
75

Polycyclic aromatic hydrocarbons (PAHs), 
which are generated from the incomplete 
combustion of organic (carbonaceous) mate-
rial, are ubiquitous contaminants in ambient air 
(IARC, 1983, 1984a, 1984b, 1985, 2010; WHO, 
1998). Their occurrence in the air we breathe has 
been substantial during the past centuries due to 
emissions from industrial processes and energy 
production, motor vehicular traffic, incineration 
of refuse, and residential heating.

PAHs consist of two or more fused aromatic 
rings made up of carbon and hydrogen atoms. 
The ring systems can be present in multiple 
configurations and may be unsubstituted or 
substituted. PAHs range from semivolatile 
molecules to molecules with high boiling points. 
Thus, they may be found both in the gas and the 
particulate phase of ambient air or in mixtures of 
both phases. About 500 different PAHs have been 
detected in air, but often the measurements focus 
on benzo[a]pyrene (B[a]P) as a representative of 
the whole PAH family (WHO, 1998; Boström 
et al., 2002). Many of the PAHs in ambient air are 
carcinogenic (IARC, 1983, 1984a, 1984b, 1985, 
2010) (Figure 7.1), and a recent reassessment of 
their carcinogenic potential led to B[a]P being 

upgraded to a Group 1 known human carcin-
ogen (IARC, 2010). Thus there is considerable 
concern about the relationship between PAH 
exposure in the ambient air and the potential 
to contribute to human cancer incidence. The 
United States Environmental Protection Agency 
(EPA) monitors 16 priority PAHs in air due to 
health concerns: naphthalene, acenaphthylene, 
acenaphthene, fluorene, anthracene, phenan-
threne, fluoranthene, pyrene, chrysene, benz[a]
anthracene, benzo[b]fluoranthene, benzo[k]
fluoranthene, B[a]P, indeno[1,2,3-cd]pyrene, 
benzo[g,h,i]-perylene, and dibenz[a,h]anthra-
cene (in order of number of aromatic rings per 
structure) (Figure 7.1). Of particular note is that 
several PAHs (naphthalene, chrysene, benzo[b]
fluoranthene, benzo[k]fluoranthene, B[a]P, 
dibenz[a,h]anthracene, dibenzo[a,e]pyrene and 
dibenzo[a,l]pyrene, and anthanthrene) have 
been found to be carcinogenic in experimental 
animals after inhalation or intratracheal inges-
tion, increasing concern about the levels of these 
carcinogens in ambient air (Figure 7.1).
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PAH emissions in ambient air

A recent global atmospheric emission inven-
tory of PAHs (Zhang and Tao, 2009) showed 
that the emission from the 16 priority PAHs 
listed by the EPA was 520 000 tonnes per year. 
Anthropogenic sources of total PAHs in ambient 
air emissions are greater than those that come 
from natural events such as forest fires and 
volcanic eruptions.

Apart from localized risk at or near the source 
of emission, PAHs can be dispersed regionally 
and intercontinentally through atmospheric 
long-range transport. For example, PAHs 

emitted from East Asia are transported to the 
west coast of the USA, and PAHs emitted in the 
Russian Federation influence atmospheric PAH 
concentrations in the Arctic (Zhang and Tao, 
2009). The annual PAH emission from Asian 
countries is 290 000 tonnes (55% of the total); the 
amounts from China (114 000 tonnes per year) 
and India (90 000 tonnes per year) are the major 
contributors. The USA is the third largest emitter 
of PAHs, at 32 000 tonnes per year. By contrast, 
European countries account for only 9.5% of the 
total PAH emissions annually (Zhang and Tao, 
2009). The contribution of the various anthro-
pogenic sources of PAHs to the total emission 

Fig 7.1 PAHs in ambient air. 

 

An asterisk denotes a United States Environmental Protection Agency priority pollutant. (C) indicates that the compound is carcinogenic by 
inhalation or intratracheal administration in experimental animals. Source: Park and Penning (2008); reproduced with permission from John 
Wiley & Sons.
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profile can vary by country and region. The 
global sources of PAH emissions are shown in 
Table 7.1, and the main sources of PAHs in six 
European countries are shown in Table 7.2.

The largest emission of PAHs globally comes 
from incomplete combustion of organic mate-
rial, and the largest single source is from the 
combustion of biofuels. Biofuel is a single type 
of primary solid biomass (e.g. animal dung or 
peat) (Zhang and Tao, 2009). Burning biomass 
fuels such as wood on indoor open-pit stoves is 
common in developing areas, leading to harmful 
exposures to particulate matter <  2.5  µm in 
diameter (PM2.5), carbon monoxide (CO), and 
PAHs, which can be significantly reduced by the 
introduction of modern stoves (Li et al., 2011). 
Anthropogenic sources include PAHs that come 
from incomplete combustion processes (espe-
cially biofuels) and those that are made commer-
cially, are by-products of industrial processes, or 
are generated from vehicle emissions, cooking, 
food preservation, and first- and second-hand 
cigarette smoke.

Anthropogenic sources of PAHs in 
ambient air

Commercial production

PAHs produced commercially include naph-
thalene, acenaphthene, phenanthrene, fluoran-
thene, and pyrene; however, only naphthalene 
is used directly without further processing, as a 
moth repellent.

Industrial processes

Many PAHs are released into the atmos-
phere during industrial processes such as coal 
coking and petroleum refining. It is estimated 
that coal coking was responsible for the release 
of thousands of tonnes of PAHs per year in 
different countries during the 1980s and early 
1990s. Reduced coke production and technical 

improvements have led to reductions in PAH 
emissions from this source. Little is known 
about the composition of these PAH emissions 
(WHO, 1998). In petroleum refining, most of the 
emissions consist of smaller two- and three-ring 
compounds (94–99%, depending on the process 
studied) (IARC, 1989). Thus, the composition of 
PAHs from combustion (pyrogenic) versus the 
composition of PAHs from petroleum refining 
(petrogenic) can be widely different. Other 
industrial sources with significant PAH emis-
sions are carbon black plants, wood preserva-
tion (creosote) plants, the asphalt and bitumen 
industry, aluminium production (Söderberg 
electrodes), iron and steel production, foundries, 
tyre production, power plants, waste incinera-
tors, and stubble burning (WHO, 1998). Further 
restrictions may lead to lower PAH emissions 
from these industries (CORINAIR, 1997).

