page 17). Similarly, the greater the curvature is, the more C(P) is variable in the 
vicinity of b. It can be shown that the variance of is closely approximated by the 
inverse of I(P) and that I(P) itself is a good approximation of the variance of C(P). 

Under the previous reasoning, we suppose that a single death occurs at each 
time ti. In practice, this is rarely the case as the measurement of time is never 
precise enough to allow all deaths to be ordered. This situation is particularly true 
for data from registries when only the month of death is recorded. When Di deaths 
have been observed at time ti, the available information on survival time could have 
been generated by the observations defined by all possible orders of the identical 
survival times. There are therefore Di! possible configurations. it can be seen that 
a calculation based on the above principle becomes practically impossible as soon 
as Di increases in size past a few units. In practice, the probability pi(P) is approxi- 
mated by the quantity: 

which is proportional to the probability that dli male deaths and d2i female deaths 
are observed out of a total of Di deaths observed at time point ti. The equations 
(4.68), (4.69), (4.70) and (4.71) in our example thus become: 

The likelihood suggested by Cox is defined for each survival time by the proba- 
bility that the Di deaths have the observed configuration at this date: 

where C is the totality of choices of dZi deaths among the n l i  + n2i subjects present 
in the study at ti, and k(.e) is the number of female subjects in the combination 8. 
The expression (4.72) is an approximation to (4.77), and is used in most computer 
software for survival analyses. 
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Table 4.15 Likelihood of the Cox model; prognostic value of sex on survival of sub- 
jects with melanoma of the legs in Geneva, Switzerland (Incident cases 1970-1982) 

Date Males Females Contribution to the l i ke l ih~od(~)  

death at risk death at risk 
A 

Log pT(0) Log p,(P) 

A 
(") See (4.67), (4.68), (4.72) ; 8 = eP ; P = 0.76 

Table 4.15 gives dates of observed death, number of subjects under follow-up 
at each date and the contribution of each death to the likelihood. The approximation 
(4.72) is used in case of identical survival times. Figure 4.9 shows the function 2L(P) 

A 
in the vicinity of fi which, in this case, is -0.76 (8 = 0.47). Here the test of the 
hypothesis P = 0 has as its objective the comparison of the survival between male 
and female subjects, and could be carried out by the logrank test. In the context of 
the maximum likelihood method, there are several classical tests available [33] (see 
Chapter 1); it is of note that one of them will again lead to the logrank test. 

The likelihood ratio tesf 

has a X2 distribution under the null hypothesis. Its number of degrees of freedom 
is equal to the dimension of P. In the example given, the number of degrees of 
freedom is equal to unity and TI = 2.63 (p = 0.1 1). 
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A 

A 
Furthermore, 2[L(P) - L(Po)] has this distribution if P = Po. We define around 

p all the values of j3 which, given the observations, are not rejected by the test TI, 
that is, those for which 

This interval is classically known as the likelihood-based confidence interval, and 
noted as LCI, in Figure 4.9. 

A 
Wald's test is based on the variance of P, obtained from the matrix of the 

second derivatives of L. In the example where P is of dimension 1, 

is a X2 variable on one degree of freedom. Here, the standard error associated with 
the estimate j3 is calculated from 1 I I(P) and is 0.451, therefore T2 = (-0.76)~/(0.451)~ = 
2.84. indicating that we can not exclude the possibility that P is null. 

A 
The variance of P, allows a confidence interval for P to be constructed using 

the usual expression: 

This interval is derived in the same way as the interval LC1 except that 2[L(P) - L(O)] 
is replaced by its quadratic approximation (see Figure 4.9 and Chapter 1 ,  page 17). 

