1. Exposure Data

The Working Group limited the scope of this
Monograph on carbon nanotubes (CNT) to engi-
neered/manufactured CNT, on the basis of three
issues.

The Working Group recognized that co-ex-
posure to CNT and carbon nanofibres (CNF)
could arise, because CNF may be generated as
impurities during the synthesis of CN'T. However,
CNT and CNF are usually produced separately.
Of 11 studies in the workplace, only one reported
the use of both CNT and CNF at one secondary
manufacturing facility that produced composite
materials.

The Working Group did not consider the use
of CNT that are specifically designed for medical
purposes, for which human exposures have not
yet been described.

While the existence of naturally and inciden-
tally occurring CNT has been acknowledged,
the physico-chemical properties and biological
reactivity of CNT in the general atmosphere are
unknown.

1.1 Chemical and physical

properties
1.1.1 Nomenclature and general description

Although single-walled (SWCNT) and
multiwalled MWCNT) CNT were discovered in
1991 (lijima, 1991), only one Chemical Abstracts

CARBON NANOTUBES

Service number, 308068-56-6, has been given to
reference CNT to date; however, this number is
not representative of all CNT because of great
variations in the size and other characteristics of
the tubes. In addition, with regard to nomencla-
ture, CNT and CNF are often discussed together.

Table 1.1 gives the most common defini-
tions of CNT and other parameters related to
nanomaterials. According to the International
Organization for Standardization (ISO), CNT
are defined as “nanotubes composed of carbon.
CNT usually consist of curved graphene layers,
including single-wall CNT and multiwall CNT”
and CNF are defined as “nanofibres composed of
carbon.” A nanofibre is described as a “nano-ob-
ject with two similar external dimensions in the
nanoscale and the third dimension significantly
larger. A nanofibre can be flexible or rigid. The
two similar external dimensions are considered
to differ in size by less than three times and the
significantly larger external dimension is consid-
ered to differ from the other two by more than
three times. The largest external dimension is
not necessarily in nanoscale” (ISO, 2008).

As a working definition for this Monograph,
to counteract any potential confusion between
the ISO definitions, we used the following differ-
entiation between CNT and CNF proposed
by Kim et al. (2013): “The geometry of CNF is
different from the CNT containing an entire
hollow core, because they can be visualized as
regularly stacked truncated conical and planar
layers along the filament length” (see Fig. 1.1).
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Carbon nanotubes

Fig. 1.1 Schematic comparison of various types of fibrous carbon by diameter on a log scale

tube

Carbon nanofibre

Carbon fibre

1 10!
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10° 10*
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From Kim et al. (2013), with permission from Springer

While CNF may be produced as impurities
during the synthesis of CNT (see Section 1.2),
CNF are not the subject of this review.

CNT comprise a graphene sheet rolled into a
cylinder which can, in some cases, be extremely
long, occasionally reaching several hundreds of
micrometres in length. In each of the carbon
sheets, one carbon atom is bonded to three others
in one place, and gives rise to hexagonal rings
similar to those found in aromatic hydrocarbons.
CNT may consist of a single graphene cylinder
(SWCNT) or of many graphene cylinders inside
one another in concentric layers kept together
by van der Waals forces (MWCNT). The larger
MWCNT can contain hundreds of concentric layers
separated by a distance of 0.34 nm (Popov, 2004).
The length of a C-C bond in a graphene sheet of
SWCNT is 0.142 nm (Wildoer et al., 1998).

CNT have generally been categorized into
two groups: SWCNT and MWCNT. However,

double-walled CNT (DWCNT) have also
frequently been listed as a separate class.
Depending on the production process, the phys-
ical and chemical characteristics (e.g. diameter
and length) of CNT vary greatly (Table 1.2).

SWCNT do not normally exist as individual
tubes (Lam et al., 2006). Due to the van der
Waals forces, they are wont to form agglomer-
ates or aggregates leading to the construction of
microscopic bundles or ropes which can reach
5-50 nm in diameter (Maynard et al., 2007).
These bundles tend to agglomerate loosely into
small clumps. MWCNT are multiple graphene
layers that surround one another and also tend
to form bundles, but the van der Waals forces
are usually weaker than those of SWCNT and
MWCNT are therefore more likely to exist as
single fibres (Lam et al., 2006).
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Carbon nanotubes

Fig. 1.2 Possible components of a mixture of a sample of pristine carbon nanotubes (unpurified

carbon nanotubes)

Unpurified carbon nanotube sample

Nanotubes

Residual material

Single-walled Multiwalled Metals Organics Support
1-3 nm diameter 10-100 nm Typically Co, Fe, Amorphous Typically fine
Often form diameter Ni, Mo carbon alumina,
bundles Nanoparticulate Microstructured magnesium
carbon- carbon (carbon oxide or silica
R/—/ encapsulated blacks, onions,
oxides fibres, etc.)

Widely varying lengths, typically
tens of microns

From Donaldson et al. (2006) by permission of Oxford University Press

1.1.2 Chemical properties

(a)  Elemental composition

Pure CNT consistof only one or several hexag-
onal graphene sheets of carbon atoms rolled into
tubes and are considered to be rather non-reac-
tive; for example, SWCNT have to be heated up
to 500 °C to become oxidized and burned in the
air (Zhang et al., 2002).

(b)  Impurities

Because the synthesis of CNT frequently
requires the presence of catalytic metals in the
manufacturing process, CNT contain several
residual impurities in addition to SWCNT and
MWCNT, the concentrations of which may
be relatively high in industrial-grade CNT
(Donaldson et al., 2006; Fig. 1.2).

CNT samples have variouslevels of purity and
those of several market materials are reported in
Table 1.2. In the pristine [as-produced] samples,

residual materials include metals (i.e. iron and
molybdenum), support substances (i.e. alumina
and silica) and organics (i.e. carbon blacks and
fibres). Metal catalysts are frequently used in the
manufacture of SWCNT, the most common of
which are iron, nickel, cobalt, and molybdenum
(Donaldson etal., 2006). Hence, pristine SWCNT
usually contain higher concentrations of trace
metals (Kitiyanan et al., 2000) than MWCNT.
Support materials, including fine alumina,
magnesium oxide, or silica, are often included to
support the catalyst or the region of growth of
the tubes (Donaldson et al., 2006).

Residual organic materials can be divided into
two categories: organic molecules and various
forms - amorphous or micro-structured - of
bulk carbon, such as soot particles, fullerenes,
and graphene sheets (Donaldson et al., 2006). The
levels and types of impurity depend on the prod-
uction process. In general, gas-phase processes
such as chemical vapour deposition (CVD) tend
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to produce CNT with fewer impurities and are
also suitable for large-scale production. The
purity of commercial CNT preparations may
vary considerably (50-99.9%), but post-produc-
tion purification processes can be used to remove
the remaining impurities and unwanted defects
of graphene sheets. These involve harsh proce-
dures such as mechanical handling and the use
of strong acids and tend to shorten the CNT
(Lam et al., 2006; Alexander, 2007).

1.1.3 Physical properties

CNT preparations vary greatly in terms
of diameter, length, atomic structure, surface
chemistry, and defects (e.g. catalysts such asiron).
Other important physical properties include
mechanical, electrical, optical, and thermal
characteristics and also the agglomeration and
aggregation state, bulk density, and the specific
surface area.

(a) Thickness

The thickness of CN'T mainly depends on the
number of graphene layers contained and the
chirality of the tubes. In general, the outer diam-
eter of SWCNT is 1-3 nm (Jorio et al., 2001) and
that of MWCNT is 10-200 nm (Hou et al., 2003).
Changes in the diameter depend on the synthetic
process, in which the diameter of the catalytic
metal plays an important role, especially in the
case of SWCNT.

(b) Length

The length of typical CNT is a few micro-
metres, but this can vary between only a few
hundred nanometres and several tens of micro-
metres. Tubes of 50 pm in length are common
and some are occasionally several hundreds of
micrometres long. Variations in the length of the
tubes are a rule rather than an exception in CNT
preparations (Lam et al., 2006).
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(c) Atomic structure

The atomic structure of CNT is described
in terms of tube chirality, which is determined
by the orientation of the graphene sheet when
the tube is synthesized. Two common confor-
mations include the so-called armchair and
zig-zag conformations, which generally occur in
a mixture of different conformations (Fig. 1.2;
Thostenson et al., 2001). The chiral axis, defined
as the orientation of the axis of the carbon
hexagon relative to the axis of the CNT, also has
an effect on the diameter of the nanotube because
the inter-atomic spacing of the carbon atoms is
fixed as mentioned above (0.142 nm) (Wildoer
et al., 1998; Hedmer et al., 2013). In MWCNT,
the adjacent graphene layers have different
chiralities. Chirality also influences the optical
and electrical properties of the CNT. Although
graphene is a semi-metal, CNT can be either
metallic or semi-conducting depending on the
chiral angle. Chirality does not, however, modify
the mechanical properties of CNT. Importantly,
because SWCNT are frequently a mixture of
single-walled tubes with different lengths and
different chiralities, the existence of an aerosol,
for example, consisting of SWCNT with only
one type of chirality is not a viable assumption
(Thostenson et al., 2001).

(d) Defects

During the synthesis of CNT, certain types
of defect may occur, one example of which is
the collapse of the tube that may arise from
“bamboo-like” closures in the tube that can be
detected by transmission electron microscopy
(TEM) (Saito & Zettl, 2008). Such geometrical
and typographical defects may be technologically
important because they may dramatically alter
the electrical properties of the CNT (Ishigami et
al., 2004; Saito & Zettl, 2008). For example, the
pentagon-heptagon pair (5-7 pair), one of the
simple and elegant topological defects (Ishigami
et al., 2004), can be used to connect metallic and
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semi-conducting tubes enabling the formation of
semiconductor-semiconductor, semiconductor-
metal,and metal-metalinterfaces (Bernholcetal.
1997). For the above reasons, nanoscale devices
comprised only of carbon can be produced. CNT
are usually non-reactive, although defects in the
structure, including missing carbon atoms, could
increase their reactivity (Bernholc et al., 1997).

(e) Surface-to-mass ratio or specific surface
area

Because of their small size and structure, each
of the CNT exhibits extremely high surface-to-
mass ratios, also referred to as the specific surface
area. The specific surface area depends on the
diameter, number of concentric graphene layers,
and degree of bundling. The specific surface area
of SWCNT is usually 1300 m?/g, but the corre-
sponding value for bundles of SWCNT is often
six times lower (about 300 m?/g) (Ye et al., 1999).

(f)  Bulk density

The bulk density of CNT is quite low and
varies according to the production process. For
example, a comparison of the powder resulting
from laser ablation with that produced by the
high-pressure carbon monoxide (HiPCO)
process showed that the latter resulted in a bulk
density as low as 1 mg/cm?, whereas the bulk
density of the MWCNT Baytubes was as great as
120-170 mg/cm?. For example, the bulk density
of pure graphite and graphene powder are 2200
and 200-600 mg/cm?, respectively (Chung et al.,
1982; Stankovich et al., 2007).

(g)  Physical strength

The physical strength of CNT is one their
remarkable advantages. In terms of tensile
strength and elastic modulus, CNT are the
strongestand stiffest material to have been discov-
ered to date, with an estimated tensile strength of
200 GPa (Cheung et al., 2010), and SWCNT can
be 10 times stronger than high-strength stainless

steel (Walters et al., 1999; Yu et al., 2000). Closely
packed CNT ropes have shown tensile strength
in excess of 45 GPa, more than 20 times higher
than that of typical high-strength steel (2 GPa)
(Waltersetal., 1999; Thostenson etal., 2005). With
a tensile modulus of more than 1 TPa, CNT can
also be 20% stiffer than diamonds (Thostenson
etal., 2005). The remarkable strength of the CNT
is due to the covalent bonds (sp? hybridization)
formed between the individual carbon atoms.
High strength is thought to be a purely axial
property of CNT because, in the radial direc-
tion, they are rather soft and can be deformed
by van der Waals interactions between adjacent
CNT (Ruoff et al., 1993). CNT are very flexible
and can be bent more than 110° without damage
(lijima et al., 1996).

(h)  Electrical properties

CNT can act as either semiconductors
or conductors depending on their chirality
(Bernholc et al., 1997), to which the electrical
properties of the tubes are directly proportional;
in the case of thin SWCNT, curvature is also
a factor (Lu & Chen, 2005). In theory, metallic
CNT can carry an electric current density of
4 x 10° A/cm?, which exceeds that of copper by a
factor of 1000 (Thostenson et al., 2005; Cheung
etal., 2010). CNT have numerous potential appli-
cations in electric components and devices, and
SWCNT with different electrical properties can
be joined to make a diode (Chico et al., 1996).
Furthermore, because CNT can be modified
by deformation and stretching, they could, for
example, be applied in sensors (Mahar et al.
2007).

(i)  Thermal and optical properties

CNT also have remarkable optical and
thermal properties. SWCNT readily absorb near
infraredlight (800-1600 nm) (Cheungetal.,2010)
which covers the wavelength range that passes
through biological tissues without remarkable
scattering, absorption, heating, or damaging the
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tissue. Hence, the optical properties of SWCNT
canbeused in photo-thermal therapy (Kam etal.
2005; Chakravarty et al., 2008; Xiao et al., 2009).
CNT also exhibit remarkable thermal conduc-
tivity. SWCNT have thermal conductivities as
high as 6000 W/(m.K) at room temperature, at
which the corresponding value for diamonds is
3320 W/(m.K). SWCNT are also stable at temper-
atures as high as 2800 °C in a vacuum and 750 °C
in air (Thostenson et al., 2005). These thermal
properties could probably be used in the future
in highly conducting components of integrated
nanoscale circuits, such as transistors, and in
thermal management (Sinha et al., 2005; Pop et
al., 2006).

()  Dustiness

Dustiness corresponds to the propensity of
a material to generate airborne dust during its
handling (Evans et al., 2013) and, depending on
the dustiness of the CN'T/CNF material, the expo-
sure of workers could vary significantly. A simu-
lated workplace study of scooping/weighing/
adding and cleaning/sweeping powders by
Brouwer et al. (2006) found that dustiness was
a major determinant of the exposure of workers
and accounted for approximately 70% of vari-
ability in exposure. Evans et al. (2013) tested
the dustiness of different materials including
SWCNT, MWCNT, and CNF. Both the total and
respirable dustiness of the dispersed powders
spanned two orders of magnitude (0.3-37.9%
and 0.1-31.8%, respectively). For many powders,
significant respirable dustiness was observed,
suggesting that workplace procedures may result
ininhaled airborne dust, alarge fraction of which
may be capable of reaching the deep lung of a
worker, and respirable dustiness accounted for
approximately one-third of the total dustiness
of most powders studied. The dustiest material
examined was SWCNT manufactured by the
HiPCO process, with 37.9 + 3.4% total dustiness
and 31.8 + 3.3% respirable dustiness, which is of
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particular concern because of the high respirable
fraction (Evans et al., 2013).

1.1.4 Other properties

Prototype or unchanged pristine preparations
of all forms of CNT are extremely resistant to
wetting and are exceedingly difficult to disperse
or dissolve in aqueous solutions or organic media
due to their high hydrophobicity and tendency
to aggregate (Kostarelos et al., 2009). Hence, the
use of CNT in composites is a challenge (Sinnott
2002; Hirsch & Vostronowsky, 2005).