Estimation of the PAH emissions for six 
European countries indicates that the industrial 
sources contribute PAHs in the same range as 
mobile sources (Table 7.2; data from CORINAIR, 
1997).

Residential sources

Domestic heating with oil and wood 
stoves leads to considerable PAH emissions in 
northern European countries, and especially in 
Scandinavia (Boström et al., 2002). In Sweden, 
the emissions from wood-fired domestic heating 
are estimated to be about 100  tonnes per year, 
with minor contributions from oil combustion. 
Environmental tobacco smoke is also a consider-
able source of indoor air pollution and contami-
nation within the home (Hoh et al., 2012).

Motor vehicle emissions

The amount of PAHs released into the air 
from vehicles has been reduced considerably 
by the introduction of three-way converters. 
However, older diesel and gasoline cars with a 
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catalytic converter of outmoded design have 
5–10 times higher PAH emissions than modern 
cars. In addition, cold start at temperatures 
below the standardized cold start (23  °C), and 
especially at temperatures below 0 °C, results in 
a several-fold increase in PAH emissions. Several 
other technical variations lead to varying emis-
sions, for example spark ignition engines (WHO, 
1998). The total amounts of PAHs emitted from 
vehicles vary between countries; in the USA 
this can be as high as 6000 tonnes per year, and 
in six European countries the amount is about 
400 tonnes per year (Table 7.1 and Table 7.2).

As might be expected, not all PAHs contribute 
equally to the emissions into ambient air. Table 7.3 
lists a typical PAH profile in ambient air arising 
from different sources.

Human exposure

PAHs may be found in the gas and particu-
late phases (see Chapter 1). The levels given below 
frequently reflect the levels of discrete PAHs in 
the particulate phase and are often given as the 
sum of a limited number of PAH components. 

B[a]P is the traditional marker for PAH expo-
sure. Several additional PAH components have 
been proposed as emission markers, for example 
fluoranthene, B[a]P, and benzo[b]fluoranthene. 
Boström et al. (2002) suggested the use of the 
following set of PAHs as emission and effect 
markers for monitoring air pollution: B[a]P, 
fluoranthene, phenanthrene, methylanthracenes/
phenanthrenes, pyrene, benzo[b]fluoranthene, 
benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, 
benzo[g,h,i]-perylene, dibenz[a]anthracene, and 
dibenzo[a,l]pyrene. This list is quite similar to the 
16 priority PAHs listed by the EPA (Figure 7.1). In 
some studies, the total PAH exposure is given as 
B[a]P toxic equivalency concentrations. In this 
approach, individual components are measured 
and ranked relative to B[a]P in terms of carcino-
genicity. For example, chrysene has 1/1000th 
of the carcinogenicity of B[a]P and has a toxic 
equivalency concentration of 0.001. These calcu-
lations are used to estimate human health risk 
and can be used to calculate incremental lifetime 
cancer risk (ILCR). ILCR = exposure (μg/kg/day) 
× cancer slope factor (μg/kg/day). The ILCR is 
considered negligible when it is less than 1 in 105 

Table 7 .1 Main sources of emission for the United States Environmental Protection Agency 16 
priority PAHs in China, India, and the USA

Source Global China India USA

Biofuel 56.7% 66.4% 92.5% 9.1%
Wild fire 17.0% 0% 0% 3.3%
Consumer product use 6.9% 0.9% 0.6% 35.1%
Traffic oil 4.8% 2.0% IS 23.0%
Domestic coal 3.7% 10.7% 1.3% IS
Coke production 3.6% 14.4% IS IS
Petroleum refining 2.4% 1.0% IS 8.7%
Waste incineration 1.9% IS IS 9.5%
Aluminium electrolysis 1.4% IS IS 1.9%
Open straw burning IS 2.0% 3.2% IS
Gasoline distribution IS IS IS 3.0%
Aerospace industry IS IS IS 2.5%
Other 1.5% 2.7% 3.9%
Tonnes in thousands 530 114 90 32
IS, insignificant.
Compiled from Zhang and Tao (2009).
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(less than 1 additional cancer case per 100 000 
persons), and the cancer slope factor is based on 
the extrapolation of a dose–response curve for 
tumorigenicity seen at high dose in experimental 
animals.

Background levels of PAHs in remote loca-
tions have been measured between 0.01  ng/m3 
and 0.1  ng/m3 for individual PAH components 
(WHO, 1998). In rural districts the levels were 
approximately 10 times higher, whereas in 
city streets levels may amount to 50  ng/m3 or 
more of the more abundant individual PAHs 
(Boström et al., 2002). Total PAHs in the centre 
of Stockholm, Sweden, ranged from below 
100  ng/m3 to 200  ng/m3. The most abundant 
PAH was phenanthrene. In other cities higher 
levels of individual PAHs have been measured 
(WHO, 1998; Binková et al., 2003). PAH was 
measured in the gas and particulate phase over 
summer and winter sampling periods in Kocaeli, 
Turkey. Σ13PAH in the gas and particulate phases 
ranged from 6.2  ng/m3 dibenz[a,h]anthracene 
to 98.6  ng/m3 phenanthrene in the winter, and 
from 3.0 ng/m3 benz[a]anthracene to 35.1 ng/m3 
phenanthrene in the summer. The most abundant 
PAH in both sampling periods was phenanthrene, 
followed by fluoranthene and pyrene. B[a]P toxic 

equivalency concentrations were found to be 
3-fold higher in the winter months (Gaga et al., 
2012). A similar outcome was observed in a study 
of children aged 5–6 years (n = 260) in New York 
City when measurements were conducted in the 
heating and non-heating seasons (Jung et al., 
2010). In the United Kingdom, the Toxic Organic 
Micropollutants programme measured temporal 
trends in PAH in the atmosphere from 1991 to 
2005 at six different sampling sites. Most showed 
a reduction in PAH levels and had concentra-
tions that were lower than the new air quality 
standard of 0.25 ng/m3. However, this value was 
exceeded in urban areas in the winter months 
(Meijer et al., 2008).