The Score test is based on the vector of first derivatives of the likelihood 
which, in the example, reduces to the function C(P). The statistic 

assess the magnitude of the slope of the tangent to the likelihood curve 2L(P) at 
the value of j3 being tested (here 0). If it is not possible to reject the hypothesis 
that this line is horizontal, then it should be concluded that 0 is acceptable as a 
value of p. In the example, T3 = 2.98. Since, from formula (4.75) 

it can be seen that the score test is based on the same statistic as the logrank. 
The variance I(0) is exactly that obtained in (4.43) if there are no ties (Di = 1 for 
each ti). It is slightly different if there are ties (since each term of the sum defining 

it is multiplied by (Ni - l)/(Ni - Di)). Using pf (P) (4.77) instead of the approximation 

pi*(P) to calculate the likelihood would give exactly the same variance as (4.43) and 
the score test will thus be identical to the logrank test in all cases. 

The previous example illustrated the use of the Cox model to estimate the 
relative rate for a single dichotomous factor. The principles applicable when more 
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than one categorical or continuous factor is studied (the case in fact for which the 
model was developed) have been described in Chapter 1. These principles are ex- 
actly the same: only the expression of the model is more complicated. In the con- 
struction of these models, the mortality rate ho(t) has been considered to be  a 
nuisance parameter. However, in practice, it is often desirable to estimate the sur- 
vival curve corresponding to this background rate. The principle of the Kaplan-Meier 
method (see formula 1.22) is used here, but the number of deaths at time point ti 
is related to a modified denominator to take account of the fact that not all individuals 
under follow-up at time point ti are subject to the same risk of death. The estimate 
of S,(t) is therefore given by the formula: 

in which each individual in group Ri of subjects at risk of death at time ti is no 
longer counted as one but as a value equal to its relative rate. 

Example of an adjustment using Cox's model 

Survival data based on hospital records are often considered to be a biased 
representation of the overall situation. In particular, survival rates calculated from 
these data may be better than those obtained from the ensemble of incident cases. 
One explanation for this phenomenon is that cases not treated in hospital are often 
those that are very advanced or that have not been treated at all. Hospital statistics 
would therefore represent a selection of favourable cases, for which survival is over- 
estimated in comparison to the general population. 

The Geneva cancer registry routinely collects the place of treatment of all in- 
cident cases (public university hospital or other health care centre). The survival of 
patients treated in these two health centres can thus be compared. Breast cancer 
data are given as an example [34]. The 1105 women diagnosed between 1975 and 
1982, were allocated to two groups depending on their place of treatment. The two 
groups were then compared using a Cox model with one covariable z, indicating 
group membership (z=l corresponds to the group treated in a university hospital): 

The hypothesis of equal death rates in the two groups (P = 0) is evaluated by 
the score test (4.81) which, in this case, corresponds to the logrank test. The value 
obtained (T3 = 29.9) corresponding to a X2 on one degree of freedom is very sig- 
nificant (p i The likelihood ratio test (4.78) obviously confirms this result 
(TI = 33.2). 

The estimate of the relative rate obtained by maximizing the Cox likelihood is: 
A A o = eP= 2.04 
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indicating that the mortality rate is about twice as high for patients of the public 
university hospital as for those of other health care centres. 

Since there is no reason to suspect that health care is inferior in university 
hospitals, it is important to take into account factors which might lead to the selection 
of cases with a poorer prognosis into public health care institutions. One possibility 
may be that the public hospital receives advanced cases which require complicated 
treatment and have poorer prognoses. There may also be selection by social class 
associated with the higher financial contribution required of patients in the private 
sector. Clinical stage, social class and age have therefore been examined in order 
to assess this assumption. It is known that these three variables have a prognostic 
role and Table 4.16 shows that they have a different distribution in the two health 
care systems. Consequently, they should be taken into account in the comparison 
(see page 255) otherwise all or part of their effect may be attributed to the type of 
hospital health care system. 

Clinical stage, which has a fundamental importance in this context, is used to 
illustrate the model-fitting for a qualitative variable. This variable has four categories, 
with an associated vector of indicator variables x = (x2, x3, x4) defined by: 

Localized only (x2 = 0, x3 = 0, x4 = 0) 
Regional involvement (x2 = 1, x3 = 0 ,  x4 = 0) 
Metastases (x2 = 0, x3 = 1, x4 = 0) 
Unknown (x2 = 0, x3 = 0, x4 = 1) 

These three variables are then included in the model which is written: 

the variable z still being the variable of interest indicating the health care system 
as defined. 

