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In the previous chapter we discussed briefly how confounding could be
dealt with at both the design stage of a study and during the analysis of
the results. We then mentioned that there are two main statistical proce-
dures that we can use in the analysis: stratification and regression modelling.
In this chapter we will discuss these two approaches in more detail.
Obviously, these techniques can be applied only if data on potential con-
founding factors are available. Thus, potential confounding variables have
to be identified at the design stage of the study to ensure that valid infor-
mation on them is collected.

A confounding factor is one that is related to both the exposure and the
outcome variables and that does not lie on the causal pathway between
them (see Section 13.2). Ignoring confounding when assessing the associ-
ation between an exposure and an outcome variable can lead to an over-
estimate or underestimate of the true association between exposure and
outcome and can even change the direction of the observed effect.

In , women with ovarian cancer had a much lower preva-
lence of smoking (24/60 = 40%) compared with the controls (58/98 =
59%). This suggests that smoking protects against ovarian cancer (odds
ratio (OR) = 0.46). As discussed in the previous chapter, there are several
possible explanations for this finding:
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Example 14.1. In a hypothetical case–control study to examine the rela-
tionship between smoking and ovarian cancer among nulliparous women,
the results shown in Table 14.1 were obtained.

Smoking Total
Yes No

Ovarian cancer cases 24 (a) 36 (b) 60 (n1)

Controls 58 (c) 40 (d) 98 (n0)

Total 82 (m1) 76 (m0) 158 (N)

Crude odds ratio = (24/36) / (58/40)=0.46

95% confidence interval = 0.23–0.93

χ2 = 5.45 on 1d.f.; P = 0.02

Results of a case–control study on

smoking and ovarian cancer: hypothet-

ical data.
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14.1 Introduction to stratification

Example 14.1

Dealing with confounding
in the analysis

Example 14.1. In a hypothetical case–control study to examine the rela-
tionship between smoking and ovarian cancer among nulliparous women,
the results shown in Table 14.1 were obtained.

Smoking Total
Yes No

Ovarian cancer cases 24 (a) 36 (b) 60 (n1)

Controls 58 (c) 40 (d) 98 (n0)

Total 82 (m1) 76 (m0) 158 (N)

Crude odds ratio = (24/36) / (58/40)=0.46

95% confidence interval = 0.23–0.93

χ2 = 5.45 on 1d.f.; P = 0.02

Smoking Total
Yes No

Ovarian cancer cases 24 (a) 36 (b) 60 (n1)

Controls 58 (c) 40 (d) 98 (n0)

Total 82 (m1) 76 (m0) 158 (N)

Crude odds ratio = (24/36) / (58/40)=0.46

95% confidence interval = 0.23–0.93

χ2 = 5.45 on 1d.f.; P = 0.02

Table 14.1.
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(i) Bias: the observed odds ratio of 0.46 does not accurately repre-
sent the true odds ratio because of either selection or measurement
bias.

(ii) Chance: the observed association between smoking and ovarian
cancer arose by chance. The 95% confidence interval around the
observed odds ratio is equal to 0.23–0.93 and the χ2 test yields P=0.02.
Thus, chance is an unlikely explanation for the finding.

(iii) Confounding: the observed odds ratio of 0.46 is due to the effect
of another variable. For example, it may be that women who smoked
were different in other respects from non-smokers and less likely to
develop ovarian cancer because of this, rather than because of smoking.

(iv) Causation: smoking reduces the risk of ovarian cancer and the
95% confidence interval indicates how precisely the sample estimate
corresponds to the true effect in the population.

In , it is possible that the association between smoking
and ovarian cancer arose because of the confounding effect of other fac-
tors such as oral contraceptive use. The results shown in are 
for all women combined regardless of their history of oral contraceptive
use. To assess whether oral contraceptive use is a confounder, we need 
to look at the association between smoking and ovarian cancer sepa-
rately for oral contraceptive users and never-users. This is shown in

.

In each category (or stratum) of oral contraceptive use, the prevalence
of smoking was similar in women with and without ovarian cancer
(22% versus 22% among never-users and 79% versus 81% among users).
However, when both oral contraceptive users and never-users were
combined ( ), there was a marked difference in the prevalence
of smoking between cases and controls (40% versus 59%). Two factors
were responsible for this finding:
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Never-users of oral contraceptives

Smoking Total
Yes No

Ovarian cancer cases 9 (a1) 32 (b1) 41 (n11)

Controls 8 (c1) 28 (d1) 36 (n01)

Total 17 (m11) 60 (m01) 77 (N1)

Odds ratio = 0.98 (95% confidence interval = 0.30–3.37)

Ever-users of oral contraceptives

Smoking Total
Yes No

Ovarian cancer cases 15 (a2) 4 (b2) 19 (n12)

Controls 50 (c2) 12 (d2) 62 (n02)

Total 65 (m12) 16 (m02) 81 (N2)

Odds ratio = 0.90 (95% confidence interval = 0.23–4.40)

Hypothetical case–control study on

smoking and ovarian cancer described

in Example 14.1: results presented

separately for never-users and ever-

users of oral contraceptives.
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Example 14.1

Table 14.1

Table 14.2

Table 14.1

Never-users of oral contraceptives

Smoking Total
Yes No

Ovarian cancer cases 9 (a1) 32 (b1) 41 (n11)

Controls 8 (c1) 28 (d1) 36 (n01)

Total 17 (m11) 60 (m01) 77 (N1)

Odds ratio = 0.98 (95% confidence interval = 0.30–3.37)

Ever-users of oral contraceptives

Smoking Total
Yes No

Ovarian cancer cases 15 (a2) 4 (b2) 19 (n12)

Controls 50 (c2) 12 (d2) 62 (n02)

Total 65 (m12) 16 (m02) 81 (N2)

Odds ratio = 0.90 (95% confidence interval = 0.23–4.40)

Table 14.2.
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1. Among the controls, smokers had a much higher prevalence of oral
contraceptive use (50/58 = 86%) than non-smokers (12/40 = 30%), that is
there was an association between these two variables ( ).

Note that the association between smoking and oral contraceptive
use was examined among the controls rather than the cases, or the
two groups taken together. This is because controls should represent
the population from which the cases were drawn and we need to
assess that association in the general population. In a cohort or inter-
vention study, the association would be looked at by constructing a
similar table, replacing the number of controls with person-years at
risk if the appropriate measure of effect was a rate ratio or numbers of
persons at risk at the start of the follow-up if the measure of effect was
a risk ratio. 

2. Oral contraceptive use is considerably lower among ovarian can-
cer cases than among controls. The data from can be
rearranged so that smoking is ignored ( ).

Only 32% (=19/60) of the women with ovarian cancer were oral
contraceptive users, whereas 63% (=62/98) of the controls were users.

Since oral contraceptive use in these data was associated with both
the exposure (smoking) and the outcome of interest (ovarian cancer),
it acted as a confounding factor. As a result, when the data for both
users and never-users were combined, the result suggested an associa-
tion between smoking and ovarian cancer far stronger than really
existed (positive confounding). In other situations (as in ;
see next section), combining strata in the presence of a confounder
may mask an effect that really exists (negative confounding), or even
show an effect in the opposite direction to the true one.

When we analyse the results of a study to look for evidence of a particu-
lar exposure–outcome association, we usually start by including in the analy-

Dealing with confounding in the analysis
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Oral contraceptive use Total
Ever Never

Yes 50 8 58

Smoking No 12 28 40

Total 62 36 98

Hypothetical case–control study

described in Example 14.1: distribution

of controls by smoking habits and oral

contraceptive use.

Oral contraceptive use Total
Ever Never

Ovarian cancer cases 19 41 60

Controls 62 36 98

Total 81 77 158

Hypothetical case–control study

described in Example 14.1: distribution

of cases and controls by oral contra-

ceptive use.
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Table 14.3

Table 14.2
Table 14.4

Example 14.2

14.2 The Mantel–Haenszel summary measures of effect

Oral contraceptive use Total
Ever Never

Yes 50 8 58

Smoking No 12 28 40

Total 62 36 98

Table 14.3.

Oral contraceptive use Total
Ever Never

Ovarian cancer cases 19 41 60

Controls 62 36 98

Total 81 77 158

Table 14.4.
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sis all the subjects in our study sample. This analysis provides a crude esti-
mate of the effect of the exposure on the outcome of interest. The next log-
ical step is to divide our study sample into several subgroups or strata,
defined by a potential confounding variable, to see if the results are consis-
tent across the strata. This approach is very informative, as it describes how
the effect of the exposure on the outcome of interest varies across subgroups
of subjects with different characteristics. We can simply report the stratum-
specific effect estimates and their confidence intervals. Each of these stra-
tum-specific estimates is supposed to be homogeneous in relation to the
potential confounding variable and therefore they are unconfounded.

Usually, however, we are not much interested in the stratum-specific
results per se and would rather have a single overall estimate. In other
words, we would like to be able to calculate a summary effect estimate
which, in contrast to the crude estimate, would take into account the con-
founding effect of the stratifying variable. Such adjusted estimates can be
calculated by pooling results across strata. But even if the true effect is the
same in all strata, we would expect our estimates to differ because of ran-
dom variation. Pooling takes this into account by giving greater weight to
effect estimates from larger strata. It involves calculating a weighted average
of the individual stratum-specific estimates by choosing a set of weights
that maximizes the statistical precision of the adjusted effect estimate.
There are several alternative weighting procedures which achieve precise
summary effect estimates. In this section, we concentrate on a procedure
derived by Mantel and Haenszel which is widely used and relatively sim-
ple to apply.

