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Life table for Switzerland; 1978-1 983 
(source : Office federal de la statistique, Berne, 1985) 
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2 
Probability 
of death 

A 
q x  

0.001255 
0.001 248 
0.001257 
0.001282 
0.001 323 

0.001382 
0.001451 
0.001530 
0.001630 
0.001757 

0.001923 
0.0021 27 
0.002366 
0.002635 
0.002931 

0.003251 
0.003572 
0.003897 
0.004258 
0.004690 

0.005225 
0.005872 
0.006610 
0.007424 
0.008301 

0.009229 
0.01 01 72 
0.01 11 29 
0.01 21 82 
0.01 3356 

0.014712 
0.01 6236 
0.01 7894 
0.01 9706 
0.021694 

0.023879 
0.0261 99 
0.028641 
0.031296 
0.034256 

3 
Survival 

probability 
A 
Px 

0.998745 
0.998752 
0.998743 
0.998718 
0.998677 

0.99861 8 
0.998549 
0.998478 
0.998370 
0.998243 

0.998077 
0.997873 
0.997634 
0.997365 
0.997069 

0.996749 
0.996428 
0.9961 03 
0.995742 
0.995310 

0.994775 
0.9941 28 
0.993390 
0.992576 
0.991699 

0.990771 
0.989828 
0.988861 
0.98781 8 
0.986644 

0.985288 
0.983764 
0.9821 06 
0.980294 
0.978306 

0.9761 21 
0.973801 
0.971 359 
0.968704 
0.965744 

4 
Death rate 

5 
Survivor 
function 

4 x 

96474 
96352 
96232 
961 11 
95988 

95861 
95729 
95590 
95443 
95288 

951 20 
94937 
94736 
9451 1 
94262 

93986 
93681 
93346 
92982 
92586 

921 52 
91 671 
91 1 32 
90530 
89858 

89112 
88289 
87391 
8641 8 
85365 

84225 
82986 
81 639 
801 78 
78598 

76893 
75056 
73090 
70997 
68775 

6 
Number 

of deaths 
dx 

7 
Expectation of 

I t e  
ex 



APPENDIX 1 

2 
Probability 
of death 

A 
qx 

3 
Survival 

probability 
A 
Px 

4 
Death rate 

fix 

5 
Survivor 
function 

e x  

6 
Number 

of deaths 
dx 

7 
Expectation of 



284 APPENDIX 2 

Appendix 2 

Using GLlM in descriptive epidemiology 

The software GLIM' was specifically designed for fitting generalized linear mod- 
els which are commonly used in the analysis of epidemiological data. It is therefore 
one of the most useful tools for carrying out epidemiological calculations 

We should first recall the concept of the linear model. Suppose that Y is a 
normal variate with mean p and variance o2 and that p is linearly related to several 
covariates represented by the vector z : 

or 

Y = p z + r  

where E -+N(O, 02) is usually called the error. Suppose further that Y has been 
observed for several values of z.  The response variable, called also the dependent 
variable Y can therefore be represented by a vector of dimension n, the number of 
observations. Denoting Yi as the ith observation corresponding to the value zi of a, 
the maximum likelihood method enables f5 to be estimated by minimizing the ex- 
pression 

which is the negative of the log-likelihood. 

GLlM provides estimates of the coordinates of f5, the variance-covariance of 
these estimates as well as fitted values (Qi) and residuals (Yi - Qi). 

GLlM is an interactive programme which can be run on either a personal corn- 
puter or a mainframe and which is usually activated by simply typing GLlM on  the 
keyboard. In order to introduce the reader to its use, the estimation of the parameters 
of the regression equation which was fitted to the data presented in table 3.3 (Chap- 
ter 3 page ) is reproduced and commented upon below. Comments are framed and 
printed in italics; instructions given to the programme are printed in bold type, while 
output of the programme is printed in smaller character using the current typeface. 
As a rule an instruction is introduced by a '$' and remains activated until another 
$ character is input. With these conventions the dialogue between the computer and 
the user may be as follows : 

GLlM 

GLlM 3.77 update 2 (copyright)l985 Royal Statistical Society, London 

' Generalised Linear Interactive Modelling, NAG Ltd, Wilkinson House, Jordan Hill Road, Ox-, 
ford OX2 8DR, UK 
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After this welcome message the user is invited with a ? to input a directive (a 
$ followed by a word). Directives are either a statement or a request for an 
action to be carried out.Their name can be abbreviated provided that it is 
unambiguous. 