Indoor PAH levels usually range from 1 ng/m3 
to 50 ng/m3 due to tobacco smoke and residen-
tial heating with wood, coal, and other materials 
(WHO, 1998). Environmental tobacco smoke is 
a major contributor to air pollution and dust, 
and surfaces remain contaminated long after the 
smoking has ceased (called third-hand smoke). 
Measurement of PAHs in settled household 
dust in 132 homes showed that total PAHs were 
990 ng/g in smoking households versus 756 ng/g 
in nonsmoking households, and when corrected 

Table 7 .2 Main source sectors for PAHs in 1994 in six European countries (Austria, Denmark, 
Germany, Luxembourg, Norway, and the United Kingdom)

Sector PAH emissions

Amount (tonnes per year) Percentage of total

Combustion of energy and transformation industries 6.1 0.3
Non-industrial combustion plants plus wood burning 1120 60
Combustion in manufacturing industry 63 3.4
Production processes 248 13
Road transport 383 20
Other mobile sources 10 0.5
Waste incineration 30 1.6
Agriculture and forestry 1 < 0.1
Natural sources 8 0.4
Total (approximately) 1900
Reproduced from Boström et al. (2002).
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for loading (dust/m3), the fold change was greater 
than 2-fold (Hoh et al., 2012).

PAHs in the ambient air can react with 
nitrates, hydroxyl radicals, or ozone, leading to 
the production of more water-soluble compounds. 
These compounds are rarely included in routine 
PAH measurements. However, nitro-PAHs have 
been detected on soot, and the formation of 
B[a]P-nitroquinone has been identified (Schauer 
et al., 2004). Exposure levels of nine different 
nitroarenes resulting from diesel and gasoline 
exhaust have recently been reviewed by the 
International Agency for Research on Cancer; 
diesel exhaust was ranked as a Group 1 known 
human carcinogen (Benbrahim-Tallaa et al., 
2012).

Generally the mobile sources differ in their 
PAH profile, with the heavy diesel vehicles being 
characterized by lower-molecular-weight compo-
nents than gasoline vehicles. However, per driven 
kilometre, total emissions from a gasoline-fuelled 
car are much lower than emissions from a diesel 
car. The three-way converter does not change the 
PAH profile of a gasoline-fuelled car significantly 
but reduces the total levels considerably. PAH 
levels vary with season, with higher levels being 
observed in the winter than in the summer. Data 
from Stockholm, Sweden, indicate that during 

the winter the levels of low-molecular-weight 
PAHs are increased compared with the summer 
(Prevedouros et al., 2004).

Biomonitoring

Significant progress has been made in 
biomonitoring of human exposure to PAH. 
External dose can be measured using personal-
ized air monitoring devices where PM is trapped 
on filters and then analysed for PAH content. 
Internal dose can be assessed by measuring blood 
and urinary biomarkers of exposure. Different 
analytes have been used as biomarkers of PAH 
exposure and effect. These include measuring 
PAH metabolites in the urine and intermediate 
biomarkers of effect (e.g. DNA and haemoglobin 
adducts). Analysis using urinary metabolites 
has given the most clear-cut results. Particulate 
pyrene is well correlated with total PAH in the 
breathing zone.

Urinary 1-hydroxypyrene may also reflect 
inter-individual variation in PAH metabolism. 
Occupational exposure has been found to lead 
to a 10–100 times greater urinary 1-hydroxy-
pyrene content. Danish bus drivers excreted 
more 1-hydroxypyrene than mail carriers did, 
but outdoor working mail carriers had more 

Table 7 .3 Mean profiles of individual PAHs in ambient air (relative to benzo[a]pyrene = 1 .0)

Compound Point source Near mobile source Home heating Transport Geometric mean

Anthracene 5.5 7.6 1.0 1.8 2.9
Phenanthrene 38 200 39 43 60
Fluoranthene 14 48 12 13 18
Pyrene 9.3 28 11 7.1 12
Benz[a]anthracene 1.4 0.82 1.0 0.78 0.97
Perylene 0.33 0.25 0.22 0.24 0.26
Benzo[e]pyrene 1.5 1.3 1.6 1.4 1.4
Benzo[g,h,i]perylene 1.4 1.5 2.4 1.3 1.6
Indeno[1,2,3-cd]pyrene 1.5 1.3 1.5 1.4 1.4
Anthanthrene 0.19 0.15 0.13 0.20 0.17
Chrysene and triphenylene 3.0 2.7 3.5 2.9 3.0
Benzofluoranthene 3.6 2.9 3.6 4.4 3.6
Source: WHO (1998); reproduced with permission from the publisher.
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PAH metabolites in their urine than those 
working indoors, indicating the impact of 
outdoor air pollution (Hansen et al., 2004). The 
use of 1-hydroxypyrene as a biomarker of PAH 
exposure has been criticized on the grounds that 
pyrene is not a carcinogenic PAH. This has led 
to the substitution of 3-hydroxy-B[a]P, but sensi-
tive methods of detection have been a challenge. 
The detection of 3-hydroxy-B[a]P has also been 
criticized as a biomarker since this metabolite is 
not derived from any of the known pathways of 
B[a]P activation.