Functionalization of CNT is a post-produc-
tion process used to attach chemical groups to
modify properties and handling and can be
physical (non-covalent) and chemical (covalent).
Attachments can occur outside or inside the
tubes and can be used to increase the dispersi-
bility of the tubes in surfactants or aqueous solu-
tions because pristine CNT have a high tendency
to interact in a hydrophobic manner and form
aggregates or make nanoscale biosensors
(Thostenson et al., 2001; Hirsch & Vostronowsky,
2005; Alexander, 2007; Kostarelos et al., 2009).
The functionalization can be divided into two
categories: a direct attachment of functional
groups to the graphitic surface; and the use of
the nanotube-bound carboxylic acids (Sun et al.
2002). The ability to disperse CNT into water can
be improved dramatically by their functionali-
zation, which can also enhance their mechanical
and electrical properties (Kostarelos et al., 2009).
An alternative process to the functionalization of
CNT - doping - has frequently been used in the
nano-fabrication sector.

Doping is the physical alteration of the
surface of CNT with ions or molecules using
weak forces such as van der Waals. For example,
DWCNT cables with iodine doping were shown
to outperform copper and aluminium cables
with regard to specific electrical conductivity as
well as tensile strength (Zhao et al., 2011).




Carbon nanotubes

1.2 Sampling and analytical
methods

The recommended physico-chemical charac-
terization of nanomaterials includes the particle
size and size distribution, aggregation/agglomer-
ation state in relevant media, shape, surface area,
composition, surface chemistry and solubility/
dispersibility (ISO TR/13014, 2012). Selected
methods of sampling and analysis in various
matrices are given in Table 1.3 and are discussed
below.

1.2.1 Bulk samples

Several international standards are currently
available to characterize CNT in powder form
or liquid suspension (see also Table 1.3). Other
methods that are not internationally standard-
ized can be found in ISO (2012a).

Bulk samples of CNT are invariably analysed
usingscanningelectron microscopy (SEM), TEM,
near infrared photoluminescence spectroscopy,
thermogravimetric analysis, and Raman spec-
troscopy. TEM has better resolution than SEM
and allows electron diffraction with the use of
an energy dispersive X-ray analyser to evaluate
the morphology and aspect ratio, including
the length and diameter of the tube structure.
However, TEM generally needs more compli-
cated and time-consuming sample preparation
than SEM. Dynamic light scattering has been
used to measure the hydrodynamic size of CNT
inliquid media (Kim et al., 2011). In addition, the
components of CNT can be analysed chemically
by inductive coupled plasma-mass spectrometry,
which is capable of detecting metals and many
non-metals. Raman spectroscopy has been used
to measure the diameter and crystallinity of CNT.
Thermogravimetric analysis is commonly used
to determine certain material characteristics that
exhibit either a mass loss or gain due to decom-
position, oxidation, or loss of volatile compounds
(such as moisture) and to determine the mass

composition of CNT. Brunauer-Emmett-Teller
analysis has been used to evaluate the surface
area of CNT in powder form.

1.2.2 Air samples

No consensus has currently been reached
on the best sampling method for character-
izing exposure to CNT. Qualitative assessments
comparing particle concentrations at the emis-
sion source with background particle concen-
trations are frequently used to identify emission
sources of nanomaterials and implement meas-
ures for the mitigation of exposure (Tsai et al.
2009; Lee et al., 2010; Methner et al., 2010; Birch
et al., 2011). Various approaches can be applied
to characterize exposure in an environment, and
the monitoring devices generally used for nano-
particles or CNT have been described by Yu et

al. (2014).

(a) Direct reading instruments

Direct reading instruments, such as the
condensation particle counter and the optical
particle counter, are non-specific devices that can
be used to measure the particle number concen-
tration directly (including CNT and their aggre-
gates and agglomerates) (Johnson etal., 2010; Lee
etal., 2010; Dahm et al., 2011, 2012). The number
concentration, mass concentration, surface area
concentration, and size distribution can be
measured using a differential mobility analysing
system and an electrical low-pressure impactor.
These instruments do not give the CNT concen-
tration, but give the airborne particle number
concentration.

(b)  Filter sampling

Area and personal filter-based samples are
usually collected on appropriate filters for the
measurement of mass concentration, electron
microscopy combined with an energy disper-
sive X-ray analyser are used to estimate CNT
morphology and count (Han et al., 2008).
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Chemical analysis involves the use of inductive
coupled plasma-mass spectrometry and atomic
absorption spectrometry. These filter-based air
samples provide more specific information than
directreadinginstrumentsonthetarget CNT (e.g.
size, shape, mass, and composition). Air samples
allow an elemental mass analysis to determine
the levels of metal (e.g. NIOSH Method 7303;
NIOSH, 2003b) or elemental carbon (EC; e.g.
NIOSH Method 5040; NIOSH, 1999), depending
on the composition of the manufactured nano-
materials, plus particle characterization (e.g.
size, shape, dimension, and degree of agglomer-
ation) using TEM or SEM based on the measure-
ment techniques specified in NIOSH Methods
7402 (NIOSH, 19942) and 7404 (NIOSF, 2003c),
respectively.

CNT in suspended particles can be meas-
ured in ambient particles separately from EC by
selecting a specific oxidizing temperature (Chow
et al., 1993; Hedmer et al., 2014)

Electrostatic precipitator or cascade impactor
grid sampling (Birch etal.,2011) or filter sampling
followed by grid mounting have been used to
collect CNT structures from the air (Han et al.
2008; Lee et al., 2010). These structures can be
identified and counted using SEM or TEM or
by combining these with an energy dispersive
X-ray analyser to identify their constituents
(Han et al., 2008; Lee et al., 2010; Dahm et al.,
2012). Chen et al. (2012) published a protocol for
counting MWCNT microscopically, geometri-
cally sizing the particles, and collecting size-clas-
sified samples to determine the aerodynamic size
distribution.

(c) Dermal exposure

To estimate the level of dermal exposure
to CNT, cotton gloves are placed over rubber
gloves, are removed immediately after handling
the nanotubes, and are then sealed in separate
plastic bags. The gloves are then analysed for
catalyst metals as the surrogate total nanotube
product mass. The samples are treated with nitric
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acid and perchloric acid and analysed using
inductive coupled plasma emission spectrometry
(NIOSH, 2003a; Maynard et al., 2004).

(d)  CNT in consumer products

The process of the release of CNT from
consumer products that contain them has been
investigated using direct reading instruments to
count airborne particle number concentrations,
and TEM or SEM to identify whether free CNT
or CNT composite structures are released during
the life-cycle of such consumer products (Bello
et al., 2010).

(e) Limitations

The assessment of exposure to CNT, such as
SWCNT and MWCNT, remains a challenge in
the field of occupational hygiene, because rela-
tively few studies on CNT sampling have been
carried out and the best sampling filters and
methods have not yet been established. Most
number-counting devices, such as the conden-
sation particle counter and the optical particle
counter, do not represent the exact exposure to
CNT; measurements using a differential mobility
analysing system (or a scanning mobility particle
sizer) also do not always provide accurate infor-
mation due to the arc charge caused by the
charged CNT in the dynamic mechanical analysis
(Ku et al., 2007). Although several groups have
attempted to count the CNT structures using
TEM or other microscopic methods (Han et al.
2008; Dahm et al., 2012), no standard methods
for CNT counting have yet been established. In
addition, determining the mass concentration of
CNT based on the measurement of EC remains
a challenge due to the technical limitations of
current analytical methods. Despite these limi-
tations in assessing the exposure to nanomate-
rials or CNT, guidelines and reports have been
published to guide and harmonize strategies for
exposure measurement (OECD, 2009a, b, ¢, d,
2010; Brouwer et al., 2012).
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1.3 Production and use

1.3.1 Production levels

CNT preparations are not homogenous, but
contain a diverse mixture of many different
types of tube. The number of walls, diameters,
lengths, chiral angles, chemical functionaliza-
tion (i.e. surface modifications), purities, and
bulk densities may all vary. In 2005, global prod-
uction figures for MWCNT and SWCNT were
estimated at 294 tons [~299 tonnes] and several
hundred kilograms, respectively (KKohler et al.
2008). In 2006, the corresponding amounts
were estimated to be ~300 tons [305 tonnes] and
7 tons [7.11 tonnes], respectively (WTEC, 2007).
Today, the global production capacity, mainly
of MWCNT, is probably much higher. However,
an estimation of the production capacities for
CNT at the country level is difficult because of
the scarcity of governmental reports. The signif-
icant uncertainty in the estimation of global
production is due to the continuously changing
situation caused by new producers coming
into the market; however, some data from the
Republic of Korea and France are publicly avail-
able. For example, according to the nanomate-
rial inventory of the Ministry of Environment of
the Republic of Korea, 3.0 tonnes of CNT were
reported in 2009 (NSTC, 2011). In France, the
nanomaterial inventory estimated that around
1 tonne of CNT was used by five industries
involved in the production of inks, paints and
plastics in 2009 (Honnert & Grzebyk, 2014). A
public report on the use and production of nano-
materials in France in 2012 stated that several
tens of tonnes of nanofibres and nanotubes were
produced in 2011, but no precise figures were
given regarding CNT (DGCIS, 2012).

The data on global CNT production are also
uncertain because the estimates made by the
industry vary between 100 and 1000 tonnes
annually (Piccinno et al., 2012).

1.3.2 Production methods

Several methods of CNT production have
been described (Bhushan, 2004; Fig. 1.3), one
of the most commonly used of which involves
the use of transition metals in the presence of
atomic carbon at a high temperatures and/or
pressure (Maynard et al., 2004). Both SWCNT
and MWCNT are generally produced by one
of the three principal techniques, i.e. CVD, arc
discharge, or laser ablation. Depending on the
production technique, various levels of impuri-
ties, such as metal catalysts, amorphous carbon,
soot, graphite, and non-tubular fullerenes, may
be present in the final preparation (ENRHES
2009; Hedmer et al., 2013). Removal of impurities
requires the application of chemical purification
processes, such as acid reflux, filtration, centri-
fugation, and repeated washing with solvents or
water (ENRHES, 2009).

(@)  Chemical vapour deposition

Thermal CVD, also called catalyst CVD,
is most widely used in the production of CNT
(Kumar & Ando, 2010). Low-temperature CVD
(600-900 °C) yields MWCNT, whereas higher
temperatures (900-1200 °C) promote SWCNT
(Karthikeyan et al., 2009). CVD is based on the
decomposition of hydrocarbon vapour in the
presence of a metal catalyst. The precursor of
CNT is a carbon-containing gas or vapour, such
as carbon monoxide (HiPCO process), methane,
acetylene, ethylene, benzene, or xylene. This
is first heated with a plasma or coil and then
allowed to react with the metal catalyst, which
can be nickel, cobalt, or iron and acts as a seed for
the growth of the tubes (WTEC, 2007; ENRHES,
2009; Singh et al., 2009). Although CNT can be
produced in its absence, the use of catalysts is
extremely helpful (Lam et al., 2006; Hedmer et
al., 2013).
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Fig. 1.3 Production process for carbon nanotubes
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(b) Arcdischarge

Arcdischarge was the first technique reported
to produce CNT (lijima, 1991). The method
usually included an anode and a cathode made of
high-purity graphite. A voltage is applied across
these rods until a stable arc is achieved in which
the anode is consumed and the cathode is used
to grow the tubes. The whole process takes place
under a helium atmosphere. To obtain SWCNT,
the electrodes are doped with a small amount of
catalyst metal particles (Thostenson et al., 2001).
This process produces a high yield of CNT but
the levels of impurities in the final preparation
are also high (Donaldson et al., 2006).

(c) Laser ablation

Laser ablation, similarly to arc discharge,
produces MWCNT (Guo et al., 1995a). More
recently, this technique has been improved by
using catalyst nanoparticles, notably a cobalt and
nickel mixture, which also enables the synthesis
of SWCNT (Guoetal., 1995b; Rinzler etal., 1998).
A graphite target is maintained close to 1200 °C
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while an inert gas, frequently argon, is bled into
the chamber. Thereafter, pulses of high-intensity
laser beam are used to vapourize the graphite
target and CNT develop on the cooler surfaces
of the reactor when the vapourized carbon
condenses (Thostenson et al., 2001).

1.3.3 Use

CNT have a wide variety of applications,
including their incorporation into fabrics in the
textile industry, plastics, rubbers, reinforced
structures, composite materials, and household
commodities to reduce their weight and improve
water- and wear-resistance (Lam et al., 2006). At
present, CNT are also found in products made of
nanocomposites such as polymers that contain up
to 10% CNT by mass, e.g. sports articles such as
jogging shoes and sportswear, tennis rackets, ice
hockey sticks, bicycles (to strengthen and reduce
weight), cycling shoes, golf clubs, skis, car parts,
and wind power plants (to strengthen and reduce
the weight of energy production wind mill wings)
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(Hussain et al., 2006; Kohler et al., 2008; Thomas
etal., 2009). Lithium ion batteries used in mobile
phones and laptops also contain CNT (Kohler et
al., 2008; Zhang et al., 2010). Other uses involve
textiles made of fibres of CNT, including poly-
mers with electrical antistatic, thermal conduc-
tive, flame retardant, and tear-proof properties
(Beyer, 2002; Kohler et al., 2008), and concrete
reinforced with CNT (Schneider et al., 2007;

MWCNT of various sizes and aspect ratios and
other concentric, fullerenic polyhedra.

CNT may also enter the environment directly
after unintentional release during the manufac-
ture, use, and consumption of goods containing
CNT or as waste from sewage-treatment plants,
waste-incineration plants, and landfills (Petersen
et al., 2011; Nowack et al., 2013; Guseva Canu

Kohler et al., 2008; Wohlleben et al., 2011). CNT
can also be used in car tyres to improve their
strength (Observatory Nano, 2011). Research
and development are still at the prototype stage
in many cases, but development will be rapid and
increasingly more products containing CNT are
entering the market and being used in indus-
trial processes (Beyer, 2002; Aitken et al., 2006;
Kohler et al., 2008).

1.4 Occurrence and exposure

1.4.1 Environmental occurrence

Little is known about environmental expo-
sure to CNT mainly because very few quanti-
tative and specific trace analytical methods are
available at present (Gottschalk et al., 2013).

Naturally occurring CNT have been found in
10 000-year-old ice core melt water in Greenland
(Murr et al., 2004a), in smoke from wood
combustion (Murr & Guerrero, 2006), and in a
mixture of coal and petroleum (Velasco-Santos
et al., 2003).

Sources of natural gas and propane gas, such
as domestic (kitchen) stoves, were found to yield
aggregates of silica nanocrystals intermixed with
CNT and other carbon nanocrystals (Murr et
al., 2004b). Murr et al. (2006) reported aggregate
concentrations on outdoor sampling grids meas-
ured by TEM of about 102-10° aggregates/m?,
whileindooraggregate concentrationsinkitchens
were found to be more variable, averaging 10°-105
aggregates/m> above gas burners. According to
Murr & Soto (2005), these aggregates contained

et al., 2016). Modelling studies dealing with
the environmental release of and exposure to
nanomaterials have been published and provide
estimates of predicted environmental concentra-
tions (Gottschalk et al., 2013). Gottschalk et al.
(2009, 2010) modelled concentrations of CNT for
Europe, Switzerland, and the USA. The simulated
modes (most frequent values) and range of the
lower and upper quantiles for 2008 are reported
in Table 1.4,

1.4.2 Exposure of the general population

The main exposures of the general popul-
ation probably result from the abrasion and
weathering of consumer products that contain
CNT embedded into a matrix. Exposure from
medical devices (internal exposure through
targeted drug delivery or contrast agents) is also
possible. No quantitative data on the exposure
of the general population to CNT have been
identified. Although exposure from applications
in which CNT are matrix-bound is expected to
be very low, this may be increased when these
consumer products are incinerated (Aschberger
et al., 2010). CNT were found in the lung tissues
of patients who were exposed to dust and smoke
after the collapse of the World Trade Center on
11 September 2001 (Wu et al., 2010). Simulation
studieshaveaddressed the exposure of consumers
(Bello et al., 2009a, 2010).

