Chapter 6
Evaluating the role of chance

6.1 Populations and samples

Suppose that as part of a general health cross-sectional survey, we wish
to determine the proportion of men in a particular town who currently
smoke cigarettes. For practical and financial reasons, it is impossible to
interview every single man in this town, so we decide to select a random
sample of 30 men. In this sample, the proportion of current smokers is
7130 = 23%.

Usually it is impossible to examine every single individual of a popula-
tion of interest, and we are limited to examining a sample (or subset) of
individuals drawn from this population in the hope that it is representa-
tive of the whole population.

If we do not have information about the whole population, we cannot
know the true proportion of the population. However, the proportion
computed from a random sample can be used as an estimate of the pro-
portion in the entire population from which the sample was drawn. In the
above example, the sample proportion (23%) is our best guess of the true
but unknown proportion of current smokers in the whole town.

6.1.1  How reliable is our sample proportion?

There is nothing special about the particular random sample we have
used, and different random samples will yield slightly different estimates
of the true population proportion. This implies that our sample estimate
is subject to sampling error. The proportion of current smokers in the whole
town is unlikely to be exactly the 23% found in our sample, due to sam-
pling error. The question is, how far from 23% is it likely to be?

To try to answer this question, we first recognize that the sample we
picked was only one of a very large number of possible samples of 30 indi-
viduals. Suppose we were able to look at 100 000 samples. For each sam-
ple, we interview 30 individuals and calculate the sample proportion of
current smokers p. The value of p will vary from sample to sample. If we
plot all values of p, we would see a distribution like the one shown in
Figure 6.1.

This distribution is called the sampling distribution of p. It shows that
although most sample estimates are likely to be concentrated around the
true (population) proportion 7, some will be a long way from this true
value. The amount of spread tells us how precise our sample proportion p
is likely to be, as an estimate of the true proportion . If the distribution
is wide, there is a lot of sampling error and our p may be a long way from

Number of samples

w
Population Sample
proportion  proportion, p

Figure 6.1.
Sampling distribution of p for 100 000
repeated samples of size 30.

2 To ensure representativeness, the
sample of individuals should be
randomly selected from the popula-
tion of interest. That is, every individ-
ual in the population should have an
equal chance of being included in
the sample. The different ways in
which a random sample can be
drawn from a specific population are
dealt with in Chapter 10.
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the true value . If it is narrow, there is little sampling error, and our p is
likely to be very close to .

We have already seen in Section 3.3.1 that the spread of a distribu-
tion can be measured by a quantity called the standard deviation. It
can be shown that the standard deviation of a sampling distribution of
p is given by

w(1-m)
n

SE(p)=

where n represents the size of the sample. SE stands for standard error,
which is the term we generally use for the standard deviation of a sam-
pling distribution. The standard error is a measure of the precision
with which our sample value p estimates the true value . Notice that
if we increase the sample size, n, we decrease the standard error and the
sampling distribution will become narrower. This is just what we
would expect, as larger samples should provide more reliable estimates
of m.

When we actually do our survey, of course, we do not know the
value of 7 (otherwise we would not need to do the survey!), and so we
cannot actually use the above formula to calculate the SE(p). We can
make a close estimation of it by replacing m in the formula with our
sample estimate p, giving

1-

which can be rearranged as

2,

where a is the numerator of the proportion p = a/n (in our sample a =
7, the observed number of current smokers). This last formula is par-
ticularly useful because it shows that the standard error is inversely
related to the observed number of cases. It is the number of cases in the
numerator of p that mainly determines the magnitude of the standard
error, and not the sample size in itself.

It is possible to show mathematically that, in sufficiently large sam-
ples, approximately 95% of all the sample estimates will fall within
1.96 standard errors of the true value ; 2.5% of the sample estimates
(one sample in 40) will be more than 1.96 SEs below the true value,
and 2.5% (one in 40) will be more than 1.96 SEs above the true value
(Figure 6.2).
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Now what can we say about m from
our single sample of 30 individuals? Our
sample may have come from any part of
the distribution shown in Figure 6.2.
However, before drawing the sample,
there was a 95% chance that the
observed sample proportion p would lie
within two standard errors (more pre-
cisely 1.96 x SE) of the true value . As
a logical consequence, intervals from
samples of similar size but centred on Fﬁ

2.5%

Number of samples

95%

2.5%

o

each sample proportion p will include
if p is within two standard errors of .
Hence, an interval bounded by the fol-
lowing lower and upper limits

m
<~————1.96XSE — p — 1.96 X SE———>|

Sample
proportion, p

p-196xSE and p+1.96 x SE

(usually written p £ 1.96 x SE(p)) will include the true proportion 7 with
probability 95%. These limits, calculated from the sample data, are called
lower and upper confidence limits, respectively, and the interval between
them is called a 95% confidence interval of the unknown population pro-
portion .

In our example for estimating the proportion of men currently smok-
ing,

n=30,a=7andp=0.23

We estimate standard error of p to be

32 _ B
SE(p)=1 02371-0.23) (; 0.29) =0.076

A 95% confidence interval for the true proportion of men who current-
ly smoke in the whole town is therefore given by

0.23 £1.96 x 0.076 = 0.081 to 0.379

So our best estimate of the proportion of current smokers in the whole
town is 23%, but the true value could easily be anywhere between 8% and
38%.

In strict terms, the confidence interval is a range of values that is likely
to cover the true population value but we are still not certain that it will.

Figure 6.2.

Sampling distribution of p with 95%

confidence limits.
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In reality, a confidence interval from a particular study may or may not
include the actual population value. The confidence interval is based on
the concept of repetition of the study under consideration. Thus if the
study were to be repeated 100 times, we would expect 95 of the 100
resulting 95% confidence intervals to include the true population value.

If we want to be even more confident that our interval includes the
true population value, we can calculate a 99% confidence interval. This is
done simply by replacing 1.96 with 2.58 in the above formula. That is,
we use

-
pt258x4 L (i‘p)

In our example, the corresponding 99% confidence interval for the
proportion of current smokers in the whole town is 0.034 to 0.426, or
roughly 3% to 43%.

Similarly, we can calculate a 90% confidence interval by replacing 1.96
with 1.64 in the formula:

Z,
pE164x @

In our example, the corresponding 90% confidence interval for the
proportion of current smokers in the whole town is 0.105 to 0.355, or
11% to 36%.

6.1.2 How good are other sample estimates?

This useful way of describing sampling error is not limited to the sam-
ple proportion. We can obtain confidence intervals for any other sample
estimates such as means, risks, rates, rate ratios, rate differences, etc. The
underlying concept is similar to the one illustrated above for propor-
tions. In all these cases, the confidence intervals provide an indication
of how close our sample estimate is likely to be to the true population
value.