Let us consider again . Since oral contraceptive use is a
confounder of the relationship between smoking and ovarian cancer, we
should not combine the data from ever-users and never-users for the
analysis. Thus, the crude odds ratio of 0.46 obtained from is not
appropriate. We could just calculate separate odds ratios and their 95%
confidence intervals for each group of oral contraceptive users, as shown
in . But we would like to be able to summarize the overall results
of the study in a way that removes the confounding effect of oral contra-
ceptive use. The Mantel–Haenszel odds ratio, denoted ORMH, gives a weight-
ed average of the odds ratios in the different strata, where those from larger
strata are given more weight.

To calculate the ORMH, we start by constructing 2 × 2 tables of exposure
by outcome for the separate strata of the confounder, as illustrated in

. The ORMH can then be obtained by applying the following for-
mula:

a1d1/N1 + a2d2/N2
ORMH = 

b1c1/N1 + b2c2/N2
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14.2.1 Mantel–Haenszel odds ratio
Example 14.1

Table 14.1

Table 14.2

Table 14.2
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If we apply this formula to the data from our ovarian cancer
case–control study ( ), we obtain

(9 × 28)/77 + (15 × 12)/81     5.49
ORMH = =           = 0.95

(32 × 8)/77 + (4 × 50)/81      5.79

Thus, the odds ratio for smoking adjusted for oral contraceptive use is 0.95.
This adjusted odds ratio contrasts with the crude odds ratio of 0.46
obtained from . Adjusting for oral contraceptive use gives an
odds ratio much closer to unity, which means that the protection afford-
ed by smoking, if any, is far less strong than the initial result led us to
think.

The above formula can easily be extended to more than two strata, by
summing both the numerator and the denominator over all strata:

Σaidi/Ni
ORMH = 

Σbici/Ni

In this formula, Σ means sum and the subscript i stands for the sub-
scripts 1, 2, 3, ..., which represent each of the strata.

We can calculate a confidence interval around the ORMH and a
Mantel–Haenszel χ2 test by using the formulae given in Appendix 14.1,
Section A14.1.1. In our ovarian cancer example, the 95% confidence
interval is 0.42–2.16. The χ2 is equal to 0.016 with one degree of free-
dom, which corresponds to P = 0.93. Thus, after adjusting for oral con-
traceptive use, the effect of smoking on ovarian cancer is no longer ‘sta-
tistically significant’.

The Mantel–Haenszel method can also be used to obtain an adjusted
risk ratio. In , the crude analysis shows that workers
exposed to the particular chemical substance had a 52% higher risk of
developing lung cancer than those not exposed ( ). Before con-
cluding that the chemical substance is associated with an increased risk
of lung cancer, we need to exclude the possibility that smoking, rather
than the occupational exposure, is the explanation for the observed
association. To do this, we need to examine the data separately for smok-
ers and non-smokers.

shows that the stratum-specific risk ratios are higher than
the crude risk ratio (2.0 versus 1.52). This is an example of negative con-
founding. It arose because the prevalence of smoking, an important risk
factor for lung cancer, was much lower among workers exposed to the
chemical substance (4000/84 000=5%) than among those not exposed
(16 000/96 000=17%) ( ).

Dealing with confounding in the analysis
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Table 14.2

Table 14.1

14.2.2 Mantel–Haenszel risk ratio

Example 14.2

Table 14.5

Table 14.6

Table 14.7
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Example 14.2. Suppose that a cohort study was set up to investigate
whether occupational exposure to a particular chemical substance was asso-
ciated with an increased risk of lung cancer. All study subjects were followed
up for five years after entry into the study (or until diagnosis of lung cancer
if earlier). The results of this study are shown in Table 14.5.

Exposure to chemical substance Total
Yes No

Lung cancer Yes 480 (a) 360 (b) 840 (n1)

No 83 520 (c) 95 640 (d) 179 160 (n0)

Total 84 000 (m1) 96 000 (m0) 180 000 (N)

Crude risk ratio = (480/84 000)/(360/96 000) = 5.71 per 1000/3.75 per 1000 = 1.52

95% confidence interval = 1.33–1.75

χ2 = 37.21 on 1d.f.; P < 0.0001

Results from a cohort study on occupa-

tional exposure to a particular chemical

substance and lung cancer: hypotheti-

cal data.

Smokers

Exposure to chemical substance Total
Yes No

Lung cancer Yes 80 (a1) 160 (b1) 240 (n11)

No 3920 (c1) 15 840 (d1) 19 760 (n01)

Total 4000 (m11) 16 000 (m01) 20 000 (N1)

Risk ratio = (80/4000)/(160/16 000) = 20 per 1000 / 10 per 1000 = 2.0

95% confidence interval = 1.53–2.61

Non-smokers

Exposure to chemical substance Total
Yes No

Lung cancer Yes 400 (a2) 200 (b2) 600 (n12)

No 79 600 (c2) 79 800 (d2) 159 400 (n02)

Total 80 000 (m12) 80 000 (m02) 160 000 (N2)

Risk ratio = (400/80 000)/(200/80 000) = 5.0 per 1000 / 2.5 per 1000 = 2.0

95% confidence interval = 1.69–2.37

Hypothetical cohort study on occupa-

tional exposure to a particular chemical

substance and lung cancer described in

Example 14.2: results presented sepa-

rately for smokers and non-smokers.

Exposure to chemical substance Total
Yes No

Smoking Yes 4000 16 000 20 000

No 80 000 80 000 160 000

Total 84 000 96 000 180 000

Hypothetical cohort study described in

Example 14.2: distribution of study

subjects by occupational exposure and

smoking habits.
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Example 14.2. Suppose that a cohort study was set up to investigate
whether occupational exposure to a particular chemical substance was asso-
ciated with an increased risk of lung cancer. All study subjects were followed
up for five years after entry into the study (or until diagnosis of lung cancer
if earlier). The results of this study are shown in Table 14.5.

Exposure to chemical substance Total
Yes No

Lung cancer Yes 480 (a) 360 (b) 840 (n1)

No 83 520 (c) 95 640 (d) 179 160 (n0)

Total 84 000 (m1) 96 000 (m0) 180 000 (N)

Crude risk ratio = (480/84 000)/(360/96 000) = 5.71 per 1000/3.75 per 1000 = 1.52

95% confidence interval = 1.33–1.75

χ2 = 37.21 on 1d.f.; P < 0.0001

Exposure to chemical substance Total
Yes No

Lung cancer Yes 480 (a) 360 (b) 840 (n1)

No 83 520 (c) 95 640 (d) 179 160 (n0)

Total 84 000 (m1) 96 000 (m0) 180 000 (N)

Crude risk ratio = (480/84 000)/(360/96 000) = 5.71 per 1000/3.75 per 1000 = 1.52

95% confidence interval = 1.33–1.75

χ2 = 37.21 on 1d.f.; P < 0.0001

Table 14.5.

Smokers

Exposure to chemical substance Total
Yes No

Lung cancer Yes 80 (a1) 160 (b1) 240 (n11)

No 3920 (c1) 15 840 (d1) 19 760 (n01)

Total 4000 (m11) 16 000 (m01) 20 000 (N1)

Risk ratio = (80/4000)/(160/16 000) = 20 per 1000 / 10 per 1000 = 2.0

95% confidence interval = 1.53–2.61

Non-smokers

Exposure to chemical substance Total
Yes No

Lung cancer Yes 400 (a2) 200 (b2) 600 (n12)

No 79 600 (c2) 79 800 (d2) 159 400 (n02)

Total 80 000 (m12) 80 000 (m02) 160 000 (N2)

Risk ratio = (400/80 000)/(200/80 000) = 5.0 per 1000 / 2.5 per 1000 = 2.0

95% confidence interval = 1.69–2.37

Table 14.6.

Exposure to chemical substance Total
Yes No

Smoking Yes 4000 16 000 20 000

No 80 000 80 000 160 000

Total 84 000 96 000 180 000

Table 14.7.
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We can obtain a Mantel–Haenszel summary estimate of the common
risk ratio (RMH) by applying the following formula to our data

Σaim0i/Ni
RMH = 

Σbim1i/Ni

Thus,

(80 × 16 000)/20 000 + (400 × 80 000)/160 000 264
RMH = = = 2.0

(160 × 4 000)/20 000 + (200 × 80 000)/160 000 132

The calculation of confidence intervals around RMH and of the Mantel-
Haenszel χ2 is presented in Section A14.1.2. In our example, the 95%
confidence interval is 1.73 to 2.30. The χ2 is equal to 92.99 with one
degree of freedom, which gives P < 0.0001. Thus, there is strong evidence
that the occupational exposure was associated with an increased risk of
lung cancer and this effect was even stronger when differences in smok-
ing habits between exposed and unexposed workers were taken into
account.

The Mantel–Haenszel method can also be applied when the appropri-
ate measure of effect is the rate ratio rather than the risk ratio. It gives
an adjusted rate ratio (denoted RRMH) by calculating a weighted average of
the rate ratios in the different strata.

