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It is important to ensure at the design stage that the proposed number
of subjects to be recruited into any study will be appropriate to answer the
main objective(s) of the study. A small study may fail to detect important
effects on the outcomes of interest, or may estimate them too imprecise-
ly, no matter how good its design may be in other respects. A study larger
than necessary, while less common in practice, may waste valuable
resources.

In the χ2 test of the difference between these two pro-
portions gives a value of 2.65, which corresponds to P > 0.10. Thus the dif-
ference between the two proportions could easily have arisen by chance.
However, we cannot conclude from this that there is no true difference
between the treatments, since the 95% confidence interval for the differ-
ence between the proportions of patients still alive one year after entry
into the trial is – 2% to +22%. Therefore the data from this trial are con-
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Example 15.1. Suppose that a trial was set up to assess the value of a new
treatment for breast cancer. A total of 200 women with newly diagnosed
breast cancer were randomly allocated to receive either the new or the stan-
dard treatment. All patients were followed up for one year after their entry
into the trial (or until death if it occurred earlier). The outcome of interest
was the proportion of women still alive by the end of the trial. The results
are shown in Table 15.1.

New treatment Standard treatment Total

Yes 80 (a) 70 (b) 150 (n1)

Alive one year after

entry into the trial No 20 (c) 30 (d) 50 (n0)

Total 100 (m1) 100 (m0) 200 (N)

p1 = 80/100 = 80%

p0 = 70/100 = 70%

Risk difference = p1 – p0 = 10%

95% confidence interval = – 2% to + 22%

χ2 = 2.65; P > 0.10

Number of patients with breast cancer

still alive one year after entry into the

trial by type of treatment administered:

hypothetical data.
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sistent with a proportion of surviving patients on the new treatment up to
22% higher or 2% lower than the proportion of those on the standard
treatment.

Thus, although the trial has shown that the new treatment does not per-
form appreciably worse than the standard treatment, it is unclear whether the
two treatments have similar effects or whether the new treatment increases
survival substantially. This is because the sample size of this trial was far too
small to provide an appropriate answer to the question being addressed.

In the rest of this chapter, we will show how sample size estimates can
be obtained in the simplest situation where two groups are to be com-
pared. The calculations are based on the statistical methods presented in
Chapter 6 and its appendix and readers should be familiar with their con-
tent before proceeding.

There are two main approaches to sample size calculations. One is based
on the concept of power of a study, i.e., its ability to detect a statistically sig-
nificant result if the true magnitude of the effect is as anticipated. Thus,
this approach to sample size calculations focuses on the significance test that
will be performed at the end of the study. In , we may esti-
mate the sample size necessary to ensure that the study will have a certain
probability (‘power’) of yielding a P-value less than 0.05 if the true differ-
ence in survival between the two treatments is 10%. The second approach
focuses on the precision of the estimate, i.e., on the level of sampling error
we regard as acceptable. As we saw in Chapter 6, the confidence interval
provides an indication of how precise our sample estimate is in relation to
the true population value. Thus, this approach focuses on the width of the
confidence interval that will be obtained when the results of the study are
analysed. In the breast cancer trial, we may estimate the sample size neces-
sary to ensure that the trial will be able to estimate the true difference in
survival within ± 2.5% of its value (i.e., the confidence interval will extend
2.5% to either side of the sample estimate).

In this chapter, we start by considering sample size calculations based on
power and then move to calculations based on precision. The chapter ends
with a discussion of how to apply such calculations to more complex study
designs and other practical issues that need to be taken into account in esti-
mating sample sizes. It is, however, important to emphasize at this stage
that any sample size calculations involve some guesswork, since we have to
start by anticipating the results of the proposed study and, therefore, these
calculations should be regarded as providing only a rough estimate of the
required study size. Moreover, as we shall see later in this chapter, other
aspects (e.g., costs, availability of eligible subjects, logistic problems), inde-
pendent of statistical considerations, also have to be taken into account in
any practical situation.

The power of a study is the probability of obtaining a ‘statistically sig-
nificant’ result, that is, a P-value below a certain pre-established ‘signifi-
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cance’ level (usually 0.05) if the true magnitude of the effect is as antici-
pated. However, as discussed in Section 6.3, there is a close link between
P-values and confidence intervals. Therefore, power can also be interpret-
ed as the probability of obtaining an estimate whose confidence interval does
not include the value stipulated by the null hypothesis. The null hypothesis
states that the exposure has no effect on the outcome of interest corre-
sponding to a value of zero, if the exposure effect is measured on an
absolute scale (e.g., risk or rate difference), or one, if measured on a ratio
scale (e.g., risk or rate ratio).

illustrates the relationship between
the null hypothesis value, the anticipated effect esti-
mate and its confidence interval when the exposure
is associated with an increase in the occurrence of the
outcome of interest. For the study to have appropri-
ate power to detect such an effect, the lower limit of
the confidence interval of the anticipated effect esti-
mate has to be above the value stipulated by the null
hypothesis. Similarly, when the exposure is associat-
ed with a decrease in incidence (i.e., the exposure is
protective), the upper limit of the confidence interval
has to be below the null hypothesis value 

). Thus, the power of the study to detect a ‘sta-
tistically significant’ effect, if the true effect is as
anticipated, is the probability that the lower limit of
the confidence interval falls above (or, if the exposure
is protective, the upper limit falls below) the null
hypothesis value.