51



IARC MONOGRAPHS - 1M1

Table 1.4 Predicted environmental concentrations of carbon nanotubes for Europe, Switzerland,

and the USA in 2008

Environmental compartments Europe USA Switzerland

Air (ng/m?) 0.003 [0.0025-0.007]  0.001 [0.00096-0.003] 0.008 [0.006-0.017]
Soil (A ng/kg/year) 1.51 [1.07-3.22] 0.56 [0.43-1.34] 1.92 [1.44-3.83]
Sludge-treated soil (A ng/kg per year) 73.6 [52.1-157] 31.4 [23.9-74.6] Not reported

0.004 [0.0035-0.021]
241 [215-1321]

14.8 [11.4-31.5]
0.062 [0.047-0.129]

Surface water (ng/L)

Sediment (A ng/kg per year)
Sewage-treatment plant effluent (ng/L)
Sewage-treatment plant sludge (mg/kg)

0.001 [0.0006-0.004]
46 [40-229]

8.6 (6.6-18.4]

0.068 [0.053-0.147]

0.003 [0.0028-0.025]
229 [176-1557]

11.8 [7.6-19.1]

0.069 [0.051-0.129]

» Based on estimations of both public sector expenditure to promote nanotechnology and the worldwide market value for products
incorporating nano-sized materials for the period 2001-12, the modelled increase (base year 2008) in concentrations of engineered
nanomaterials in sludge-treated soil and sediment was scaled to calculate annual increases of these concentrations for each year within the
indicated period. Concentrations are expressed as mode (most frequent value) [lower quantile Q(0.15)-upper quantile Q(0.85)]. For air, surface
water and sewage-treatment plant effluents, the data illustrate the 2008 concentrations of CNT; for soil, sludge-treated soil and sediments, the
data illustrate the annual increase in the concentration of engineered nanomaterials (base year 2008).

Adapted with permission from Gottschalk et al. (2009). Copyright (2009) American Chemical Society

1.4.3 Occupational exposure

In occupational settings, exposure of workers
to CNT could occur in principle at all phases of
the generation and application of the material.
Workers are not generally expected to be exposed
during the synthesis phase of commercial prod-
uction, which is performed in a closed reaction
chamber; however, exposure is more liable to
occur in subsequent phases when the reac-
tion chamber is opened to recover the product,
during the extraction and transport of the mate-
rial produced, or when the system is cleaned. The
highest exposures most probably occur when
handling the dry powder, for example, during
the collection, weighing, blending, transferral
to containers and bagging of the material, and
the maintenance of machinery. Various down-
stream applications of CNT may also result in
occupational exposure, e.g. when the material
containing CNT is machined or drilled, during
wear and tear, and during disposal. The use and
fabrication of CNT in drug delivery systems and
imaging may also potentially give rise to occu-
pational exposure to those who manufacture
and administer the products as well as academic
research staff (Guseva Canu et al., 2016).
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The main routes of exposure in the occupa-
tional setting are anticipated to be inhalation
and dermal contact. Ingestion may also occur
as a consequence of swallowing inhaled material
after mucociliary clearance or as a result of hand-
to-mouth contact.

(a)

General overview

The industrial production and use of CNT
material is relatively recent and the size of the
workforce in the CNT/CNF sector remains small;
therefore, the currently available data on occupa-
tional exposure are still limited. Moreover, the
available data are extremely heterogeneous due
to the high variability of the methods and instru-
ments used for sampling and analysis of expo-
sure and that of the criteria used for interpreting
the results.

Little consensus has been reached to date
on the exposure metrics that would best corre-
late with adverse health outcomes (Dahm et
al., 2012; Hedmer et al., 2014). For instance, in
early studies, gravimetric concentrations were
measured for total suspended particles, then for
the respirable or alveolar fraction of the aerosol
or for particles smaller than 2.5 pm. With the
development of real-time aerosol monitoring




instruments, particle number concentration
and specific or active surface area measurement
results became available but without a common
strategy (Guseva Canu et al., 2016). In the context
of rapidly changing manufacturing technology,
an additional difficulty arises from the diversity
of the CNT material, the physical and chemical
properties of which influence their potential
release and dispersal (Guseva Canu et al., 2016).
Of the 19 studies that were reviewed, eight
were simulation studies of exposure (i.e. carried
out under well controlled laboratory conditions)
and 11 were on-site studies conducted in real
occupational settings. While the on-site studies
were intended to evaluate the actual exposure of
workers to CNT, simulation studies of exposure
were performed to assess the release of CNT into
the air under experimental or simulated indus-
trial process conditions, often using a particular,
well-characterized test material, to estimate the
potential exposure of workers without protection.
These two sets of data were considered separately.

(b)  Simulation studies of exposure to emissions

(i)  Measurement of particle number
concentration

Tsai et al. (2009) characterized particle
morphology and aerosol size during the
synthesis of SWCNT by CVD (with and without
a catalyst) and during the growth of MWCNT in
the presence or absence of a substrate. Particle
measurements made inside a fume hood during
the synthesis of SWCNT were found to be
as high as 107 particles/cm® with an average
particle diameter of 50 nm; personal breathing
zone (PBZ) samples collected from workers
near the fume hood were considerably lower
(< 2000 particles/cm?). The difference between
the particle concentrations obtained during
SWCNT growth using a catalyst and the control
data (no catalyst) was small. Particle measure-
ments made during the synthesis of MWCNT
were found to peak at 4 x 10¢ particles/cm? when
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measured inside the fume hood; the particle
size ranged from 25 to 100 nm when a substrate
was used for MWCNT growth and from 20 to
200 nm when no substrate was present. PBZ
samples collected from workers near the fume
hood during MWCNT synthesis had particle
concentrations similar to background. TEM
analysis of MWCNT samples indicated the pres-
ence of individual particles as small as 20 nm
with particle agglomerates as large as 300 nm.
Some individual MWCNT were observed, but
were often accompanied by clusters of carbon
and iron particles. The diameter of the tubes was
reported to be about 50 nm.

Bello et al. (2008) reported no increase in
total airborne particle concentrations (compared
with background) either during the removal of
MWCNT from the reactor furnace or during
the detachment of MWCNT from the growth
substrate (with a razor blade), and no detectable
amount of MWCNT, either as individual tubes
or as agglomerates, in PBZ samples.

Johnson et al. (2010) investigated the release
of airborne carbon-based nanomaterials (CNM)
during the transfer and ultrasonic dispersion of
MWCNT (diameter, 10-20 nm), fullerenes, and
carbon black inside a laboratory fume hood (with
the airflow turned off and the sash half open)
during the weighing and transferral of dry CNM
to beakers filled with reconstituted freshwater
with and without natural organic matter that
was then sonicated. Particle number concentra-
tions for MWCNT and carbon black during the
sonication of water samples were significantly
greater than those found during the weighingand
transferral of dry CNM. TEM analysis revealed
agglomerates of all CNM and agglomerates of
MWCNT 300-1000 nm in diameter.

Ogura et al. (2013a) investigated particle
release during the grinding of polystyrene-based
composites that contained 0 and 5% weight (wt)
SWCNT (diameter, 3 nm) synthesized using
a water-assisted CVD method. Considerable
increases in the number concentration of

53



IARC MONOGRAPHS - 1M1

nano-sized aerosol particles were observed
during the grinding of polystyrene containing
CNT and CNT-free polystyrene. Nanoparticles
were presumably volatile particles released
by the friction heat produced by grinding the
composite. In TEM analysis, micron-sized parti-
cles with protruding fibres (probably CNT) were
observed, whereas free-standing CNT were not
observed.

[i et al. (2013) assessed the release of nano-
materials during the preparation of conductive
films by a spray-coating process using MWCNT.
During a series of three processes, the number
concentration, measured by an optical particle
counter, increased from 0 to 290 particles/cm?,
then dropped to 263 particles/cm?, and increased
again to 724 particles/cm?. Using TEM, bundled
CNT, long MWCNT with aggregations of other
particles, and particle aggregations without
MWCNT were observed.

(i) Measurement of particle number and/or
respirable mass concentrations

Cena & Peters (2011) evaluated the airborne
release of CNT during the weighing of bulk CNT
and the sanding of epoxy nanocomposite test
samples. Particle number concentrations deter-
mined during the weighing process differed little
fromthatobservedinbackground samples (process
to background ratio [P/B], 1.06), whereas the respir-
able mass concentration was increased (P/B, 1.79).
The geometric mean (GM) respirable mass
concentration inside the glove box was reported
to be 0.03 pg/m? (background GM, 0.02 pg/m?3).
During the sanding process (with no local exhaust
ventilation, in a fume hood, or in a biological safety
cabinet), the PBZ nanoparticle number concentra-
tions were negligible compared with background
concentrations (average P/B, 1.04). Particles gener-
ated during sanding were reported to be predom-
inantly micron-sized with protruding CNT and
differed considerably from those of bulk CNT
that tended to remain in large (> 1 pm) tangled
agglomerates. Respirable mass concentrations
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in the workers’ breathing zones were elevated.
However, the concentrations were lower when
sanding was performed in the biological safety
cabinet (GM, 0.2 ug/m?) than with nolocal exhaust
ventilation (GM, 2.68 pg/m3; P < 0.0001) or inside
the fume hood (GM, 21.4 pg/m?; P < 0.0001).

(i)  Measurement of respirable mass
concentrations and/or the count of
structures containing CNT

Bello et al. (2009b) investigated the release
of CNT during the dry and wet cutting of a
CNT-alumina composite (CNT diameter, 10-20
nm) using a band saw or rotary cutting wheel.
Submicron and respirable fibres were both gener-
ated from dry cutting. Reported mean respirable
mass concentrations were 2.11 and 8.38 mg/m?
for area samples and 0.8 and 2.4 mg/m? for PBZ
samples. TEM analysis found a concentration of
1.6 fibres/cm?® in area samples and 0.2 fibres/cm?
in PBZ samples. No data on fibre measurements
were reported for the wet cutting of composite
materials.

In a subsequent study, Bello et al. (2010)
investigated the airborne release of CNT and
other nano-sized fibres during the solid-core
drilling of two types of advanced CNT-hybrid
composite: (1) reinforced plastic hybrid lami-
nates (alumina fibres and CNT); and (2) graph-
ite-epoxy composites (carbon fibres and CNT).
Airborne exposure to both alumina fibre and
CNT structures were found to range in concen-
tration from 1.0 fibres/cm? (alumina composite)
to 1.9 fibres/cm? (carbon and CNT composite)
for PBZ samples; similar concentrations were
observed in area samples.

In summary, all but one simulation study of
exposure identified either micron-sized parti-
cles with protruding CNT or bulk CNT in large
tangled agglomerates by TEM analysis, providing
evidence for potential exposure. The operations
that may lead to exposure to CNT include CVD
synthesis and sonication of MWCNT, and the




dry cutting, drilling, grinding, and sanding of
composite materials containing CNT.

(c)  On-site studies

Eleven on-site studies were carried out in
different workplaces, including research and
development laboratories, pilot small-scale
production facilities, and, more rarely, large-
scale primary or secondary manufacturer/user
facilities. Most published studies were conducted
in Japan, the Republic of Korea, and the USA,
and only one study was recently carried out in
Sweden. These data have been reviewed in detail
(Guseva Canu et al., 2016) and the results are
summarized in Table 1.5.

In summary, taken together the available 11
on-site studies provided strong evidence that
the exposure of workers to CNT/CNF material
may occur, especially at workstations where no
exposure control measures are implemented. In
almost all situations where detectable amounts
of either EC or the EC3 subfraction were found,
the presence of CNT material was confirmed by
TEM/SEM analyses of PBZ of area air samples.
CNT were more frequently found to be attached
to the soot or metal catalyst particles, embedded
in other impurities or in the form of large entan-
gled agglomerates. Individual CNT were rarely
observed by SEM and TEM analysis and no
validated protocol is available for counting such
different structures, therefore only four studies
attempted their quantification in PBZ samples.
Nevertheless, different criteria for counting were
applied which precluded any statistical treatment
of theresults. The reported values ranged between
0.003 and 0.01 structures/cm? for SWCNT and
0.008 and 193.6 structures/cm® for MWCNT,
corresponding to the situation described in
research and development laboratories compared
with industrial settings. The operations yielding
the highest release of CNT material/cm? included
blending, transferral, sieving, pouring, and
weighingaswellas CNT productionin both CVD
and arc discharge processes, which encompasses
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synthesis, harvesting from the reactor, and
subsequent cleaning of the reactor. When the
EC mass concentration was considered, values
as high as 7.4-10 ug/m? and ranging from 0.68 to
38 ug/m? were measured in the PBZ samples of
workers in MWCNT and SWCNT production.
The operations in which the highest levels of EC
were found included harvesting of CNT from the
reactor, transferral of CNT and loading flasks
with CNT, use of a batch mixer, CNT production,
and cleaving of deposits. Only six studies meas-
ured the EC concentration and a comparison of
the results is difficult because of the different EC
protocols applied. Consequently, the reported
values should be interpreted cautiously.

Erdely et al. (2013) adapted the results
from the Dahm et al. (2012) study and those
collected at three other facilities producing or
using MWCNT in the USA to generate Fig. 1.4.
The average EC concentrations in the inhalable
size fraction from the eight MWCNT sites were
found to have an arithmetic mean of 10.6 ug/m?
with a standard deviation (SD) of 17.2 (GM,
4.21 pg/m?; geometric SD [GSD], 4.15). In these
eight MWCNT facilities, exposures ranged from
non-detectable to 79.6 pg/m? and the exposure
levels were log normally distributed (Shapiro-
Wilk P = 0.97).

(d)  Conclusion

Uncertainty still exists regarding which
exposure metrics should be used as indicators
of potential exposure-related health effects.
The results from studies using direct reading
instruments are not appropriate for quantitative
exposure assessment of CNT, because particle
number concentration and active surface area
are dominated by ultrafine particles, mostly of
incidental or outdoor origin, and are not repre-
sentative of engineered CNT release. The filter-
based methods in combination with SEM/TEM
analysis appear to be more selective and sensi-
tive for the characterization of exposure to CNT.
However, the results of studies that focused on
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Fig. 1.4 Concentrations of inhalable elemental carbon at eight facilities producing multiwalled

carbon nanotubes
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The mean, with error bars representing the upper and lower range, of measured concentrations of elemental carbon (ug/m?) with background
correction. The figure was adapted from previously published data: sites A, and C-F, from Dahm et al. (2012); and sites J, L, and O from Dahm et

al. (2013) and Erdely et al. (2013)

From Erdely et al. (2013). © Erdely et al,; licensee BioMed Central Ltd 2013

the collection of samples for the chemical-specific
mass concentration analyses, such as EC mass
concentration and TEM/SEM, were mostly based
on original unvalidated methods and cannot be
summarized appropriately. Consequently, the
current available data do not allow the complete
characterization of occupational exposure to
CNT and only enable a limited description of
some of occupational exposure situations.
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1.5 Regulations and guidelines

No legal occupational exposure limit has
been set for CNT.