Dealing with confounding in the analysis
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Example 14.3. Suppose that a cohort of healthy women aged 45–50 years
was followed up to examine risk factors for various female cancers. At the
time of entry into the study, the women completed a questionnaire on
sociodemographic variables and gynaecological and reproductive history. A
total of 1141 cervical cancer cases occurred during the follow-up period. The
relationship between cervical cancer and having ever had a Pap smear test
(as reported in the initial questionnaire) is shown in Table 14.8.

Pap smear Total
Ever Never

Cases 17 (a) 1124 (b) 1141 (n)

Person-years at risk 71 184 (y1) 1 518 701 (y0) 1 589 885 (y)

Rate per 100 000 pyrs 23.9 (r1) 74.0 (r0) 71.8 (r)

Crude rate ratio = (17/71 184)/(1 124/1 518 701) = 0.32

95% confidence interval = 0.20 – 0.52

χ2 = 23.69 on 1d.f.; P < 0.001

Results from a cohort study on Pap

smear testing and cervical cancer:

hypothetical data.
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14.2.3 Mantel–Haenszel rate ratio

Example 14.3. Suppose that a cohort of healthy women aged 45–50 years
was followed up to examine risk factors for various female cancers. At the
time of entry into the study, the women completed a questionnaire on
sociodemographic variables and gynaecological and reproductive history. A
total of 1141 cervical cancer cases occurred during the follow-up period. The
relationship between cervical cancer and having ever had a Pap smear test
(as reported in the initial questionnaire) is shown in Table 14.8.

Pap smear Total
Ever Never

Cases 17 (a) 1124 (b) 1141 (n)

Person-years at risk 71 184 (y1) 1 518 701 (y0) 1 589 885 (y)

Rate per 100 000 pyrs 23.9 (r1) 74.0 (r0) 71.8 (r)

Crude rate ratio = (17/71 184)/(1 124/1 518 701) = 0.32

95% confidence interval = 0.20 – 0.52

χ2 = 23.69 on 1d.f.; P < 0.001

Pap smear Total
Ever Never

Cases 17 (a) 1124 (b) 1141 (n)

Person-years at risk 71 184 (y1) 1 518 701 (y0) 1 589 885 (y)

Rate per 100 000 pyrs 23.9 (r1) 74.0 (r0) 71.8 (r)

Crude rate ratio = (17/71 184)/(1 124/1 518 701) = 0.32

95% confidence interval = 0.20 – 0.52

χ2 = 23.69 on 1d.f.; P < 0.001

Table 14.8.
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In , the crude rate ratio and its confidence interval are
consistent with a decrease in the incidence of cervical cancer among
women who reported in the initial questionnaire having ever had a Pap
smear test. Other studies have shown that there is a socioeconomic gradi-
ent in the incidence of cervical cancer, with women from poor socioeco-
nomic backgrounds being at higher risk. Thus, socioeconomic factors
might have confounded the association between Pap smear testing and
cervical cancer if, for instance, women from a high social background were
more likely to visit their doctors and had a Pap smear as part of their reg-
ular medical examination. To clarify this issue, we need to examine the
relationship between Pap smear testing and cervical cancer separately for
women from different socioeconomic backgrounds. This is shown in 

, where a woman’s educational level is used as a marker of socioeco-
nomic status.

The formula for the Mantel–Haenszel summary estimate of the com-
mon rate ratio is

Σaiy0i/yi
RRMH = 

Σbiy1i/yi

Thus, in our example,

(13 × 828 149)/866 495 + (4 × 690 552)/723 390 16.24
RRMH = = = 0.32

(697 × 38 346)/866 495 + (427 × 32 838)/723 390 50.23

Thus, educational level was not a confounder of the effect of Pap smear
on cervical cancer in these data, since the crude and the adjusted rate
ratios have exactly the same value (0.32).
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High educational level

Pap smear Total
Ever Never

Cases 13 (a1) 697 (b1) 710 (n1)

Person-years at risk 38 346 (y11) 828 149 (y01) 866 495 (y1)

Rate per 100 000 pyrs 33.9 (r11) 84.2 (r01) 81.9 (r1)

Rate ratio = 0.40; 95% confidence interval = 0.23–0.69

Low educational level

Pap smear Total
Ever Never

Cases 4 (a2) 427 (b2) 431 (n2)

Person-years at risk 32 838 (y12) 690 552 (y02) 723 390 (y2)

Rate per 100 000 pyrs 12.2 (r12) 61.8 (r02) 59.6 (r2)

Rate ratio = 0.20; 95% confidence interval = 0.08–0.54

Hypothetical cohort study on Pap

smear testing and cervical cancer

described in Example 14.3: results

stratified by women’s educational level.
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Example 14.3

Table
14.9

High educational level

Pap smear Total
Ever Never

Cases 13 (a1) 697 (b1) 710 (n1)

Person-years at risk 38 346 (y11) 828 149 (y01) 866 495 (y1)

Rate per 100 000 pyrs 33.9 (r11) 84.2 (r01) 81.9 (r1)

Rate ratio = 0.40; 95% confidence interval = 0.23–0.69

Low educational level

Pap smear Total
Ever Never

Cases 4 (a2) 427 (b2) 431 (n2)

Person-years at risk 32 838 (y12) 690 552 (y02) 723 390 (y2)

Rate per 100 000 pyrs 12.2 (r12) 61.8 (r02) 59.6 (r2)

Rate ratio = 0.20; 95% confidence interval = 0.08–0.54

Table 14.9.

Text book eng. Chap.14 final  27/05/02  10:14  Page 312  (Black/Process Black film)TextText book book book eng. eng. eng. Chap.14 Chap.14 Chap.14 final final final  27/05/02 27/05/02 27/05/02  10:14 10:14 10:14  Page Page Page 312 312 312    (PANTONE (PANTONE (Black/Process 313 313 (Black/Process CV CV (Black/Process  film) film) Black



By applying the formulae given in the Appendix (see Section A14.1.3),
we obtain a Mantel–Haenszel χ2 of 23.73 with one degree of freedom, cor-
responding to P < 0.001. The 95% confidence interval is 0.20 to 0.52.
Thus, chance is an unlikely explanation of this finding.

Note that the Mantel–Haenszel method of controlling for confounding
is similar to the method of standardization used to calculate age-adjusted
rates in Chapter 4. Both these methods are referred to as stratified analy-
ses, because we look at an exposure by a response for the different strata
(levels) of a confounder. They differ, however, in the set of weights used
to calculate the weighted average of the rate ratios in the different strata
(see Section 4.3.3).

In order to be able to examine the effect of potential confounding
variables in an analysis, we need to identify them at the design stage of
the study. This should be done by taking into account findings from pre-
vious epidemiological studies and what is known about the possible eti-
ological mechanisms of the disease under study. Age and gender are
obvious potential confounders in practically all studies. Smoking will
also be a potential confounder in any study examining the relationship
between a particular exposure and lung cancer. It would be necessary to
exclude the possibility that smoking rather than the exposure under
study is responsible for any association that may be found. Potential
confounding variables should also include factors such as socioeconom-
ic status or place of residence, which are just proxy measures of more
direct but unknown causes of disease.

Not all factors suspected of being potential confounding factors will
actually lead to confounding of the exposure–outcome relationship in a
particular study. But how do we know if a particular variable really is a
confounder? We defined a confounder as a factor that is associated with
both exposure and disease (and is not on the causal pathway). However,
this may be difficult to assess in practice. For instance, with a large sam-
ple, small but statistically significant associations could be found
between the confounder and the exposure, and between the confounder
and the disease; however, they may not be strong enough to lead to con-
founding. Thus, the presence of or absence of confounding should not
be assessed by using a statistical test of significance. The magnitude of
confounding in any study should be evaluated by observing the degree
of discrepancy between the crude and adjusted estimates. If there is no
difference between these two estimates, the observed exposure–outcome
effect was not confounded by the potential confounding variable. A
large difference, as seen in , indicates the presence of con-
founding and implies that the adjusted summary measure is a better esti-
mate of the effect of the exposure on the outcome of interest than the
crude summary measure, since it removes the effect of the confounder.
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14.3 How to identify confounders

Example 14.1
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Two other aspects of stratification should be noted. First, factors that are
on the causal pathway between an exposure and a disease should not be
regarded as confounding the association between the exposure and the
outcome. Controlling for a factor that is on the causal pathway leads to
underestimation of the strength of the effect of the exposure on the out-
come under study. Occasionally, a variable that lies on the causal pathway
may be adjusted for in the analysis if we want to assess whether the effect
of the exposure on the outcome under study is entirely mediated through
that intermediate variable or whether there may be other independent
biological mechanisms. For instance, if we believe that human papillo-
mavirus infection is on the causal pathway between number of sexual
partners and cervical cancer, the association with number of sexual part-
ners should disappear after adjusting for HPV infection. If the effect does
not disappear completely, it would suggest that the effect of number of
sexual partners on cervical cancer may be mediated through other biolog-
ical mechanisms not directly related to HPV infection. In practice, this rea-
soning may not be so straightforward because of errors in the measure-
ment of the intermediate variable.