The position of the lower limit (or the upper limit,
if the exposure is protective) of the confidence interval of the anticipated
effect estimate is determined by the width of the confidence interval (± jSE)
( ), which in turn depends upon the study size (the bigger the
study, the smaller the standard error (SE) and, therefore, the narrower the
confidence interval) and upon the significance (confidence) level chosen (j).
For a 95% confidence interval, j would be equal to 1.96 ( ); that
is, the confidence interval will extend 1.96SE to each side of the sample
estimate. For a 99% confidence interval, j will be 2.576 and, therefore, the
confidence interval will be wider. The wider the confidence interval, the
lower the power of a study of a given size.

Suppose that the study were repeated several times. The effect estimates
obtained each time and their confidence intervals would differ because of
sampling variation. If the effect estimates obtained each time were plot-
ted, we would obtain a Normal sampling distribution with a standard error
of SE. Similarly, if the lower limits (or upper limits, if the exposure is pro-
tective) of each of the confidence intervals were plotted, we would obtain
a Normal distribution, with the same standard error SE, centred around
the anticipated value of the lower (or upper) limit. The power of a study is
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Diagram illustrating the relationship of

the null hypothesis value, the anticipat-

ed effect and its confidence interval

when the exposure is associated with

(a) an increase or (b) a decrease in

the occurrence of the outcome of inter-

est (adapted from Clayton & Hills,

1993).
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the probability that the lower limit of the confidence interval would fall
above the null hypothesis value (or the upper limit would fall below it, if
the exposure is protective). This probability depends upon the number of
standard errors (k) between the null hypothesis and the anticipated posi-
tion of the lower limit (or upper limit, if the exposure is protective) of the
confidence interval of the anticipated effect estimate ( ). It can
be shown mathematically that if k is equal to 1.645, the study will have
95% power ( ). In other words, if the study were to be conduct-
ed repeatedly, we would expect only 5 out of 100 resulting 95% confi-
dence intervals to include the null hypothesis value, if the true magnitude
of the effect is as anticipated. When the anticipated location of the lower
(or upper) confidence limit is exactly at the null hypothesis, so that k = 0,
the power is 0.50 and there is an even chance of obtaining a significant
result. If k < 0, the power will be less than 50%. In general, a power of less
than 80% is regarded as unacceptable.

Thus, to summarize, the power of a study depends upon:

1. The magnitude of the anticipated effect (i.e., the distance between the
null hypothesis value and the anticipated effect). The greater the
effect, the higher the power to detect it as ‘statistically significant’ for
a study of a given size.

2. The width of the confidence interval (jSE), which determines the position
of the lower limit (or the upper limit, if the exposure is protective). The
wider the confidence interval, the lower the power of a study of a given
size. This in turn depends on:

(a) The study size. The bigger the study, the smaller the standard
error (SE) and, therefore, the narrower the confidence interval.

(b) The significance (confidence) level chosen (j). For instance, a
95% confidence interval (j = 1.96) will be narrower than a 99%
confidence interval (j = 2.576) for a sample of a given size.

It is useful to construct power curves to show how the power varies with
the study size for different significance levels and different magnitudes of
the anticipated effect. shows some examples of such curves for
the breast cancer trial described in 

In most real situations, researchers have a very good idea of the number
of eligible subjects they will be able to recruit into their study. This num-
ber is usually determined by availability of eligible subjects, logistics of
recruitment, costs, etc. In these circumstances the relevant question is not
‘How large should the study be?’ but ‘Is the available number of subjects enough
to provide a clear answer to the study objectives?’. To answer this last question,
we need to estimate the power of the study with the proposed number of
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Values of k and j for different signifi-

cance levels and powers.

Significance level j

0.10 1.645

0.05 1.960

0.01 2.576

Power k

0.95 1.645

0.90 1.282

0.75 0.674

0.50 0.0

<0.50 <0
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Figure 15.2
Example 15.1.

Table 15.2.

Significance level j

0.10 1.645

0.05 1.960

0.01 2.576

Power k

0.95 1.645

0.90 1.282

0.75 0.674

0.50 0.0

<0.50 <0
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subjects. If these calculations reveal that the power will be too low, it will
be necessary to estimate by how much our sample size needs to be
increased to ensure that the study will achieve the desired power. This is
the approach suggested by Clayton & Hills (1993), which we will follow in
the rest of this section.

To calculate the power of our breast cancer trial ( ) to detect
a 10% difference in survival between the two treatments, we need to cal-
culate first the SE of the difference between the two proportions of women
still alive by the end of the first year. As we saw in Section A6.1.2, the SE
of the difference between two proportions can be estimated, approxi-
mately, as

Thus, in our example,

shows that the distance between the anticipated effect
and the null hypothesis value (in our example, 0.10–0) is the sum of the
two components, one deriving from the width of the confidence interval
(jSE) and the other from the distance between the anticipated position of
the lower limit of the confidence interval and the null hypothesis (kSE).
Hence,

0.10 = j SE + k SE

If the significance level is set to 0.05 (j = 1.96) and SE = 0.061,

0.10 = 1.96 × 0.061 + k × 0.061

k = – 0.32

This value of k corresponds to a power of less than 50% ( ).
Thus, the probability of the trial being able to detect a statistically signifi-
cant 10% difference in survival between the two treatments, even if such
a difference truly exists, is below 50% because the confidence interval is
too wide, due to the large SE. This is illustrated in .

If we assume that the true difference in survival is 10% and we fix the
significance level to 0.05 (j=1.96), we can calculate the value of the stan-
dard error that will be required to ensure that the power of the trial is 0.95
(k = 1.645):
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Power for detecting a one-year sur-

vival difference of 10% when baseline
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sizes and significance levels.