Suppose that, as part of the same general health survey, we wished to
determine the mean height of the men in the same town. We measured
the 30 individuals from our sample and obtained a sample mean height
of 165 cm. Again, the mean height of the male adult population in the
whole town is unlikely to be exactly 165 cm. However, if a very large
number of samples of 30 individuals were drawn from this population
and for each one the mean height were calculated and plotted, a sam-
pling distribution of the mean would be obtained. This sampling distri-
bution will have a shape similar to that of the sampling distribution of
a proportion (Figure 6.1), i.e., the distribution would be bell-shaped,
with most sample estimates centred around the true population mean.
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We can, therefore, obtain a 95% confidence interval in a similar way to
that used for proportions:

Sample mean + 1.96 x SE of the mean”

The standard error of a mean can be estimated by

SE (mean) = SD/\ n

where SD represents the standard deviation described in Section 3.3.1.
Suppose that, in the above example, the standard deviation was found to
be 7.1 cm. The standard error of the mean will be given by

SE (mean) = 7.1/ 30 = 1.3 cm

A 95% confidence interval for this sample mean will be equal to

165cm +1.96 x 1.3 cm =162 cm to 168 cm

How do we interpret this confidence interval? If the study were done
100 times, of the 100 resulting 95% confidence intervals, we would expect
95 of them to include the true population value. Thus, the confidence
interval from this particular sample of 30 men provides a range of values
that is likely to include the true population mean, although we cannot be
sure that it does.

As long as the sampling distribution of a particular estimate is approxi-
mately bell-shaped (i.e., it is what statisticians call a ‘Normal distribu-
tion’), as it will always be if the sample size is sufficiently large, we can
summarize the calculation of a 95% confidence interval as follows:

Sample estimate + 1.96 x SE(sample estimate)

(To obtain a 90% or a 99% confidence interval, all we need to do is to
replace 1.96 in the formula with, respectively, 1.64 or 2.58.)

In Example 6.1, men employed for 10 or more years were estimated to
have an excess of 92 cancer deaths per 10 000 pyrs compared with those
employed for less than 1 year, with a 95% confidence interval ranging
from 61 to 122 deaths per 10 000 pyrs. This confidence interval was cal-
culated using the above general formula as follows:

Rate difference + 1.96 x SE(rate difference)

where the SE of the rate difference was about 15 deaths per 10 000 pyrs.

b The precise value to be used in this
formula varies with the size of the
sample and it is given in tables of
the t-distribution. However, for large

sample sizes (>30) this factor is
close to 1.96.
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Example 6.1. In a cohort study of 15 326 men employed in a particular fac-
tory, their cancer mortality was assessed in relation to duration of their

employment (Table 6.1).
Table 6.1. Duration of No. of Person Rate? Rate ratio Rate difference?
Age-adjusted mortality rate ratios and employment  cases -years (95% CI)» (95% CI)»
rate differences of cancer (all sites (years)
combined) by duration of employment: .
hypothetical data. <1 44 40 056 11 1.0 0
1.0-1.9 67 21 165 32 2.9 (1.9-4.3) 21 (12-29)
2.0-4.9 19 3105 61 5.6 (3.1-9.7) 50 (23-78)
5.0-9.9 48 5 067 95 8.6 (5.6-13.3) 84 (57-111)
>10 43 4192 103 9.3 (6.0-14.6) 92 (61-122)
2 Rates per 10 000 person-years.
b Cl = confidence interval.
¢ Baseline category.

The corresponding rate ratio was 9.3 with a 95% confidence interval rang-
ing from 6.0 to 14.6. Thus, our best guess is that men employed for 10 or
more years were nine times more likely to die from cancer than those
employed for less than one year, but the true rate ratio might lie somewhere
between 6.0 and 14.6 (and is unlikely to lie outside this range).
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Figure 6.3.
Graphical display of rate differences
(indicated by the middle horizontal 6.1.3

lines) and their 95% confidence inter-
vals (vertical lines) on an arithmetic
scale (data from Table 6.1).
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You might have noticed in this example that, whereas the confi-
dence limits of a rate difference are equidistant from the sample esti-
mate, this is not the case for the confidence limits of a rate ratio. This
can be seen clearly in Figures 6.3 and 6.4(a). In contrast to the rate
difference, the sampling distribution of a rate ratio is not symmetric,
since the minimum possible value it can take is zero, whereas the
maximum is infinity. To obtain a more symmetric distribution, a log-
arithmic transformation of the data was used. As a consequence of
this transformation, the confidence limits are equidistant from the
sample estimate of the rate ratio on the logarithmic scale (Figure
6.4(b)) but asymmetric when converted back to the original scale
(Figure 6.4(a)) (see Appendix 6.1, at the end of this chapter, which
provides formulae to calculate confidence intervals for difference
and ratio measures).

Display of confidence intervals

If we have two or more groups, we can display the sample estimates and
their 95% confidence intervals in a graph. For instance, the rate ratios and

rate differences from Table 6.1 and their respective confidence intervals
are displayed in Figures 6.3 and 6.4.

The middle horizontal lines show the observed rate differences and rate
ratios, while the vertical lines indicate the 95% confidence intervals. Note
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how the confidence interval is much narrower when the number
of cases is large (e.g., category 1-1.9 years (based on 67 cases)). It
is the number of cases in the numerator of rates and proportions
which determines the size of the standard error and, therefore, the
width of the confidence interval.

6.1.4 Further comments

Statistical inference is a process by which we draw conclusions
about a population from the results observed in a sample. The
above statistical methods assume that the sample of individuals
studied has been randomly selected from the population of inter-
est, which was properly defined beforehand. That is, every indi-
vidual in the population has an equal chance of being in the
selected sample. Quite often in epidemiology, getting a truly ran-
dom sample is impossible and thus we have to be concerned
about selection bias (see Chapter 13). Confidence intervals convey
only the effects of sampling variation on the precision of the sam-
ple estimates and cannot control for non-sampling errors such as
bias in the selection of the study subjects or in the measurement
of the variables of interest. For instance, if the smoking survey
only included men who visited their doctors because of respirato-
ry problems, the sample would be unrepresentative of the whole
male population in the community. The statistical techniques
described above assume that no such bias is present.

The other issue that needs to be kept in mind in epidemiologi-
cal studies is that even when whole populations are studied, ques-
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tions of random variability still need to be addressed. Death rates may be
computed from national vital statistics, or incidence rates determined
from cancer registries that cover whole populations, but there will still be

random variation in the number of cases from one year to another.

Example 6.2. Table 6.2 shows that there is considerable random fluctua-
tion in the number of female lip cancer cases registered from year to year in

England and Wales.

Year of registration

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
58 57 60 46 57 64 53 47 51 58 62

2 Data from OPCS (1983a to 1994b).

Figure 6.4.

Graphical display of rate ratios and
their 95% confidence intervals: (a) on
an arithmetic scale and (b) on a loga-
rithmic scale (data from Table 6.1).

Table 6.2.

Number of incident cases of lip cancer
by year of registration, females,
England and Wales, 1979-89.2
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Table 6.3.
Number of patients still alive one year

after entry into the trial by type of treat-

ment administered: hypothetical data.

110

Even though the whole population of the country was studied to pro-
duce the data in Example 6.2, there was still random variability in the
number of lip cancer cases from year to year, which cannot be explained
in terms of changes in underlying risk. In these situations, we are sampling
‘in time’, that is the population in any particular year can be viewed as a
‘sample’. The methods discussed above should still be used to assess the
degree of precision of the observed rates. Of course, not all of the variation
from year to year may be random and there may, for example, be an
underlying trend, upwards or downwards, over a particular time period
(see Section 4.3.2).