Measurements of urinary 1-hydroxypy rene-
glucuronide, 2-naphthol, and malondialdehyde 
by synchronous fluorescence spectroscopy or 
high-performance liquid chromatography were 
used to evaluate seasonal and regional variations 
in PAH exposure and oxidative stress in Korean 
adults and women. Higher levels were found 
in individuals from industrialized areas and 
in the winter. Further elevation of 1-hydroxy-
pyrene-glucuronide was observed in children 
exposed to environmental tobacco smoke (Yoon 
et al., 2012). In a study in Chinese children from 
polluted and non-polluted areas, the levels of 
nine urinary monohydroxylated PAH metabo-
lites and 8-oxo-2′-deoxyguanosine (8-oxo-dG) 
were compared. Children from the polluted 
area had a higher PAH burden than those from 
the non-polluted area, but no significant differ-
ence in 8-oxo-dG levels was noted (Fan et al., 
2012). The effect of involuntary tobacco smoke 
exposure on urinary levels of 23 monohydrox-
ylated metabolites of PAH in 5060 subjects aged 
>  6  years was studied in the National Health 
and Nutrition Examination Survey (NHANES). 
After correcting for other confounders, signif-
icant increases in urinary 1-hydroxypye-
rene, 2-hydroxyfluorene, 3-hydroxyfluorene, 
9-hydroxyflourene, 1-hydroxypyrene, and 
1-2-hydroxy-phenanthrene were observed. 
Increases of 1.1–1.4-fold for involuntary expo-
sure were noted, which increased to 1.6–6.9-fold 

increases when children were actively exposed 
(Suwan-ampai et al., 2009).

As there is compelling evidence for the 
conversion of PAH to diol-epoxides as an activa-
tion pathway (see below), there have been recent 
advances in measuring their corresponding 
tetraol hydrolysis products in humans. Progress 
has been made in developing stable isotope dilu-
tion liquid chromatographic mass spectrometric 
methods to detect phenanthrene tetraols (Hecht 
et al., 2010; Zhong et al., 2011). Phenanthrene 
contains a bay region and undergoes similar 
metabolic transformation to B[a]P to form 
diol-epoxides, which hydrolyse to tetraols. The 
detection of phenanthrene tetraols has also 
been criticized, since it is not a carcinogenic 
PAH. Recently, methods have been developed 
to measure urinary B[a]P tetraols with femto-
mole sensitivity (Hecht et al., 2010), and these 
techniques can now be applied to biomonitoring 
studies.

Efforts have also been made to detect 
stable covalent diol-epoxide DNA and haemo-
globin adducts in exposed humans. Repaired 
diol-epoxide DNA adducts in blood can be 
measured using ELISA and chemilumines-
cence-based methods, while unrepaired DNA 
adducts can be measured in lymphocytes by 
[32P]-postlabelling methods. For example, 
(+)-7β,8α-dihydroxy-9α,10α-oxo-7,8,9,10-tetra- 
hydro-B[a]P-N2-deoxyguanosine [(+)-anti- 
B[a]PDE-N2-dGuo] adducts have also been 
detected in human maternal and umbilical 
white blood cells after exposure to air pollution, 
using ELISA-based methods (Whyatt et al.,1998; 
Santella, 1999). Total DNA and B[a]P-like DNA 
adducts were measured by [32P]-postlabelling 
in lymphocytes of nonsmoking policemen in 
Prague (n = 109) working 8 hour shifts. While 
there was no significant change in total DNA 
adducts, there was a marked increase in B[a]P-like 
DNA adducts correlated to personal exposure to 
PAHs collected on respirable particles (Topinka 
et al., 2007). Diol-epoxide DNA adducts are 
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short-lived; therefore, attention has also focused 
on the development of methods to detect haemo-
globin diol-epoxide adducts since the half-life of 
the red blood cell is 7–10 days (Day et al., 1990).

Toxicokinetics, including metabolic 
activation

Parent PAHs have low chemical reactivity 
and must be metabolically activated to elec-
trophilic intermediates to exert their carcino-
genic effects (Sims and Grover, 1974; Conney 
1982; Thakker et al., 1985). Three pathways 
of PAH activation have been proposed in the 
literature and are best exemplified with B[a]P 
(Figure 7.2). In the first pathway, B[a]P is meta-
bolically activated by either P450 peroxidase or 
another peroxidase by acting as a co-reductant 
of complex-1 (FeV). This leads to a radical cation 
on the most electron-deficient C6 atom, which is 
highly reactive and capable of forming unstable 
C8-guanine [8-(benzo[a]pyren-6-yl)guanine)], 
N7-guanine [7-benzo[a]pyren-6-yl)guanine], 
and N7-adenine [7-benzo[a]pyren-6-yl)adenine] 
depurinating DNA adducts (Cavalieri and 
Rogan, 1995). Evidence for this pathway comes 
from in vitro reactions with B[a]P, microsomes, 
and a peroxide substrate, which has led to the 
trapping of DNA adducts, as well as from mouse 
skin studies (Cavalieri et al., 1990, 1991). Data 
exist that B[a]P and dibenzo[a,l]pyrene can exert 
their tumorigenicity through this mechanism in 
mouse skin and rat mammary gland (Cavalieri 
et al., 1991, 2005) In addition, trace amounts 
of B[a]P-depurinating DNA adducts have been 
detected in the urine of smokers and in women 
exposed to household smoke (Casale et al., 
2001). However, apart from this single study, the 
evidence to support this mechanism due to inha-
lation exposure to PAH is not strong.

In the second pathway, B[a]P is metaboli-
cally activated to vicinal diol-epoxides (Jerina 
et al., 1991) formed through a three-step process 

involving oxidation and hydrolysis reactions 
(Figure 7.2). In the first step, B[a]P is converted 
preferentially in the lung by the cytochrome P450 
isozyme P4501B1 to the major (+)-7R,8S-epoxide 
and minor (–)-7S,8R-epoxide. In the second step, 
the 7R,8R-trans-dihydrodiol is predominately 
formed by the action of epoxide hydrolase. In the 
third step, diol-epoxide diastereomers are gener-
ated by another oxidation reaction via various 
P450 enzymes, including P4501B1 (Thakker 
et al., 1985; Petruska et al., 1992; Guengerich, 
1993; Constantin et al., 1994; Cavalieri and 
Rogan, 1995; Shimada et al., 1999, 2001).