In 2007, the British Standards Institution
proposed a workplace exposure limit of 0.01
fibres/mL for fibrous nanomaterials with high
aspect ratios (BSI, 2007) and published a “Guide
to assessing airborne exposure in occupational
settings relevant to nanomaterials” (BSI, 2010).
The Dutch Social and Economic Council (2012)
recommended an occupational exposure limit
(OEL) 0f 0.01 fibres/cm? for SWCNT or MWCNT




Carbon nanotubes

Table 1.6 Recommended occupational exposure limits for carbon nanotubes

Institution Concentration Interpretation Year
British Standards Institution 0.0l fibres/mL  Fibrous nanomaterials with high aspect ratios (> 3:1) and length 2007
(WEL) > 5000 nm

Dutch Social and Economic 0.01 fibres/cm®> SWCNT or MWCNT or metal oxide fibres for which asbestos- 2012
Council (OEL) like effects are not excluded

US NIOSH (REL) 1 pg/m? (EC) 8-hour TWA 2013
US OSHA (recommendation) 1 ug/m? (EC) 8-hour TWA 2013

EC, elemental carbon; NIOSH, National Institute for Occupational Safety and Health; OEL, occupational exposure limit; OSHA, Occupational
Safety and Health Administration; REL, recommended exposure limit; TWA, time-weighted average; WEL, workplace exposure limit

Compiled by the Working Group

or metal oxide fibres for which asbestos-like
effects are not excluded (van Broekhuizen et al.,
2012).

The United States National Institute for
Occupational Safety and Health (NIOSH) has
set a recommended exposure limit for CNT and
CNF of 1 pug/m?® as an 8-hour time-weighted
average (TWA) of EC for the respirable range
fraction (NIOSH, 2013).In 2013, the United States
Occupational Safety and Health Administration
published a Fact Sheet which recommends that
exposure of workers to respirable CNT and CNF
should not exceed 1 ug/m? as an 8-hour TWA,
based on the NIOSH proposed recommended
exposure limit (OSHA, 2013).

These recommended values are presented in
Table 1.6.

Other OELs have been proposed for CNT
ranging from 1 to 50 pg/m?® (8-hour TWA
concentration) (Nanocyl, 2009; Aschberger et al.,
20105 Pauluhn, 2010a). Despite the differences in
risk assessment methods and assumptions, all of
the derived OELs for CNT are low airborne mass
concentrations relative to OELs for larger respir-
able carbon-based particles (NIOSH, 2013).

SWCNT and MWCNT are subject to regula-
tion based on a US Toxic Substance Control Act
(premanufacture notice) and Toxic Substance
Control Act (significant new use rule) (EPA,
2011, 2014). Thus, a manufacturer or importer
should submit a premanufacture notice to the US

Environmental Protection Agency (EPA) 90 days
before manufacture or importation. In addition,
SWCNT and MWCNT that are manufactured
for uses other than those on the premanufac-
ture notice are subject to a significant new use
rule. A similar regulation applies to CNT in the
Canadian Environment Protection Act (2014).

The Australian National Industrial Chemical
Notification and Assessment Scheme (2010) also
applies to substances containing 10% or more
nanomaterials, including CNT. According to
the implementation of the Globally Harmonized
Classification and Labelling of Chemicals in
Australia under the National Model Work
Health and Safety Regulations, the classifica-
tion of specific target organ toxicity applies
to mixtures containing at least 10% SWCNT
or MWCNT and the classification of carcino-
genicity applies to mixtures containing at least
10% or more SWCNT or MWCNT (Safe Work
Australia, 2010).

CNT are the subject of compulsory annual
declarations of nanomaterials in France (Journal
Officiel, 2012), Belgium (Arrété Royal, 2014),
and Denmark (Danish Environment Protection,
2014).
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2. Cancer in Humans

No data were available to the Working Group.

3. Cancer in Experimental Animals

3.1 MWCNT

3.1.1 Mouse
See Table 3.1

(a) Inhalation

In an initiation-promotion study, groups of
60 male B6C3F, mice (age, 6 weeks) were given
a single intraperitoneal injection of vehicle (corn
oil) or 10 pg/g body weight (bw) of 3-methyl-
cholanthrene (3-MC) in corn oil to initiate
carcinogenesis. One week after the injection,
the mice were exposed to filtered air or 5 mg/m?
of MWCNT-7 (Mitsui-7, Hodogaya Chemical
Co.) for 5 hours per day for 15 days and were
then observed for 17 months. MWCNT-7 parti-
cles ranged from single fibre-like nanotubes to
tangled agglomerates with a mass median aero-
dynamic diameter (MMAD) of 1.59 um and a
GSD of 1.69. The count mode aerodynamic diam-
eter of the MWCNT-7 fibres was 420 nm. Trace
metal contamination was 1.32%, and iron was
the major metal contaminant (1.06%). Tumour
promotion activity was assessed by comparing
the 3-MC plus MWCNT-7-exposed group with
the 3-MC-exposed groups. The incidence of
bronchiolo-alveolar lesions in mice receiving air,
3-MC, MWCNT-7, and 3-MC plus MWCNT-7
was: adenoma or carcinoma (combined) - 13 out
of 56, 28 out of 54, 13 out of 49, and 38 out of
42, respectively; adenoma - 6 out of 56, 18 out
of 54, 9 out of 49, and 32 out of 42, respectively;
and carcinoma -7 out of 56, 12 out of 54, 7 out
of 49, and 26 out of 42, respectively. These results
showed asignificant difference between the 3-MC
plus MWCNT-7 and 3-MC groups (P < 0.0001),
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indicating that MCWNT-7 promoted the induc-
tion of benign and malignant lung tumours. The
incidence of lung tumours in animals treated
with MCWNT-7 (in the absence of initiation with
3-MC) did not differ significantly from thatin the
filtered-air controls. However, the volume of lung
tumours was significantly greater (P < 0.0001)
in the MWCNT-7-exposed group than in the
air-exposed group (Sargent et al., 2014).

(b) Intratracheal instillation

Three groups of three male C57BL/6 mice
(age, 6 weeks) were given a single intratracheal
instillation of either a 50-pL aliquot of saline or
MWCNT CM-95 (Hanwha Nanotech; as-pro-
duced; length, 7.71 pm; diameter, 13.5 nm)
or acid-treated MWCNT CM-95 (length,
567.4 nm; diameter, 7.5 nm) in 50 pL saline
(100 pug MWCNT/mouse) and were killed
6 months after the injection. None of the
three mice given saline developed hyperplasia,
adenoma, or adenocarcinoma of the lung. Of
the three mice given MWCNT (as-produced),
two developed peri-bronchial lymphoid hyper-
plasia, two developed adenomas, and one devel-
oped adenocarcinoma of the lung. Of the three
mice given acid-treated MWCNT, two devel-
oped hyperplasia and one developed adenoma
(described by the authors as a “slight” adenoma)
of thelung (Yu etal., 2013). [The Working Group
noted the short duration of the experiment, the
very small number of animals that precluded a
statistical assessment of the results, and the low
susceptibility of this strain to lung carcinogen-
esis. The study was judged to be inadequate for
an evaluation of carcinogenicity.]

(c) Intraperitoneal injection

Two groups of 19 male p53+-mice (C57BL/6
background; age, 9-11 weeks) received a single
intraperitoneal injection of either 1 mL of vehicle
(control) or 3 mg (particle count, 1 x 10°) of
MWCNT-7 (Mitsui; length, 1-19 (median, 2) um;
diameter, 70-170 (median, 90) nm; impurities:
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iron, 3500 ppm (0.35%); sulfur, 470 ppm; chlo-
rine, 20 ppm; fluorine, < 5 ppm; and bromine,
< 40 ppm) in 1 mL of 0.5% methyl cellulose
with 1.0% Tween 80, and were then observed
for up to 180 days. The incidence of peritoneal
mesothelioma was significantly increased in the
MWCNT-7-exposed group (14 out of 16 versus 0
out of 19; [P < 0.0001]) (Takagi et al., 2008).

Four groups of 20 male p53+- mice (C57BL/6
background; age, 9-11 weeks) received a single
intraperitoneal injection of 0 (vehicle control), 3,
30,0r300pg/mouseof MWCNT-7 (Mitsui;length,
1-19 (median, 2) um; diameter, 70-170 (median,
90) nm; impurities: iron, 3500 ppm (0.35%);
sulfur, 470 ppm; chlorine, 20 ppm; fluorine, < 5
ppm; and bromine, < 40 ppm) (particle count: 0,
1 x 106, 1 x 107, or 1 x 108, respectively) in 1 mL
of 0.5% methyl cellulose with 1.0% Tween 80, and
were then observed for up to 365 days. Survival
of the mice in the dosed groups was shorter due
to the high incidence of lethal mesothelioma. The
incidence of peritoneal mesothelioma (0 out of
20 [control], 5 out of 20, 17 out of 20, and 19 out
of 20, respectively) was significantly increased
in all treated groups ([P < 0.05, P < 0.0001, and
P <0.0001], respectively) compared with controls
(Takagi et al., 2012).

(d)  Subcutaneous injection

Two groups of 10 male rasH2 (human
c-Ha-ras proto-oncogene) transgenic mice
(C57BL/6 background; age, 6 weeks) received
a single subcutaneous injection in the back of
550 pL of vehicle or 75 mg/kg bw of MWCNT
(VGCEF-S; Showa Denko, Japan; mean length, 10
pm; mean diameter, 100 nm) dispersed in 550 pL
saline containing 0.1% Tween 80, and were killed
after 26 weeks. No significant increase in tumour
incidence was observed at any site in the treated
mice (Takanashi et al., 2012).

3.1.2 Rat
See Table 3.2

Carbon nanotubes

(a) Intraperitoneal injection/implantation

The carcinogenic potential of two different
MWCNT (MWCNT+and MWCNT-; University
of Namur, Belgium) was compared. MWCNT+
had a length and diameter of about 0.7 um and
11.3 + 3.9 nm, respectively, and a metal content
(%) of: aluminium, 1.97; iron, 0.49; and cobalt,
0.48. MWCNT- had the same length and diam-
eter, but a lower metal content (aluminium,
0.37%; iron, < 0.01%; and cobalt, < 0.01%) and
fewer structural defects. Groups of 26 or 50 male
Wistar rats (age, 10-13 weeks) received a single
intraperitoneal injection of vehicle (control),
MWCNT+ (2 mg or 20 mg/rat), MWCNT-
(20 mg/rat), or crocidolite (2 mg/rat, positive
control) in 2 mL phosphate-buffered saline (PBS)
and were then observed for up to 24 months. The
incidence of peritoneal mesothelioma was 1 out
of 26, 2 out of 50, 0 out of 50, 3 out of 50, and
9 out of 26 (P < 0.01, crocidolite-treated group),
respectively, and that of peritoneal lipoma, lipo-
sarcoma, or angiosarcoma (combined) was 0 out
of 26, 1 out of 50, 3 out of 50, 3 out of 50, and
0 out of 26 (no significant difference), respect-
ively (Muller et al., 2009). [The Working Group
noted that peritoneal mesotheliomas are rare
spontaneous neoplasms in rats. The Working
Group also noted that the incidence of perito-
neal mesothelioma in the vehicle-control group
was unusually high (1 out of 26; 3.8%) and did
not exclude the possibility that this tumour
originated from the scrotum and spread into the
peritoneal cavity.]

Two groups of six male Fischer 344 rats
(weighing 400 g) [age and sex unspecified]
received an intraperitoneal implant of a gelatin
capsule containing either 10 mg/rat of MWCNT
(Shenzhen Nanotech; length, 1-2 um; diameter,
10-30 nm; 95-98% pure) or crystalline zinc oxide
as a negative control. The experiment was termi-
nated after 12 months. Mesotheliomas were not
found but foreign body granulomatous lesions
were observed in MWCNT-exposed rats (Varga
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& Szendi, 2010). [The Working Group noted the
small number of animals, the short duration of
the study, that the age and sex of the animals were
not reported, and the lack of a vehicle control.
The study was judged to be inadequate for an
evaluation of carcinogenicity.]

Groups of male and female Fischer 344/
Brown Norway F, hybrid rats (age, 6 weeks)
received two intraperitoneal injections during
a l-week period of 1 mL of 0.5 or 5 mg/mL
of NT50a or NT145 MWCNT, 0.5 mg/mL of
NT50a(-agg*) MWCNT, or 5 mg/mL NT50b or
NTtngl MWCNT, and were then observed for
up to 350 days. Control rats received two injec-
tions of the vehicle (0.5% bovine serum albumin
in saline) alone. NT50a (MWCNT-7; length,
5.29 um; diameter, 49.95 nm) was purchased
from Mitsui; NT50b (length, 4.60 um; diameter,
52.40 nm), NT145 (length, 4.34 um; diameter,
143.5 nm), and NTtngl (diameter, 2-20 nm;
tangled conformation, therefore length was
not determined) were purchased from Showa
Denko. NT50a(-agg*) was obtained from the
supernatant after the centrifugation of NT50a
at 2200 g for 10 seconds, which was then concen-
trated to obtain the same fibre count as that of
NT145. Aggregation was high in NT50a and
NT50b suspensions, low in the NT145 suspen-
sion, and very high in the NTtngl suspension; no
agglomerates were present in the NT50a(-agg*)
suspension. There was a significant increase in
the incidence of mesothelioma in all MWCNT-
treated groups, except in the NTtngl-treated
group. The incidences of mesothelioma at 350
days were 0 out of 23 (control), 12 out of 15
(1 mg NT50a(-agg*)), 13 out of 13 (1 mg N'T50a),
43 out of 43 (10 mg NT50a), 6 out of 6 (10 mg
NT50b), 5 out of 29 (1 mg NT145), 28 out of 30
(10 mg NT145), and 0 out of 6 (10 mg NTtngl)
(Nagaietal.,2011). An additional six rats treated
with 10 mg NTtngl were held for up to 3 years
after treatment. Granulomas were induced but
no mesotheliomas were observed (Nagai et al.,
2013). [The Working Group noted the varying

72

number of animals per group and the small
number of animals exposed to MWCNT with
a tangled conformation. The authors stated
that they found no evidence of mesothelioma
induced by MWCNT with a tangled conforma-
tion, but the Working Group believed that the
demonstration of a negative result requires a
study with high statistical power which would
not be reached with a sample size of six animals.]

(b) Intrascrotal injection

Two groups of male Fischer 344 rats (age,
12 weeks) received a single intrascrotal injec-
tion of vehicle (5 rats, 2 mL/kg bw) or 0.24 mg
of 0.5 mg/mL MWCNT-7 (Mitsui; length, 1-19
(median, 2) pm; diameter, 70-170 (median, 90)
nm; impurities: iron, 3500 ppm (0.35%); sulfur,
470 ppm; chlorine, 20 ppm; fluorine, < 5 ppm;
and bromine, < 40 ppm) (7 rats, 1.0 mg/kg bw)
in 2% carboxymethyl cellulose and were then
observed for up to 52 weeks. The incidence of
peritoneal mesothelial cell hyperplasia in the
control and treated group was 0 out of 5 and 7
out of 7 (P < 0.05), respectively, and that of peri-
toneal mesothelioma was 0 out of 5 and 6 out of
7 (P < 0.05), respectively (Sakamoto et al., 2009).
[The Working Group noted the small numbers of
animals per group.]