0
0

20

40

60

80

100

100 200 300 400 500
Study size

P
o

w
er

 (
%

)

600 700 800 900

P=0.10
P=0.05
P=0.01

Size of a study

SE(p
1
– p

0
)=

p
1
2(1–p

1
)

a
p

0
2(1–p

0
)

b
+

SE = = 0.061
0.802(1–0.80)

80
0.702(1–0.70)

70
+

Text book eng. Chap.15 final  27/05/02  10:18  Page 337    (Black/Process Black film)
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1.96 × SE + 1.645 × SE = 0.10

Required SE = 0.10/(1.960 + 1.645) = 0.028

This value of the SE is much smaller than the
value of 0.061 obtained with 100 subjects in
each group. To reduce the SE to the required
value, it is necessary to increase the size of the
study. Clayton & Hills (1993) have provided the
following formula to calculate a factor by which

the study size must be increased in order to achieve the specified power:

(Current value of SE/Required value of SE)2

Thus, in our trial,

Current value of SE = 0.061
Required value of SE = 0.028
Scale factor = 4.8

The initial sample size was 100 in each group. To ensure that the study
will have 95% power to detect a 10% difference in survival at the 5% sig-
nificance level, we need to multiply this original sample size by 4.8. Thus,
we need to enrol 480 subjects in each treatment group.

As we saw in Section A6.1.3, the significance test is the same regardless
of the type of measure of effect (ratio or difference) used to compare the
two groups. Power calculations are based on the significance test that will
be performed at the end of the study and, as a logical consequence, simi-
lar sample size estimates would be obtained if the calculations were based on the
ratio of the two proportions (80%/70%) rather than on their difference
(80%–70%). The approach would be similar to the one followed above,
except that the calculations would be based on the SE of the ratio of the
two proportions rather than on the SE of their difference. Since the confi-
dence interval around a ratio of proportions is asymmetric, taking only
values from zero to infinity (Section A6.1.2), we first convert the estimat-
ed survival risk ratio into its natural logarithm (denoted by ln):

ln (0.80/0.70) = ln (1.14) = 0.134

We can now calculate an ‘approximate’ standard error of the logarithm
of the ratio of two proportions (R) by using the formula given in Section
A6.1.2:

SE (ln R) =     (1/a + 1/b – 1/m1 – 1/m0)

=     (1/80 + 1/70 – 1/100 – 1/100) = 0.082
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Power calculation for the breast cancer

clinical trial illustrated in Example 15.1:

observed effect = 10% (= 80%–70%)

difference in survival; sample size =

100 in each group; significance level =

0.05; power < 0.50.
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hypothesis
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The distance between the logarithm of the anticipated effect and the
logarithm of the null hypothesis value of 1 is equal to

ln (1.14) – ln (1) = 0.134 – 0 = 0.134

Thus,

0.134 = j × SE + k × SE 

The value of the required SE to ensure that the study will have 95%
power (k = 1.645) to detect a risk ratio of 1.14 at the 5% significance level
(j = 1.96) will be

0.134 = 1.96 × SE + 1.645 × SE

Required SE = 0.134/(1.960 + 1.645) = 0.037

Therefore,

Scale factor = (0.082/0.037)2 = 4.8

This value is exactly the one we obtained before when the calculation
was based on the difference between the two proportions rather than on
their ratio. Thus, the sample size required to detect a 10% increase in sur-
vival from 70% to 80% is equivalent to the sample size required to detect a
risk ratio of 80%/70% = 1.14.

Similar sample size calculations can be performed for intervention trials
and cohort studies in which the rate ratio (or rate difference) is the appro-
priate measure of effect.

In , we can predict the values of a and b by using the total
person-time of observation in the proposed cohort study (y) and the esti-
mated lung cancer incidence rate in the unexposed (r0). Since lung cancer
is a rare condition, we can estimate the total person-time of observation as

y = 40 000 × 5 years = 200 000 pyrs

assuming there were no losses to follow-up and no other competing
causes of death.

If 40% of the cohort is exposed to the risk factor under study, 0.60 is
unexposed. Thus,

y1 = 200 000 × 0.40 = 80 000 pyrs
y0 = 200 000 × 0.60 = 120 000 pyrs
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Since the anticipated rate ratio (RR) is equal to 2.0, the expected num-
bers of lung cancer cases among exposed and unexposed workers are

a = 80 000 pyrs × (2 × 50 per 100 000 pyrs) = 80
b = 120 000 pyrs × 50 per 100 000 pyrs = 60

We can now complete with the results we expect to obtain
from this cohort study if our assumptions are correct ( ).

As shown in Section A6.1.2, an ‘approximate’ SE of the logarithm of a
rate ratio can be calculated as 

SE (ln RR) =     (1/a + 1/b)

Thus, in our example,

SE (ln RR) =     (1/80 + 1/60) = 0.171

The number of SEs between the logarithm of the anticipated rate ratio
(ln (2.0) = 0.693) and the logarithm of the null hypothesis value (ln (1) =
0) is

340

Example 15.2. Suppose we plan to conduct a cohort study to assess the effect
of an occupational exposure on the incidence of lung cancer. We intend to
recruit 40 000 middle-aged men into the study and follow them up for five
years. 40% of the workers are known to be exposed to the hazard and we
expect the lung cancer rate in those exposed to be twice that of workers unex-
posed (i.e., anticipated rate ratio = 2.0). It is estimated that the incidence rate
of lung cancer in the unexposed group is 50 per 100 000 pyrs. The results to
be obtained from this cohort study will be presented as in Table 15.3.

Exposure Total

Yes No

No. of cases a b n

Person-years at risk y1 y0 y

Rate per 100 000 pyrs r1 r0 r

Results from a hypothetical cohort

study.