Secondly, it is important to note that stratification assumes that each
stratum is homogeneous in relation to the confounding variable. This
assumption depends on both the validity of the data on the confounding
variable (see Section 13.2) and the way strata are defined. For instance, if
we control for age through stratification, this is better achieved if the stra-
ta are relatively narrow. Stratification into very broad age groups (e.g.,
0–45 and 46+ years) is unlikely to be fully effective since, within each stra-
tum, there are likely to be substantial differences in the age distribution of
cases and controls (in a case–control study) or exposed and unexposed (in
a cohort or intervention study).

An underlying assumption in the calculation of a summary effect esti-
mate is that the true effect is the same across strata and that any departures
from this uniform effect are assumed to be due to random sampling varia-
tion. If there is substantial variation between the stratum-specific estimates
of effect, this indicates the presence of interaction (also called effect modifi-
cation) between the exposure of interest and the so-called confounding fac-
tor.

If there is interaction between the exposures under study and the
confounder, a Mantel–Haenszel summary estimate of effect will be mis-
leading, as it does not convey the full form of the exposure–outcome
association, that is, that it varies according to the level of the stratify-
ing variable. Thus, only if we are satisfied that the stratum-specific
effect measures do not vary between themselves (i.e., there is no inter-
action), should we calculate an adjusted summary estimate of effect by
taking a weighted mean of stratum-specific estimates. This concept is
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not new. We discussed it briefly in Section 4.3.3 when we mentioned
that age-standardized rates were an appropriate summary of the data
only if the effect was homogeneous across the age-strata.

The first step in any stratified analysis is to assess whether interaction is
present ( ). In most circumstances, this decision should be
based on visual inspection of the data to examine the observed patterns of
variation in the stratum-specific estimates. If they are the same, there is no
interaction. In this situation, however, confounding may occur if the stra-
tum-specific effects differ from the crude effect. If the stratum-specific esti-
mates differ from each other, interaction is present and the emphasis in
the analysis should be on describing how the association of interest is
modified by the stratifying factor and all stratum-specific estimates of
effect, and their confidence intervals, should be reported separately.

Deciding whether interaction exists or not in any particular analysis is
often difficult, since the stratum-specific estimates are likely to vary
because of random variation, even if the true effect is similar. For instance,
the effect of Pap smear testing on cervical cancer in was more
marked for women of low educational level (RR = 0.20; 95% CI = 0.08–0.54)
than for women of high educational level (RR = 0.40; 95% CI = 0.23–0.69),
suggesting a weak interaction between Pap smear and educational level.
However, this difference between the stratum-specific rate ratios may just
reflect random variation. A variety of χ2 tests of heterogeneity are available
to test the null hypothesis that the degree of variability in the series of stra-
tum-specific estimates is consistent with random variation. In practice,
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Example 14.4. Suppose we are interested in examining the relationship
between an exposure A and a certain outcome B in a cohort study. We start
by calculating the crude rate ratio, which gives a value of 2.0. We then
decide to examine the relationship between A and B separately for those who
were exposed to a third variable C (stratum 1) and those who were not (stra-
tum 2). Table 14.10 shows three possible results of this study and how they
should be interpreted. In situation I, there is no confounding, because the
crude and adjusted rate ratios are similar, and no interaction, because the
rate ratios are similar for both strata. In situation II, there is confounding,
because the crude and the adjusted rate ratios differ, but no interaction,
because the effect is similar in the two strata. In situation III, there is strong
interaction between A and C because the stratum-specific rate ratios are
markedly different for those exposed and those not exposed to C.

Crude Rate ratio in Rate ratio in Adjusted

rate ratio stratum 1 stratum 2 rate ratio

Situation I 2.0 2.0 2.0 2.0 No confounding

No interaction

Situation II 2.0 3.0 3.0 3.0 Confounding present

No interaction

Situation III 2.0 4.0 0.5 – Strong interaction

Example of confounding and interac-

tion.
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Example 14.4

Example 14.3

Example 14.4. Suppose we are interested in examining the relationship
between an exposure A and a certain outcome B in a cohort study. We start
by calculating the crude rate ratio, which gives a value of 2.0. We then
decide to examine the relationship between A and B separately for those who
were exposed to a third variable C (stratum 1) and those who were not (stra-
tum 2). Table 14.10 shows three possible results of this study and how they
should be interpreted. In situation I, there is no confounding, because the
crude and adjusted rate ratios are similar, and no interaction, because the
rate ratios are similar for both strata. In situation II, there is confounding,
because the crude and the adjusted rate ratios differ, but no interaction,
because the effect is similar in the two strata. In situation III, there is strong
interaction between A and C because the stratum-specific rate ratios are
markedly different for those exposed and those not exposed to C.

Crude Rate ratio in Rate ratio in Adjusted

rate ratio stratum 1 stratum 2 rate ratio

Situation I 2.0 2.0 2.0 2.0 No confounding

No interaction

Situation II 2.0 3.0 3.0 3.0 Confounding present

No interaction

Situation III 2.0 4.0 0.5 – Strong interaction

Crude Rate ratio in Rate ratio in Adjusted

rate ratio stratum 1 stratum 2 rate ratio

Situation I 2.0 2.0 2.0 2.0 No confounding

No interaction

Situation II 2.0 3.0 3.0 3.0 Confounding present

No interaction

Situation III 2.0 4.0 0.5 – Strong interaction

Table 14.10.
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however, these tests are not very powerful. Epidemiological studies, unless
they are specifically designed to do this, rarely have enough statistical
power to detect interactions (see Section 15.4.4). Thus, more is usually
gained by visual inspection of the size and pattern of the effect estimates
across strata than from tests for interaction (effect modification).

In practice, it is frequently necessary to examine and possibly adjust for
several confounders. This can be achieved by using the Mantel–Haenszel
method, although, as the number of confounders increases, this method
becomes impractical because most strata will have very sparse data. As we
shall see later in this chapter, regression modelling techniques are more
efficient methods in these circumstances.

In , the crude odds ratio is 1.54. The 95% confidence
interval and the P-value suggest that chance is an unlikely explana-
tion of this finding. Thus, women who smoked were more likely to be
HPV-positive than those who did not.

Number of sexual partners is a well known risk factor for HPV infec-
tion and it may have confounded the association between smoking
and HPV infection. shows the association found between
smoking and HPV stratified by reported number of lifetime sexual
partners (categorized as < 2 partners and ≥ 2 partners).

Examination of the stratum-specific odds ratios (and their confi-
dence intervals) suggests that the effect of smoking on HPV infection
in women who reported less than two sexual partners is similar to the
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Example 14.5. Assume that a case–control study was carried out to examine
risk factors for human papillomavirus (HPV) infection of the cervix uteri. A
standard questionnaire was used to collect detailed information on sociodemo-
graphic variables and sexual behaviour from 188 HPV-positive female cases
and 571 HPV-negative female controls. Table 14.11 shows the distribution of
cases and controls by smoking and HPV infection.

Smoking Total
Yes No

HPV-positive 42 (a) 146 (b) 188 (n1)

HPV-negative 90 (c) 481 (d) 571 (n0)

Total 132 (m1) 627 (m0) 759 (N)

Crude odds ratio = (42/146) / (90/481) = 1.54

95% confidence interval = 1.02–2.32

χ2 = 4.25 on 1d.f.; P = 0.039

Results from a case-control study on

smoking and HPV infection: hypotheti-

cal data.
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14.5 Using the Mantel–Haenszel method to adjust  for
several confounders

Example 14.5

Table 14.12

Example 14.5. Assume that a case–control study was carried out to examine
risk factors for human papillomavirus (HPV) infection of the cervix uteri. A
standard questionnaire was used to collect detailed information on sociodemo-
graphic variables and sexual behaviour from 188 HPV-positive female cases
and 571 HPV-negative female controls. Table 14.11 shows the distribution of
cases and controls by smoking and HPV infection.

Smoking Total
Yes No

HPV-positive 42 (a) 146 (b) 188 (n1)

HPV-negative 90 (c) 481 (d) 571 (n0)

Total 132 (m1) 627 (m0) 759 (N)

Crude odds ratio = (42/146) / (90/481) = 1.54

95% confidence interval = 1.02–2.32

χ2 = 4.25 on 1d.f.; P = 0.039

Smoking Total
Yes No

HPV-positive 42 (a) 146 (b) 188 (n1)

HPV-negative 90 (c) 481 (d) 571 (n0)

Total 132 (m1) 627 (m0) 759 (N)

Crude odds ratio = (42/146) / (90/481) = 1.54

95% confidence interval = 1.02–2.32

χ2 = 4.25 on 1d.f.; P = 0.039

Table 14.11.
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effect in those who reported two or more. This is confirmed by the χ2

test for heterogeneity. Since the effect of smoking on HPV infection is
uniform across the two strata, it is appropriate to calculate a pooled
adjusted odds ratio. Thus, after adjusting for number of sexual part-
ners, the odds ratio of smoking is reduced a little from 1.54 to 1.47.
This result suggests that this variable was a weak confounder of the
association between smoking and HPV infection. But even after
adjusting for number of sexual partners, the 95% confidence interval
is still consistent with an effect of smoking on HPV infection. Thus,
these results suggest that smoking increased the risk of HPV infection,
but this risk was marginally weaker after allowing for the confound-
ing effect of number of sexual partners.