3.2 SWCNT
See Table 3.3

Rat

(a) Intratracheal instillation

Groups of male Crl: CD (SD) rats (age, 8
weeks) received intratracheal instillations with
a type of SWCNT synthesized by the National
Institute of Advanced Industrial Science and
Technology, Japan (primary particle maximum
length, 1200 pum; primary particle diameter,
3.0 nm; metal content: 145 ppm iron, 103 ppm
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nickel, 34 ppm chromium, 2 ppm manganese,
and 12 ppm aluminium; and aggregate length,
0.32 um; aggregate diameter, 12.0 nm). In a first
experiment, the rats were given a single dose of
1 mL/kg bw of a 0 (vehicle)-, 0.2-, or 2.0-mg/mL
solution of SWCNT in Tween 80 in PBS (doses
corresponding to 0.0, 0.2, or 2.0 mg/kg bw), and
six rats per group were killed 24 hours, 3 days,
1 week, 4 weeks, or 13 weeks later. In a second
experiment, the rats were given a single dose
of 1 mL/kg bw of a 0 (vehicle)-, 0.04-, 0.2-, or
1.0-mg/mL solution of SWCNT in Tween 80
in PBS (doses corresponding to 0.0, 0.4, 0.2, or
1.0 mg/kg bw), and six rats per group were killed
3 days, 1 week, 4 weeks, 13 weeks, or 26 weeks
later. No lung tumours were reported in any
group (Kobayashi et al., 2011). [The Working
Group noted the short duration of the experi-
ments and judged the study to be inadequate for
an evaluation of carcinogenicity.]

(b) Intraperitoneal implantation

Two groups of six Fischer 344 rats (weighing
400 g) [age and sex unspecified] received an
intraperitoneal implant of a gelatin capsule
containing either 10 mg/rat of SWCNT
(Shenzhen Nanotech; diameter < 2 nm; length,
4-15 pm; 90% pure) or crystalline zinc oxide asa
negative control, and the experiment was termi-
nated after 12 months. Mesotheliomas were not
found but foreign body granulomatous lesions
were observed in SWCNT-exposed rats (Varga
& Szendi, 2010). [The Working Group noted the
small number of animals, the short duration of
the study, that the age and sex of the animals were
not reported, and the lack of a vehicle control.
The study was judged to be inadequate for an
evaluation of carcinogenicity.]
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4, Mechanistic and Other
Relevant Data

4.1 Deposition, phagocytosis,

translocation, retention, and
clearance

4.1.1 Humans

No data were available to the Working Group.

4.1.2 Experimental animals
(@) Deposition

In male Wistar rats exposed by whole-body
inhalation for 6 hours per day on 5 days per
week to 0.37 mg/m? of MWCNT (Nikkiso Co.,
Ltd; length, 1.1 um; diameter, 63 nm) dispersed
in an aqueous solution of 0.5 mg/mL Triton
X-100 and atomized by a nebulizer into the
exposure chamber (MWCNT aerosol comprised
of approximately 70% of single fibres), lung
deposition fractions of 0.18 or 0.2 were estimated
from the measured mass of CNT in the lungs
3 days after the end of the 4-week experiment.
The retained mass lung burdens were measured
by X-ray diffraction or EC analysis at 3 days,
1 month, and 3 months after exposure, and the
mass of MWCNT in the lungs 3 days after expo-
sure was 68 and 76 ug/lung, as measured by the
two methods, respectively (Oyabu et al., 2011).

A deposition fraction of 5.7% MWCNT was
estimated in rats by Pauluhn (2010b) using data
on the airborne size distribution (e.g. MMAD,
~3 um; GSD, ~2) and the Multiple-Path Particle
Dosimetry (MPPD) model 2 software (Anjilvel
& Asgharian, 1995). NIOSH (2013) provided a
comparison of the rat alveolar deposition frac-
tion estimates from Pauluhn (2010b) using two
different versions of the MPPD software (v. 2.0
and 2.1) (CIIT & RIVM, 2006; ARA, 2011) and
density values of either 1 or 0.2 g/mL. Estimated
deposition fractions were 0.046, 0.027, or 0.023
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from MPPD 2.0 (density 1 g/mL), MPPD 2.1
(density 1 g/mL), or MPPD 2.1 (density 0.2 g/mL),
respectively. The aerodynamic particle size used
was 2.74 um MMAD (GSD, 2.11) [middle of the
three measures reported by Pauluhn (2010b)].

A 3-week inhalation study in male C57BL/6]
mice exposed to 5 mg/m? of MWCNT (Mitsui-7
[MWCNT-7]; Hodogaya Chemical Co.) for
5 hours per day for 12 days provided information
to estimate the lung deposition fraction (Mercer
et al., 2013a). [The Working Group noted that,
although a mouse lung deposition fraction was
not reported in Mercer et al. (2013a), it can be
estimated (as shown below) to provide addi-
tional information to and enable comparisons
with estimates from other animal studies on
the inhalation of CNT. The Working Group also
noted that estimation of the deposition fraction
from the measured lung burden at the end of
inhalation exposure would be underestimated
by the amount of CNT that was cleared from the
lungs during the exposure period.]

The average lung burden measured 1 day
after the end of the 3-week inhalation exposure
was 28.1 pg (Mercer et al., 2013a). The estimated
deposition fraction can be estimated as:

Deposition fraction = total lung dose (mg)/
exposure (h/d * d * min/h) * L/min * m*L, or

0.0095 =28.1/5*(5* 12 * 60) * 0.165 * (1/1000)

where the total lung dose was measured 1 day
(d) after the end of the 12-day inhalation exposure
(Mercer et al., 2013a; Table 4.1) and the minute
ventilation rate was 0.165 L/min (Shvedova et al.,
2008). Shvedova et al. (2008) stated that mouse
ventilation rates (including both tidal volumes
and breathing rates) can be highly variable
depending on how the values were measured.
Using the EPA (1988, 2006) minute ventilation
rate of 0.037 L/min in mice, the deposition frac-
tion would be 0.042.

Expressed as a percentage, the mouse lung
deposition fractions estimated above were
approximately 1% or 4% for MWCNT in Mercer
et al. (2013a) (using a minute ventilation rate

of either 0.165 or 0.037 L/min, respectively). In
comparison, a mouse lung deposition fraction of
0.5% was reported for SWCNT by Shvedova et al.
(2008), which was based on a mass mode aero-
dynamic diameter of 4.2 um and estimation of
the deposition fraction from Raabe et al. (1988)
[Shvedova et al. (2008) used the estimated depos-
ition fraction in mice to estimate the deposited
lung dose in mice and the worker-equivalent
lung dose.] The mass mode aerodynamic diam-
eter of MWCNT was 1.3 pm (Mercer et al., 2013a)
and the MMAD was 1.5 um (GSD, 1.67) (Chen
et al., 2012). [This comparison shows reasonably
consistent estimated deposition fractions in mice
inhaling CNT, given the differences in the meas-
ures of aerodynamic diameter and the uncer-
tainty about mouse ventilation rates.]

A study of MWCNT in male Sprague-Dawley
rats (age, 9-10 weeks) provided a comparison of
the lung responses to exposure to three different
forms of MWCNT, including original (O), puri-
fied (P), and carboxylic acid-functionalized (F),
at similar estimated lung doses by nose-only
inhalation or tracheal instillation (Silva et al.
2014). The O-MWCNT contained 4.49% nickel
and 0.76% iron residual catalysts; P-MWCNT
contained 1.8% nickel and 0.08% iron; while
F-MWCNT contained no detectable levels of
nickel or iron. The dimensions of these MWCNT
were: outer diameter, 20-30 nm; inner diameter,
5-10 nm; and length, 10-30 pm. The MWCNT
were aerosolized for inhalation by nebulization.
The MMADs (GSD) for O-, P-, and F-MWCNT
were 3.7 (2.5), 4.8 (2.9), and 3.3 (3.1) um, respect-
ively. Doses for tracheal instillation were 0, 10, 50,
or 200 pg in a biocompatible dispersion medium.
The single (6-hour) inhalation exposure at a
concentration of approximately 30 mg/m? was
estimated to result in a deposited lung dose that
was similar to or higher than that of the intratra-
cheally administered dose of 200 pg (estimated
by assuming an alveolar and tracheobronchial
deposition fraction of 0.14 and a ventilation rate
of 0.15 L/min: 30 mg/m? x 0.15 L/min x 6 h x 60
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min/hx1m?*1000Lx0.14x1000pg/1 mg=227ug).
[The Working Group noted that the “Inhalation
Exposure and Aerosol Characterization” section
of the Methods in the publication reported a
MWCNT aerosol concentration of 38 pg/L (equal
to 38 mg/m?), which would result in a deposition
of 287 ug MWCNT]

(b)  Phagocytosis

CNT have been observed in cells using
confocal Raman microscopy (Romero et al.,
2011) or TEM (Ryman-Rasmussen et al., 2009a).
The possible mechanisms by which CNT can
enter cells include diffusion or penetration
through cell membranes (passive internaliza-
tion) or endocytosis (active internalization)
(Kunzmann et al., 2011; Ye et al., 2013), both of
which may depend on the surface properties of
the CNT and the activation state of the phago-
cytic cells. Four types of endocytosis have been
reported (Ye et al., 2013): phagocytosis, clath-
rin-mediated endocytosis, caveolea-mediated
endocytosis, and macrophage pinocytosis. The
first three types have been studied in relation to
CNT. Phagocytosis is the engulfment of foreign
materials by macrophages, monocytes, and
neutrophils, the primary purpose of which is
considered to be the elimination of larger path-
ogens (bacteria and yeast) or cell debris. Larger
CNT structures (e.g. > 400 nm) or agglomerates
were recognized by phagocytes, while individual
structures evaded phagocytosis (Antonelli et al.,
2010; Ali-Boucetta & Kostarelos, 2013). Clathrin-
mediated endocytosis involves the internaliza-
tion of macromolecules by the inward budding
of plasma membrane vesicles (with or without
receptor- or ligand-specific binding) and many
studies have reported the cell uptake of CNT
by this mechanism (Ye et al., 2013). Caveolea-
mediated endocytosis involves caveolar vesicles
that are composed of cholesterol and sphingo-
lipids. A CNT radius of 25 nm was estimated to be
associated with a maximal rate of endocytosis (Jin
et al., 2009), while a maximum length of 189 nm
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of DNA-wrapped SWCNT was effectively endocy-
tosed by various cell lines (Becker et al., 2007).

The mechanisms of cell uptake also depend
on the cell type encountered by the CNT
(which also depends on the route of exposure).
Macrophages in the pulmonary or interstitial
regions of the lungs are capable of phagocytosing
CNT, although the size and surface properties of
CNT influence their ability to be recognized and
phagocytosed by these cells. In the liver, Kupffer
cells are the primary cellular site where CNT are
observed. Functionalizations/modifications to
the surface of CNT (e.g. covalently bonded func-
tional groups or non-covalently bonded coat-
ings) can also influence the cell uptake of CNT
(Ali-Boucetta & Kostarelos, 2013).

In rats exposed by pharyngeal aspiration,
the alveolar macrophage uptake of SWCNT
(< 0.23% iron) was low (Shvedova et al., 2005).
Morphological analysis showed that only 10%
of the alveolar burden of SWCNT was located
within the alveolar macrophages (Shvedova et
al., 2005), while 90% of the dispersed SWCNT
structures were observed to cross alveolar epithe-
lial cells and enter the interstitium (Mercer et al.
2008). MWCNT were recognized more profi-
ciently by alveolar macrophages; approximately
70% of MWCNT in the respiratory airways was
taken up by alveolar macrophages, 8% migrated
into the alveolar septa, and 22% was observed in
granulomatous lesions (Mercer et al., 2010, 2011).

In an additional investigation of rats in a
subchronic inhalation study (Ma-Hock et al.,
2009), Treumann et al. (2013) examined ultra-
thin lung tissue sections from two rats by TEM at
the end of the 13-week exposure to 2.5 mg/m? of
MWCNT. MWCNT structures were observed in
the alveolar macrophages within the cytoplasm
and membrane-bound organelles (phagosomes)
in the form of “large (> 2 um) electron-dense
clews of intermingled MWCNT” and irregu-
larly shaped structures up to 100 nm in diam-
eter; some MWCNT were observed free in the
alveolar lumen. MWCNT were also observed in
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focal accumulations of phagocytic cells within
the subpleural connective tissue.

In the study by Silva et al. (2014), the physi-
co-chemical properties of MWCNT influenced
their uptake, location, and structure within
the alveolar macrophages (as observed by TEM
and bright-field microscopy). Rats that inhaled
F-MWCNT had significantly more alveolar
macrophages containing MWCNT structures
thanrats thatinhaled O-MWCNT or -MWCNT
(as observed in the bronchoalveolar lavage
fluid [BALF]) on days 1 and 21 after exposure
(P-MWCNT were obtained after the treatment
of O-MWCNT with nitric acid and ethyldiamine
tetra-acetate in acetic acid at pH 4 to remove
residual metals and amorphous carbon). On day
1 after exposure, O-MWCNT and P-MWCNT
were observed within the phagolysosomes of
macrophages, while F-MWCNT were seen in the
cytosol and also protruding the cell membrane.
On day 21 after exposure, O- and P-MWCNT
were no longer compartmentalized but were
observed in the cytosol as larger focal agglom-
erates; the F-MWCNT (obtained by adding the
P-MWCNT to a reaction chamber containing
nitric acid and sulfuric acid) in the cytosol were
smaller, dispersed aggregates. The acidic func-
tional groups brought about by increasing the pH
and the resulting increase in hydrophilicity were
thought to reduce the toxicity of F-MWCNT by
preventing phagolysosome permeability - and
the subsequent release of lysosomal contents
into the cytosol with the downstream activa-
tion of the nucleotide-binding oligomerization
domain receptor (NLRP3) inflammasome -
after F-MWCNT were taken up by the alveolar
macrophages. Thus the uptake of F-MWCNT
into macrophages did not appear to cause cell
toxicity at the doses and observation time-points
in this study (Silva et al., 2014).
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(c)  Translocation

Several studies have provided evidence
that CNT can translocate from the lungs into
the blood circulation. Adult CD-1 mice [sex
unspecified] were exposed to untreated SWCNT
(synthesized with an iron-cobalt/magnesium
oxide catalyst) by nebulization. Acute exposures
to a water aerosol containing CNT [concentra-
tion and dose unspecified] lasted 15 minutes.
CNT structures were observed by Raman spec-
troscopy in blood samples taken from mice 24
hours after the inhalation of CNT. The quantity
was not specified, but exceeded the detection
limit of Raman spectroscopy. These CNT were
observed as clusters with average diameters of
several micrometres (Ingle et al., 2013). [The
Working Group noted that smaller CNT clusters,
if present, would have been below the detection
threshold due to the qualitative nature of the
Raman spectroscopy methods, which detect
CNT in tissues but cannot provide quantitative
dose measures.]