Diol-epoxides have been studied in various 
animal carcinogenicity models. It has been 
revealed that the diol-epoxides with the highest 
carcinogenic activity are in general the anti-di-
astereomers and especially the enantiomers with 
R-absolute configuration at the benzylic arene 
carbon (Thakker et al., 1985; Glatt et al., 1991). 
In studies of interactions of diol-epoxides with 
DNA, they demonstrate a high preference for the 
exocyclic amino group of deoxyguanosine and 
deoxyadenosine, where the major adduct derived 
from B[a]P is (+)-anti-B[a]PDE-N2-dGuo (Jeffrey, 
1985; Gräslund and Jernström, 1989; Jerina 
et al., 1991; Geacintov et al., 1997). This pathway 
of metabolic activation has been observed for 
many PAHs in ambient air, including 5-methyl-
chrysene (Melikian et al., 1983, Koehl et al., 
1996), benz[a]anthracene (Cooper et al., 1980), 
benzo[b]fluoranthene (Ross et al., 1992), B[a]P 
(as outlined above), dibenz[a,h]anthracene (Platt 
et al., 1990), and dibenzo[a,l]pyrene (Luch et al., 
1997, 1999), in in vitro systems (cell extracts, 
microsomes, and cell culture systems), and in 
some cases in in vivo studies in animals and 
humans. For example, PAHs within airborne 
PM2.5 produced DNA bulky stable adducts in 
human lung cell co-cultures (Abbas et al., 2013).

In the third pathway, PAHs are metabolically 
activated to o-quinones by the action of aldo-
keto reductases (AKRs) (Penning et al., 1999; 
Penning, 2004). For B[a]P, the sequence involves 
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the NAD(P)+-dependent oxidation of the 7R,8R-
trans-dihydrodiol to a ketol catalysed by AKR1A1, 
AKR1C1–AKR1C4 (Figure  7.2). The ketol then 
spontaneously rearranges to a catechol, which 
undergoes air-oxidation to yield B[a]P-7,8-dione 
and reactive oxygen species (ROS) (Palackal et al., 
2001, 2002; Penning et al., 1996). B[a]P-7,8-dione 
is both electrophilic (will react with DNA) and 
redox-active. In the presence of reducing equiva-
lents and NQO1, AKRs themselves, and carbonyl 
reductase, the quinones can be reduced back to 
the corresponding catechols, and if they are not 
intercepted a futile redox cycle will ensue in 

which NADPH is depleted and ROS is amplified 
(Shultz et al., 2011). This pathway of metabolic 
activation has been observed for several PAHs in 
ambient air, including phenanthrene, chrysene, 
5-methyl-chrysene, benz[a]anthracene, and 
B[a]P in in vitro systems (recombinant enzymes) 
and cultures of human lung cells (Palackal et al., 
2001, 2002; Park et al., 2008b).

Efforts have been made to assess the contri-
bution of each of these pathways to the meta-
bolic activation of B[a]P in human lung cells. 
Using a stable isotope dilution liquid chromato-
graphic mass spectrometric method, signature 

Fig 7.2 Pathways of PAH activation using benzo[a]pyrene as an example.

Source: Park and Penning (2008); reproduced with permission from John Wiley & Sons.
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metabolites of each of the three pathways were 
measured: B[a]P-1,6-dione and B[a]-3,6-dione 
(radical cation metabolites), B[a]P-tetraol-1 
(diol-epoxide metabolites), and B[a]P-7,8-dione 
(o-quinone metabolites) in human bronchoepi-
thelial (H358) cells in the presence and absence 
of the aryl hydrocarbon receptor (AhR) agonist 
TCDD. It was found that each of the pathways 
contributed equally to B[a]P metabolism in the 
presence and absence of TCDD (Lu et al., 2011).

The rate of absorption of PAHs from the 
tracheobronchial epithelium after inhalation 
exposure is determined by their high lipophilicity 
(Gerde et al., 1993). For lipophilic carcinogens 
such as B[a]P, the delayed absorption in the 
airway mucosa is a result of slow passage through 
the airway epithelium, yielding a very high dose 
to these target cells. Because of the long retention 
time, the metabolic activation can be consider-
able even at low enzyme activities (Bond et al., 
1988).

Modes of action

Carcinogenic PAHs are generally positive in 
short-term tests for mutagenicity (Table 7.4), for 
example the bacterial Salmonella mutagenicity 
(Ames) assay and the HPRT-mammalian cell 
mutagenicity assay, provided a metabolic acti-
vation system is present (Malaveille et al., 1977; 
MacLeod et al., 1988; Chen et al., 1990; Wei et al., 
1993). In the Ames assay, a rat liver S9 activa-
tion system is used; in the HPRT assay, recom-
binant P4501A1 and P4501B1 are co-expressed. 
The mutagenic species has been identified by 
comparing the mutagenic potency of different 
PAH metabolites, which demonstrates that of 
the known metabolites the diol-epoxides are the 
most potent mutagens (Malaveille et al., 1977). 
Treatment of a plasmid containing K-Ras with 
the (+)-anti-B[a]PDE followed by transfection 
into NIH3T3 cells led to cell transformation with 
increased foci in soft agar. Rescue of the plasmid 
showed that there were single point mutations of 

the 12th and 61st codons, which could explain 
the transformation potential of the diol-epoxide. 
The dominant mutation observed was a G → T 
transversion, consistent with DNA-adduct 
formation on deoxyguanosine (Marshall et al., 
1984). One of the most compelling pieces of 
data has shown that by using ligation-mediated 
polymerase chain reaction, the (+)-anti-B[a]PDE 
preferentially forms DNA adducts in hot spots on 
the p53 tumour suppressor gene, which is one of 
the most mutated genes in human lung cancer. 
These hot spots correspond to the same codons 
that are mutated in tumours obtained from 
humans with lung cancer. The dominant muta-
tion observed was again a G  →  T transversion, 
consistent with DNA adduct formation on deox-
yguanosine (Denissenko et al., 1996; Hainaut 
and Pfeifer, 2001).