Anticipated results from the proposed

cohort study illustrated in Example

15.2.

Exposure Total

Yes No

No. of cases 80 (a) 60 (b) 140 (n)

Person-years at risk 80 000 (y1) 120 000(y0) 200 000 (y)

Rate per 100 000 pyrs 100 (r1) 50 (r0) 70 (r)
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0.693 – 0 = j × 0. 171 + k × 0.171

j + k = 0.693/0.171 = 4.05

For a significance level of 0.05, j would be equal to 1.96 and, hence,

k = 4.05 – 1.96 = 2.09

This value of k corresponds to a power greater than 0.95 (
). Thus, the probability that this cohort study will detect a true

rate ratio of 2.0 (at the 0.05 significance level) is greater than 95%.
Similar sample size estimates would be obtained if the calculations
were based on the anticipated rate difference of 50 per 100 000 pyrs
(100 per 100 000 pyrs – 50 per 100 000 pyrs).

If the power of the study with the proposed number of subjects
were too low, we could have calculated by how much the sample size
would have to be increased in order to achieve the required level by
using the procedure described above when comparing two propor-
tions.

A similar approach can be used in case–control studies. To estimate
the power of the case–control study in , we need to guess
the values of a, b, c and d. Since the controls are supposed to be repre-
sentative of the population from which the cases will arise, we would
expect 33.5% of them to be exposed and the rest to be unexposed to the
factor under investigation. Thus

c = 200 × 0.335 = 67
d = 200 – 67 = 133
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Results from a hypothetical case-con-

trol study.

Example 15.3. Suppose we wish to conduct a study of 200 cases and 200
controls to detect an odds ratio of 0.5 for a particular exposure. The preva-
lence of this exposure in the population from which the cases arise is known
to be 33.5%. The results to be obtained from this case–control study will be
presented as in Table 15.5.

Exposure Total

Yes No

Cases a b n1

Controls c d n0

Total m1 m0 N

Size of a study
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15.2.3 Comparing two odds

Example 15.3

Table 15.5.

Example 15.3. Suppose we wish to conduct a study of 200 cases and 200
controls to detect an odds ratio of 0.5 for a particular exposure. The preva-
lence of this exposure in the population from which the cases arise is known
to be 33.5%. The results to be obtained from this case–control study will be
presented as in Table 15.5.

Exposure Total

Yes No

Cases a b n1

Controls c d n0
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We can now calculate the odds of exposure among the controls as

c/d = 67 /133 = 0.5

Since we anticipate an odds ratio equal to 0.5, we can calculate the odds
of exposure among the cases as

a/b = 0.5 × 0.5 = 0.25

Thus,

a = 0.25 × b

Since a + b = 200, it follows that

b = 160
a = 200 – 160 = 40

We can now complete with the values of a, b, c and d we
expect to observe in the proposed case–control study ( ).

With these data, we can calculate an ‘approximate’ SE of the logarithm
of the anticipated odds ratio by using the formula given in Section A6.1.2:

SE =     (1/a + 1/b + 1/c + 1/d)

Thus, in our case–control study,

SE =     (1/40 + 1/160 + 1/67 + 1/133)
= 0.232

To calculate the power of the study for a significance level of 0.05 (j =
1.960), we need first to calculate ln (OR) = ln (0.5) = –0.693. This is a neg-
ative value, but since we are interested in the absolute distance between
the anticipated value and the null hypothesis we can ignore the minus
sign and proceed as usual:

0.693 = 1.96 × SE + k × SE
0.693 – 1.96 × 0.232 = k × 0.232 
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Anticipated results from the hypotheti-

cal case–control study described in

Example 15.3.

Exposure Total

Yes No

Cases 40 (a) 160 (b) 200 (n1)

Controls 67 (c) 133 (d) 200 (n0)

Total 107 (m1) 293 (m0) 400 (N)
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Table 15.5
Table 15.6

Table 15.6. Exposure Total

Yes No

Cases 40 (a) 160 (b) 200 (n1)

Controls 67 (c) 133 (d) 200 (n0)

Total 107 (m1) 293 (m0) 400 (N)
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0.238 = k × 0.232
k = 1.03

A k value of 1.03 corresponds to a power around 0.85 ( ). If we
wish to increase the power to 0.95, the study size has to be increased:

0.693 = 1.96 × SE + 1.645 × SE

Required SE = 0.693/(1.96 + 1.645) = 0.192

Factor = (0.232/0.192)2 = 1.46

Thus, the proposed sample size must be increased by a factor of 1.46,
that is from 200 to 292, if we wish to increase the power of the study from
around 0.85 to 0.95.
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Anticipated effect and its 95% confi-

dence interval for the hypothetical

breast cancer trial described in

Example 15.4: anticipated effect =

10% (= 80%–70%) difference in sur-

vival; significance level = 0.05; power

= 0.95; sample size = 480 women in

each treatment group.

Anticipated results of a hypothetical

trial to assess the value of a new treat-

ment on the one-year survival from

breast cancer. Anticipated effect = 10%

(= 80%–70%) difference in survival;

significance level = 0.05; power = 0.95;

sample size = 480 women in each

treatment group.

Example 15.4. Consider again the breast cancer trial (Example 15.1). For
the trial to have 95% power to detect a 10% difference in survival at the 5%
significance level, the sample size has to be increased from 100 to 480 sub-
jects in each of the two treatment groups (Section 15.2.1). With this new
sample size, we anticipate the following results (Table 15.7 and Figure 15.4).