Evidence that CNT could translocate from the
lungs of adult male Wistar albino rats (weighing
0.2-0.225 kg) after intratracheal administra-
tion of two types of MWCNT at a dose of 0.2,
1, or 5 mg/kg bw was reported by Reddy et al.
(2010a). CNT were produced by electric arc
(size, 90-150 nm; surface area, 197 mg?/g; crys-
tallinity, hexagonal) or CVD (size, 60-80 nm;
surface area, 252 mg?/g; crystallinity, cubic) and
were dispersed in PBS plus Tween 80 solution
then sonicated to prevent agglomeration before
administration. Dose-dependent toxicity was
observed in the liver and kidney of rats exposed
to either type of MWCNT. Light micrographs
of the liver tissue 1 day after instillation showed
black pigments, but no quantitative data on CNT
tissue doses were provided.

Inhaled MWCNT were observed in the
subpleural wall and within the subpleural
macrophages in groups of 10 male C57BL6
mice after a single 6-hour inhalation exposure




to 1 or 30 mg/m?* of MWCNT (Helix, Inc,;
MMAD, 164 or 183 nm, respectively; length,
< 100 nm to > 10 um; diameter, 10-50 nm)
(Ryman-Rasmussen et al., 2009a). Carbon
black (MMAD, 209 nm) at a concentration of
30 mg/m? was used as a comparison material.
Lung tissues were collected 1 day, 2 weeks, 6
weeks, or 14 weeks after exposure. The calcu-
lated deposited dosesof CNT were0.2or4 mg/kg
at concentrations of 1 or 30 mg/m* MWCNT,
respectively (assuming a 10% deposition of
the inhaled dose). The inhaled MWCNT were
engulfed by macrophages, which migrated to
the subpleural region. TEM images showed
CNT within macrophages beneath the pleura.
The authors hypothesized that activated
macrophages containing MWCNT migrate
through the pleural lymphatic drainage and
stimulate the recruitment of mononuclear cells
in the pleura (consistent with their previous
finding (Ryman-Rasmussen et al., 2009b) that
monocyte chemokine CCL2 was increased in
mice after inhalation of MWCNT). Significant
fibrosis (focal subpleural) was observed in mice
2 and 6 weeks after inhalation exposure to
30 mg/m?3 of MWCNT, but not in mice exposed
to 1 mg/m? of MWCNT or 30 mg/m? of carbon
black. Aggregates of MWCNT in lung tissues
were significantly elevated in mice inhaling
30 mg/m? of MWCNT (but not carbon black or
1 mg/m?* of MWCNT). No quantitative data on
the dose of MWCNT in the lung tissues were
reported (Ryman-Rasmussen et al., 2009a).
Translocation to the pleura was observed in a
study of male Fischer 344 rats exposed five times
to MWCNT (0.5 mL of 500 pg/mL) by intrapul-
monary spraying over a 9-day period (Xu et al.
2012). The total mass dose was 1.25 mg/rat. Two
types of MWCNT were studied - MWCNT-N
(Nikkiso Co., Ltd) and MWCNT-M (Mitsui-7;
Mitsui Chemicals, Inc.) - in addition to crocido-
lite as a control. Pleural cavity lavage was used to
examine the presence of MWCNT or crocidolite
inthe pleural cavity,and SEM was used to confirm

Carbon nanotubes

the location of the MWCNT or crocidolite fibres
in lung tissue sections. Both types of MWCNT
and crocidolite fibres were found in the pleural
cavity lavage cell pellets, mostly in macrophages.
A few fibres were found in the intercellular space
or on cell surfaces. In the tissue sections, both
MWCNT and crocidolite were observed in the
focal granulomatouslesionsinalveoliandin alve-
olar macrophages. The MWCNT or crocidolite
fibres were also found in the mediastinal lymph
nodes, and a few were observed in liver sinusoid
cells, blood vessel wall cells in the brain, renal
tubular cells, and spleen sinus and macrophages.
A few fibres were observed penetrating directly
from the lungs to the pleural cavity through the
visceral pleura, but no fibres were seen in the
parietal pleura.

Merceretal. (2013a) investigated the extrapul-
monary transport of MWCNT in male C57BL/6
mice after inhalation exposure to 5 mg/m? of
MWCNT (Mitsui-7) for 5 hours per day for 12
days in a 3-week study [the same study as that
reported in Mercer et al. (2013b) for disposi-
tion in the lungs]. The lung burden of MWCNT
on day 1 after exposure was 28.1 ug (47 x 10¢
MWCNT fibres/pg). Optical sectioning through
serial sections of the lung, liver, and kidney was
carried out to measure the length of the single
MWCNT in those organs on days 1 and 336
after the end of inhalation exposure (Mercer
et al., 2013b). The amount of MWCNT in the
tracheobronchial lymph nodes was determined
as the volume density of MWCNT in the lymph
nodes relative to the volume density of MWCNT
in the lungs 1 day after exposure. The numbers of
MWCNT fibres in the extrapulmonary organs,
diaphragm, and chest wall were counted per unit
area and converted to number per organ using
morphometric methods. Enhanced-darkfield
light microscopy imaging of CN'T was performed
on sections of the exposed lungs to identify CNT
that would not otherwise be detected. Most of
the MWCNT that translocated from the lungs
were found in the tracheobronchial lymph nodes
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(1.08% on day 1 and 7.34% on day 336 after expo-
sure, as a percentage of the lung burden on day
1 after exposure). The next highest extrapulmo-
nary tissue burdens of MWCNT were reported
in the liver (0.0028% on day 1 and 0.027% on day
336) and kidneys (0.0010% on day 1 and 0.0052%
on day 336). Smaller amounts of MWCNT were
detected in the heart, brain, chest wall, and
diaphragm (with higher amounts at day 336 than
at day 1 after exposure in all tissues except the
chest wall). In the lungs, 54% of the MWCNT
burden was agglomerated, while only singlet
MWCNT were observed in the liver, kidney,
heart, brain, chest wall, and diaphragm (Mercer
et al., 2013a).

In an ex-vivo model, SWCNT (100 pg) were
instilled into the airway of isolated perfused rat
lung. The isolated perfused rat lung model retains
the lung architecture but eliminates the systemic
pharmacokinetics. The pulmonary translocation
of SWCNTfromtheairwaysacrossthepulmonary
barrier was less than 0.05% of the instilled dose
after 90 minutes. A pharmacokinetic simulation
estimated a cumulative pulmonary translocation
from the rat lung of less than 0.15% over 14 days
(Matthews et al., 2013).

The length of CNT that translocate from the
lungs to the pleura (or were instilled therein in an
experimental study) may influence their reten-
tion. Longer structures (> 5 pm) were retained
in the pleura, while shorter structures were
able to drain to the lymph nodes (Poland et al.
2008; Murphy et al., 2011); however, Kim et al.
(2014) found a persistent presence in the pleura
and lung parenchyma 90 days after subacute
(28 days) inhalation exposure to short-length
(330.18 + 1.72 nm) MWCNT. Stomata are outlets
in the parietal pleura through which lymphatic
drainage occurs (Donaldson et al., 2010; Murphy
et al., 2011). The maximum diameter of stomata
in mice is 10 um (Murphy et al., 2011). Using
single-photon emission computed tomographic
imaging, Murphy et al. (2011) reported that
radiolabelled short CNT (length, 0.5-2 pm)
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were observed in the cranial mediastinal lymph
nodes (two bilateral lymph nodes located lateral
to the thymus) within 1 hour of intrapleural
injection of 5 pug/mouse, and increased up to the
end of observation 24 hours after the injection.
Qualitatively, fewer long (length, > 15 um) than
short CNT were observed in the lymph nodes
(Murphy et al., 2011).

The translocation of C-radiolabelled
MWCNT from the lungs to other organs up
to 1 year after pharyngeal aspiration of 20 ug
CNT (suspended in 50 pL dispersion medium)
was investigated in seven groups of 4 female
Balb/c mice (age, 6 weeks). After dispersion, the
mean length of the CNT was 3.9 um (range,
500 nm-12 um) and the mean diameter was
approximately 40 nm (range, 10-150 nm).
Time-points of examination were 1 and 7 days,
and 1, 3, 6, 9, and 12 months after exposure. At
6 months after exposure, the average concen-
tration of MWCNT in the lungs decreased
to less than 10% of the administered dose,
but increased at the last two time-points (to
about 20% at 12 months after exposure). In
contrast, the MWCNT concentration in the
spleen and liver - which was detectable on
day 1 after exposure — increased over time to
approximately 0.1-0.2% of the administered
dose in the spleen at 6-12 months after expo-
sure and approximately 0.5-1% in the liver at
the same time-points, although the liver had
about half the mass concentration of MWCNT
(ug/g) compared with the spleen (Czarny et
al., 2014). [The Working Group noted that the
authors reported that only half of the 20-ug dose
administered was measured in the lungs on day
1 after exposure, and the initial lung dose was
therefore adjusted to 10 pg; the remainder of
the lung dose was considered to have probably
been swallowed, thus reaching the stomach and
gastrointestinal tract.]

A subsequent experiment on oral ingestion
through the intra-oesophageal instillation of
50 pg of *C-MWCNT showed that approximately




95% of the ingested MWCNT dose was measured
in the gastrointestinal tract and faeces after 24
hours; no MWCNT were detected (by radioac-
tive signal) after 4 days; and no MWCNT were
detected in the spleen or liver tissue sections on
1, 7, and 30 days after gavage with MWCNT. This
finding was considered by the authors to support
the evidence that translocation of the MWCNT
after pharyngeal aspiration occurred through the
air-blood barrier (including crossing the epithe-
lial cells of the airways or the alveoli) and not
across the intestinal lining (Czarny et al., 2014).

(d)  Retention

Retention refers to the temporal distribution
of uncleared particles in the respiratory tract
(Lioy et al., 1984). This section focuses on reten-
tion in the lungs and lung-associated tissues (i.e.
lung parenchyma, pleura, and lung-associated
lymph nodes) (see also Section 4.1.2 (c) for data
on doses of CNT in extrapulmonary organs).
Retention (or biopersistence) in thelungsis higher
for inhaled particles that are poorly soluble and
poorly cleared from the lungs (e.g. due to size,
shape, surface reactivity, and/or to a high dose
that exceeds clearance capacity).

The lung burden of MWCNT (Baytubes,
a proprietary product; Bayer MaterialScience,
Germany) was measured in male Wistar rats
1 day, and 17, 26, and 39 weeks after 13 weeks of
inhalation exposure to 0.1, 0.4, 1.5, and 6 mg/m?
for 6 hours per day on 5 days per week. Tissue
burdens of MWCNT (in the left lung lobe and in
the lung-associated lymph nodes) were estimated
from the measurements of residual cobalt tracer
(0.115% matrix-bound). The dose deposited in the
alveoliwas calculated from the following informa-
tion: concentration of cobalt (ng/L [air]) x minute
ventilation rate (0.8 L/min/kg) [male rat control
body weights: 231 and 369 g, at the beginning and
end, respectively, of the 13-week exposure] x the
alveolar deposition fraction (5.7%) x the cobalt
fraction (%/100) (see also Section 4.1.2 (a) for
more information on the estimated deposition
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fraction). The retained MWCNT dose (measured
as ug cobalt tracer/lung) in the lungs decreased
slowly during the 39-week period after exposure,
while the MWCNT in the lung-associated lymph
nodes increased after exposure in mice exposed
to 1.5 or 6 mg/m? (Pauluhn, 2010a).

The retention half-times at each concentra-
tion were calculated in Pauluhn (2010a) from the
equation: dc/dt = a(1-kt) where k is the first-order
elimination constant (calculated from the cobalt
lung burden data 17, 26, and 39 weeks after expo-
sure [although not reported]). The retention half-
time (i.e. time to reduce the retained lung dose by
half; also called the elimination half-time [t,,])
was calculated from t,,, = In(2)/k. The retention
t,,, was 151, 350, 318, and 375 days at exposure
concentrations of 0.1, 0.4, 1.5, and 6 mg/m?,
respectively. [From the retention half-times [t,,]
the first-order rate constant k can be estimated
as approximately 0.002 d' for the three higher
concentrations and approximately 0.004 d for
the lowest concentration.] Pauluhn (2010a) noted
that the levels of cobalt measured in the lungs at
the lowest concentration (0.1 mg/m?) were in the
range of the limit of quantification, indicating
possible imprecision in the t,, estimate at that
concentration. In comparison, the retention t,,,
for respirable particles in rats at non-overloading
doses was approximately 60 days, indicating
that the rat lung clearance rates of MWCNT
(Baytubes) were reduced by several fold at all
exposure concentrations.

Pauluhn (2010a) estimated the MWCNT
particle volume lung dose as 107-325, 466-1413,
1192-3917, and 3961-12 002 nL/g of lung in rats
exposed to 0.1, 0.4, 1.5, and 6 mg/m?, respect-
ively (at a density of MWCNT of 0.1-0.3 g/cm?,
“corrected for void space volume which is 1.43
times greater than the volume of the MWCNT
themselves” (Brown et al., 2005)). In comparison,
Pauluhn (2010a) quoted Morrow (1988, 1994),
who found no significant difference in retention
half-times between the control (unexposed) rats
and the rats that had a particle volume lung dose
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of 100 nL/g of rat lung, and Oberddrster (1995),
who observed a doubling of the retention half-
times in rats with a particle volume lung dose of
1400 nL/g of lung. Pauluhn (2010a) interpreted
these comparisons as indicating that overloading
of lung clearance was “minimal to moderate”
in rats at 0.1 and 0.4 mg/m? of MWCNT while,
at 1.5 and 6 mg/m?, clearance may have been
completely impaired.

Mercer et al. (2010) reported the distribution
of MWCNT-7 (Mitsui & Co.) (diameter, 49 nm;
length, 3.9 pm) in the lungs of male C57BL/6]
mice exposed by pharyngeal aspiration to 10,
20, 40, and 80 pg of MWCNT or the vehicle. The
distribution of MWCNT was determined in fixed
lung sections using morphometric methods at 1,
7,28, and 56 days after exposure. Field-emission
SEM was used to detect and count the number
of MWCNT fibre penetrations of three biological
tissue barriers: the alveolar epithelium (alveolar
penetrations), the alveolar epithelium immedi-
ately adjacent to the pleura (subpleural tissue),
and the visceral pleural surface (intrapleural
space). The number of penetrations per lung (into
the subpleural tissue and intrapleural space)
increased with increasing dose administered.
On day 1 after exposure to 80 pg, 18% of the
MWCNT was observed in the airways, 81% in
the alveolar region, and 0.6% in the subpleural
tissue. Within the alveolar region, 62% of the dose
was inside alveolar macrophages on day 1 after
exposure. MWCNT penetrations were observed
most frequently in the alveolar macrophages,
followed by alveolar type I epithelial cells, and
less frequently in alveolar interstitial cells (typi-
cally observed as fibres passing through adjacent
epithelial cells). MWCNT inside the cells were not
confined to phagolysosomes and were observed
to extend from the cell surface through the nuclei
and other organelles. Alveolar type II epithelial
cells (2% of the normal epithelial surface) were
rarely found to be penetrated by MWCNT. In the
airways, MWCNT were observed in the mucous
layer above airway epithelial cells and in airway
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macrophages contained in the cilia-mucous
lining layer; penetrations by MWCNT in the
airways were rare. At the 20-ug dose, a total of
15 x 106 MWCNT penetrations were observed
in the 11 x 106 alveolar type I epithelial cells in
mouse lungs (Mercer et al., 2010).