These directives state that there are 1 1  observations (n = 11)  and that there 
are two values per unit in the input data (z and y) 

The above directive requests data to be read from the keyboard. They should 
be input as described in the directive data. The computer therefore expects 
2 x I I numbers as a series of z y pairs 

This directive requests the output of the values of z and y. It is used here to 
check that the data have been input correctly. 

z Y 

The directive yvar enables the dependant variable to be specified, and err 
state that the error r is normally distributed ('n' for normal). This complete the 
specification of the model. The estimation starts with the directive fit and ini- 
tially produces the deviance and its d.f. 

deviance = 10.806 

d.f. = 10 
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Since the argument of fit is empty, the request is for the adjustment of a 
constant mean (Y = p x 1 + r where 1 is a vector with eleven coordinates 

n 
A 

equal to 1) .  In this case the estimate p of P is therefore = Yi and the value 
i= 1 

n 
A 

of the negative of the maximum log-likelihood L(P) = (Yi - Yl2, which is the 
i=l 

minimum deviation from the observed data when fitted with this class of models, 
is called the deviance; when divided by 02, the deviance is distributed as X2 
with d. f. degrees of freedom. 

In order to display the estimates (e) the directive display must be used. This 
latter direclive automatically produces standard errors of estimates and the 
value of L(P) /df, named the scale parameter which is here an estimate of 0'. 

estimate s.e. parameter 

1 2.152 0.31 34 1 

scale parameter taken as 1.081 

$DIS? $fit z $disp e 

deviance = 4.8900 

estimate s.e 
1 0.9923 0.41 58 
2 2.31 9 0.7028 

scale parameter taken as 0.5433 

parameter 
1 
z 

The directive fit z requests the estimation of the linear model p = Po + Plz Note 
that the constant 1 is always included in a model except if explicitly excluded 
(fit 2-1). The estimates of the parameters of the regression equation are the- 

A A 
refore Po = 0.9923 PI = 2.31 9 and a2 = 4.89/9 = 0.5433 

The letter r is an argument of the directive display. Yhen  typed while display 
is still activated, it requests that the fitted values (Yi) and the standardized 

A 
residuals (Yi - Yi)/SE(Yi) be output 
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unit observed fitted residual 

The generalized linear model differs from the above simple normal model in 
two respects, (i) the model now aims to describe a function of the mean and not 
the mean itself; (ii) the error is no longer distributed as a normal variate but belongs 
to a class of random variables which enable reliable estimation of linear models to 
be achieved. As pointed out often in this book, descriptive epidemiology collects 
data which are often distributed according to the Poisson distribution; in this context 
it is the logarithm of the mean which is modelled and the name 'Poisson regression' 
is now commonly used to designate genralized linear modelling using Poisson dis- 
tributed error and logarithmic transformation of the mean. We shall illustrate the 
principle of this method and its implementation in GLlM with the data of table 2.8, 
adjusting the model of equation 2.33 (see page...). 

Suppose that the data are stored in a file named MHP.DAT and organized as 
shown below, where each line corresponds to a computer record : 

8 8 36 54 53 96 115 145 

A possible way of fitting the multiplicative model (2.33) to the above data is 
given below. Comments briefly introduce the directives. 

GLlM 

GLlM 3.77 update 2 (copyright)l985 Royal Statistical Society, London 

/ Eight observations from each of two cancer registries. I 

Read the number of cases (k) in the file MHP.DAT which will be connected to 
the reading unit 1 after answering the file name request; then read the number 
of person-years (m). Note that dinput is used instead of read when reading 
from a file. 