When the rates are based on small numbers of cases, so that the confi-
dence intervals are very wide, it may be useful to reduce the random vari-
ation by pooling data over five or even ten adjacent calendar years and cal-
culating the average annual incidence (or mortality) rates.

6.2 Testing statistical hypotheses

An investigator collecting data generally has two aims: (a) to draw con-
clusions about the true population value, on the basis of the information
provided by the sample, and (b) to test hypotheses about the population
value.

Example 6.3. In a clinical trial on metastatic cervical cancer, 218 patients
were randomly assigned to a new treatment regimen or to the standard treat-
ment. All patients were followed up for one year after their entry into the
trial (or until death if it occurred earlier). The numbers of women still alive
at the end of this follow-up period are shown in Table 6.3.

Type of treatment

New Standard
Alive at the end Yes 68 45
of the first year No 40 65
Total 108 110

The data in Example 6.3 show that 63.0% (68 out of 108) patients
administered the new treatment were still alive compared with 40.9% (45
out of 110) of those given the standard treatment. From these results the
new treatment appears superior but how strong is the evidence that this is
the case?

In general, when comparing the effects of two levels of an exposure or
of two treatments, two groups are sampled, the ‘exposed’ and the ‘unex-
posed’, and their respective summary statistics are calculated. We might
wish to compare the two samples and ask: ‘Could they both come from
the same population?” That is, does the fact that some subjects were
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exposed and others were not influence the outcome we are observing? If
there is no strong evidence from the data that the exposure influences the
outcome, we might assume that both samples came from the same popu-
lation with respect to the particular outcome under consideration.

Statistical significance testing is a method for quantification of the
chance of obtaining the observed results if there is no true difference
between the groups being examined in the whole population.

6.2.1 The null hypothesis

An investigator usually has some general (or theoretical) hypothesis
about the phenomenon of interest before embarking on a study. Thus, in
Example 6.3, it is thought that the new treatment is likely to be better
than the standard one in the management of metastatic cervical cancer
patients. This hypothesis is known as the study hypothesis. However, it is
impossible to prove most hypotheses conclusively. For instance, one
might hold a theory that all Chinese children have black hair.
Unfortunately, if one had observed one million Chinese children and
found that they all had black hair, this would not have proved the hypoth-
esis. On the other hand, if just one fair-haired Chinese child were seen, the
theory would be disproved. Thus there is often a simpler logical setting for
disproving hypotheses than for proving them. Obviously, the situation is
much more complex in epidemiology. The observation that both the new
and the standard treatments had similar effects in one single patient
would not be enough to ‘disprove’ the study hypothesis that the two treat-
ments were different in effect.

Consider again the cervical cancer clinical trial (Example 6.3). In addi-
tion to the study hypothesis that the new treatment is better than the
standard one, we consider the null hypothesis that the two treatments are
equally effective. If the null hypothesis were true, then for the population
of all metastatic cervical cancer patients, the one-year survival experience
would be similar for both groups of patients, regardless of the type of treat-
ment they received. The formulation of such a null hypothesis, i.e., a
statement that there is no true statistical association, is the first step in any
statistical test of significance.

6.2.2 Significance test
After specifying the null hypothesis, the main question is:

If the null hypothesis were true, what are the chances of getting a dif-
ference at least as large as that observed?

For example, in the cervical cancer trial, what is the probability of get-
ting a treatment difference at least as large as the observed 63.0% - 40.9%
= 22.1%? This probability, commonly denoted by P (capital P rather than
the small p we used earlier for the sample proportion), is determined by
applying an appropriate statistical test.
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A simple example

To understand the basis for a statistical significance test, let us look first
at an example that uses numbers small enough to allow easy calculations.
Suppose that an investigator has a theory that predicts there will be an
excess of male births among babies resulting from in-vitro fertilization (IVF)
and he therefore wants to study the question ‘Are there more boys than
girls among IVF babies?’

The investigator formulates a null hypothesis that there is an equal pro-
portion (0.5 or 50%) of males and females in the population of IVF babies.
Next, he samples five records from one IVF clinic and finds that they are all
males in this sample of births. We can now calculate the probability of
obtaining five males and no females if the null hypothesis of equal num-
bers of males and females were true.

Probability that the first sampled is a male =05

Probability that the first and the second sampled are males =05x0.5 =0.25
Probability that the first, second and third sampled are males =05x05x0.5 =0.125
Probability that the first, second, third and fourth sampled are males =05x05x05 0.5 =0.0625
Probability that all five sampled are males =05x05x05x05x0.5 =0.03125

112

Thus, there is a 3.125% chance of obtaining five males in a row even if
the true proportions of males and females born in the whole population
were equal. We have just done a statistical significance test! It yields the
probability (P) of producing a result as large as or larger than the observed
one if no true difference actually existed between the proportion of males
and females in the whole population of IVF babies.

What can we conclude from this probability? This P-value can be
thought of as a measure of the consistency of the observed result with the
null hypothesis. The smaller the P-value is, the stronger is the evidence
provided by the data against the null hypothesis. In this example, the
probability of obtaining five boys in a row if the null hypothesis were real-
ly true was fairly small. Hence, our data provide moderate evidence that
the number of boys is greater than the number of girls among IVF babies.

However, in spite of this small probability, the null hypothesis may well
be true. Our final interpretation and conclusions depend very much on
our previous knowledge of the phenomenon we are examining. (The situ-
ation can be compared to tossing a coin. Even after getting five tails in a
series of five tosses, most people would still believe in the null hypothesis
of an unbiased coin. However, if the first 20 tosses were all tails the inves-
tigators would be very suspicious of bias, since the probability of this hap-
pening by chance is only (0.5)» = 0.00000095.)

Comparing two proportions
In the cervical cancer treatment trial (Example 6.3), if the null
hypothesis of no difference in survival between the two treatments is
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true, what is the probability of finding a sample difference as large as
or larger than the observed 22.1% (= 63.0% - 40.9%)? If the null
hypothesis were true, the only reason for the observed difference to be
greater than zero is sampling error. In other words, even if the true
population difference in proportions were zero, we would not expect
our particular sample difference to be exactly zero because of sampling
error. In these circumstances how far, on average, can we reasonably
expect the observed difference in the two proportions to differ from
zero?

We have already seen in this chapter that the standard error of a pro-
portion gives an indication of how precisely the population value can
be estimated from a sample. We can define the standard error of the
difference between two proportions in a similar fashion. Theoretically,
if we were to repeat the above cervical cancer trial over and over again,
each time using the same number of patients in each group, we would
obtain a sampling distribution of differences in proportions of a shape
similar to that shown in Figure 6.1. The spread of this sampling distri-
bution could be summarized by using a special formula to calculate the
standard error. Its application to the cervical cancer trial data yields a
standard error equal to 6.6%. The essence of the statistical test we
apply to this situation is to calculate how many standard errors away
from zero the observed difference in proportions lies. This is obtained
as follows:

observed difference in proportions — 0
Value of the test statistic =

standard error of difference

In the cervical cancer trial, the test statistic has a value of

0.221-0
0.066

=3.35

The observed difference between the two treatments (22.1%) is
3.35 standard errors from the null hypothesis value of zero. A value
as high as this is very unlikely to arise by chance, since we already
know that 95% of observations sampled from a bell-shaped distribu-
tion (i.e., a Normal distribution) will be within 1.96 standard errors
of its centre.