The time course of this MWCNT in the
intrapleural space showed a decrease from day 1
to day 7 after exposure (Mercer et al., 2010). This
is consistent with a mechanism of shorter fibre
clearance from the intrapleural space through
the stomata (duct in the parietal pleura) to the
lymphaticsystem (Donaldsonetal.,2010; Murphy
etal., 2011). However, the amount of MWCNT in
the intrapleural space increased again at day 28
after exposure and remained elevated at 56 days
after exposure. The lung burden of MWCNT
may act as a reservoir to replenish MWCNT
in the intrapleural space or that even shorter
fibres (length, 3.9 pm) could begin to clog the
ducts if they reach a sufficient level within the
intrapleural space (Mercer et al., 2010).

Mercer et al. (2013b) provided quantita-
tive data on the retention and distribution of
MWCNT in the lung and associated tissues of
male C57BL/6 mice after a 3-week exposure by
inhalation for 5 hours per day for 12 days to
5 mg/m? of MWCNT (Mitsui-7; mean length,
4.3 pm). The MWCNT lung burden was deter-
mined using a method reported by Elder et al.
(2005). The lungs were removed after mice were
killed on 1, 14, 28, 84, 168, or 336 days after expo-
sure. Lung tissue was processed by digestion (in
25% potassium hydroxide/methanol (w/v)),
centrifugation, and re-suspension of the pellet,
and measurements of the optical density of the
solution were compared with MWCNT stand-
ards that were processed in parallel with the
lung samples. The mass of MWCNT in the lungs
was determined from a standard curve. [Elder et
al. (2005) reported that the limit of detection of
this assay was 0.1 pg/mL of suspended solution.]
Several imaging techniques (light microscopy,
field emission SEM, and enhanced-darkfield
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microscopy) were used to observe and quantify
the distribution of the MWCNT fibres in tissue
sections of the lungs. MWCNT were counted in
lung tissue sections using an enhanced-darkfield
optical system; eight animals were analysed per
group and counting was accomplished using
an 11 x 11 (121 point) overlay grid pattern to
ensure uniform sampling of the section. The
number of fibres per MWCNT structure was also
determined by enhanced-darkfield microscopy.
MWCNT fibres were observed in the alveolar
macrophagesandalveolar interstitium, and pene-
trated the visceral pleura (Mercer et al., 2013b).
On day 14 and later time-points after exposure,
clusters of MWCNT were observed within the
ridge of the first alveolar duct bifurcation [which
is the primary site of particle deposition after
inhalation exposures to particles and fibres, as
reported previously by Brody & Roe (1983) and
Chang et al. (1988)]. The MWCNT lung burden
in mice measured on day 1 after exposure was
28.1 pg (1321 x 10% total fibre number estimate
based on 47 million MWCNT fibres/pg [conver-
sion reported in Chen et al. (2012)]) (Mercer et
al., 2013b). Of this lung burden, 84% (23.6 pg)
was found in the alveolar (pulmonary) region
of the lungs and 16% (4.5 pg) in the airways.
Similar distributions of MWCNT were observed
in two previous studies of MWCNT by Porter et
al. (2010, 2013) in mice exposed by pharyngeal
aspiration or acute inhalation.

Within the alveolar region, 56% of
the MWCNT lung burden was in alveolar
macrophages on day 1 after exposure, 7% was in
the alveolar airways, and 20% was in the alveolar
tissue. These findings indicated a fairly rapid and
substantial distribution of inhaled MWCNT to
the lung interstitium. By day 1 after exposure,
~1.2% (0.34 pg) of the MWCNT lung burden was
observed as single fibres in the pleural compart-
ment (including the subpleural tissue and visceral
pleura) (Mercer et al., 2013b).

At 336 days after exposure, 65% of the
MWCNT lung burden (28.1 pg) on day 1 after

exposure was retained in the lungs (18.2 pg),
most of which (96%) was retained in the alveolar
region (including 4.8% in subpleural tissue) and
4% (0.73 pg) of which was retained in the airways.
The distribution of MWCNT in the lungs shifted
from alveolar macrophages (3 times more than
in lung tissue on day 1 after exposure) to the
alveolar tissue, where the dose increased from
5.8 to 9.5 ug on days 1 and 168 after exposure,
respectively. Thus, the alveolar interstitial lung
burden increased as the MWCNT in the alveoli
were cleared (Mercer et al., 2013b).

The number of larger or agglomerated
MWCNT structures (> 4 fibress MWCNT)
decreased over time (from 53 to 25% of the lung
burden on days 1 and 168 after exposure, respect-
ively). The number of structures with 2, 3, or 4
fibres also decreased significantly. However, the
percentage of single fibres in the MWCNT lung
burden did not change significantly from days 1
to 168 after exposure. Thus, the MWCNT struc-
tures decreased in size, resulting in a relatively
constant number of single MWCNT fibres in the
lungs over time (Mercer et al., 2013b).

The mouse lung response on day 1 of
this study after exposure to a lung dose of
28.1 ug MWCNT was an increase in the thick-
ness (fibrillar collagen) of the alveolar connective
tissue over time, with a 70% increase on day 336
after exposure (Mercer et al., 2013b). The trans-
location of MWCNT to extrapulmonary organs
were described in Mercer et al. (2013a) (see also
Section 4.1.2 (¢)).

The lung burden of MWCNT (diameter,
90.7 nm; length, 5.7 pm; MMAD (GSD),
1.4-1.6 um (2.3-3.0)) was measured in male and
female Fischer 344 rats after 13 weeks of whole-
body inhalation exposure for 6 hours per day
on 5 days per week to concentrations of 0, 0.2,
1, and 5 mg/m?. Left lung tissues (0.18-0.36 g)
were sampled from five rats in each MWCNT-
exposed group. MWCNT was quantified using a
technique in which a specific polycyclic aromatic
hydrocarbon (benzo[g,h,i]perylene) serves as a
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marker of these MWCNT. The mass of MWCNT
in the lungs of male and female rats increased in
relation to the exposure concentration (Table 4.1)
and was reported to be 1.4-1.6 times greater in
the left lungs of males than in those of females
(Kasai et al., 2015). [The Working Group noted
that, when the measured MWCNT lung doses are
normalized to the average control left lung weight
(0.43 g, males; 0.32 g, females), the retained lung
doses in males were similar (1.0-1.2 times the
lung doses in females).]

In the study by Silva et al. (2014), the phys-
ico-chemical properties (metal content, hydro-
philicity, and carboxylic acid functionalization)
or route of exposure did not significantly influ-
ence the retention of MWCNT in the lungs of
male Sprague-Dawley rats (as measured in the
right caudal lung lobe by programmed thermal
analysis). However, the findings suggested that
instilled F-MWCNT were retained in the lungs
to a greater extent than the same instilled dose
of O-MWCNT or P-MWCNT. The retention of
instilled F-MWCNT in the lungs was also greater,
although not significantly, than the retention of
a similar deposited dose of inhaled F-MWCNT
(Silva et al., 2014).

(e)  Clearance

The mechanisms of clearance depend on
the initial site of particle deposition within the
respiratory tract and on the physico-chemical
properties of the particle (e.g. solubility and func-
tionalization). Soluble particles can dissolve in
alveolar lining fluid and then enter the blood or
lymph (Dahl et al., 1991; ICRP, 1994; Schlesinger,
1995). Dissolution rates do not vary widely across
species, because they are primarily determined
by the physico-chemical properties of the mate-
rial (Dahl et al., 1991). Clearance rates of poorly
soluble particles, however, can fluctuate among
species due to differences in the macrophage-me-
diated clearance from the alveolar region and the
rates of mucociliary transport in the conducting

airways (Snipes, 1989).
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Inhaled CNT may be phagocytosed by
macrophages and cleared from the lungs by the
mucociliary escalator and swallowed (entering
the gut). CNT that are not cleared from the lungs
by macrophages may enter the epithelial cells that
line the alveolar region of the lungs, where their
fibres can be retained in the lung interstitium or
pass into the lymph or blood circulation (Mercer
et al, 2008; Ryman-Rasmussen et al., 2009a;
Mercer et al., 2013a, b).

CNT that reach the blood circulation (either
by translocation from the lungs or through direct
intravenous administration) may be excreted
from the body through either the renal (urine)
or biliary pathway. Many SWCNT or MWCNT
exceed the particle size threshold for renal excre-
tion, particularly if agglomerated (Liu et al.
2008a), and thus accumulate in the liver where
they undergo biliary excretion (Cherukuri et al.,
2006). The type of surface functionalization can
also strongly influence the biodistribution and
elimination pathways (see also Section 4.1.2 (g)).

In a study of male Wistar rats that inhaled
0.37 mg/m?* of MWCNT for 6 hours per day on
5 days per week for 4 weeks, lung clearance was
reported to be proportional to the amount in the
lungs. The retention half-time (t, ,), defined as the
time for the retained dose to be reduced by hallf,
was estimated to be 51 or 54 days (based on the
lung dose measured by X-ray diffraction or EC
analysis, respectively) (Oyabu et al., 2011). [These
retention half-time estimates are consistent with
normal rat clearance rates reported in other
studies, indicating that no reduction in the
clearance rate (due to overloading of clearance
mechanisms) occurred at the concentration and
duration of exposure used in this study.]

Inastudy of theintratracheal instillation of 10
or 100 pg/mouse of pristine [as-produced] (mean
length, 7.5 nm; mean diameter, 13.5 nm) or acid-
treated (mean length, 400 nm; mean diameter,
15 um) MWCNT in male C57BL/6 mice, both
types of MWCNT were seen in the lymphatic
system in the mediastinal lymph nodes. The




Carbon nanotubes

acid-treated MWCNT (that contained fewer
metal contaminants and were more hydrophilic)
induced less severe acute lung inflammation
than the pristine MWCNT (Kim et al., 2010).
[No quantitative data on the dose were provided.]

No significant lung clearance was observed
from day 1 to day 21 after intratracheal adminis-
tration of O-, P-, or -MWCNT to male Sprague-
Dawley rats. MWCNT structures were observed
inside the alveolar macrophages and poly-
morphonuclear leukocytes in BALF and in the
airway cilia, suggesting some, but insignificant,
MWCNT clearance (Silva et al. 2014).

(f)  Biodegradation

The size, structure (wall number), and func-
tionalization of CN'T may influence their distri-
bution in the body and their ability to pass into
cells through cell membranes (Bianco et al.
2011). Much of the literature on the kinetics of
CNT is motivated by the potential use of CNT
as targeted medical delivery systems to specific
tissues for therapeutic purposes (Ali-Boucetta &
Kostarelos, 2013). SWCNT functionalized with
polyethylene glycol (PEG) were more hydrophilic,
had greater dispersibility in aqueous media than
unfunctionalized SWCNT, and were excreted
through biliary and renal pathways (Bhirde et
al., 2010).

(i) Invitro and ex vivo

Pulmonary eosinophils from humans (in
vitro) and mice (activated ex vivo) were shown to
degrade SWCNT through an enzyme (eosinophil
peroxidase, EPO) that is exocytosed when cells
are activated (e.g. by the presence of CNT) and
is one of the major oxidant-generating enzymes
in the human lung. The EPO-catalysed oxidative
biodegradation was assessed by TEM, ultravi-
olet-visible-near-infrared absorption spectros-
copy, and Raman spectroscopy and was found to
occur extracellularly (Andon et al., 2013).

Another study by Kagan et al. (2010) showed
that polymorphonuclear leukocyte (neutrophil)

myeloperoxidase (MPO) also catalysed the
biodegradation of SWCNT, although the
SWCNT in this study were pre-opsonized with
immunoglobulins to increase the internalization
efficiency by neutrophils. The difference in the
mechanisms of degradation of the two cell types
is due to neutrophils using MPO to kill bacteria
inside the phagolysosome, while eosinophils use
secreted EPO to kill larger extracellular organ-
isms, such as parasites.

(i) Invivo

The role of neutrophils or eosinophils in the
biodegradation of CNT in vivo is unclear. In
the lungs, CNT that are not cleared by alveolar
macrophages may translocate into the lung inter-
stitium and stimulate the development of fibrosis
or translocate to distant sites and elicit systemic
inflammatory and/or immunological responses
(Mercer et al., 2008; Ryman-Rasmussen et al.,
2009a).

Shvedova et al. (2012a) demonstrated the role
of MPO, an abundant enzyme in inflammatory
cells such as polymorphonuclear leukocytes (or
neutrophils), in the clearance and retention of
CNT in the lungs of mice by comparing the clear-
ance of SWCNT in wild-type and MPO-deficient
(knockout) C57Bl/6 mice given 40 pg/mouse
by pharyngeal aspiration. The MPO-mediated
biodegradation of SWCNT occurs through
the oxidative modification or “cutting” of the
SWCNT (resulting in oxidative defects in CNT
that are detectable by Raman spectroscopy). A
significant difference was observed in the clear-
ance of SWCNT from the lungs in wild-type
compared with MPO-knockout mice. The degra-
dation of SWCNT (assessed by Raman spectros-
copy) was significantly greater in wild-type mice
and the volume of SWCNT aggregates per total
lung volume (quantified in lung tissues by light
microscopic imaging analysis) was significantly
greater in MPO-knockout mice than in wild-
type mice 28 days after exposure. [The Working
Group noted that, consistent with the higher dose
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of SWCNT retained, the MPO-deficient mice
showed a greater degree of fibrosis, as measured
by higher collagen content, and a greater average
thickness of the alveolar connective tissue in the
lungs than wild-type mice; however, wild-type
mice also showed significant fibrosis.]

(g)  Biokinetics of bioengineered CNT
administered by intravenous
administration

Much of the literature on the biokinetics of
CNT in the body involves studies on their poten-
tial use in biomedical applications. The route of
exposure has been shown to influence the biodis-
tribution of CNT in the body (Ali-Boucetta &
Kostarelos, 2013), with the highest initial dose
observed at the site of administration. In medical
imaging or therapeutical applications, the route
of exposure is typically the intravenous injection.

CNT injected intravenously accumulate in
the liver and spleen, while CNT administered
orally are found primarily in the stomach and
intestines (Ali-Boucetta & Kostarelos, 2013).

Well dispersed short MWCNT (length
< 500 nm) injected intravenously into mice were
excreted rapidly through the kidneys (no nephro-
toxicity observed), while longer MWCNT were
retained in the spleen, lungs, and liver (resulting
in hepatotoxicity) (Jain et al., 2011).

Surface modification was considered to be the
most important factor influencing the biodistri-
bution of CNT (Ali-Boucetta & Kostarelos, 2013).
The two main types of functionalization are the
coating (i.e. non-covalent surface modification)
of SWCNT and the covalent functionalization of
SWCNT or MWCNT.

The coatings that have been studied include
surfactant Pluronic F108, Tween 80, and PEG
phospholipid. The blood clearance of Pluronic
F108-coated CNT injected intravenously into
rabbits was rapid (half-life t,,, < 1 h), which was
attributed to the formation of SWCNT-protein
complexes or SWCNT aggregates that accumu-
lated primarily in the liver (Cherukuri et al.,
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2006). Tween 80-coated SWCNT were retained
(for up to 28 days) in the liver, lungs, and spleen
in injected mice (the CNT had a *C-enriched
backbone) (Yang et al., 2007). The circulation of
PEGylated CNT in the blood was longer (half-
life t,,,, 5 h) and was further extended (half-life
t,;,» 12-22 hours) by increasing the branching of
the PEG and liver uptake was reduced in injected
mice (Liu et al., 2008a, 2011a; Prencipe et al.,
2009). PEGylated CNT were eliminated through
biliary excretion (over 2 months). Pristine,
non-covalently functionalized SWNCT mostly
accumulated in the liver.