New treatment Standard treatment Total

Alive one year after Yes 384 (a) 336 (b) 720 (n1)

entry into the trial

No 96 (c) 144 (d) 240 (n0)

Total 480 (m1) 480 (m0) 960 (N)

p1 = 384/480 = 80%

p0 = 336/480 = 70%

Risk difference = p1 – p0 = 10%

95% confidence interval = +4.6% to + 15.4%

χ2 = 12.79; P < 0.001

Anticipated
effect

Null
hypothesis

value

kSE

jSE jSE

95% confidence interval

10% 15.4%4.6%0%
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Table 15.7. 
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The approach to sample size calculations discussed in the previous section
focused on the statistical significance test to be conducted at the end of the
study. The main limitation of this approach is that it may produce very impre-
cise estimates of the effect on the outcome(s) of interest; thus, although the
confidence interval will not include the null hypothesis value, it may still be
too wide to be informative.

In , although the anticipated confidence interval does not
include the null hypothesis value of no difference between the two treatments,
its width is compatible with an improvement in one-year survival which
ranges from 4.6% to 15.4% ( ). This is not a very precise
estimate. Indeed, the range is wider than 10%, the difference we anticipate. We
may consider more acceptable a width of ±2.5% either side of the sample esti-
mate of 10%, so that the confidence interval of the difference in the propor-
tion of women still alive by the end of the first year will range from 7.5% to
12.5%.

Sample size calculations based on power may be appropriate for new expo-
sures, when it is not known whether there will be any impact at all on the out-
comes of interest. If, however, other studies have already shown that the expo-
sure is associated with either an increase or a decrease in incidence, there is not
much point in testing the null hypothesis, and the objective should be to esti-
mate the magnitude of the effect as precisely as possible. In these situations, it
is more appropriate to choose a sample size that will yield a confidence inter-
val of a predefined width.

We can estimate the sample size necessary to ensure that the confidence
interval for a single proportion (prevalence or risk) is of a predetermined width.

In , we plan to take a random sample of n women aged 20–44
years. If among them, a are current users, we estimate the prevalence of oral
contraceptive use as

p = a/n

As we saw in Section 6.1, this estimate is subject to sampling error, but the
95% confidence interval will give a range of values within which the true pop-
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Example 15.5. Suppose we wish to conduct a cross-sectional survey in a certain
area to estimate the prevalence of current oral contraceptive use among women
aged 20–44 years. We plan to take a random sample from the population of all
women aged 20–44 years living in the study area. We would like to calculate the
sample size required to ensure that the study will be able to estimate the true
prevalence of current oral contraceptive users in the study area within 5% of its
value (i.e. the confidence interval that we will obtain when the results of the
study are analysed will extend 5% to either side of the sample estimate).
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15.3 Sample size calculations based on precision

Example 15.4

Table 15.7; Figure 15.4

15.3.1 Estimating a single crude proportion (prevalence or risk)

Example 15.5

Example 15.5. Suppose we wish to conduct a cross-sectional survey in a certain
area to estimate the prevalence of current oral contraceptive use among women
aged 20–44 years. We plan to take a random sample from the population of all
women aged 20–44 years living in the study area. We would like to calculate the
sample size required to ensure that the study will be able to estimate the true
prevalence of current oral contraceptive users in the study area within 5% of its
value (i.e. the confidence interval that we will obtain when the results of the
study are analysed will extend 5% to either side of the sample estimate).
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ulation prevalence will lie with 95% confidence.

Suppose we wish our confidence interval around the sample estimate to
be of a certain width (± w). The value of w depends upon the standard
error SE and the significance level (j) chosen:

w = j × SE

For a 95% confidence interval, j = 1.96, that is the interval extends 1.96
standard errors either side of the estimate (w = 1.96 × SE).

Hence, we can estimate the prevalence of oral contraceptive use (p) with
a pre-defined degree of precision by choosing an appropriate sample size
(n). We must first guess the value of p. Suppose that statistics on oral con-
traceptive sales indicate that the prevalence of use is about 50% and we
want to estimate it to within ±5%. Thus

p = 0.50
w = j × SE = 0.05

Choosing a 95% confidence level,

1.96 × SE = 0.05
SE(p) = 0.05/1.96 = 0.0255

Since p = 0.5, we can estimate a from the formula for the SE:

(0.52 × 0.5)/a = 0.0255

0.125/a = 0.02552

a = 192

Finally, we can calculate the sample size (n) required as

p = a/n

0.5 = 192/n

n = 384

Thus, we need to enrol 384 women into the study. When planning a
study, it is a good idea to find out what sample size will be required for var-
ious levels of precision ( and ).
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Size of a study

SE(p) = p2(1–p)
a

= 0.0255SE(p) = p2(1–p)
a
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Table 15.8 Figure 15.5

SE(SE(pp)) = = pp22(1–(1–pp))
aa

== 0.0255 0.0255SE(SE(pp)) = = pp22(1–(1–pp))
aa
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Thus, to estimate a true prevalence of oral contraceptive use of 50%
within ±1% (i.e., from 49% to 51%), we would need to recruit 9612
women.

It is also important to calculate the required sample size for different
values of the anticipated prevalence p. As we can see in , the
sample size required does not vary much for values of p between 0.3 and
0.7, being greatest when p = 0.50. Thus, to be on the safe side, we can set
p = 0.50 and obtain the maximum sample size (n) required.

A similar approach can be used to estimate the sample size necessary to
ensure that the confidence interval for a single rate is of a predetermined
width.