The same technique can be used to obtain an odds ratio adjusted for
age. In this hypothetical study, age (in years) was categorized into six
groups (< 20, 20–24, 25–29, 30–34, 35–44, ≥ 45). Thus, we need to
construct six 2 × 2 tables of smoking and HPV infection, one for each
age-group. The cells of these 2 × 2 tables are shown in .

The ORMH adjusted for age is slightly lower than the crude odds ratio
(1.47 versus 1.54), suggesting that age was also a weak confounder of
the association between smoking and HPV infection.
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< 2 sexual partners

Smoking Total
Yes No

HPV-positive 31 (a1) 124 (b1) 155 (n11)

HPV-negative 78 (c1) 437 (d1) 515 (n01)

Total 109 (m11) 561 (m01) 670 (N1)

Odds ratio = 1.40

95% confidence interval = 0.88–2.22

≥ 2 sexual partners

Smoking Total
Yes No

HPV-positive 11 (a2) 22 (b2) 33 (n12)

HPV-negative 12 (c2) 44 (d2) 56 (n02)

Total 23 (m12) 66 (m02) 89 (N2)

Odds ratio = 1.83

95% confidence interval = 0.70–4.80

χ2 test for heterogeneity = 0.24 on 1 d.f.; P = 0.63

Σaidi /Ni (31×437)/670 + (11×44)/89         25.66

ORMH = =             = 1.47

Σbici /Ni (124×78)/670 + (22×12)/89         17.40

95% confidence interval = 0.95–2.26

χ2 = 2.97 on 1d.f.; P = 0.09

Hypothetical case–control study on

smoking and HPV infection described

in Example 14.5: results stratified by

number of lifetime sexual partners.
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Table 14.13

< 2 sexual partners

Smoking Total
Yes No

HPV-positive 31 (a1) 124 (b1) 155 (n11)

HPV-negative 78 (c1) 437 (d1) 515 (n01)

Total 109 (m11) 561 (m01) 670 (N1)

Odds ratio = 1.40

95% confidence interval = 0.88–2.22

≥ 2 sexual partners

Smoking Total
Yes No

HPV-positive 11 (a2) 22 (b2) 33 (n12)

HPV-negative 12 (c2) 44 (d2) 56 (n02)

Total 23 (m12) 66 (m02) 89 (N2)

Odds ratio = 1.83

95% confidence interval = 0.70–4.80

χ2 test for heterogeneity = 0.24 on 1 d.f.; P = 0.63

Σaidi /Ni (31×437)/670 + (11×44)/89  25.66

ORMH = =  = 1.47

Σbici /Ni (124×78)/670 + (22×12)/89  17.40

95% confidence interval = 0.95–2.26

χ2 = 2.97 on 1d.f.; P = 0.09

Table 14.12.

Text book eng. Chap.14 final  27/05/02  10:14  Page 317  (Black/Process Black film)TextText book book book eng. eng. eng. Chap.14 Chap.14 Chap.14 final final final  27/05/02 27/05/02 27/05/02  10:14 10:14 10:14  Page Page Page 317 317 317    (PANTONE (PANTONE (Black/Process 313 313 (Black/Process CV CV (Black/Process  film) film) Black



Thus, so far, we have estimated the effect of smoking on HPV infection
adjusted for number of sexual partners and the effect of smoking adjust-
ed for age. We could estimate the effect of smoking on HPV infection
adjusted simultaneously for number of partners and age using the
Mantel–Haenzsel method. To do this, we need to construct a 2 × 2 table
of smoking by HPV infection for every possible combination of number
of partners and age-group. Since number of partners forms two strata (<2
and ≥2) and age forms six strata (< 20, 20–24, 25–29, 30–34, 35–44, ≥ 45),
we need to construct 2 × 6 =12 such 2 × 2 tables. The cells of the 2 × 2
tables for smoking for these 12 strata are shown in . Thus,
after adjusting for the confounding effects of number of partners and age,
the effect of smoking on HPV infection is even smaller (ORMH = 1.41).

The Mantel–Haenszel method can be extended to adjust simultaneous-
ly for more than two confounders. For example, to estimate the effect of
smoking on HPV infection, allowing for number of sexual partners (two
strata), age (six strata), marital status (three strata: married, single, wid-
owed/divorced) and educational level (three strata), we would construct
2×6×3×3=108 2×2 tables. Clearly, in 108 tables formed from a data-set of
188 cases and 571 controls, some strata will have very small numbers of
observations, if any.

A further problem with the Mantel–Haenszel method is that each
explanatory variable included in the analysis has to be classified as either
an exposure or a confounder, and there may be only one exposure. For
example, smoking was our exposure, and number of partners and age
were our confounders. We therefore obtained an odds ratio for smoking
adjusted for number of partners and age. These results did not give us the
odds ratio for number of partners adjusted for smoking and age, or the
odds ratios for age adjusted for smoking and number of partners. These
would have required further Mantel–Haenszel analyses.
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Stratum Age (years) ai bi ci di Ni aidi/Ni bici /Ni

1 <20 3 10 16 79 108 2.19 1.48

2 20–24 13 44 16 92 165 7.25 4.27

3 25–29 6 33 22 62 123 3.02 5.90

4 30–34 8 25 10 75 118 5.08 2.12

5 35–44 8 22 18 89 137 5.20 2.89

6 ≥45 4 12 8 84 108 3.11 0.89

All strata 42 146 90 481 759 25.85 17.55

χ2 test for heterogeneity = 7.37 on 5 d.f.;P = 0.20

Σaidi /Ni 25.85

ORMH = = = 1.47

Σbici /Ni 17.55

95% confidence interval = 0.96–2.32

χ2 = 3.06 on 1d.f.; P = 0.08

Hypothetical case–control study on

smoking and HPV infection described

in Example 14.5: results stratified by

age-group.
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Table 14.14

Stratum Age (years) ai bi ci di Ni aidi/Ni bici /Ni

1 <20 3 10 16 79 108 2.19 1.48

2 20–24 13 44 16 92 165 7.25 4.27

3 25–29 6 33 22 62 123 3.02 5.90

4 30–34 8 25 10 75 118 5.08 2.12

5 35–44 8 22 18 89 137 5.20 2.89

6 ≥45 4 12 8 84 108 3.11 0.89

All strata 42 146 90 481 759 25.85 17.55

χ2 test for heterogeneity = 7.37 on 5 d.f.;P = 0.20

Σaidi /Ni 25.85

ORMH = = = 1.47

Σbici /Ni 17.55

95% confidence interval = 0.96–2.32

χ2 = 3.06 on 1d.f.; P = 0.08

Table 14.13.
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Regression models summarize the relationship between an outcome
(also called dependent) variable and several explanatory (independent)
variables as a mathematical equation. The general form of this equation
is

Outcome variable = function (explanatory variables)

There are many types of regression model. The choice of any particu-
lar model depends on the characteristics of the outcome variable (i.e.,
continuous or categorical) and on the way it is mathematically related to
the explanatory variables. The simplest mathematical model we could
use has already been introduced in Section 11.2.1 to describe the rela-
tionship between two quantitative variables.

A discussion of these models and the assumptions underlying them is
beyond the scope of this chapter. However, these modelling techniques
are commonly used in epidemiological studies and, therefore, in the rest
of this chapter we will try to illustrate how these techniques relate to the
Mantel–Haenszel method, to allow the reader to understand and inter-
pret results from published work where they have been used.
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Stratum Age Number ai bi ci di Ni aidi /Ni bici /Ni

(yrs) of partners

1 <20 <2 2 8 11 67 88 1.52 1.00

2 20–24 <2 10 36 14 85 145 5.86 3.48

3 25–29 <2 3 28 19 59 109 1.62 4.88

4 30–34 <2 5 21 10 65 101 3.22 2.08

5 35–44 <2 7 19 17 78 121 4.51 2.67

6 ≥45 <2 4 12 7 83 106 3.13 0.79

7 <20 ≥2 1 2 5 12 20 0.60 0.50

8 20–24 ≥2 3 8 2 7 20 1.05 0.80

9 25–29 ≥2 3 5 3 3 14 0.64 1.07

10 30–34 ≥2 3 4 0 10 17 1.76 0.00

11 35–44 ≥2 1 3 1 11 16 0.69 0.19

12 ≥45 ≥2 0 0 1 1 2 0.00 0.00

All strata 42 146 90 481 759 24.60 17.46

χ2 test for heterogeneity = 12.44 on 10 d.f.;P = 0.26

Σaidi /Ni 24.60

ORMH = = = 1.41

Σbici/Ni 17.46

95% confidence interval = 0.91–2.24

χ2 = 2.62 on 1 d.f.; P = 0.132

Hypothetical case–control study on

smoking and HPV infection described

in Example 14.5: results stratified by

age and lifetime number of sexual part-

ners.
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14.6 Using regression modelling to adjust for the
effect of confounders

Stratum Age Number ai bi ci di Ni aidi /Ni bici /Ni

(yrs) of partners

1 <20 <2 2 8 11 67 88 1.52 1.00

2 20–24 <2 10 36 14 85 145 5.86 3.48

3 25–29 <2 3 28 19 59 109 1.62 4.88

4 30–34 <2 5 21 10 65 101 3.22 2.08

5 35–44 <2 7 19 17 78 121 4.51 2.67

6 ≥45 <2 4 12 7 83 106 3.13 0.79

7 <20 ≥2 1 2 5 12 20 0.60 0.50

8 20–24 ≥2 3 8 2 7 20 1.05 0.80

9 25–29 ≥2 3 5 3 3 14 0.64 1.07

10 30–34 ≥2 3 4 0 10 17 1.76 0.00

11 35–44 ≥2 1 3 1 11 16 0.69 0.19

12 ≥45 ≥2 0 0 1 1 2 0.00 0.00

All strata 42 146 90 481 759 24.60 17.46

χ2 test for heterogeneity = 12.44 on 10 d.f.;P = 0.26

Σaidi /Ni 24.60

ORMH = = = 1.41

Σbici/Ni 17.46

95% confidence interval = 0.91–2.24

χ2 = 2.62 on 1 d.f.; P = 0.132

Table 14.14.
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Let us consider again the hypothetical case–control study described in
. We can use a particular regression technique, called logistic

regression, to analyse data from unmatched case–control studies. In this
analysis, we start by using a logistic regression model which includes as
explanatory variables only the exposure under study–smoking. The results
are shown in (model 1). The odds ratio estimated by this logis-
tic regression model is the same as the crude odds ratio we obtained in

.