? $data k $dinput 1 

File name? mhp.dat 



Create the variables AGE and REG (for registry) using the- function %g l :  this 
function creates a vector with values given by the first argument (here 8 and 
2 because I I  age I 8 and 1  I reg 5 2). The second argument gives the 
number of repetitions of each value. Note that, if not specified otherwise, the 
dimension of a vector equals the number of units. The character ':' enables 
the activated directive to be repeated with other arguments (here the calculate 
directive). 

? $cal age=%gl(8,1) :reg=%gl(2,8) $loo reg age k m $ 

REG AGE K M 

State, using yvar, that the response variable is the number of cases (k), state, 
using err, that the error distribution is the Poisson distribution and, using offset, 
that the origin of the response variable scale is shifted by log(m) (i.e., the 
mean p is such that log@) = zero + pz). 

- 

? $yvar k $err p $cal zero=%log(m) $offset zero 

State that AGE and REG are categorical variables (factors). This directive re.- 
quests the computer to create dummy variables for each level of the factors 
but one (i.e., 7 for AGE and I  for REG). 

? $factor age 8 :reg 2 $ 

The successive fits enable the contribution of each factor to be assessed. 
Remember that the change in deviance is distributed as a X2 with df equal to 
the corresponding change in degrees of freedom. 

I 

? $fit :+ age :+ reg $ 

scaled deviance = 676.59 at cycle 4 

d.f. = 15 
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scaled deviance = 18.142 (change = -658.4) at cycle 3 

d.f. = 8 (change = -7) 

scaled deviance = 9.3920 (change = -8.750) at cycle 4 

d.f. = 7 (change = -1) 

estimate s.e. parameter 

scale parameter taken as 1.000 

unit observed 

8 
8 

36 
54 
53 
96 

115 
1 45 

10 
6 
7 

18 
17 
25 
35 
37 

fitted residual 

-1.244 
-0.734 
0.580 

-0.227 
-0.280 
0.312 
0.044 
0.312 
1.845 
1.240 

-1.033 
0.419 
0.539 

-0.569 
-0.080 
-0.581 

The programme provides several statistics, values of which can be requested 
through the look directive. For example to get the classical goodness of fit x2 
type : 

Note that most statistics can also be calculated directly using system-built vec- 
fors storing the main results of the fit. For example the above x2 is obtained 
through %fv which sfores the fitted values. 
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Notenthat the above values are the squares of the standardized residuals, 
(Yi - Yi> 

6 
listed previously. The residuals could also be stored in a vector : 

? $cal r2=(k-%fv)**2/%fv $ 

The directive table is a powerful tabulation programme. It is used here in its 
simplest form to get the total of r2 coordinates, that is the value of the good- 
ness of fit X2. 

? $tab the r2 t $ 

Before going to the next example of Poisson regression, we should remember 
that the estimates of the coordinates of P are the logarithms of the estimated relative 
rates; for example the relative rate of age-group 8 (70-74 years) compared with 
age-group 1 (35-39 years) is exp(3.08)=21.76. The incidence rate of this latter age- 
group is estimated as exp(-7.519)/5=10.85/100 000 (the estimated rate is divided 
by five because we input the populations instead of the person-years; see table 
2.8); similarly the relative rate of Geneva (REG(2)) compared with Zaragoza is 
exp(-0.2651) = 0.767. 

The method of Poisson regression is now applied to the data of table 2.13 
(page ), stored as previously in a file named HOMINCG.DAT. Only the ciata corres- 
ponding to age greater than 20 were used, since no case was observed before that 
age. 
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GLlM 

GLlM 3.77 update 2 (copyright) 1985 Royal Statistical Society, London 

1 Thirteen age-groups and six cantons of CBte d'Or make 78 units of observation. I 

File name ? homincg-dat 

Create the variable AGE and PLACE (for canton). The first two arguments of 
the directive look select the output interval for the vectors looked at, I to 12 
in the present example. Note that GLlM 3.77 retains only four meaningful letters 
to identify a variable (plac for place) 

$DIN? $cal age=%gl(13,6) :place=%gl(6,1) $loo 1 12 place age k m $ 

PLAC AGE K M 

Specify the model and the factors to be used in the fit; then fit the multiplicative 
model. 