Table 4.16 : Distribution (%) of prognostic variables available by health care system 
for breast cancer in Geneva, Switzerland (Incident cases 1975-1982) 

Age (years) < 50 50-64 65-74 75+ 

University hospital (N=808) 
Other (N=297) 

Stage Local Regional Metastasis Unknown 

University hospital (N=808) 47 39 10 4 
Other (N=297) 60 27 1 12 

Social class Manual 
workers 

Office Executives Unknown 
workers 

University hospital (N=808) 
Other (N=297) 
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A 

The estimate 6 =  ep which maximizes the likelihood of observations for this 
model is the relative mortality rate 'adjusted for stage' for the university hospitals. 
Its value (6 = 1.91) is only slightly less than the previous value, showing a small 
confounding effect due to the fact that the stage at diagnosis is on average more 
advanced in public hospitals. 

The test of the hypothesis P = 0 from the likelihood ratio gives a value 
TI = 22.8. By the score test, the value obtained is Tg = 21 .O. These values are very 
significant in both cases,indicating that the effect of hospital type remains after taking 
stage into account. 

The logrank test with stratification described earlier (see page 255) could have 
been used to solve this problem. In fact, it would have provided the same results 
as a Cox model with stratification specifying: 

This equation implies, as does (4.84), that there is the same relative rate between 
public hospitals and other health care systems for each stage x. However, it allows 
for the possibility that the baseline hazard rates might differ for each stage. The 
maximum likelihood here is the product of the likelihoods of the proportional hazards 
model written separately for each stage. To obtain the score test for the hypothesis 
p = 0, scores calculated for each stage are first summed and the variance of this 
sum is calculated by addition of the within-stage information related to P. The test 
is then the ratio of the two sums and is identical, apart from the way in which ties 
are dealt with, to the logrank test with adjustment for the stage given page ... Its 
value (T3 = 19.4) is very close to that obtained above, (Tg = 21.0), and the estimate 

of p (8 = 1.85) is little different from that derived from the model (4.84), that is, 
A 0 = 1.91. This result confirms that the stage at diagnosis is responsible for only a 
small part of the difference observed between the two types of hospitals. 

The adjustment for all other available variables is summarized in Table 4.17. 
Although social class and age have some prognostic value, they do not qualitatively 
change the previous conclusion since the estimate of P, after adjusting for these 
variables, still corresponds to a relative rate of 1.56 which is significantly different 
from unity. 

Figure 4.10 gives survival observed in the two groups. Survival predicted by 
the model for each of the hospital types is also given. The predicted survival for 
other health care system is given for a group of patients with an identical distribution 
of stage, age and social class to that of the patients treated in the public university 
hospitals. The difference between the curve predicted and observed for patients 
outside university hospitals is an estimate of the portion of the improvement in sur- 
vival which can be explained by the most favourable distribution of the recorded 
prognostic factors in patients treated outside the public sector. 

This result suggests that factors other than stage, age and social class as 
recorded by the registry may lead patients with worse prognoses to be treated in 
university hospitals. The presence of a large number of cases of unknown stage 
among patients treated in other health care systems could distort the comparison, 
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Table 4.17 Cox's model for breast cancer survival data from Geneva, Switzerland 
(Incident cases 1975-1982) 

A 

SE($) 
A 

Na) Wb> Score test(c) 

Health care system 
University hospital 
Other 

Stage 
Local involvement 0 - 1 .oo 21 .o 

Regional involvement 0.801 0.12 2.23* 
Metastases 2.482 0.16 11.97* 
Unknown 1.399 0.19 4.05* 

Age (years) 
< 50 
50-64 
65-74 
75+ 

Social class 
Manual workers 
Off ice workers 
Executives 
Unknown 

(a) Estimate obtained when all variables (stage, age and class) are included in the mqdel. A 