The larger the test value, the smaller the probability P of obtaining
the observed difference if the null hypothesis is true. We can refer to
tables which convert particular statistical test values into correspond-
ing values for P. An extract from one such table, based on the Normal
(bell-shaped) distribution, is shown on the next page.

In the cervical cancer example, the value of the test statistic is 3.35,
even larger than the highest value shown in the extract on the next
page (3.291), and so the probability P is less than 0.001. That is, if the
new and the standard treatments were really equally effective, the
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test statistic exceeds in absolute value? 0.674 with probability 0.5 (50%)
" 1.282 ! 0.2 (20%)
1.645 " 0.1 (10%)
1.960 ! 0.05 (5%)
2.576 ! 0.01  (1%)
! 3.291 " 0.001 (0.1%)

a  Absolute value means that the plus or minus signs should be ignored; for example, =1 and +1
have the same absolute value of 1.

chances of getting so great a difference in survival would be less than
one in a thousand. According to conventional use of statistical termi-
nology, we would say that the difference in percentages is statistically
significant at the 0.1% level. Hence, there is strong evidence that the
new treatment is associated with a better one-year survival than is the
standard treatment.

6.2.3 Interpretation of P-values
Cox & Snell (1981) give the following rough guidelines for inter-
preting P-values:

If P > 0.1, the results are reasonably consistent with the null hypothesis.
If P = 0.05, there is moderate evidence against the null hypothesis.

If P <£0.01, there is strong evidence against the null hypothesis.

It is common to consider P<0.05 as indicating that there is substan-
tial evidence that the null hypothesis is untrue. (The null hypothesis is
rejected and the results of the study are declared to be statistically sig-
nificant at the 5% level.) However, this emphasis on P<0.05 should be
discouraged, since 0.05 is an arbitrary cut-off value for deciding whether
the results from a study are statistically significant or non-significant.
It is much better to report the actual P-value rather than whether P
falls below or above certain arbitrary limiting values.

When P is large, investigators often report a ‘non-statistically signif-
icant’ result and proceed as if they had proved that there was no effect.
All they really did was fail to demonstrate that there was a statistically
significant one. The distinction between demonstrating that there is
no effect and failing to demonstrate that there is an effect is subtle but
very important, since the magnitude of the P-value depends on both
the extent of the observed effect and the number of observations
made. Therefore, a small number of observations may lead to a large P-
value despite the fact that the real effect is large. Conversely, with a
large number of observations, small effects, so small as to be clinically
and epidemiologically irrelevant, may achieve statistical significance.
These issues are of great importance to clinical and epidemiological
researchers and are considered in detail in later chapters (13 and 15).
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6.2.4 Comparing other sample estimates

Although we have introduced significance testing for one particular
problem (comparing two proportions), the same procedure can be
applied to all types of comparative study. For instance, it can be used
to compare other sample estimates (e.g., means, rates) or to assess
more generally associations between variables.

Example 6.4. In a case-control study to investigate the association between
past history of infertility and the risk of developing benign ovarian tumours,
the data shown in Table 6.4 were obtained.

Past history of infertility

Yes (‘exposed’) No (‘unexposed’)
Women with benign
ovarian tumours (‘cases’) 16 42
Healthy women (‘controls’) 9 120
odds of infertility among the cases 16/42
Odds ratio = = —— =5.08
odds of infertility among the controls 9/120

(The calculation of odds ratios from case—control studies is discussed in detail in
Chapter 9.)

In Example 6.4, the null hypothesis assumes that the two groups of
women have a similar risk of getting benign ovarian tumours, i.e., the
true odds ratio in the population is equal to one. After using an appro-
priate statistical test, as described in Appendix 6.1, the researchers
obtained a P-value of 0.0003, i.e., if the null hypothesis were true, the
probability of getting an odds ratio as large as, or larger than, 5.08
would be very small (less than 1 in 1000). Thus, the data from this
study provide strong evidence against the null hypothesis.

6.3 Confidence intervals and hypothesis testing

Statistical significance testing is designed to help in deciding whether or
not a set of observations is compatible with some hypothesis, but does not
provide information on the size of the association (or difference of effects).
It is more informative not only to think in terms of statistical significance
testing, but also to estimate the size of the effect together with some mea-
sure of the uncertainty in that estimate.

This approach is not new; we used it in Section 6.1 when we introduced
confidence intervals. We stated that a 95% confidence interval for a
sample estimate could be calculated as

Table 6.4.

Distribution of benign ovarian tumour
cases and controls according to past

history of infertility: hypothetical data.
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Sample estimate + 1.96 x standard error of a sample estimate

A 95% confidence interval for the difference in two proportions can be
calculated in a similar way:

Observed difference + 1.96 x standard error of the difference

(The calculation of the standard error of a difference between proportions
is illustrated in the Appendix, Section A6.1.2).

In the cervical cancer trial (Example 6.3), this 95% confidence interval
is

0.221 £ 1.96 x 0.066 = 0.092 to 0.350 = 9.2% to 35.0%

Thus, it is plausible to consider that the real difference in one-year
survival between the new treatment and the standard treatment lies
somewhere between 9% and 35%.

This confidence interval is consistent with the result of the statistical
test we performed earlier (Section 6.2.2). The value of the test for the
null hypothesis of no difference between the two treatments was 3.35,
which corresponded to P<0.001.

Note that if the 95% confidence interval for a difference does not
include the null hypothesis value of zero, then P is lower than 0.0S.
Conversely, if this confidence interval includes the value 0O, i.e. one
limit is positive and the other is negative, then P is greater than 0.05.

This example shows that there is a close link between significance
testing and confidence intervals. This is not surprising, since these two
approaches make use of the same ingredient, the standard error. A sta-
tistical test is based on how many standard errors the observed sample
estimate lies away from the value specified in the null hypothesis.
Confidence intervals are calculated from the standard error and indi-
cate a range of values that is likely to include the true but unknown
population parameter; this range may or may not include the value
specified in the null hypothesis and this is reflected by the value of the
test statistic.

In Example 6.5, the P-values are large, indicating that the results are
consistent with the null hypothesis of no difference in risk between rel-
atives of mycosis fungoides patients and the general population of
England and Wales. However, inspection of the confidence intervals
reveals that the confidence interval for all malignancies is quite narrow,
whereas the one for non-Hodgkin lymphoma is wide and consistent
with an almost five-fold increase in risk as well as with a 50% reduction.
This confidence interval is wide because it is based on only three cases.

To summarize, P-values should not be reported on their own. The
confidence intervals are much more informative, since they provide an



Evaluating the role of chance

Table 6.5.
Example 6.5. Various studies have suggested that relatives of patients who Cancer incidence among first-degree

develop mycosis fungoides (a particular form of non-Hodgkin lymphoma) are [ﬁfgﬁ’gﬁsﬁgg‘é‘;ﬁf fungoides patients
at increased risk of developing cancer, particularly non-Hodgkin lymphomas.
To clarify this issue, data on the number of cancer cases that occurred among
first-degree relatives of mycosis fungoides patients diagnosed in one London
hospital were ascertained. The observed number of cancer cases was then
compared with those that would have been expected on the basis of the
national rates for England and Wales. The results from this study are shown

in Table 6.5.
Site Number of Number of  Standardized 95% P-value
cases cases expected incidence confidence
observed (O) (E)? ratio (O/E) interval

All sites 34 36.8 0.9 0.6-1.3 0.719
Non-Hodgkin

lymphomas 3 2.1 15 0.5-4.6 0.502
@ Calculated using the national age-specific cancer incidence rates for England

and Wales as the standard.

idea of the likely magnitude of the association (or difference of effects)
and their width indicates the degree of uncertainty in the estimate of
effect.