? $yvar k $err p $cal zero=%log(m) $offset zero 

? $factor age 13 plac 6 

$FAC? $fit age+plac $disp e $ 

scaled deviance = 68.1 98 at cycle 8 

estimate s.e parameter 

1 
AGE (2) 
AGE (3) 
AGE(4) 
AGE(5) 
AGE (6) 
AGE (7) 
AGE (8) 
AGE (9) 
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scale parameter taken as 1.000 

Note that the incidence rate estimate in age-group 3 is almost zero and has 
a very large standard error. Actually no case has been observed in this age- 
group and the incidence rate estimate should be zero. The next step is to 
assess the significance of the factor PLAC; to this end a model containing only 
the factor age is fitted to the data and the corresponding increase in deviance 
evaluated 

? 

? $fit -plac $ 

scaled deviance = 80.781 (change = +12.58) at cycle 8 

d.f. = 65 (change = 1-5) 

This calculation confirms that the incidence differs in the various cantons of 
CGte d'Or. It is then possible to test whether this difference is mainly between 
the town of Dijon and the other cantons : a dummy variable is created which 
takes on the value 0 for Dijon and I for the other cantons; the best way to 
do this is to use the logical functions which are available in GLIM. 

? $cal other=(plac > 1) $fit age+other $disp e $ 

scaled deviance = 71.663 at cycle 8 

d.f. = 64 

estimate s.e. parameter 

estimate parameter 

1 
AGE(2) 
AG E(3) 
AGE(4) 
AG E (5) 
AGE (6) 
AG E (7) 
AGE (8) 
AGE (9) 
AGE(10) 
AGE(I1) 
AGE(12) 
AGE(13) 
OTHE 
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scale parameter taken as 1.000 

The deviance is not increased significantly (71.66 - 68.20=3.46 for 4 degrees 
of freedom); this observation leads us to accept the homogeneity of incidence 
in the cantons other than Dijon. The relative rate for these regions compared 
with Dijon is estimated as exp(-0.37)=0.69; a confidence interval may be ob- 
tained as exp(-0.37f 1.96*0.1214). 
The relationship between age and incidence rate can be modelled with a po- 
lynomial in order to describe the data with a more parsimonious model. The 
variable age is first centred, then the polynomial degree to be used is roughly 
evaluated. 

scaled deviance 102.96 at cycle 4 

d.f. = 75 

scaled deviance = 102.96 (change = 0.00) at cycle 4 

d.f. = 75 (change = 0) 

scaled deviance = 91.70 (change = -11.261) at cycle 5 

d.f. = 74 (change = -1) 

scaled deviance = 88.98 (change = -2.73) at cycle 5 

d.f. = 73 (change = -1) 

scaled deviance = 87.58 (change = -1.40) at cycle 5 

d.f. = 72 (change = -1) 

1 A third degree polynomial provides an acceptable model.. . . . .. 1 

scaled deviance = 88.98 (change = +1.40) at cycle 5 

d.f. = 73 (change = +1) 

estimate s.e. parameter 

1 -8.91 6 0.1818 1 
2 0.6368 0.05715 X 
3 -0.3677 0.1213 OTHE 
4 0.001819 0.01794 X2 
5 -0.004087 0.002379 X3 

scale parameter taken as 1.000 

....... which provides practically the same estimate of the relative rate as that 
obtained when age was modelled as a factor, 

We shall consider as a last example the data from table 3.15 giving the trends 
in mortality from lung cancer among young adults in France Scotland and the USA. 
These data were stored in the computer as a file (TREND.DAT) with 18 records 
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each containing two numbers, the number of cases (k) and the person-years in 
thousands (m). The records are sorted by country (USA, Scotland, France) and by 
time of death (1955 to 1984 by 6 groups of five years). The calculations which have 
been described on page ... and in table 3.16 are reproduced below in detail. 