(b) The asterisk indicates variables for which the 95% confidence interval excludes 1 (P/SE(P)2 1.96). 
(') Test of effect of the health care system after inclusion of the corresponding variable in the model. The 
first model is the crude test of effect equivalent to the logrank test without adjustment. 
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Figure 4.10 Observed and adjusted survival of breast cancer patients 
by type of hospital - Geneva - Cases diagnosed between 1978 and 1982 
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as could cases of advanced clinical stages which are almost all treated in university 
hospitals. It is therefore worth repeating the analysis, limiting the comparison to 
patients whose tumours were at an early stage, either being localized or only show- 
ing regional involvement. The results are not modified substantially although the 
estimate of 6 = 1.54 is decreased as is the score test (Tp = 7.57),  showing that 
part of the difference observed for unknown stage was incorrectly attributed to an 
effect of the health care system. 

These results do not correspond to the commonly held notion of better survival 
in leading hospitals; effects of selection other than those which have been controlled 
for are probably responsible for the findings. Furthermore, it is known that adjustment 
by class can leave residual differences with respect to confounding factors because 
of the phenomenon of within group variation. Classification into three clinical stages 
only partially accounts for the characteristics of the disease. Fitting stage categories 
more finely, even though impossible due to the lack of the necessary information, 
would have improved the results. 

Phenomena of this kind have been described by Feinstein [35]  to illustrate the 
paradox attributed to Will Rogers. Convinced of the mediocre intellectual level in 
California even among higher socio-economic classes, Rogers noted that the aver- 
age cultural level in California improved even when underprivileged people from 
Oklahoma emigrated there. This emigration obviously caused a similar phenomenon 
in Oklahoma. A similar situation occurs with the retrospective reclassification of clini- 
cal diagnoses of cancer [35] .  Reclassification effectively leads to the worst cases 
of localized cancer being categorized as regional stage, although these cases have 
on average a better prognosis than those of the category in which they are now 
classified. The result is a purely fictional improvement in the survival rate in both 
categories. 

Comparison of net survival 

Differences between the survival distributions in several groups are often dif- 
ficult to interpret because the overall mortality observed is partially due to competing 
causes of death. These causes, however, are not the object of the comparison and 
the extent of their effect can vary from one group to another. These difficulties can 
be very pronounced when a comparison is to be made over a long time period, in 
particular when the groups being compared do not have the same age distribution 
or life expectancy. Comparison is then carried out using net survival. 

The methods discussed in the previous sections for comparing survival between 
two or more groups apply without change if the net survival is estimated by the 
cause-specific survival method (see page 230). In effect, dates of death not caused 
by the cancer under study are considered as censored observations. However, as 
noted above, it is not generally advisable to use this method because of inaccuracies 
in the classification of the causes of death. Other methods such as relative survival 
should thus be considered to estimate net survival. Unfortunately, the analysis is 
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then nof.as simple and should be adapted from principles used above to carry out 
the comparison of crude survival. 

The comparison of two relative survival rates at a given time point (e.g., five 
years) can be easily carried out by calculating their variances, which are in turn 
obtained directly from the crude survival analyses. A test analogous to that given 
in formula (4.42) can then be easily carried out. This approach is however subject 
to the same criticism as for crude survival. 

Note that the use of relative survival does not remove the need to account for 
age in the comparisons. In fact, as we have seen before (Table 4.10) and as we 
will confirm below, net survival, like crude survival, is often dependent on age. Rela- 
tive survival should therefore also be adjusted for the effect of age before any 
interpretation of observed differences is made. Myers and Hankey [36] and Hakuli- 
nen [37] have resolved this problem by calculating relative survival in subgroups 
which are homogeneous for the main determinants of net survival and by calculating 
a relative survival rate for the whole group using the method of direct standardisation 
(see Chapter 2, page 56). Myers and Hankey compared relative survival for different 
cancer sites between Blacks and Whites after adjusting for age and stage. Hakulinen 
compared relative survival between Finland and Norway after adjusting for age. How- 
ever, this method accounts rather imperfectly for the effect of age and depends to 
some extent on the choice of the standard population. Furthermore, as for crude 
survival, comparison of survival at specified time points is rarely the only problem 
of interest. Consequently, methods have been proposed for comparing entire net 
survival curves and adjusting for confounding variables. We will only describe here 
the principles underlying these methods and suggest further reading for the reader 
who wishes to apply them. 