In a separate in vitro study, the mutagenic 
potency of (±)-anti-B[a]PDE and B[a]P-7,8-dione 
(AKR product) were compared in a yeast-re-
porter gene assay for p53 mutation. It was found 
that B[a]P-7,8-dione was 80-fold more mutagenic 
than the diol-epoxide provided it was permitted 
to redox cycle (Yu et al., 2002). In these exper-
iments there was a linear correlation between 
(±)-anti-B[a]PDE mutagenicity and the forma-
tion of (+)-anti-B[a]PDE-N2-dGuo adducts, and 
a linear correlation between B[a]P-7,8-dione 
mutagenicity and the formation of 8-oxo-dGuo 
adducts (Park et al., 2008a). In addition, 
B[a]P-78-dione gave predominately G → T trans-
versions, consistent with the base mispairing of 
8-oxo-dGuo with adenine. The position of the 
point mutations within p53 was quite random 
until there was biological selection for domi-
nance, and then the spectrum of mutations was 
similar to that seen in lung cancer (Park et al., 
2008b). These data suggest that B[a]P-7,8-dione 
formed by AKRs has the potential to contribute 
to the carcinogenic mode of action of B[a]P.

Planar PAHs can induce their own metabo-
lism. Compounds such as B[a]P can bind to the 
AhR (Nebert and Jensen, 1979; Nebert et al., 
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1993, 2004). This leads to nuclear localization of 
the liganded AhR, where it can act as a transcrip-
tion factor by binding to the xenobiotic response 
element to induce the CYP1A1 and CYP1B1 genes 
(Denison et al., 1988a, 1988b, 1989), which will 
result in enhanced monoxygenation of the parent 
PAH. PAH metabolism leads to the produc-
tion of electrophiles (e.g. quinones), which can 
activate the Nrf2-Keap 1 system. Nrf2 acts as a 
transcription factor and binds to the antioxidant 
response element to induce γGCS, NQO1 and 
AKR1C1–AKR1C3, and AKR1B10 (Burczynski 
et al., 1999; Jin and Penning 2007; Penning and 
Drury, 2007). Importantly, AKR1C1–AKR1C3 
are involved in the metabolic activation of PAH 
trans-dihydrodiols to the electrophilic and redox 
active PAH o-quinones, which could further 
exacerbate PAH activation via induction of 
AKRs. The PAH o-quinones produced by this 
pathway are also ligands for the AhR (Burczynski 
and Penning, 2000). Thus, both the parent PAH 
and their downstream metabolites can lead to 
the metabolic activation of PAHs in ambient air.

PAHs may, in addition to initiating carcino-
genesis via a genotoxic mechanism, exert promo-
tional effects through various modes of action. 
Certain PAHs induce inflammatory processes 
(Casale et al., 1997). The binding of PAHs to the 
AhR also leads to transcriptional upregulation of 

genes involved in growth as well as biotransfor-
mation and differentiation (Nebert et al., 1993). 
Studies also indicate the ability of both PAHs and 
their metabolites to activate kinases involved in 
survival signalling, thus giving DNA-damaged 
cells a survival advantage (Burdick et al., 2003). 
At higher concentrations some PAHs induce 
apoptosis (Solhaug et al., 2004). In addition, 
PAHs show inhibitory effects on gap junctional 
intercellular communication (Upham et al., 
1996; Weis et al., 1998).

Carcinogenicity studies in animals

Most investigations of PAH carcinogenesis 
by the respiratory route are intratracheal instil-
lation studies (WHO, 1998). In all, 10 PAHs have 
been found to be carcinogenic in experimental 
animals after inhalation or intratracheal instil-
lation (WHO, 1998; NTP, 2000) (Table  7.5). 
Only B[a]P and naphthalene have been studied 
by the inhalation route. In one inhalation study 
in hamsters, groups of 24 males were exposed to 
B[a]P condensed onto sodium chloride particles 
at concentrations of 2.2, 9.5, and 46.5 mg/m3 for 
4.5 hours per day, 7 days per week for the first 
10 weeks, then for 3 hours per day for 2 years. 
Exposure was by nose breathing only. There were 
no tumours in the controls or in the low-exposure 

Table 7 .4 Genotoxicity of individual PAHs that are carcinogenic in experimental animals after 
inhalation or intratracheal instillation

Compound Results

Anthanthrene Positive, limited database
Benzo[b]fluoranthene Positive
Benzo[j]fluoranthene Positive
Benzo[k]fluoranthene Positive
Benzo[a]pyrene Positive
Chrysene Positive
Dibenz[a,h]anthracene Positive
Dibenzo[a,i]pyrene Positive
Indeno[1,2,3-cd]pyrene Positive
Naphthalene Negative for gene mutations, positive for clastogenicity in vitro
Source: WHO (1998); reproduced with permission from the publisher.
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group. In the other two groups, exposure-related 
tumours were found in the nasal cavity, larynx, 
trachea, pharynx, oesophagus, and forestomach, 
but not in the lung (Thyssen et al., 1981). RIVM 
(1989) cites two other inhalation studies with 
B[a]P not found in the open literature: one in 
mice (Knizhnikow et al., 1982; see RIVM, 1989) 
and one in rats with co-exposure with sulfur 
dioxide (Laskin et al., 1970; see RIVM, 1989). 
In both studies malignant lung tumours were 
observed.