We then move on to use a model which includes both smoking and
number of sexual partners as explanatory variables (model 2 in 

). This model gives

Odds ratio for smoking versus non-smoking adjusted for number of 
sexual partners = 1.47 (95% CI = 0.97–2.23)

Thus, after adjusting for number of sexual partners, the effect of smok-
ing on HPV infection became smaller (1.47 versus 1.54). This result is sim-
ilar to that obtained earlier when we used the Mantel–Haenszel technique
to control for the effect of number of sexual partners ( ). But in
contrast to this technique, this regression model also gives us the odds
ratio for number of sexual partners adjusted for smoking:

Odds ratio for ≥2 sexual partners versus <2, adjusted for smoking 

= 1.90 (95% CI = 1.19–3.03)
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Variable Odds ratio 95% confidence interval

Model 1

smokinga 1.54 1.02–2.32

Model 2

smokinga 1.47 0.97–2.23

partnersb 1.90 1.19–3.03

Model 3

smokinga 1.43 0.93–2.19

partnersb 1.95 1.19–3.17

age 2c 4.14 2.12–8.12

age 3 3.58 1.77–7.24

age 4 3.01 1.47–6.15

age 5 2.18 1.07–4.46

age 6 1.49 0.67–3.33

a Categorized as ‘non-smokers’ (baseline) and ‘smokers’.

b Categorized as ‘< 2 partners’ (baseline) and ‘≥ 2 partners’

c Categorized as age1 = <20 (baseline); age2 = 20–24; age3 = 25–29; age4 = 30–34; 
age5 = 35–44; age6 = 45+ years.

Hypothetical case–control study on risk

factors for HPV cervical infection

described in Example 14.5. Results

obtained from logistic regression mod-

els which included an increasing num-

ber of explanatory variables: smoking,

lifetime number of sexual partners and

age. (The values underlined corre-

spond to those obtained earlier with the

Mantel–Haenszel technique shown in

Table 14.11, 14.12 and 14.14.)
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Example 14.5

Table 14.15

Table 14.11

Table
14.15

Table 14.12

Variable Odds ratio 95% confidence interval

Model 1

smokinga 1.54 1.02–2.32

Model 2

smokinga 1.47 0.97–2.23

partnersb 1.90 1.19–3.03

Model 3

smokinga 1.43 0.93–2.19

partnersb 1.95 1.19–3.17

age 2c 4.14 2.12–8.12

age 3 3.58 1.77–7.24

age 4 3.01 1.47–6.15

age 5 2.18 1.07–4.46

age 6 1.49 0.67–3.33

a Categorized as ‘non-smokers’ (baseline) and ‘smokers’.

b Categorized as ‘< 2 partners’ (baseline) and ‘≥ 2 partners’

c Categorized as age1 = <20 (baseline); age2 = 20–24; age3 = 25–29; age4 = 30–34;
age5 = 35–44; age6 = 45+ years.

Table 14.15.
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Thus, there is a statistically significant increased risk of HPV infection
associated with two or more sexual partners, even after taking differences
in smoking into account.

We can use a more complex model which includes smoking, number of
sexual partners and age (model 3, ). This model gives us an
estimate of the effect of smoking on HPV infection adjusted for number of
sexual partners and age of 1.43 (95% CI = 0.93–2.19), which is similar to
that obtained before with the Mantel–Haenszel method (ORMH = 1.41;
95% CI = 0.91–2.24) (see ). However, unlike the
Mantel–Haenszel analysis, the logistic regression analysis also gives the
following extra odds ratios:

Odds ratio for ≥ 2 sexual partners versus < 2, adjusted for smoking and age 
= 1.95 (95% CI = 1.19–3.17)

Odds ratio for age 20–24 versus age <20, adjusted for smoking and partners 
= 4.14 (95% CI = 2.12–8.12)

Odds ratio for age 25–29 versus age <20, adjusted for smoking and partners 
= 3.58 (95% CI = 1.77–7.24)

Odds ratio for age 30–34 versus age <20, adjusted for smoking and partners 
= 3.01 (95% CI = 1.47–6.15)

Odds ratio for age 35–44 versus age <20, adjusted for smoking and partners 
= 2.18 (95% CI = 1.07–4.46)

Odds ratio for age 45+ versus age <20, adjusted for smoking and partners
= 1.49 (95% CI = 0.67–3.33)

One of the main advantages of regression modelling is that it does not
require us to define which explanatory variable is the exposure and which ones
are the potential confounders, since all explanatory variables are treated in the
same way. This is particularly important in studies designed to examine the
effect of a wide range of exposures rather than just the effect of a specific one.

Similar regression models can be applied to data from studies of other
designs. Let us consider again the hypothetical cohort study on Pap smear
use and cervical cancer described in (Section 14.2.3). In

, we calculated the crude rate ratio to measure the effect of Pap smear
testing on cervical cancer. We then went on to calculate the effect of Pap
smear adjusting for educational level ( ) using the
Mantel–Haenszel technique. We can also use the Mantel–Haenszel tech-
nique to adjust simultaneously for educational level, marital status and age
at first intercourse. The results are shown in .

Using the Mantel–Haenszel technique to adjust simultaneously for edu-
cational level, marital status and age at first intercourse involved the forma-
tion of 18 (=2×3×3) strata. However, only seventeen cervical cancer cases
occurred in women who reported having ever had a Pap smear.
Consequently, there were empty cells in several strata.

Dealing with confounding in the analysis
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Table 14.15

Table 14.14

Example 14.3 Table
14.8

Table 14.9

Table 14.16
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We can use a special regression modelling technique, called Poisson
regression, to analyse the data from this hypothetical cohort study on
Pap smear and cervical cancer. The results are shown in .

As with logistic regression, we start by using a model which includes
only one explanatory variable, Pap smear use (model 1 in ).
This model gives us the Poisson estimate of the cervical cancer rate ratio
for Pap smear use. This value corresponds to the crude cervical cancer rate
ratio obtained earlier. This model gives us another value called ‘constant’,
which corresponds to the cervical cancer incidence rate in women who
reported never having had a Pap smear (see ). From these val-
ues, we can calculate the incidence rate in the exposed as 0.00074 × 0.32
= 0.0002368 = 24 per 100 000 person-years (the same as the value
obtained in ).

We then move on to add to our model another explanatory variable,
for instance, educational level (model 2 in ). This model gives
us the Poisson estimate of the cervical cancer rate ratio for Pap smear use
adjusted for educational level, which is 0.32 (95% CI = 0.20–0.52). This is
the same value obtained when the Mantel–Haenszel technique was used
to control for educational level ( ). In contrast with the
Mantel–Haenszel technique, this model also gives us

Cervical cancer rate ratio for high versus low educational level adjusted for Pap smear
use = 0.73 (95% CI = 0.65–0.82)

In the last model (model 4) shown in , we included Pap smear
use, educational level, marital status and age at first intercourse as explana-
tory variables. The Poisson estimate of the rate ratio for Pap smear use
adjusted for educational level, marital status and age at first intercourse is
0.46 (95% CI = 0.29–0.75), similar to that obtained with the
Mantel–Haenszel method (RRMH = 0.43; 95% CI = 0.27–0.72) ( ).
But with the Poisson regression, we also obtained the following additional
rate ratios:

Cervical cancer rate ratio for high versus low educational level adjusted for Pap
smear use, marital status and age at first intercourse = 0.77 (95% CI = 0.68–0.87)
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Variables adjusted for Cervical cancer rate 95% confidence 
ratio for Pap smear use interval

None 0.32 (crude) 0.20–0.52

Educational levela 0.32 0.20–0.52

Educational level 0.40 0.25–0.66
and marital statusb

Educational level, marital status 0.43 0.27–0.72
and age at first intercoursec

a Categorized as ‘low educational level’ and ‘high educational level’.

b Categorized as marital status 1=married; 2=single; 3=divorced/widowed.

c Categorized as age at first intercourse 1=<18 years; 2=18–22 years; 3=22+ years.