Appendix 6.1 gives formulae to calculate confidence intervals and
statistical tests for the most commonly used epidemiological measures.
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Further reading

* Gardner & Altman (1986) pro-
vide a simple overview of most of
the concepts covered in this
chapter and also give sugges-
tions for presentation and graphi-
cal display of statistical results.
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Box 6.1. Key issues

* Epidemiological studies are usually conducted in subsets or samples of individ-
uals drawn from the population of interest. A sample estimate of a particular epi-
demiological measure is, however, unlikely to be equal to the true population
value, due to sampling error.

* The confidence interval indicates how precise the sample estimate is likely to be
in relation to the true population value. It provides a range of values that is like-
ly to include the true population value (although we cannot be sure that a par-
ticular confidence interval will in fact do so).

* Statistical significance testing is used to test hypotheses about the population of
interest. The P-value provides a measure of the extent to which the data from
the study are consistent with the ‘null hypothesis’, i.e., the hypothesis that there
is no true association between variables or difference between groups in the
population. The smaller the P-value, the stronger is the evidence against the null
hypothesis and, consequently, the stronger the evidence in favour of the study
hypothesis.

* P-values should generally not be reported alone, since they do not provide any
indication of the magnitude of the association (or difference of effects). For
instance, small effects of no epidemiological relevance can become ‘statistically
significant’ with large sample sizes, whereas important effects may be ‘statisti-
cally non-significant’ because the size of the sample studied was too small. In
contrast, confidence intervals provide an idea of the range of values which might
include the true population value.

* Confidence intervals and statistical significance testing deal only with sampling
variation. It is assumed that non-sampling errors such as bias in the selection of
the subjects in the sample and in the measurement of the variables of interest
are absent.



Appendix 6.1

Confidence intervals and
significance tests for
epidemiological measures

This appendix provides formulae for the calculation of confidence
intervals and statistical significance tests for the most commonly used epi-
demiological measures. The formulae presented here can only be applied
to ‘crude’ measures (with the exception of the standardized mortality (or
incidence) ratio). For measures that are adjusted for the effect of potential
confounding factors, see Chapter 14. For measures not considered here,
see Armitage and Berry (1994). Similar results may be easily obtained using
computer packages such as EPI INFO, STATA or EGRET.

A6.1.1 Calculation of confidence intervals for measures of occurrence

Single proportion (prevalence or risk)

Prevalence is a proportion and therefore the standard error and the con-
fidence interval can be calculated using the formula discussed in Section
6.1.1:

21

- a

where a is the number of cases and p = a/n (n being the sample size).
A 95% confidence interval can be obtained as

p +1.96 x SE(p)

For a 90% confidence interval, the value 1.96 should be replaced by
1.64 and for a 99% confidence interval by 2.58.

Risk is also a proportion. Thus the standard error and confidence interval
can be obtained in exactly the same way, as long as all the subjects are fol-
lowed up over the whole risk period of interest. If the follow-up times are
unequal, life-table or survival analysis techniques must be used (see
Chapter 12), including the appropriate standard error formulae.

The simple method for obtaining confidence intervals described above
is based on approximating the sampling distribution to the Normal distri-
bution. This ‘approximate’ method is accurate in sufficiently large samples
(greater than 30).
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An ‘exact’ method for calculating confidence intervals for proportions,
based on the binomial distribution, is recommended for smaller samples.
This method is, however, too complex for the calculations to be performed
on a pocket calculator.

Single rate
If the number of cases that occur during the observation period is
denoted by a and the quantity of person-time at risk by y, the estimated
incidence rate (r) is
r=aly
An ‘approximate’ standard error can be calculated as follows:

SE(r) = r/\a

The 95% confidence interval for the observed rate (r) can then be
obtained as

r+ 1.96 x SE(r)

;Z?/:ecgr?f-i:igr;ce limit factors for Observed Itov_ver L_Jp|_aer Observed ITov_ver l_Jp;_)er Observed ITov_ver l_Jpp_)er
estimates of a Poisson-distributed number  limit limit number limit limit number limit limit
variable.a on which factor factor onwhich factor factor on which factor factor
estimate estimate estimate
is based is based is based
(a) (L) ) (a) (L) (O] (a) (L) )
1 0.025 5.57 21 0.619 1.53 120 0.833 1.200
2 0.121 3.61 22 0.627 1.51 140 0.844 1.184
3 0.206 2.92 23 0.634 1.50 160 0.854 1.171
4 0.272 2.56 24 0.641 1.48 180 0.862 1.160
5 0.324 2.33 25 0.647 1.48 200 0.868 1.151
6 0.367 2.18 26 0.653 1.47 250 0.882 1.134
7 0.401 2.06 27 0.659 1.46 300 0.892 1.121
8 0.431 1.97 28 0.665 1.45 350 0.899 1.112
9 0.458 1.90 29 0.670 1.44 400 0.906 1.104
10 0.480 1.84 30 0.675 1.43 450 0.911 1.098
11 0499 1.79 35 0.697 1.39 500 0.915 1.093
12 0.517 1.75 40 0.714 1.36 600 0.922 1.084
13 0.532 1.71 45 0.729 1.34 700 0.928 1.078
14 0.546 1.68 50 0.742 1.32 800 0.932 1.072
15 0.560 1.65 60 0.770 1.30 900 0.936 1.068
16 0.572 1.62 70 0.785 1.27 1000 0.939 1.064
17 0.583 1.60 80 0.798 1.25
18 0.593 1.58 90 0.809 1.24
19 0.602 1.56 100 0.818 1.22
20 0.611 1.54
@ Data from Haenszel et al., (1962)
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These formulae are appropriate when the number of cases in the numer-
ator of the rate, g, is greater than 30. If the number of cases is small, ‘exact’
confidence intervals, based on the Poisson distribution, can be obtained
from Table A6.1.1. This table gives factors by which the observed rate is
multiplied to obtain the lower and the upper limit of a 95% confidence
interval:

Lower limit = r x lower limit factor (L)
Upper limit = r x upper limit factor (U)

Consider the following example. The total number of deaths from
stomach cancer among males aged 45-54 years in Egypt during 1980 was
39 in 1 742 000 person-years (WHO, 1986). Thus, using the ‘approximate’
method,

r=39/1 742 000 pyrs = 2.24 per 100 000 pyrs
SE(r) = 2.24 per 100 000 pyrs/N39 = 0.36 per 100 000 pyrs
95% CI(r) = 2.24 £ 1.96 x 0.36 = 1.53 to 2.95 per 100 000 pyrs
For the ‘exact’ method, the lower limit factor (L) and the upper limit

factor (U) corresponding to 39 cases are obtained from the table by inter-
polation between the rows for 35 and 40 cases.