GLlM 

GLlM 3.77 update 2 (copyright)l985 Royal Statistical Society, London 

1 Fitting a model for the USA. 

File name ? trend.dat 

Create the variable time period (t). 

Specify a model for a Poisson regression 
-- -- 

? $yvar k $err p $cal zero=%log(m) $offset zero $ 

? $cal t2=t*t $fit t+t2 $disp e $ 

scaled deviance = 14.094 at cycle 3 

d.f. = 3 

estimate s.e. parameter 

scale parameter taken as 1.000 

Wald's test based o n  the standard error of the  T 2  coef f ic ient  
(-0.0529910.00231 0=-22.9) shows that the quadratic term is strongly signifi- 
cant. The same evaluation can be made using the likelihood ratio test: 

scaled deviance = 553.06 (change = +539.0) at cycle 3 

d.f. = 4 (change = + I )  
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estimate s.e. parameter 

scale parameter taken as 1.000 

We shall now fit the same model expression using a different error distribution 
in considering that the logarithm of the incidence rate is normally distributed 
with a mean equal to the proposed expression and a variance proportional to 
the observed number of cases in each unit. 

? $cal y=%log(k/m) $yvar y $err n $cal w=k $weight w 

- model changed 

/ Do not forget to set the origin back to zero. After having done so (offset), fit 1 
/ the quadratic model with the method of weighted least sqares. 1 

deviance = 14.042 

estimate s.e. parameter 

scale parameter taken as 4.681 

I Fit the linear model by the same method. I 
deviance = 547.19 (change = +533.1) 

d.f. = 4 (change = +1) 

estimate s.e. parameter 

scale parameter taken as 136.8 

Note the value of the standard error of the T coefficient, obtained when fitting 
this model by least squares and compare it with the same coefficient in the 
linear model fitted by Poisson regression. 

- 

Fitting a model for Scotland. 
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The method of least squares will be applied first, since it is the model which 
is activated. 

- change to data affects model 

Do not forget to change the values stored in w before fitting .... 

- change to data affects model 

deviance = 4.011 7 

estimate s.e. parameter 

scale parameter taken as 1.337 

Note that the scale parameter is close to one and that the coefficient of the 
quadratic term is strongly significant, as confirmed by the calculation reported 
below, which is based on the Poisson distribution : 

? $err p $yvar k $cal zero= %log(m) $offset zero $weight 

- model changed 

$WE1 ? 

This last directive eliminates the weighting, which is irrelevant in the Poisson 
regression. 

scaled deviance = 4.0565 at cycle 3 

estimate s.e. parameter 
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scale parameter taken as 1.000 

scaled deviance = 15.495 (change = +11.44) at cycle 3 

d.f. = 4 (change = + I )  

estimate s.e. parameter 

scale parameter taken as 1.000 

Fitting a model for France. 

? $data k m $dinput 1 

- change to data affects model 

? $cal zero=%log(m) $fit t $disp e $ 

scaled deviance = 14.875 at cycle 3 

d.f. = 4 

estimate s.e. parameter 

scale parameter taken as 1.000 

? $fit +t2 $ 

scaled deviance = 6.4909 (change = -8.384) at cycle 3 

d.f. = 3 (change = -1) 

estimate s.e. parameter 
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scale parameter taken as 1.000 

I Now apply the least squares method : ---T 
- - model changed 

? $yvar y $fit t $disp e $ 
- - model changed 

deviance = 15.015 

d.f. = 4 

estimate s.e. parameter 

scale parameter taken as 3.754 

? $fit +t2 $ 

deviance = 6.5056 (change = -8.509) 

d.f. = 3 (change = -1) 

? $disp e $ 

estimate s.e. parameter 

scale parameter taken as 2.169 

Note that the reduction in deviance is identical for the two error models; How- 
ever, the standard error of the coefficient of the quadratic term is greater in 
this second situation where the lack of fit is taken into consideration in the 
estimation of 0*. 