One possibility is to adopt a method analogous to the Mantel-Haenszel test, 
by considering the distribution of deaths in the groups for each interval appearing 
in the actuarial survival curve (Table 4.11). Brown [38] and Hakulinen [39,40] have 
constructed tests of this kind, based on the maximum likelihood method. The dis- 
tribution of the number of deaths dki for time interval i among the nki subjects in 
group k is a binomial distribution: 

where rki is the relative survival of the nki individuals in group k who were living at 

the beginning of the interval and sgi is their expected survival, calculated from the 
life table, and taking into account the competing forces of mortality. The test of the 
hypothesis that the rki are equal is however more complicated than the Mantel- 
Haenszel test: when nki and the number of deaths are fixed, dki has a noncentral 
hypergeometric distribution with variance and covariance depending on rki. Although 
identical in all groups for each interval i under the null hypothesis, the rki neverthe- 
less remain unknown, and in order to carry out the test, they must be estimated. 

Moreover, this method makes implicitly the unrealistic assumption that all in- 
dividuals at risk of death at the beginning of the interval have the same expected 

survival sii. Its application would in principle require stratification of the variables 
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influencing survival so that, for each level j of the stratification variable, the nkji 
individuals at risk at the beginning of the interval would have the same expected 

survival ski .  Stratification of this kind is always possible for age and sex, for which 

the existing life tables allow the calculation of expected survival probability s i j i .  

When groups being compared have the same mortality hazard for other causes, 
this stratification will make expected survival identical for individuals in the different 
groups being compared within each stratum thus created. The logrank test with 
stratification then applies without change since, under the null hypothesis, the proba- 
bilities of dying are identical. In this special case, stratification by age avoids the 
need to adjust for competing causes. Adjusting for age using Cox's model is also 
possible. However, if age classes are included directly in the model equation, the 
effect of age is implicitely considered as being multiplicative; since a large part of 
this effect is created by the additive effect of competing causes of death (see 
formulae 4.29 and 4.39) it might be advisable to fit an age stratified Cox model. 

When mortality for other causes cannot be considered equal for the two groups, 
Brown's and Hakulinen's methods can be used, bearing in mind that the variance 
of dki differs from that specified by the binomial distribution. It is relatively easy to 
take this problem into account in the context of a generalized linear model such as 
that proposed by Hakulinen [39,40]. However, it seems more efficient to derive the 
likelihood from individual observations and not from data grouped by interval. This 
approach has been used by Pocock and coworkers [41], Buckley [42] and in the 
model presented in the first part of this chapter. Pocock assumes that the rate added 
to the baseline rate of the general population by the presence of the disease 
decreases exponentially with time. In contrast, Buckley considers the case where 
the distribution of net survival is exponential. The extension of his analysis to  a 
proportional hazards model with baseline rate described by a step function is dis- 
cussed by Esteve and co-workers [20] and summarized by the formulae (4.38), (4.39) 
and (4.40). This approach leads to a classical test based on the likelihood ratio 
principle analogous to that described for the Cox model. The strategy discussed for 
this latter model can be applied without change (see p. 268). 

As an example, the method has been applied to colon cancer survival data 
from Geneva (page 244). Table 4.18 presents the test of the effect of sex on survival 
in three different contexts. In the first, the comparison is made ignoring mortality 
from other causes; in the second, the method described above is used and, in the 
third, cause-specific survival probabilities are compared. Sex has no significant effect 
regardless of the method used. Nevertheless, it is worth noting that the effect of 
sex is corrected in the right sense when competing causes are taken into account. 
The effect of age on net survival can also be evaluated by the likelihood ratio test. 
The logarithm of the likelihood of model (4.38) with 0=0 is calculated to be -1072.25, 
giving a X2 on two degrees of freedom equal to: 