39-35
L=0.697 + [(0.714—0.697) X 35} =0.711

) 39-35|
U=139- {(1.39—1.36)x 40_35} =137

Thus, the limits of the 95% confidence interval are

Lower limit = 2.24 per 100 000 pyrs x 0.711 = 1.59 per 100 000 pyrs
Upper limit = 2.24 per 100 000 pyrs x 1.37 = 3.07 per 100 000 pyrs

In this example, the ‘exact’ and the ‘approximate’ confidence limits are
relatively close to each other, because the rate was based on a sufficiently
large number of cases. The larger the number of cases, the closer will be
the confidence limits obtained by these two methods.

Let us now consider some data from Kuwait. The total number of deaths
from stomach cancer among men aged 45-54 years in this country in
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Table A6.1.2.

Results from a cohort study in which
risks were calculated as measures of
occurrence of the outcome of interest

in each study group: hypothetical data.
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1980 was only 3 in 74 000 pyrs (WHO, 1983). The ‘approximate’ method
gives

r=3/74 000 pyrs = 4.05 per 100 000 pyrs
SE(r) = 4.05 per 100 000 pyrs/V3 = 2.34 per 100 000 pyrs
95% CI(r) = 4.05 £ 1.96 x 2.34 = -0.54 to 8.64 per 100 000 pyrs

This method gives a negative value for the lower limit, which is mean-
ingless, as incidence and mortality rates cannot be negative. By the ‘exact’
method, consulting again Table A6.1.1, the limits for the 95% confidence
interval are:

Lower limit = 4.05 per 100 000 pyrs x 0.206 = 0.83 per 100 000 pyrs
Upper limit = 4.05 per 100 000 pyrs x 2.92 = 11.83 per 100 000 pyrs

In this example, the ‘exact and’ ‘approximate’ confidence intervals are
clearly different. When the number of cases is less than about 30, it is
desirable to use the ‘exact’ method.

A6.1.2 Calculation of confidence intervals for measures of effect

Ratio of proportions (prevalence ratio or risk ratio)

A formula for the confidence interval around a risk ratio estimate
of effect must take into account the fact that the sampling distribution of
possible values for the risk ratio is highly skewed to the right. The mini-
mum possible value a risk ratio can take is zero and the maximum is
infinity. To make the distribution more symmetric, it is necessary to first
convert the estimated risk ratios into their natural logarithms (denoted
In). We can then use formulae analogous to those presented in Section
A6.1.1 to calculate a confidence interval around the value of the loga-
rithm of the risk ratio rather than the risk ratio itself.

Consider the following example, in which 1000 exposed subjects and
1500 unexposed subjects were followed up for one year. The follow-up
was complete for each subject. At the end of this period, 60 subjects
among the exposed and 45 among the unexposed had developed the out-
come of interest (Table A6.1.2).

Exposure Total
Yes No
Outcome Yes 60 (a) 45 (b) 105 (ny)
No 940 (¢) 1455 (d) 2395 (no)
Total 1000 (my) 1500 (mo) 2500 (N)
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The risk ratio (R) and its natural logarithm can be calculated as
R =pilpo
In R =1n (p1/po)

An ‘approximate’ standard error of the logarithm of R can be estimated
by

SE(lnR):w/ l+l—l—L
a b m m,

An ‘approximate’ 95% confidence interval for In R is then given by
(In R) £ 1.96 SE(In R), and the 95% confidence interval for the risk ratio
(R) obtained by taking antilogarithms.

Thus, in the example shown in Table A6.1.2,

Risk in the exposed (p;) = 60/1000 = 0.06
Risk in the unexposed (po) = 45/1500 = 0.03

Risk ratio (R) = 0.06/0.03 = 2.0

InR=1n2.0=0.69

SE(lnR)z\/ L R N ST
60" 45 10007 1500

95% CI (In R) = 0.69 £ 1.96 x 0.19 = 0.318 to 1.062

The ‘approximate’ 95% confidence interval of the risk ratio (R) can then
be obtained by taking antilogarithms:

95% CI (R) = €%318 to 1962 = 1,37 to 2.89

A similar approach can be applied when the measure of interest is a
prevalence ratio.

‘Exact’ methods should be used when the risk ratio or the prevalence
ratio is based on small numbers of cases, but the calculations are too com-
plex to be shown here.

Difference of proportions (prevalence difference or risk difference)
The standard error of the difference between two proportions p, and p,
can be estimated, approximately, as
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Table A6.1.3.

Results from a cohort study in which
rates were calculated as measures of
occurrence of the outcome of interest

in each study group: hypothetical data.
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SE(1,~py = L0 (1=p) , PR

where a and b are the numbers of cases in the two study groups.
In the example shown in Table A6.1.2,

Risk difference (p; - py) = 0.06 - 0.03 = 0.03

\ 0.06> (1-0.06)  0.03%(1-0.03)
SE (p, - p,) = \/ =0.0087
(1= o) 60 + 45

95% CI (py — po) = (p1 = po) = 1.96 SE (p1 - po)
=0.03 £ 1.96 x 0.0087

=0.013 t0 0.047 or 1% to S%

A confidence interval for a difference in prevalences will be calculated in
the same way.

Rate ratio
Consider the results from another hypothetical cohort study, shown in
Table A6.1.3.

Exposure Total
Yes No
Cases 60 (a) 45 (b) 105 (n)
Person-years at risk (pyrs) 4150 (y4) 6500 (yo) 10 650 (y)
Rate per 1000 pyrs 14.5 (ry) 6.9 (ro) 9.9 (n

As with a risk ratio, a rate ratio can only take values from zero to
infinity. Thus to construct a confidence interval for an estimated rate
ratio (RR), its natural logarithm needs to be calculated first:

In RR = In (ry/r)
An ‘approximate’ standard error of the logarithm of a rate ratio (RR) can
be obtained as follows:
SE (In RR) =~(1/a + 1/b)

where a and b are the numbers of cases in the exposed and unexposed
groups, respectively.
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In this example, the incidence rate in the exposed (r,) is equal to
60/4150=14.5 per 1000 pyrs. The incidence rate in the unexposed group
(o) is 45/6500=6.9 per 1000 pyrs. Thus the rate ratio and its logarithm are:

RR = 14.5 per 1000 pyrs/6.9 per 1000 pyrs = 2.1
InRR=1In2.1=0.74

An ‘approximate’ standard error for the logarithm of a rate ratio of 2.1
based on 60 cases in the exposed group and 45 cases in the unexposed
group may be calculated as follows:

SE (In RR) =/(1/60 + 1/45) = 0.197

The ‘approximate’ 95% confidence interval of the logarithm of the rate
ratio is given by

95% CI (In RR) = In RR + 1.96 SE (In RR)
=0.74 £ 1.96 x 0.197
=0.35to 1.13

We can then obtain the ‘approximate’ 95% confidence interval for the
rate ratio by taking the antilogarithms of these values:

95% CI (RR) = €935 to e113 = 1.42 to 3.10

There is also an ‘exact’ method of calculating confidence intervals for
rate ratios that are based on small numbers of cases, but its discussion is
beyond the scope of this chapter (see Breslow & Day, 1987, pp. 93-95).

When the rate ratio is an SMR (or SIR) (see Section 4.3.3), it is possible
to calculate an ‘exact’ 95% confidence interval by multiplying the
observed SMR (or SIR) by the appropriate lower and upper limit factors,
exactly as we did for a single rate.