Hypothetical cohort study on Pap

smear testing and cervical cancer

described in Example 14.3. Results

obtained using the Mantel–Haenszel

technique.
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Table 14.17

Table 14.17

Table 14.8

Table 14.8

Table 14.17

Table 14.16

Table 14.17

Table 14.16

Variables adjusted for Cervical cancer rate 95% confidence
ratio for Pap smear use interval

None 0.32 (crude) 0.20–0.52

Educational levela 0.32 0.20–0.52

Educational level 0.40 0.25–0.66
and marital statusb

Educational level, marital status 0.43 0.27–0.72
and age at first intercoursec

a Categorized as ‘low educational level’ and ‘high educational level’.

b Categorized as marital status 1=married; 2=single; 3=divorced/widowed.

c Categorized as age at first intercourse 1=<18 years; 2=18–22 years; 3=22+ years.

Table 14.16.
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Cervical cancer rate ratio for single versus married women adjusted for Pap smear use,
educational level and age at first intercourse = 2.68 (95% CI = 2.27–3.15)

Cervical cancer rate ratio for divorced/widowed versus married women adjusted for Pap
smear use, educational level and age at first intercourse = 1.60 (95% CI = 1.36–1.87)

Cervical cancer rate ratio for age at first intercourse 18–22 versus < 18 years adjusted for
Pap smear use, educational level and marital status = 0.52 (95% CI = 0.46–0.59)

Cervical cancer rate ratio for age at first intercourse 22+ versus < 18 years adjusted for
Pap smear use, educational level and marital status = 0.13 (95% CI = 0.09–0.19)

Logistic regression is used for estimating odds ratios. It may therefore be
used in a case–control study, a cross-sectional study, or if estimating ‘risks’
rather than ‘rates’, in a cohort study. Poisson regression models are used for
estimating rate ratios using person-time data. Other commonly used
regression models in epidemiology are:
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Variable Baseline rate Cervical cancer 95% confidence 
(per person year) rate ratio interval

Model 1

constant 0.00074 0.0007–0.0008

Pap smear usea 0.32 0.20–0.52

Model 2

constant 0.008 0.008–0.009

Pap smear usea 0.32 0.20–0.52

Educational levelb 0.73 0.65–0.82

Model 3

constant 0.005 0.004–0.005

Pap smear usea 0.41 0.25–0.66

Educational levelb 0.74 0.66–0.84

Marital status2c 2.68 2.28–3.15

Marital status3 1.89 1.61–2.21

Model 4

constant 0.008 0.006–0.009

Pap smear usea 0.46 0.29–0.75

Educational levelb 0.77 0.68–0.87

Marital status2c 2.68 2.27–3.15

Marital status3 1.60 1.36–1.87

Age at first intercourse2d 0.52 0.46–0.59

Age at first intercourse3 0.13 0.09–0.19

a Categorized as ‘never’ (baseline) and ‘ever’.
b Categorized as ‘low educational level’ (baseline) and ‘high educational level’.
c Categorized as marital status 1=married (baseline), 2=single, 3=divorced/widowed.
d Categorized as age at first intercourse 1= < 18 years (baseline), 2=18–22 years, 3=22+ years.

Hypothetical cohort study on Pap

smear and cervical cancer described in

Example 14.3. Results obtained from

Poisson regression models with

increasing numbers of explanatory

variables. (The values underlined cor-

respond to those obtained with the

Mantel–Haenszel technique shown in

Table 14.16.)
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Variable Baseline rate Cervical cancer 95% confidence
(per person year) rate ratio interval

Model 1

constant 0.00074 0.0007–0.0008

Pap smear usea 0.32 0.20–0.52

Model 2

constant 0.008 0.008–0.009

Pap smear usea 0.32 0.20–0.52

Educational levelb 0.73 0.65–0.82

Model 3

constant 0.005 0.004–0.005

Pap smear usea 0.41 0.25–0.66

Educational levelb 0.74 0.66–0.84

Marital status2c 2.68 2.28–3.15

Marital status3 1.89 1.61–2.21

Model 4

constant 0.008 0.006–0.009

Pap smear usea 0.46 0.29–0.75

Educational levelb 0.77 0.68–0.87

Marital status2c 2.68 2.27–3.15

Marital status3 1.60 1.36–1.87

Age at first intercourse2d 0.52 0.46–0.59

Age at first intercourse3 0.13 0.09–0.19

a Categorized as ‘never’ (baseline) and ‘ever’.
b Categorized as ‘low educational level’ (baseline) and ‘high educational level’.
c Categorized as marital status 1=married (baseline), 2=single, 3=divorced/widowed.
d Categorized as age at first intercourse 1= < 18 years (baseline), 2=18–22 years, 3=22+ years.

Table 14.17.
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Conditional logistic regression: logistic regression analysis is suitable for
unmatched case–control studies or frequency-matched case–control stud-
ies. Individually matched case–control studies require a slightly different
approach called conditional logistic regression analysis. This modelling
technique is the only way we can adjust for confounders other than the
matching factor(s) used in the design of these studies.

Cox’s proportional hazards model: this type of regression model is used
when the time to an event is of particular interest (as in survival analysis).

In summary, the Mantel–Haenszel method is a very useful technique to
adjust for confounders, and this approach is often adequate for data with
few confounders. However, in order to adjust simultaneously for several
confounders, regression modelling methods may be necessary.

It is important, however, to stress that any analysis should start by using
the Mantel–Haenszel method to obtain preliminary crude effect estimates
and effect estimates adjusted for each confounder separately. The cross-
tabulations used for stratification in this technique allow the investigator
to observe most of the important relationships and interactions that are
present and to detect errors and inconsistencies in the data that might not
otherwise be evident.

Regression models can then be used in a second stage of the analysis to
adjust simultaneously for several confounders. One of the main disadvan-
tages of regression modelling is that we lose sight of the data, so that it is
often regarded as a ‘black box’ approach. Statistical modelling should not
be used by people who are not familiar with it and who do not understand
the assumptions upon which it is based.
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* In this chapter, we have pre-

sented formulae to calculate

Mantel–Haenszel rate ratios, risk

ratios and odds ratios. Formulae

to calculate adjusted estimates of

risk and rate differences can be

found in Greenland & Robins

(1985).

* Stratification and regression

modelling techniques are cov-

ered in a much more comprehen-

sive (although more statistically

elaborate) way in Breslow & Day

(1980, 1987) and Clayton & Hills

(1993).

Box 14.1. Key issues

• Any analysis of data should be planned carefully. In general, it should involve the

following steps:

1. Produce simple tables to check the consistency of the data.

2. Calculate crude measures of effect.

3. Stratify by levels of the potential confounding factor.

4. Compute stratum-specific effect estimates.

5. Check uniformity of the stratum-specific estimates by visual inspection

or by performing tests of statistical significance.

6. If the effect is thought to be uniform across strata, calculate a pooled

adjusted summary estimate of the effect using the Mantel–Hanszel

method. Calculate confidence intervals for the adjusted estimate and

the Mantel–Hanszel χ2 test.

7. If the effect is not thought to be uniform (i.e., if interaction is present),

report stratum-specific estimates, confidence intervals and χ2 for each

estimate.

8. Use regression modelling techniques to adjust simultaneously for sev-

eral confounders.

• The simple classical methods based on stratification should always be used in

the initial phase of an analysis. The cross-tabulations used in stratification keep

the investigator in touch with the data.

• Regression models can be used in a second stage of the analysis to adjust

simultaneously for several confounders. In contrast to the classical methods,

regression modelling is, to a certain extent, a ‘black box’ approach and because

of this, it may lead to serious errors. These methods are complex statistical pro-

cedures that should never be used by those who are unfamiliar with them.
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Box 14.1. Key issues

• Any analysis of data should be planned carefully. In general, it should involve the

following steps:

1. Produce simple tables to check the consistency of the data.

2. Calculate crude measures of effect.

3. Stratify by levels of the potential confounding factor.

4. Compute stratum-specific effect estimates.

5. Check uniformity of the stratum-specific estimates by visual inspection

or by performing tests of statistical significance.

6. If the effect is thought to be uniform across strata, calculate a pooled

adjusted summary estimate of the effect using the Mantel–Hanszel

method. Calculate confidence intervals for the adjusted estimate and

the Mantel–Hanszel χ2 test.

7. If the effect is not thought to be uniform (i.e., if interaction is present),

report stratum-specific estimates, confidence intervals and χ2 for each

estimate.

8. Use regression modelling techniques to adjust simultaneously for sev-

eral confounders.

• The simple classical methods based on stratification should always be used in

the initial phase of an analysis. The cross-tabulations used in stratification keep

the investigator in touch with the data.

• Regression models can be used in a second stage of the analysis to adjust

simultaneously for several confounders. In contrast to the classical methods,

regression modelling is, to a certain extent, a ‘black box’ approach and because

of this, it may lead to serious errors. These methods are complex statistical pro-

cedures that should never be used by those who are unfamiliar with them.
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Note that there are several methods to calculate confidence intervals
for adjusted relative measures of effect, which may yield slightly different
values from those obtained here. These calculations can easily be per-
formed by statistical computing packages such as EPI INFO, STATA or
EGRET.