In recent bioassay inhalation studies with 
naphthalene, Fischer 344/N rats developed 
neuroblastomas of the nasal olfactory epithelium 
after being exposed in inhalation chambers to 0, 
10, 30, or 60 ppm (80, 52, 157, or 314 mg/m3) for 
6 hours per day, on 5 days per week, for 105 weeks 
(NTP, 2000). The observed rates in males were 
0/49, 0/49, 4/48, and 3/48, respectively, and in 
females 0/49, 2/49, 3/49, and 12/49, respectively. 
In addition, adenomas of the nasal respiratory 
epithelium were observed in 0/49, 06/49, 8/48, 
and 15/48 males and in 0/49, 0/49, 4/49, and 2/49 
females, respectively. In the study with B6C3F1 
mice subjected to whole-body exposure of 0, 10, 
or 30 ppm (0, 52, or 157 mg/m3) naphthalene in 
inhalation chambers for 6 hours per day, 5 days 
per week, for 104  weeks, a statistically signifi-
cant increase in the incidence of bronchioloal-
veolar adenomas in high-dose female mice was 
observed (NTP, 2000). Increased incidences of 
bronchioloalveolar adenomas and carcinomas 
were observed in the male mice, but the increases 
were not statistically significant.

PAHs and their metabolites will also 
cause lung cancer in animals when adminis-
tered by other routes. Classically, the newborn 
mouse model of lung cancer was used to rank 
the tumorigenicity of different B[a]P metab-
olites, given that the developing lung is more 
susceptible to carcinogen exposure. Studies 
such as these showed that the (+)-anti-B[a]PDE 
was the most potent lung tumorigen of the 
known B[a]P metabolites (Buening et al., 1978; 

Kapitulnik et al., 1978). Similarly, in the A/J 
mouse lung model of B[a]P-induced carcino-
genesis, anti-B[a]PDE-DNA adducts were early 
lesions that could be detected in the initiation 
phase (Nesnow et al., 1998).

Carcinogenesis experiments with mixtures 
containing PAHs have also been reported. 
Heinrich et al. (1994) exposed groups of 72 female 
Wistar rats to a coal tar/pitch aerosol containing 
either 20 or 46 μg/m3 B[a]P for 17 hours per day, 
5 days per week, for 10 or 20 months, followed 
by a clear air period of up to 20 or 10 months, 
respectively. The cumulative doses of inhaled 
B[a]P of the four exposure groups were 71, 143, 
158, and 321 mg B[a]P/m3 hours, and the corre-
sponding lung tumour rates were 4.2%, 33.3%, 
38.9%, and 97.2%, respectively, whereas there 
were no tumours in the control group. In similar 
experiments in which rats were exposed to coal 
tar/pitch vapour condensed on the surface of fine 
carbon black particles, the resulting lung tumour 
rate was about twice as high.

Pott and Heinrich (1990) have also performed 
a lifelong inhalation study with rats exposed to 
diesel exhaust. In this study, tumour rates similar 
to those in the study with pitch pyrolysis vapours 
were induced, although the PAH content (meas-
ured as B[a]P) was 100–1000 times lower. This 
result indicates that diesel exhaust contains 
other potent carcinogenic or tumour-promoting 
compounds besides unsubstituted PAHs.

Numerous carcinogenicity studies have been 
performed using dermal application and subcu-
taneous and intramuscular injection (for over-
view, see WHO, 1998). An oral gavage study with 
B[a]P revealed tumour development in the liver, 
forestomach, auditory canal, oral cavity, skin, 
and intestines in both sexes of rats, and addi-
tionally the kidney in males and the mammary 
gland and oesophagus in females (RIVM, 2001). 
However, no lung tumours were observed 
after this route of administration. In a feeding 
study of B[a]P in mice, tumours in the tongue, 
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oesophagus, forestomach, and larynx, but not 
lung, were observed (Culp et al., 1998).

Carcinogenicity studies in humans

Occupational exposures

A review and meta-analysis on the associa-
tion between occupational exposure to PAHs and 
lung cancer development in 39 cohorts found an 
average relative risk of 1.20 per 100 μg/m3 years 
cumulative B[a]P (Armstrong et al., 2004). For 
some occupations relative risks were consider-
ably higher, but confidence intervals were very 
wide. For exposures in coke ovens, gas works, 
and aluminium industries, the risk is equivalent 
to a relative risk of 1.06 for a working lifetime of 
40 years at 1 μg/m3.

Ambient air exposures

Few studies have addressed the impact of 
exposure to PAHs in ambient air on human 
cancer. Studies using other exposure indicators 
(PM or NO2) have shown associations between 
air pollution and lung cancer; however, no PAH 
exposure information was available (Pope et al., 
2002; Hoek et al., 2002; Nafstad et al., 2003). An 
analysis of the United States data on lung cancer, 
PM exposure, and older PAH and metal air 
concentration data, supports the plausibility that 
known chemical carcinogens may be responsible 
for the lung cancer attributed to PM2.5 exposure 
in the American Cancer Society study (Harrison 
et al., 2004). A study by Cordier et al. (2004) 
found an increased risk of childhood brain cancer 
associated with PAH exposure. Both paternal 

Table 7 .5 Carcinogenicity of individual PAHs in experimental animals after inhalation or 
intratracheal instillation

Compound Carcinogenicity 
(weight of evidence)

Species No. of studies with positive, 
negative, and questionable 
results

+ – ±

Anthanthrene Positive Mouse 1
Anthracene Negative Rat 1
Benzo[b]fluoranthene Positive Rat 

Hamster
1 1

Benzo[j]fluoranthene Positive Rat 1
Benzo[k]fluoranthene Positive Rat 1
Benzo[g,h,i]perylene Negative Rat 1
Benzo[a]pyrene Positive Mouse 

Rat 
Hamster

1 
9 
11

1 1

Benzo[e]pyrene Negative Rat 1
Chrysene Positive Rat 1
Dibenz[a,h]anthracene Positive Rat 

Hamster
1 
1

1

Dibenzo[a,i]pyrene Positive Hamster 2
Indeno[1,2,3-cd]pyrene Positive Rat 1
Naphthalene Positive Mouse 

Rat
1 2

Phenanthrene Negative Rat 1
Pyrene Negative Hamster 1
Source: WHO (1998); reproduced with permission from the publisher; IARC (2002).
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preconception occupational PAH exposure and 
paternal smoking were associated with increased 
risks for childhood brain tumours.