For instance, if the number of observed (O) leukaemia deaths in a cer-
tain town were 20 and only 15 would have been expected (E) if the town
had the same age-specific rates as the whole country, the SMR would be
equal to 1.33. The lower and the upper limit factors when the observed
number of cases is 20 (see Table A6.1.1) are 0.611 and 1.54, respectively.
Thus,

SMR = O/E = 20/15 =1.33

95% CI (SMR) = 1.33 x 0.611 to 1.33 x 1.54
=0.81 to 2.05
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Rate difference
The standard error of the difference between two estimated rates (r, and
1,) is given by

7 2
SE (-1 = 4 ﬁ+ B
a b

where a and b refer to numbers of cases in the two groups.
The 95% confidence interval is given by

95% CI (r1 - ro) = (rl - ro) +1.96 SE(TI - ro)
Thus in the example shown in Table A6.1.3,

r — 1o = 14.5 per 1000 pyrs - 6.9 per 1000 pyrs = 7.6 per 1000 pyrs

SE (1, - 1p) =V((0.0145)/60 + (0.0069)?/45) = 0.00214
= 2.14 per 1000 pyrs

95% CI (ry —1p) = 7.6 £ 1.96 x 2.14 = 3.41 to 11.79 per 1000 pyrs

Odds ratio
Data from a case—control study can be presented in a 2 x 2 table, as
shown below:

Table A6.1.4. Exposure Total

Results from a case—control study: Yes No

hypothetical data.
Cases 457 (a) 26 (b) 483 (n4)
Controls 362 (¢) 85 (d) 447 (ny)
Total 819 (my) 111 (my) 930 (N)

An ‘approximate’ standard error of the logarithm of an odds ratio (OR)
can be calculated as

SE (In OR) = (1/a + 1/b + 1/c + 1/d)

In the example shown in Table A6.1.4,

odds of exposure among the cases 457/26

odds of exposure among the controls 362/85

InOR=1n4.13 =142

SE (In OR) =V(1/457 + 1/26 + 1/362 + 1/85) = 0.23
95% CI (In OR) = 1.42 + 1.96 x 0.23 = 0.97 to 1.87
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Thus an ‘approximate’ 95% confidence interval for the odds ratio can
be obtained by taking antilogarithms:

95% CI (OR) = €997 to e!87 = 2.64 to 6.49

It is also possible to calculate an ‘exact’ confidence interval for small samples,
but the calculations are too complex to be carried out on a pocket calculator.

A.6.1.3 Statistical tests

Comparison of two proportions (prevalences or risks)

To test the null hypothesis that there is no true difference between two
proportions (either risks or prevalences), the results from a study should
first be arranged in a 2 x 2 table similar to Table A6.1.2. In this table, the
observed (O) number of cases among exposed is a. We can calculate the
expected (E) value in cell a and the variance (V), assuming that the null
hypothesis of no difference between the two groups is true.

O=a

E= mlnl/N

Ny nymq 1y

NN-1)

A special statistical test called the chi-squared (y?) test can then be
applied to measure the extent to which the observed data differ from
those expected if the two proportions were equal, that is, if the null
hypothesis were true.

x'=0-EP/V

In epidemiology, this application of the y? test takes the name of
Mantel-Haenszel test.
In the example shown in Table A6.1.2,

0=060
E =1000 x 105/2500 = 42

105 x 2395 x 1000 x 1500
V= =24.15
2500% x (2500 - 1)

(60 - 42)?
e XT =13.42

127



Appendix 6.1

128

Large values of y*suggest that the data are inconsistent with the null
hypothesis, and therefore that there is an association between exposure
and outcome. The P-value is obtained by comparing the calculated value
of x> with tables of the chi-squared distribution.

In referring the calculated y* test statistics to these tables, we need to
know a quantity called the ‘degrees of freedom’ (d.f.), which takes into
consideration the number of sub-groups or ‘cells’ in the table which con-
tributed to the calculation. For 2 x 2 tables, the number of degrees of free-
dom (d.f.) is one.

If the null hypothesis is true,

y test statistic (with 1 d.f.) exceeds 0.45 with probability 0.5
“ 1.32 “ 0.25
“ 2.71 “ 0.1
“ 3.84 “ 0.05
“ 5.02 “ 0.025
“ 6.63 “ 0.01
“ 7.88 “ 0.005
“ 10.83 “ 0.001

Thus, if the x* statistic with 1 d.f. exceeds 3.84, then P<0.05, indi-
cating some evidence of a real difference in the proportions. If it
exceeds 6.63, then P < 0.01, and there is strong evidence of a differ-
ence.

In the example shown in Table A6.1.2, the value of y* was 13.42,
which corresponds to P < 0.001. There is therefore strong evidence for
an association. Thus we can conclude that the observed risk ratio of 2.0
is statistically significantly different from 1, and that there is very
strong evidence that the risk is higher in those who were exposed than
in those who were not.

In fact, we have already performed a test for difference in two pro-
portions in Section 6.2.2. We then used a different test statistic which
gave similar results to the more general Mantel-Haenszel type of test
statistic used here.

Note that the statistical test is the same regardless of the measure of
effect (risk (or prevalence) ratio or risk (or prevalence) difference) that we
are interested in. However, the confidence intervals are calculated in a
different way (see Section A6.1.2).

Comparison of two odds

The approach discussed above for comparison of proportions can
also be used to test the null hypothesis that there is no difference
between the odds of exposure among the cases and the odds of expo-

sure among the controls, that is, the odds ratio is equal to one.
In the example shown in Table A6.1.4,
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0 =457

819 x 483
E= —— =42535
930
483 x 447 x 819 x 111

930% x (930 -1)

(457 - 425.35)
= ——— =41
24.43
The y? gives a measure of the extent to which the observed data differ
from those expected if the two odds of exposure were equal. This x> value

(with one degree of freedom) corresponds to P<0.001. Thus, there is strong
evidence against the null hypothesis.

Compatrison of two rates

In cohort studies, where rates rather than risks are used as the measure
of disease frequency, consideration must be given to the distribution of
person-years between exposed and unexposed groups.

Consider again the example shown in Table A6.1.3. The observed num-
ber of cases among those who were exposed is a = 60. The expected value
in cell a and the variance assuming that the null hypothesis is true (i.e.,
that there is no true difference in rates between the exposed and the unex-
posed groups) can be calculated as follows:

E =ny,/y and V = ny,yo/y?
Then
2 =0-BHV

In the example shown in Table A6.1.3,

0=60
105 x 4150
E= — =4092
10 650
105 x 4150 x 6500
Ve —————— =2497
(10 650)>
(60 — 40.92)2
¥= ——— = =1458
24.97

This y? value with one degree of freedom corresponds to P < 0.001, pro-
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Table A6.1.5.

Distribution of women infected and not
infected with human papillomavirus
(HPV) by number of lifetime sexual
partners: hypothetical data.
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viding strong evidence against the null hypothesis of no association
between exposure and the incidence of the disease.

The same procedure applies when the rate ratio is an SMR. In this case,
the variance is equal to the expected number of cases. Thus if the number
of observed leukaemia deaths (O) in a particular town is 20 and the expect-
ed number (E) based on the national age-specific rates is 15,

SMR = O/E = 20/15 = 1.33

V=15

(20 - 15)?