In , we plan to take a random sample of individuals from the
study population. Thus, for a 95% confidence level (j = 1.96)

w = 1.96 × SE
5 per 10 000 pyrs = 1.96 × SE(r)
SE(r) = 2.55 per 10 000 pyrs

346

Width (±w) Sample size (n)

0.01 9612

0.02 2403

0.03 1068

0.04 600

0.05 384

0.06 266

0.07 196

0.08 150

0.09 118

0.10 96

0.15 43

Sample sizes required to estimate a

true prevalence of 0.50 with 95% confi-

dence intervals of different widths (±w).

Anticipated 95% confidence intervals

for a true prevalence of 0.50 for vari-

ous sample sizes.
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Example 15.6. Suppose we wish to determine the incidence rate of a par-
ticular condition in a certain population. Based on data from previously con-
ducted studies, we expect the rate to be about 50 per 10 000 pyrs. We want
to determine the size of the sample that will be required to estimate the inci-
dence rate in that population within ±5 per 10 000 pyrs.
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Table 15.9

15.3.2 Estimating a single crude rate

Example 15.6

Width (±w) Sample size (n)

0.01 9612

0.02 2403

0.03 1068

0.04 600

0.05 384

0.06 266

0.07 196

0.08 150

0.09 118

0.10 96

0.15 43

Table 15.8.

Figure 15.5. 
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Example 15.6. Suppose we wish to determine the incidence rate of a par-
ticular condition in a certain population. Based on data from previously con-
ducted studies, we expect the rate to be about 50 per 10 000 pyrs. We want
to determine the size of the sample that will be required to estimate the inci-
dence rate in that population within ±5 per 10 000 pyrs.
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An ‘approximate’ standard error of a rate can be calculated as indicated
in Section A.6.1.1:

r
SE(r) = 

√a

where r is the estimated rate and a is the number of cases that occurred
during the observation period. Thus, in our example,

50 per 10 000 pyrs
= 2.55 per 10 000 pyrs

√a

a = 384

We can now calculate the person-time at risk (y) required to originate
384 cases:

r = a/y
50 per 10 000 pyrs = 384/y
y = 76 800 pyrs

This level of total person-years at risk can be achieved by following 76
800 individuals for one year or 38 400 for two years, etc.

Let us consider again the breast cancer trial ( and ).
Suppose we want to ensure that the width of the confidence interval for
the difference in proportions will be equal to ±w=2 × 2.5%. Thus

w = 1.96 × SE (p1 – p0) = 0.025

The required SE should be

0.025/1.96 = 0.0128

and

Since a = 0.80m1, b = 0.70m0 and m0 = m1, it follows that

m0 = m1 = a/0.80
b = 0.70 × (a/0.80) = 0.875 a
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15.3.3 Estimating a difference or ratio of two proportions (risks or
prevalences)

Examples 15.1 15.4
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The above formula for the standard error can then be re-written as

(0.0128)2 = 0.128/a + 0.147/0.875a
0.000164 = ((0.128 × 0.875) + 0.147)/0.875a
0.875a = 0.259/0.000164 = 1579.3
a = 1805
m1 = m0 = 1805/0.80 = 2256
b = 2256 × 0.70 = 1579

Thus, to obtain a 95% confidence interval for the survival difference
between the two treatments with a width of 2.5% either side of the
anticipated effect of 10% (i.e., from 7.5% to 12.5%), we need to enrol 2256
subjects in each treatment group.

Similarly, we can calculate the sample size required to estimate a ratio of
two proportions with a pre-defined level of precision. The approach would
be similar to the one just illustrated, except that the calculations would be
based on the formula for the SE of a ratio of proportions (see Section A6.1.2).

A similar approach can be used in studies where the appropriate measure
of effect is the rate ratio.

An ‘approximate’ 95% confidence interval of the logarithm of a rate
ratio (r1/r0) can be estimated as

95% confidence interval = ln RR ± 1.96 × SE (ln RR)

In , 
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Example 15.7. The incidence of stomach cancer among men aged 50–59
years in a particular population is 65 per 100 000 person-years. Suppose
that we are planning to conduct a trial in that population to assess
whether a particular intervention reduces the rate of stomach cancer in
men of that age-group. Eligible subjects will be randomized to receive
either the intervention or the placebo in a ratio of 1:1. You expect the rate
among those who receive the intervention to be 60% of the rate in those
administered placebo (i.e., a 40% reduction in risk). We wish the confi-
dence interval for the rate ratio estimate to have a width (on a logarithmic
scale) of 1.30 either side of the sample estimate (i.e., from 0.46 (=
0.60/1.30) to 0.78 (= 0.60 × 1.30)). The results from this trial will be pre-
sented as in Table 15.3.

Chapter 15

SE = = 0.0128
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15.3.4 Estimating a rate difference or a rate ratio

Example 15.7

Example 15.7. The incidence of stomach cancer among men aged 50–59
years in a particular population is 65 per 100 000 person-years. Suppose
that we are planning to conduct a trial in that population to assess
whether a particular intervention reduces the rate of stomach cancer in
men of that age-group. Eligible subjects will be randomized to receive
either the intervention or the placebo in a ratio of 1:1. You expect the rate
among those who receive the intervention to be 60% of the rate in those
administered placebo (i.e., a 40% reduction in risk). We wish the confi-
dence interval for the rate ratio estimate to have a width (on a logarithmic
scale) of 1.30 either side of the sample estimate (i.e., from 0.46 (=
0.60/1.30) to 0.78 (= 0.60 × 1.30)). The results from this trial will be pre-
sented as in Table 15.3.
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w = ln (1.30) = 1.96 × SE (ln RR)