Human susceptibility

PAHs are metabolically activated by phase I 
P450 isozymes (CYP1A1, CYP1B1) in combina-
tion with epoxide hydrolase (EPHX) and phase 
I AKR isozymes (AKR1A1, AKR1C1-AKR1C4) 
and are detoxified by phase II enzymes including 
GSTs, UTGs, SULTs, and COMT. In addition, 
bulky covalent diol-epoxide DNA adducts can be 
repaired by nucleotide excision repair proteins 
(XPD [helicase], XPA, and XPC [damage recogni-
tion]), and oxidative DNA lesions can be repaired 
by base excision repair enzymes (hOGG1 and 
APE). Each of these genes is highly polymorphic 
in the human population. (A complete list of 
these variants is available at the NCBI database: 
http://www.ncbi.nlm.nih.gov/.) Many of these 
variants are non-synonymous single-nucleotide 
polymorphisms (nSNPs) that can affect enzyme 
activity. Combinations of these nSNPs rather 
than an individual SNP may affect human genetic 
susceptibility to PAH emissions in ambient air.

In a study of Prague policemen occupationally 
exposed to polluted air, B[a]P-like DNA adducts 
were detected and found to be positively asso-
ciated with SNPs in XPD and GSTM1 (Binková 
et al., 2007). In another lung cancer case–control 
study, exposure to environmental tobacco smoke 
and polymorphisms in CYP1B1 Leu(432)Val was 
significantly associated with lung cancer suscep-
tibility, with an odds ratio for at least one allele 
of 2.87 (95% confidence interval [CI], 1.63–5.07) 
(Wenzlaff et al., 2005a). Combinations of the 
polymorphism in this phase I enzyme gene 
along with those selected from either phase II 
enzyme genes (GSTM1 null, GSTP1 Ile(105)Val) 
or NADPH-quinone oxidoreductase (NQO1) 
C(609)T) were also evaluated. Here the combi-
nation of the CYP1B1 Leu(432)Val allele and 
the NQO1 C(609)T allele was associated with 

the highest risk of lung cancer (odds ratio [OR], 
4.14; 95% CI, 1.60–10.74) (Wenzlaff et al., 2005a). 
In the same study cohort, variants in GSTM1, 
GSTT1, and GSTP1 were examined to determine 
whether there was an association of the genotype 
with lung cancer incidence in never-smokers. 
Individuals who had been exposed to household 
environmental tobacco smoke for > 20 years, and 
who were carriers of either the GSTM1 null allele 
or the GSTP1 Val allele, were at a 4-fold increased 
risk of developing lung cancer (OR, 4.56; 95% 
CI, 1.21–17.21) (Wenzlaff et al., 2005b). In a lung 
cancer case–control study in China, women 
who were never-smokers were found to be at a 
significant increased risk of adenocarcinoma if 
they were carriers of the variants in the nucleo-
tide excision repair variant XRCC1 399 Gln/Gln 
versus the Arg/Arg genotype (OR, 14.12; 95% CI, 
2.14–92.95). The OR of lung adenocarcinoma 
for the XRCC1 399Gln allele with exposure to 
cooking oil smoke was 6.29 (95% CI, 1.99–19.85) 
(Li et al., 2005). DNA integrity was investigated 
in 50 bus drivers, 20 garage men, and 50 controls 
in the Czech Republic and associated with vari-
ants in the base excision repair gene hOGG1. 
Carriers of at least one variant (Cys allele) had 
a higher degree of DNA damage (Bagryantseva 
et al., 2010). To date, no molecular epidemiolog-
ical study has been performed whereby combina-
tions of polymorphic variants in phase I, phase 
II, and DNA repair genes have been pooled. 
However, based on the studies described, carriers 
of variants in all three classes of genes might be at 
higher risk of developing lung cancer from emis-
sions of PAHs in ambient air.

Conclusions

PAHs generated from the incomplete 
combustion of organic material are ubiquitous 
contaminants in urban air. There are numerous 
unsubstituted PAHs (pyrogenic) and substi-
tuted PAHs (petrogenic). The pyrogenic PAHs 
may occur in the gas phase, particulate phase, 

http://www.ncbi.nlm.nih.gov/
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or mixtures of both phases. The major world-
wide source is the combustion of biofuels, while 
other sources such as combustion plants, various 
industrial and production processes, road trans-
port, and waste incineration can contribute. 
Total PAH levels in some urban areas are in 
the range of 100–200  ng/m3 but may be even 
higher in more polluted areas and can show 
distinct seasonal variation. However, meas-
urements of total PAHs are relatively scarce. 
B[a]P is the traditional marker for PAHs, but 
various other individual PAHs have also been 
proposed, such as fluoranthene, B[a]P, and 
benzo[b]fluoranthene. Biomarkers of exposure 
include 1-hydroxypyrene, 3-hydroxy-B[a]P, and 
tetraols, but DNA and protein adducts can also 
be measured as intermediate cancer biomarkers. 
The major disease end-point of interest is lung 
cancer, and approximately 10–15% of all lung 
cancer cases are seen in never-smokers. Parent 
PAHs must be metabolically activated to elec-
trophilic intermediates (radical cations, vicinal 
diol-epoxides, and o-quinones) to act as lung 
carcinogens. All three routes have been observed 
in human lung cells. Various promotional effects 
of PAHs may contribute to their carcinogenic 
action. In all, 10 PAHs have been found to be 
carcinogenic in experimental animals after inha-
lation or intratracheal instillation. Naphthalene 
seems to be an exception compared with other 
carcinogenic PAHs as it appears to not be geno-
toxic. A meta-analysis of occupational cohort 
studies found a 20% increase in relative risk per 
100  μg/m3 years cumulative B[a]P exposure. 
Studies of ambient air pollution and cancer have 
demonstrated an association between carriers of 
polymorphic variants in phase I, phase II, and 
DNA repair enzyme genes.
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