15

This * value, with one degree of freedom, corresponds to 0.1 < P < 0.25.
Thus, these results are consistent with the null hypothesis of no difference
in the age-specific mortality rates from leukaemia between the town and the
whole country.

Note that the statistical test is the same regardless of the measure of effect
(rate ratio or rate difference) we are interested in. However, the confidence
intervals are calculated in a different way (see Section A6.1.2).

¥ test for a linear trend in proportions (prevalences or risks)

So far we have considered only situations where individuals were classi-
fied as either ‘exposed’ or ‘unexposed’. In many circumstances, how-ever,
individuals can also be classified according to levels of exposure. For
instance, suppose that a survey was carried out to assess whether infection
with human papillomavirus (HPV) was associated with number of sexual
partners. The results from this hypothetical study are shown in Table A6.1.5.

Lifetime number of sexual partners Total

1 2-3 4-5 >5
HPV-positive 19(ap) 33(ay) 51(ay) 107(as) 210(ny)
HPV-negative 71(bo) 68(by) 42(by) 61(bs) 242(no)
Total 90(mg) 101(my) 93(my) 168(mz) 452(N)
Percentage of 211 32.7 54.8 63.7 46.5
HPV positive
Score 0(xo) 1(x4) 2(xy) 3(x3)

The results seem to support the study hypothesis of a trend for an
increase in the proportion of HPV-positive women with increasing num-
ber of sexual partners. Although there is an apparent linear trend in pro-
portions in the above table, each proportion (or percentage) is subject to
sampling variability. We can use a y? test for a linear trend in propor-
tions to assess whether this trend may be due to chance.
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The first step is to assign a score x to each exposure category. For exam-
ple, in Table A6.1.5 ‘0" was assigned to those women with 1 partner, ‘1’ to
those with 2-3 partners, and so on. The second step is to use the following
formulae to obtain the values of T), T, and T:. In these formulae, the sym-
bol ¥ means sum and the subscript i stands for the subscripts 0, 1, 2, 3, etc.

Ty =Yax;=(19x0) + (33 x 1) + (51 x2) + (107 x 3) = 456
T, = Ymx; = (90 x 0) + (101 x 1) + (93 x 2) + (168 x 3) = 791
Tz = Tmx? = (90 x 0%) + (101 x 12) + (93 x 22) + (168 x 32) = 1985

The y? test for trend has one degree of freedom and can be calculated as

N (NT; - mT)?
mng (N Ty - T,%)

Thus, in our example

452 x (452 x 456 - 210 x 791)?
=52.41
210 x 242 x (452 x 1985 - 7912)

x =

A y? of 52.41 with 1 d.f. corresponds to P<0.0001. We can therefore con-
clude that there is strong evidence of a linear trend for an increasing pro-
portion of HPV-positive women as lifetime number of sexual partners
increases.

¥ test for a linear trend in odds ratios

Consider data from a hypothetical case-control study carried out to
assess whether there is a decreasing risk of developing epithelial benign
ovarian tumours with increasing parity (Table A6.1.6).

The results from this study apparently support the study hypothesis.
(The calculation of odds ratios from case-control studies is discussed in
detail in Chapter 9.)

Parity Total Table A6.1.6.
> Distribution of cases of benign tumours
0 1-2 >3 o

- of the ovary and controls by parity:
Benign tumour cases 30 (ap) 23 (&) 7 (&) 60 (ny) hypothetical data.
Controls 46 (byg) 48 (by) 35 (b)) 129 (np)
Total 76 (mg) 71 (my) 42 (m,) 189 (N)
Odds ratio 1 0.73 0.31
Score 0 (xq) 1 (x4) 2 (xp)

2 Taken as the baseline category in the calculation of odds ratios.
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A y” test for a linear trend can be used to test the hypothesis that there
is a decreasing risk of ovarian benign tumours with increasing parity. The
calculations are exactly the same as those used for the y* test for a linear
trend in proportions.

T, = Yax = 30x0) + (23x 1) + (7 x 2) = 37
Ty =Ymx;=(76 x0) + (71 x 1) + (42 x 2) = 155
Ty = Ymx? = (76 x 02) + (71 x 12) + (42 x 2%) = 239

The y? test for trend can then be calculated as:

189 x (189 x 37 — 60 x 155)?
y* = =6.15
60 x 129 x (189 x 239 — 1552)

This test result with 1 d.f. corresponds to 0.01 < P < 0.025. Thus there is
evidence that the risk of developing a benign ovarian tumour decreases
with increasing parity.

x* test for a linear trend in rates

A similar approach can be used to test for a trend in rates. Consider the
following cohort study to test the hypothesis that the risk of breast cancer
increases with increasing duration of oral contraceptive use.

Table A6.1.7.

Duration of oral contraceptive use (years) Total
Distribution of breast cancer cases
. ) 0 1-2 >3
and person-years at risk by duration of
oral contraceptive use: hypothetical Breast cancer cases 62 (a) 42 (a) 22 (ap) 126 (n)
data. Person-years at risk 31200 (yp) 25100 (y;) 11600 (y») 67 900 (y)
Rate per 100 000 pyrs 198.7(rp) 167.3(ry) 189.7(r») 185.6()
Score 0 (xo) 1 (xq) 2 (x)

The observed rates by exposure level suggest, if anything, a downward
trend with increasing duration of oral contraceptive use. A y*-test for a lin-
ear trend in rates similar to the one described above for proportions and
odds ratios can be calculated as follows:

T =Yax;=(62x0)+(42x 1)+ (22x2) =86
T, =Yyx;= (31200 % 0) + (25 100 x 1) + (11 600 x 2) = 48 300
Ty =Yyx# = (31200 x 0% + (25 100 x 12) + (11 600 x 2% = 71 500

The y* test for a linear trend in rates, which has one degree of freedom,
can be calculated as follows:
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[Ty - (n/y)T)]?
(nly?) (yT; - T,?)

Thus, in our example,

[86 — (126/67 900 x 48 300)]2
(126/67 9002) x (67 900 x 71 500 — 48 300?)

X =

This test value with 1 d.f. corresponds to P > 0.5. Hence, the results of
the study provide no support for an upward or downward trend in breast
cancer rates with duration of oral contraceptive use.

Validity of y* tests

If in a 2x2 table the total sample size (N) is less than 40 and the expect-
ed value in any of the cells is less than 5, the y? test should not be used.
In these circumstances, the Fisher’s exact test will be the appropriate sta-
tistical test (see Kirkwood (1988)). For larger tables, the y? test is valid if no
more than 20% of the expected values are less than 5, and none is less
than one.

Note that the expected value (E) for a particular cell is calculated as fol-
lows:

Total of the relevant row x total of the relevant column

N

Thus in Table A6.1.4,
E (a) = nymy/N = (483 x 819)/930 = 425.35
E (b) = nymg/N = (483 x 111)/930 = 57.65
E (0) = nymy/N = (447 x 819)/930 = 393.65
E (d) = ngmy/N = (447 x 111)/930 = 53.35

The 2 test is valid in this example since the total sample size (N) is
greater than 40 and all of the expected cell values are well above S.
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