This brief description of the capabilities of GLIM for carrying out calculation in 
descriptive epidemiology may be supplemented by references [36] and [37] of Chap- 
ter 2. A new release of this software is now available and details can be found in : 

Francis B J, Green M and Payne C P (eds) The GLIM System : Release 4 
Manual, Oxford University Press, Oxford. 
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Poisson distribution, 20, 64 
Poisson regression, 91, 180, 284 
Polynomial regression, 11 4, 180 
Population 

estimates, 50, 191 
standard, 58 

Potential years of life lost, 69 
Prevalence, 37 

age-specific, 39 
Probability 

conditional, 23, 219, 220 
crude, 13, 66 
of death, annual, 28 
of developing cancer, 66 
net, 13, 66 
partial crude, 35 

Proportional hazards, 242, 260 

Proportional incidence ratio, 96 
Proportional incidence (mortality) methods, 

95 

Rank tests, 247 
Rate 

age-specific, 21, 49 
annual, 6, 50 
background hazard rate, 261 
cumulative, 13, 60 

standard error, 62 
incidence, 11, 49 

standard error, 52 
instantaneous, 6, 12 
mortality, 11, 49 
of change, 179 
relative, 73, 253, 261 
standardized, 56 
truncated, 57, 99 

Rate ratio see Relative rate 
Regression 

linear, 143, 158 
Poisson, 91, 180, 284 
polynomial, 11 4, 180 
weighted, 147 

Relative frequency, 95 
Relative rate (risk), 73, 253, 261 
Relative survival 43, 231, 242 
Religious groups 9, 167 
Risk 

cumulative, 14, 67 
clusters, 122 
competing, 34 
relative, 73, 253, 261 

Score function, 30 
Score test, 30, 267 
Significance tests 

for comparing two forces of incidence, 
77 

for comparing two SIRS, 102 
for comparing two standardized rates, 

7 5 
for comparing two survival probabi- 

lities, 246 
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for comparing survival curves, 248, 
255 

for comparing relative survival rates, 
273 

for homogeneity of age-specific rate 
ratios, 82 

for homogeneity of several forces of in- 
cidence, 87 

for spatial clustering, 122 
SIR see Standardized incidence ratio 
Space-time clustering, 122, 131 
Spatial aggregation, 130 

see also Cluster 
Spatial autocorrelation, 120 
Standard error 

incidence rate, 52 
cumulative rate, 62 
survival rate, 222 

Standard population, 58 
Standardization 

direct, 56 
indirect, 62, 99 

Standardized incidence ratio, 63, 99 
confidence interval, 65 
significance tests, 102 

Standardized rates, 56 
significance tests, 75 

Stratification 
for the Cox model, 270 
for comparing survival rates, 255 

Survival 
analysis, 21 3 
cause-specific, 230 
expected, 232 
probability, 23, 21 6 

confidence interval, 224 
significance tests, 246 
standard error, 222 

net, 43, 229 
rate, 213 
relative, 43, 231 ; 242 

confidence interval, 243 
significance tests, 273 
standard error, 234 

time, 225 
Survivor function, 27, 281 

Tests 
homogeneity, 82, 87, 94, 119, 127 
likelihood ratio test, 33, 266 
Logrank test, 248 
rank tests, 247 
score test, 30, 267 
Wald test, 33, 267 
see also Significance tests and Trend 

test 
Time at risk, 4 
Time-space clustering, 131 
Time trend, 170 
Tobacco consumption, 8, 142 
Trend, time, 170 
Trend test 

for age-specific rate ratios, 82 
for detecting a risk gradient, 90 
for comparing survival curves, 251 

Truncated rates, 57, 99 

Urban-rural differences, 11, 90 

Wald test, 33, 267 
Weibull distribution, 29 
Weighted regression, 147 
Will Rogers, 272 
Withdrawal, 22, 217 

Years of life lost, 69 