SE (ln RR) = 0.262/1.96 = 0.134

An ‘approximate’ standard error of the logarithm of an estimated rate
ratio (RR) can then be obtained as follows:

SE (ln RR) =    (1/a + 1/b)

In our example,

0.134 =    (1/a + 1/b)

Since the same number of subjects are to be allocated to each arm of the
trial and we anticipate a rate ratio of 0.6, then

a = 0.6 × b
0.134 =   (1/0.6b + 1/b) =     (1.6/0.6b)
(0.134)2 = 1.6/0.6b
0.6b = 1.6/0.018 = 88.89
b = 88.89/0.6 = 148
a = 0.6 × 148 = 89

The stomach cancer incidence rate for those given placebo is believed to
be 65 per 100 000 pyrs. Thus, we need 227 692 pyrs (= 148/0.000065 pyrs)
of follow-up in each arm of the trial in order to accumulate 148 stomach
cancer cases among those receiving the intervention and 89 among those
given placebo. This will ensure that the result of the trial will have the
desired level of precision. This can be achieved by following 227 692 men
for one year, 113 846 for two years and so on.

A similar approach can be used to calculate sample size estimates based
on precision in situations where the appropriate measure of effect is the rate
difference rather than the rate ratio, except that the calculations would be
based on the formula of the SE of a difference in rates (see Section A6.1.2).

Consider .
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Example 15.8. Suppose we wish to conduct a study to detect an odds ratio
of 2.0 for an exposure present in 33.5% of the population from which the
cases will arise. A similar number of cases and controls will be recruited into
the study. We want to ensure that the 95% confidence interval for the odds
ratio will have a width (on a logarithmic scale) of 1.25 either side of the
sample estimate (i.e., from 1.6 (= 2.0/1.25) to 2.5 (= 2.0 × 1.25)). The
results from this case–control study will be presented as in Table 15.5.
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15.3.5 Estimating an odds ratio
Example 15.8

Example 15.8. Suppose we wish to conduct a study to detect an odds ratio
of 2.0 for an exposure present in 33.5% of the population from which the
cases will arise. A similar number of cases and controls will be recruited into
the study. We want to ensure that the 95% confidence interval for the odds
ratio will have a width (on a logarithmic scale) of 1.25 either side of the
sample estimate (i.e., from 1.6 (= 2.0/1.25) to 2.5 (= 2.0 × 1.25)). The
results from this case–control study will be presented as in Table 15.5.
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A 95% confidence interval of the logarithm of an odds ratio can be esti-
mated as

95% confidence interval = ln OR ± 1.96 × SE (ln OR)

In our example,

w = ln (1.25) = 1.96 × SE (ln OR)
SE (ln OR) = 0.223/1.96 = 0.114

An ‘approximate’ standard error of the logarithm of the estimated odds
ratio can be obtained as 

SE (ln OR)=    (1/a + 1/b + 1/c + 1/d)

The odds of exposure among the cases is expected to be twice the odds
of exposure among the controls:

a/b = 2 × (c/d)

and the prevalence of exposure among the controls is expected to be 33.5%:

c = n0 × 0.335
d = n0 × 0.665

Hence,

n0 × 0.335
a/b = 2 × ———————                           = 1.008

n0 × 0.665

a = 1.008 × b
n0 = n1 = a + b = 1.008b + b = 2.008b

0.1142 = 1/b × (1/1.008 + 1 + 1/0.673 + 1/1.335)
0.013 = 4.227/b
b = 325
a = 328
c = (325 + 328) × 0.335 = 219
d = (325 + 328) × 0.665 = 434
n0 = a + b = 325 + 328 = 653
n1 = c + d = 219 + 434 = 653

Thus, we need to recruit 653 cases and 653 controls into our case-con-
trol study.
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The methods described in this chapter should be regarded only as pro-
viding a rough estimate of the required study size, as they are based on
guesses or approximate estimates of the parameters, on subjective deci-
sions about the size of an effect that we would wish to detect, and on the
use of approximate formulae. They only give an idea of the sort of size
needed.

In practice there will be constraints on resources, which may limit the
maximum possible sample size. Resources in terms of staff, vehicles, lab-
oratory capacity, time and money are all likely to be limited, and it is usu-
ally necessary to achieve a balance between the results of the study size
calculations and what can reasonably be managed given the resources.
Trying to do a study that is beyond the capacity of the available resources
is likely to be unfruitful, as data quality will suffer, and the study may col-
lapse before completion, wasting the investment that had already been
put into it. On the other hand, if the calculations show that a study of a
manageable size will have a power and/or yield a precision that is unac-
ceptably low, it may be worth considering involving other centres.

Study size calculation should always be carried out for several different
scenarios, not just one (e.g., different levels of power/precision and of
estimates of the effect measure), in order to give a clear picture of the
scope of the study. A useful approach in deciding on the trade-off
between cost and power is to construct power curves for one or two key
outcome variables, to show how the power or precision varies with the
study size for different values of the effect measure (as shown in 

).