The standard error (SE) of the logarithm of the Mantel–Haenszel odds
ratio (ORMH) can be estimated as

in which ∑bici/Ni corresponds to the denominator of the formula used to
calculate the ORMH and vi = 1/ai + 1/bi + 1/ci + 1/di

Thus, in the ovarian cancer study ( ), we have

∑bici/Ni = (32 × 8)/77 + (4 × 50)/81 = 3.32 + 2.47 = 5.79
v1 = 1/9 + 1/32 + 1/8 + 1/28 = 0.30
v2 = 1/15 + 1/4 + 1/50 + 1/12 = 0.42
∑(bici/Ni)2 vi = (3.322 × 0.30) + (2.472 × 0.42) = 3.31 + 2.56 = 5.87

Thus,

SE (ln ORMH) =     5.87/(5.79)2 = 0.42

An ‘approximate’ 95% confidence interval for the ln ORMH can then be
estimated as

95% CI (ln ORMH) = (ln 0.95) ± 1.96 × 0.42 = – 0.05 ± 1.96 × 0.42 = – 0.87 to 0.77

An ‘approximate’ 95% confidence interval for the ORMH can be
obtained by taking anti-logarithms:

95% CI (ORMH) = e– 0.87 to e0.77 = 0.42 to 2.16

Appendix 14.1.

SE (ln ORMH) = 
Σ(bici/Ni)2 vi

  (Σbici/Ni)2 
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A14.1.1 Adjusted odds ratio
Confidence interval for Mantel–Haenszel odds ratio

Example 14.1; Table 14.2

Confidence intervals and 
statistical tests for adjusted
relative measures of effect

SESE (ln (ln OR ORMHMH)) = = 
ΣΣ((bbiiccii//NNii))22 vvii

  (Σ (Σbbiiccii//NNii))22 
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The Mantel–Haenszel χ2 test can be used to determine whether ORMH
is significantly different from one. The test is just an extension of the
Mantel–Haenszel χ2 test for a single 2 × 2 table presented in Section
A6.1.3. The null hypothesis is that there is no association between the
exposure and the disease (that is, the odds ratio is equal to one) within
any of the individual strata. In order to perform this test, we must first
obtain the following, from each stratum i:

(i) The observed value of ai: 

O(ai) = ai

(ii) The expected value of ai, assuming the null hypothesis of no 
association:

E(ai) = n1im1i/Ni

(iii) The variance of ai, assuming the null hypothesis of no associa-
tion:

V(ai)=n1in0im1im0i/(Ni
2(Ni – 1))

We then sum each of these quantities over all the strata. In 
, we obtain

∑O(ai) = 9 + 15 = 24

∑E(ai) = (41 × 17)/77 + (19 × 65)/81 9.05 + 15.25 = 24.30

∑V(ai)=(41×36×17×60)/(772×76) + (19×62×65×16)/(812×80) = 3.34 + 2.33 = 5.67

We would expect the difference between our observed and expected val-
ues to be small if the null hypothesis were true. To test whether the dif-
ferences obtained are greater than would be expected by chance, we cal-
culate

χ2 = (∑O(ai) – ∑E(ai))2 / ∑V(ai)

and obtain a P-value by referring our result to the χ2 distribution with one
degree of freedom (d.f.).

In our example, χ2 = (24 – 24.30)2/5.67 = 0.016 on 1 d.f. This gives
P = 0.93, from which we conclude that after adjusting for oral contra-
ceptive use, there is no evidence of any association between smoking
and ovarian cancer. So ORMH = 0.95 is not statistically significantly dif-
ferent from 1.

Appendix 14.1.
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The Mantel–Haenszel χ2 test

Example
14.1 (Table 14.2)

Text book eng. Chap.14 final  27/05/02  10:14  Page 328  (Black/Process Black film)TextText book book book eng. eng. eng. Chap.14 Chap.14 Chap.14 final final final  27/05/02 27/05/02 27/05/02  10:14 10:14 10:14  Page Page Page 328 328 328    (PANTONE (PANTONE (Black/Process 313 313 (Black/Process CV CV (Black/Process  film) film) Black



The standard error (SE) of the logarithm of Mantel–Haenszel risk ratio
(RMH) can be estimated by

where the expressions ∑aim0i/Ni and ∑bim1i/Ni correspond, respectively, to
the numerator and denominator of the formula used to calculate RMH.

In our occupational study ( )

∑aim0i/Ni = 264

∑bim1i/Ni = 132

∑(n1im1im0i–aibiNi)/Ni
2 = (240×4000×16 000 – 80×160×20 000)/20 0002 + 

(600×80 000×80 000 – 400×200×160 000)/160 0002

= 37.76+149.50 = 187.26

Thus,

SE (ln RMH) = 187.26/(264 × 132) = 0.073

95% confidence interval (ln RMH) = (ln 2.0) ± 1.96 × 0.073 = 0.547 to 0.833

An ‘approximate’ 95% confidence interval for RMH can be obtained by
taking anti-logarithms:

95% confidence interval (RMH) = e0.547 to e0.833 = 1.73 to 2.30

The Mantel–Haenszel χ2 test to assess whether RMH is statistically signif-
icantly different from unity is similar to that used above for odds ratio.
The null hypothesis is that there is no association between the exposure
and the disease within any of the individual strata, that is that the risk
ratio is equal to one in each stratum.

In our occupational study ( )

∑O(ai) = 80 + 400 = 480

∑E(ai) = ∑n1im1i/Ni = 240×4000/20 000 + 600×80 000/160 000 = 48 + 300 = 348

∑V(ai) = ∑n1in0im1im0i/(Ni
2(Ni–1)) = (240×19 760×4000×16 000)/(20 0002×19 999) 

+ (600×159 400×80 000×80 000)/(160 0002×159 999) 

= 37.94 + 149.44 = 187.38

Confidence intervals and statistical tests for adjusted measures of effect
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SE (ln RMH) = 
Σ(n1im1im0i – aibiNi)/Ni2

(Σaim0i/Ni)(Σbim1i/Ni)
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A14.1.2 Adjusted risk ratio
Confidence interval for Mantel–Haenszel risk ratio

Example 14.2; Table 14.6

The Mantel–Haenszel χ2 test

Example 14.2; Table 14.6

SE (ln RMH) =
Σ(n1im1im0i – aibiNi)/Ni2

(Σaim0i/Ni)(Σbim1i/Ni)
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We can now calculate the χ2 test:

χ2 = (∑O(ai) – ∑E(ai))2 / ∑V(ai) = (480 – 348)2/187.38 = 92.99

and obtain a P-value by referring our result to the χ2 distribution with 1
d.f. In this example, P < 0.0001. Thus, it is very unlikely that these results
are due to chance.

As with any other estimate, it is useful to be able to construct a 95%
confidence interval round a Mantel–Haenszel rate ratio (RRMH). The stan-
dard error of the logarithm of a rate ratio can be estimated by

We can obtain an ‘approximate’ 95% confidence interval around the
logarithm of the RRMH as

ln RRMH ± 1.96 × SE (ln RRMH)

An ‘approximate’ 95% confidence interval for RRMH can then be
obtained by taking anti-logarithms.

Note that ∑aiy0i/yi and ∑biy1i/yi are, respectively, the numerator and the
denominator of the formula for the Mantel–Haenszel rate ratio, which
were calculated for in Section 14.2.3. Thus, we only need to
calculate ∑V(ai):

∑aiy0i/yi = 16.24

∑biy1i/yi = 50.23

V(ai) = ∑niy1iy0i/yi
2 = (710×38 346×828 149)/866 4952 + 

(431×32 838×690 552)/723 3902 = 30.03 + 18.68 = 48.71

ln RRMH = ln (0.32) = – 1.14

SE (ln RRMH) = 48.71/(16.24 × 50.23) = 0.244

95% confidence interval (ln RRMH) = – 1.14 ± 1.96 × 0.244 = – 1.62 to – 0.66

95% confidence interval (RRMH) = e–1.62 to e–0.66 = 0.20 to 0.52

Appendix 14.1.
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SE (ln RRMH) = 
ΣV(ai)

(Σaiy0i/yi)(Σbiy1i/yi)
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SE (ln RRMH) =
ΣV(ai)

(Σaiy0i/yi)(Σbiy1i/yi)
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We may want to perform a significance test to test whether the true rate
ratio is different from one. Our null hypothesis is that the true rate ratio
in all strata is one. In order to calculate the test, we need first to compute
the following for each stratumi:

(i) Observed value of ai = O(ai) = ai

(ii) Expected value of ai = E(ai) = niy1i/yi

(iii) Variance of ai = V(ai) = niy1iy0i/yi
2

An overall test of significance (that the common rate ratio is unity) is
given by

χ2 = (∑O(ai) – ∑E(ai))2 / ∑V(ai)

where the summation is over all strata. The value calculated should be
looked up in tables of the χ2 distribution with one degree of freedom.

Thus, in ,

∑Ο(ai) = 13 + 4 = 17

∑E(ai) = (710 × 38 346/866 495) + (431 × 32 838/723 390)
= 31.42 + 19.57 = 50.99

∑V(ai) = 48.71, which was obtained above for the calculation of the confidence
interval.

χ2 = (17 – 50.99)2/48.71 = 23.72

This χ2 on 1 d.f. corresponds to P < 0.001.

Confidence intervals and statistical tests for adjusted measures of effect
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The Mantel–Haenszel χ2 test

Example 14.3
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