Although the effect of age appears to be weaker for net survival, it still remains 
very high. The effect of age would have been incorrectly described if it had been 
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Table 4.18 The influence of age and sex on colon cancer survival i n  Geneva, Switzerland. 
(Incident cases 1970-1 979) 

Context Estimate of p 
(Standard error) 

Sex Age 
males(a) 

65-74 75 + 

1) Crude s~ rv i va l (~ )  0.101 
(0.08) 

sex excluded - 

2) Net survival(c) 

sex excluded 

3) Cause-specific survival(d) 0.005 
(0.09) 

sex excluded - 

Logarithm 
of the 

likelihood 

(a) In each context, the second model contains age only in order to allow for the likelihood ratio test to be 
carried out. 
(b) Proportional hazard models fitted by Cox's method with three months as the time unit. 
(') Proportional hazard model with a background rate constant for three-month intervals up to three years 
from diagnosis, six-month intervals up to four years and then an interval of one year and an interval of five 
years. 
(d) The same models as for (b), but each death not recorded as due to cancer of the colon is censored 
at the date of death. 

All ages 
20 I--- -- > 74 

Figure 4.11 Relative survival of colon cancer cases diagnosed between 1970 and 
1979 i n  Geneva, Switzerland, estimated by the method of maximum likelihood 
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studied for relative survival at five years and it would have been almost unnoticed 
using relative survival at ten years (Table 4.10). Figure 4.11 shows the net survival 
of the three age groups and of all groups calculated by the-maximum likelihood 
method. 

Bi bliographical Notes 

Chiang's now classic work [43] dedicated to stochastic processes in the field 
of human biology, provides a complete, systematic and integrated study of the ap- 
plication of probability theory to the concept of risk and survival which are essential 
in epidemiology. Although this work is usually reserved for statisticians, it contains 
many chapters which are relatively accessible mathematically. These sections mainly 
involve analysis of the life table and the mechanics of its construction, and the 
problem of competing risks. Chiang has written a manual for the World Health Or- 
ganization on the life table which is more accessible to epidemiologists [44]. 

More detailed concepts and methods underlying survival analysis can be found 
in the more recent, fundamental work of Kalbfleisch and Prentice [26]. Although the 
concepts and methods are mainly described for mathematically-minded readers, the 
accompanying examples assist the non-statistician. Of particular note are the sec- 
tions on parametric models (Weibull, exponential, log-normal, gamma) and the prob- 
lems presented by the adequacy of the models fitted. Cox's proportional hazards 
model and its application are the subject of a substantial section in the book, espe- 
cially with regard to time-dependent covariates. A review of the theory of competing 
risks and methods for the retrospective analysis of survival can also be found in 
this text. 

The manual on survival analysis by Hill and co-workers is among the more 
practical texts for non-statisticians. Although it addresses clinical trials rather than 
epidemiology, this text is nevertheless useful for its detailed review of descriptive 
and comparative methods of survival study. Problems raised by tests of comparison 
have an important place in the book; an annex is entirely devoted to the principles 
underlying rank tests and the choice of the appropriate test. Parametric and semi- 
parametric models, the evaluation of goodness-of-fit, coding of variables, hierarchical 
tests and trend tests are treated with equal clarity. 

The description of the life table in Pressat's text offers a more demographic 
view point [45]. Of historical interest, Berkson first proposed the concept of relative 
survival [I91 and the classic article by Elveback presents somewhat didactically the 
principles behind the actuarial method [46]. The scientific publication on cancer reg- 
istration published by the International Agency for Research on Cancer (IARC) con- 
siders the calculation of survival of incident cases [47]. 



REFERENCES 277 

Cancer registries can calculate survival using the computer program package 
developed by the Finnish Cancer Registry [48]. These programs enable users to 
estimate relative and observed survival curves and carry out comparative tests. 

Clinicians will benefit from the article by Christensen describing the concepts 
underlying the Cox model in the context of clinical trials [49]. This article provides 
practical advice and many examples on how to conduct the analyses and interpret 
the results. 
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