Many epidemiological studies are designed to look at several expo-
sure-outcome relationships. We can use the methods described in this
chapter to calculate the study size necessary to allow us to detect the
most important exposure–outcome relationships. Ideally, we would then
select the largest of these as our actual study size. We may find that the
study size required to detect one or more of the exposure–outcome rela-
tionships in which we are interested is clearly beyond the available
resources. For instance, we may be interested in examining the relation-
ship between birthweight and the occurrence of benign breast diseases
and breast cancer. The study size calculations may reveal that our sam-
ple will be sufficient to ensure that the study will have enough power or
precision to examine the relationship between birthweight and benign
breast diseases but will be far too small to examine the relationship
between birthweight and breast cancer incidence. If we are unable to
increase the sample size to the desired level, we will have to restrict the
objectives of the study and consider benign breast disorders as the only
outcome of interest.
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15.4 Other considerations concerning study size

Figure
15.2

15.4.1 Studies designed to look at multiple exposure–outcome rela-
tionships

Text book eng. Chap.15 final  27/05/02  10:18  Page 351  (Black/Process Black film)TextText book book book eng. eng. eng. Chap.15 Chap.15 Chap.15 final final final  27/05/02 27/05/02 27/05/02  10:18 10:18 10:18  Page Page Page 351 351 351    (PANTONE (PANTONE (Black/Process 313 313 (Black/Process CV CV (Black/Process  film) film) Black



Refusals and/or losses to follow-up are likely to occur in epidemio-
logical studies because subjects move away from the study area, die
from some cause unrelated to the outcome of interest, refuse to con-
tinue with the study, etc. These losses reduce the size of the study
available for analysis and, therefore, decrease the power or precision of
the study. We can compensate for these losses by increasing the initial
study size. For example, if study size calculations suggest that 320 sub-
jects are required, and a 20% loss to follow-up is expected, the study
size should be increased to about 400 (400 – 400 × 0.20 = 320). Note,
however, that although this strategy will ensure that the study will
have the required power or precision, it will not avoid the possibility
of selection bias, as the individuals who refuse to participate or are lost
to follow-up may differ in important respects from those who remain
in the study.

There are situations where we may wish to study groups of different
sizes. For example, when the number of available cases and controls is
large and the cost of obtaining information from both groups is com-
parable, the optimal control-to-case ratio is 1:1. However, if the avail-
able number of cases for the study is limited, or when the cost of
obtaining information is greater for cases than controls, the number of
controls per case can be increased to achieve the necessary power or
precision. For example, a study with 100 cases and 100 controls has the
same power as a study with 75 cases and 150 controls, or one with 63
cases and 252 controls, or one with 55 cases and 550 controls. It is usu-
ally not recommended to increase the control:case ratio beyond 4:1,
because there is only a small increase in statistical power with each
additional control beyond this point. This small increase in power is
generally not worth the increase in logistics and costs of recruiting a
much larger total number of subjects unless the data for the controls
are available at very little extra cost.

The sample size estimations presented here refer to crude measures.
In most studies, however, it is essential to control for confounding
variables by calculating adjusted measures. These adjustments usually
lead to a loss of power or precision of the study. However, this loss is
substantial only when a very strong confounding variable is present
(Smith & Day, 1984).

In contrast, and as discussed in the previous chapter, studies
designed with the aim of detecting interactions require much larger
sample sizes than those designed to look for simple effects (Smith &
Day, 1984). In practice, this restricts the number of studies that can be
carried out explicitly to examine interactions.
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15.4.2 Refusals and losses to follow-up

15.4.3 Unequal sized groups

15.4.4 Confounding and interaction
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The sample size calculations for case–control studies presented in this
chapter referred to unmatched studies. Methods for calculation of adequate
sample sizes for matched case–control studies are given in Breslow & Day
(1980).

The methods presented in this chapter assume that individuals rather
than groups are the units of study. The calculations would be different if, for
instance, the unit of study were communities (see Smith & Morrow, 1996).
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Box 15.1. Key issues

•  Sample size calculations can be made to ensure that:

1. the study has enough power, i.e., ability to detect a statistically signif-

icant result if the true magnitude of the effect is as anticipated. Thus, this

approach focuses on the significance test that will be performed at the

end of the study.

2. the sample estimates are precise, i.e., the level of sampling error is

low. This approach focuses on the width of the confidence interval.

•  Sample size calculations based on power may be appropriate to identify new

exposures when it is not known whether they will have any effect at all on the

outcome(s) of interest. If, however, it is already known that the exposure is

associated with the outcome, the objective of the study should be to quantify the

magnitude of the effect as precisely as possible rather than just testing the null

hypothesis of no effect. In these circumstances, sample size calculations should

be based on precision.

•  Sample size calculations should be taken as providing only a rough idea of the

number of subjects that need to be recruited. Other considerations such as

availability of subjects, resources, costs, etc. should be considered carefully.

* The power calculations pre-

sented in Section 15.2 follow the

approach suggested by Clayton

& Hills (1993).

* Sample size calculations for

more complex designs of cohort,

case–control and intervention

studies are given respectively in

Breslow & Day (1987, 1980) and

Smith & Morrow (1996).
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15.4.5 Special study designs

Box 15.1. Key issues

•  Sample size calculations can be made to ensure that:

1. the study has enough power, i.e., ability to detect a statistically signif-

icant result if the true magnitude of the effect is as anticipated. Thus, this

approach focuses on the significance test that will be performed at the

end of the study.

2. the sample estimates are precise, i.e., the level of sampling error is

low. This approach focuses on the width of the confidence interval.

•  Sample size calculations based on power may be appropriate to identify new

exposures when it is not known whether they will have any effect at all on the

outcome(s) of interest. If, however, it is already known that the exposure is

associated with the outcome, the objective of the study should be to quantify the

magnitude of the effect as precisely as possible rather than just testing the null

hypothesis of no effect. In these circumstances, sample size calculations should

be based on precision.

•  Sample size calculations should be taken as providing only a rough idea of the

number of subjects that need to be recruited. Other considerations such as

availability of subjects, resources, costs, etc. should be considered carefully.

Box 15.1. Key issuesBox 15.1. Key issuesBoxBox 15.1. 15.1. Key Key issues issues

Further reading
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