The covalent functional groups that have
been studied include hydroxyl, ammonium,
glucosamine, and taurine (Ali-Boucetta &
Kostarelos, 2013). Many of these studies used
radiolabelled CNT. Higher degrees of function-
alization facilitated the dispersion of individual
CNT that led to predominantly urinary excre-
tion (Singh etal., 2006; Lacerda et al., 2008a, b, ¢).
However, MWCNT-taurine accumulated in the
liver, heart, and lung (Deng et al., 2007).

Many of these studies reported qualitative
estimates of the amount of CNT in various
organs (e.g. by whole-body imaging). The tech-
niques used showed the relative amount of CNT,
although small amounts may have been missed
due to limits of sensitivity. The most typically
reported quantitative measure was the half-life
t,, in blood circulation. While these studies
provide valuable insights into the factors that
influence the biodistribution of CNT, they
focused on medical applications of CNT and thus
have limited direct relevance to occupational or
environmental exposures.

4.2 Physico-chemical properties
associated with toxicity

The physico-chemical properties of CNT
may be modulated by varying the method of
synthesis, by applying modification processes
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after synthesis, and/or by the covalent func-
tionalization of their external surface. A large
variety of CNT forms may thus be produced
that exhibit different features that influence
their pathogenicity. CNT cannot be considered
as a single well defined substance but as families
of different materials, the number of which is
growing dramatically.

Evidence has been found that the responses
of cells to CNT are modulated by their physi-
co-chemical properties. The variability of the
CNT employed in different studies gives rise
to the discrepancies observed in biological
outcomes (Muller et al., 2005; Kagan et al., 2006;
Elgrabli et al., 2008; Poland et al., 2008; Takagi et

groups (Ebbesen & Takada, 1995; Charlier,
2002; Galano, 2010). After systematic variation
of the physical and chemical features of a given
MWCNT specimen with or without defects,
genotoxicity in vitro and inflammogenicity
and fibrogenicity in vivo (Muller et al., 2008a),
but not carcinogenicity (Muller et al., 2009; see
Section 3), were correlated with the presence of
defects. [The Working Group noted that only a
single type of defect (i.e. broken C-C bonding
generated by grinding) was evaluated in these
studies.]

Defects impart the potential to quench free
radicals to both MWCNT and SWCNT (Galano

al., 2008; Ma-Hock et al., 2009; Sakamoto et al.,
2009; Fubini et al., 2010, 2011).

Major studies on the effects of relevant
physico-chemical characteristics on the adverse
responses to CNT in various experimental
models are summarized in Table 4.2.

4.2.1 Crystal structure and defects

Purification and functionalization caninduce
defects in CNT and may modify or increase their
toxicity. Nitric acid, which is involved in purifi-
cation and functionalization, destroys SWCNT,
resulting in the production of amorphous carbon
and a reduction in the amount of the transition
metal catalyst used in their production (Hu et al.
2003).

Perfectly crystalline CNT are formed only
by hexagonal rings of sp? hybridized carbons.
However, the graphene layers contain a variable
number and degree of defects that may arise
directly from the process of synthesis or may be
introduced or eliminated during treatments after
synthesis (Galano et al., 2010). The CNT that are
currently produced are far from perfect and may
include various numbers and types of defect,
such as non-hexagonal rings, atom vacancies
(topological defects), carbon with sp* hybrid-
ization, incomplete bonding, and oxygenated

2010). CNT retard the oxidation of polysty-
rene, polyethylene, polypropylene, and poly(vi-
nylidene) fluoride due to their strong ability
to accept radicals, which may interrupt chain
propagation, leading to antioxidant effects in
polymeric material (Watts et al., 2003). Pristine
SWCNT were demonstrated to be powerful
antioxidants (Lucente-Schultz et al., 2009) and
a variety of modified CNT exhibited different
defective sites.

4.2.2 Form and size

A fibre shape associated with high dura-
bility has been proposed as a critical factor in
CNT-induced pleural toxicity and carcino-
genicity (Donaldson et al., 2011 and references
therein). Poland et al. (2008) reported an “asbes-
tos-like” pathogenicity of long, rigid CNT in the
induction of inflammation while tangled CNT
were less potent. Similarly to short amphibole
asbestos fibres, shorter CNT induced less inflam-
mation. In addition to dimensions and shape,
other physico-chemical features are involved
in fibre toxicity, suggesting that the fibre para-
digm is not the only mechanism (Jaurand et al.,
2009; Sanchez et al., 2009; Fubini et al., 2011).
The physico-chemical properties of asbestos
fibres and CNT differ substantially, correlating
with the marked differences in their chemical
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composition and structure (Fubini et al., 2010,
2011) which are illustrated in Table 4.3 (Fubini

and in vitro (murine alveolar macrophages)
(Fenoglio et al., 2012). Nagai et al. (2011) also

et al., 2011).

(a) Length

Schinwald et al. (2012) reported that CNT
over 4 pm in length are pathogenic to the pleura
in mice and proposed a threshold length value
(4-5 pm) for the induction of an acute inflam-
matory response in a mouse model. Pleural
inflammation and fibrosis are induced only
by long (> 10 um) CNT after intraperitoneal
(Kolosnjaj-Tabi et al., 2010) or intrapleural
(Murphy et al., 2011) injection. The adverse
effects oflong (> 10 um), rigid CNT were related
to their physical interaction with cells resulting
in incomplete internalization and “frustrated
phagocytosis”, which activate an inflamma-
tory response. Stomata (diameter, 3-10 um) in
the parietal pleura act as a “sieve” in drainage
from the pleural space and fail to clear the long
CNT (Murphy et al., 2011).

Manshian et al. (2013) investigated the
role of the length of SWCNT in the induction
of genotoxicity in human bronchial epithelial
BEAS-2B and lymphoblastoid MCL-5 cells.
SWCNT induced significant levels of chromo-
somal damage at subcytotoxic concentrations,
the potency of which, according to the length
of the SWCNT, was 400-800 nm > 5-30 pm
> 1-3 um. The authors hypothesized that surface
area is an important determinant in cellular
response, as well as the secondary structure
of CNT under experimental conditions. In
contrast, only SWCNT 1-3 pm in length were
found to be mutagenic in mammalian cells (see
Section 4.3).

(b) Thickness

A study of two MWCNT of similar length
(< 5 pm) and surface reactivity but different
diameter (9.4 and 70 nm) showed that thinner
MWCNT appeared to be significantly more toxic
than their thicker counterparts in vivo (rat lung)

reported an effect of the diameter of CNT on
mesothelial toxicity and carcinogenicity in rats
(see also Section 3). Short CNT with different
diameters that had or had not been subjected to
carboxyl surface functionalization were assessed
for cytotoxicity in phagocytic and non-phago-
cytic cells. The role of oxidative stress was eval-
uated by assessing the intracellular glutathione
(GSH) levels and protection by N-acetyl cysteine
(NAC). CNT < 8 nm in diameter were more
cytotoxic than CNT > 20 nm in diameter and
carboxylated CNT were more toxic than as-pro-
duced CNT. Protection by NAC was maximal for
larger-diameter as-produced CNT and minimal
for small-diameter carboxylated CNT. Thinner
(diameter < 8 nm) CNT acted mainly through
the disruption of membrane integrity, and CNT
with a larger diameter mainly induced apoptotic
changes (Erohlich et al., 2013).

4.2.3 Surface reactivity

The variability in the toxicity elicited by CNT
can mostly be ascribed to both differences in
shape and modifications to the chemical compo-
sition/structure of the CNT employed in the
different studies (Fubinietal.,2011 and references
therein). Differences in surface state between
asbestos and CNT (in contrast to asbestos, CNT
quench radicals, are hydrophobic, and may be
fully freed from metal impurities) suggest that
these two fibrous materials might induce toxicity
by different mechanisms (Fubini et al., 2011)

Physical and chemical properties are gener-
ally accepted to modulate the cell responses to
CNT. The introduction of surface oxygenated
functionalities increased the toxicity of CNT
in some models (Bottini et al., 2006; Vittorio
et al., 2009; Pietroiusti et al., 2011). In contrast,
Cheng et al. (2008) reported that purified
PEGylated SWCNT, although reversibly inter-
nalized and translocated into the nucleus, were
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non-genotoxic in mammalian cells in terms of
cell-cycle distribution and mitosis after 5 days of
continuous exposure, suggesting that intensive
purification and functionalization improves the
biocompatibility of CNT.

Li et al. (2013) reported the role of surface
charge in determining the pulmonary fibrogenic
effects of MWCNT. Anionic functionalization
with carboxylate and PEG decreased pulmonary
fibrogenic potential compared with as-prepared
MWCNT; strong cationic functionalization
with polyetherimide induced a greater degree
of pulmonary fibrosis. Neutral and weakly
cationic (sidewall amine) functionalized CNT
had similar fibrogenic potential to as-produced
CNT. The mechanism of these effects involves
differences in the cellular uptake of MWCNT,
lysosomal damage, and cathepsin B release in
macrophages, associated with the activation
of NOD-like receptor family, pyrin domain
containing 3 (NLRP3) inflammasome (Li et al.
2013).

Hamilton et al. (2013b) examined the conse-
quences of surface carboxylation of MWCNT
on bioactivity. Hydrochloric acid refluxing was
used to purify raw “as-received” MWCNT by
removing the amorphous carbon layer on their
surface and reducing the metal impurities (e.g.
nickel). The sidewall of raw and hydrochloric
acid-purified MWCNT was further functional-
ized with the carboxyl moiety using nitric acid
oxidation, a common approach that imparts the
carboxyl functional group to the MWCNT. No
structural damage was observed. Four distinct
MWCNT were compared for their bioactivity:
raw “as-received”, purified, carboxyl-terminated
raw MWCNT, and carboxyl-terminated puri-
fied MWCNT. Raw and hydrochloric acid-pu-
rified MWCNT are poorly soluble in water.
In contrast, after nitric acid oxidation, both
carboxylated forms of MWCNT showed very
good water solubility. Freshly isolated alveolar
macrophages from C57Bl/6 mice were exposed
to these nanomaterials to determine the effects

Carbon nanotubes

of these modifications on cell viability and
inflammasome activation, which was confirmed
using inhibitors of cathepsin B and caspase-1.
Purification slightly reduced cell toxicity and
inflammasome activation compared with raw
MWCNT. In contrast, functionalization of
MWCNT with carboxyl groups dramatically
reduced cytotoxicity and inflammasome activa-
tion. Similar results were seen in human mono-
cytic THP-1 cells. All nanomaterials, regardless
of modification, were taken up by alveolar
macrophages. However, the manner in which
the nanomaterials were processed within the
cells differed. Purified MWCNT were taken up
in large vacuoles or phagolysosomes and did not
appear to be free in the cytoplasm. In contrast,
the two functionalized MWCNT did not appear
to be incorporated in large vacuoles, but were
more evenly distributed in smaller phagolyso-
somal structures or free in the cytoplasm. The
results confirmed that MWCNT activate NLRP3
inflammasome through a process that involves
phagolysosomal permeabilization, the release
of cathepsin B, and the activation of caspase-1
(Hamilton et al., 2013b).

Sager et al. (2014) investigated whether
MWCNT (same nanomaterial as that used in
Hamilton et al., 2013b) with different surface
functionalities would exhibit different bioactivity
profiles in vivo. Unmodified (bare) MWCNT and
MWCNT that were surface functionalized with
the carboxyl group (F-MWCNT) were instilled
intratracheally into C57BL/6 mice. Mice were
then examined for biomarkers of inflamma-
tion and injury, as well as histologically for the
development of pulmonary disease as a function
of dose and time. Biomarkers for pulmonary
inflammation included cytokines (interleukin
[IL]-1p, IL-18, and IL-33), profibrotic mediators,
the presence of inflammatory cells (neutrophils),
lysosomal release of cathepsin B, and markers
of injury (albumin and lactate dehydrogenase
[LDH]). The results showed that surface modi-
fication of the MWCNT by the addition of the
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carboxyl group significantly reduced bioactivity
and pathogenicity. Bare MWCNT were more
bioactive, causing more inflammation, lung
pathology, and fibrosis than the F-MWCNT.
This difference in bioactivity correlated with the
activation of NLRP3 inflammasome (Sager et al.,
2014).

(a)  Generation of free radicals

Unlike other toxic particulates (e.g. asbestos),
CNT modified by grinding to introduce struc-
tural defects have been reported not to generate
but to quench free radicals in cell-free systems.
This scavenging activity was eliminated in CNT
that were fully divested of their defects (i.e. by
heatingat 2400 °C) (Fenoglio etal.,2008). CNT in
composites (CNT-polymer) have been employed
to preserve the polymeric matrix from oxidative
degradation by their radical scavenging ability
(Watts et al., 2003). The susceptibility of CNT to
attack by radicals has been exploited to introduce
functionalities at their surface (Ghiazza et al.,
2014 and references therein). However, SWCNT
with different iron contents displayed different
redox activity in a cell-free model system, as
revealed by the formation of ascorbate radicals
resulting from ascorbate oxidation detected by
electron paramagnetic resonance (Kagan et al.,
2006). In the presence of zymosan-stimulated
RAW 264.7 macrophages, non-purified iron-
rich SWCNT were more effective in generating
hydroxyl radicals (documented by electron
paramagnetic resonance spin-trapping with
5,5-dimethyl-1-pyrroline-N-oxide) than purified
SWCNT (Kaganetal.,2006). Exposure of immor-
talized human epidermal HaCaT keratinocytes
to SWCNT induced oxidative stress, which
was confirmed by the formation of free radical
species, the accumulation of peroxidation prod-
ucts and thiobarbituric acid-reactive substances,
the reduction of low-molecular-weight thiols and
protein sulfhydryls, and a decrease in vitamin
E and total antioxidant reserves in the cells.
As-produced unrefined SWCNT contain up to
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30% iron,and the authors hypothesized a Fenton-
like reaction resulting in HO* generation, which
increased in the presence of hydrogen peroxide
and decreased in the presence of catalase (a
hydrogen peroxide scavenger) or desferoxamine
(a strong iron chelator) (Shvedova et al., 2003).

Whether CNT in cell-free media do not
generate hydroxyl radicals and/or other reactive
oxygen species (ROS) per se or whether what
is hypothetically generated would immediately
be quenched by defects is not clear (Fenoglio
et al., 2006, 2008). Purified MWCNT scavenge
hydroxyl radicals generated by different sources
(Fenoglio et al., 2006). A local decrease in ROS
was observed in vivo after intratracheal instilla-
tion of DWCNT in mice (Crouzier et al., 2010).
However, CNT and other graphene materials
have been reported to deplete the cellular antiox-
idant defences of cells by oxidizing GSH through
a reaction with oxygen at the surface (Liu et al.
2011b). Therefore, CNT interact with the cellular
antioxidant defence system in several ways. [The
overall effect of CNT on the homeostasis of ROS
in cells still needs to be clarified.]

(b)  Bioavailability and biodeposition of metals

After synthesis, CNT generally contain
amorphous carbon and metals - iron and other
different redox active metals (e.g. cobalt, nickel,
and molybdenum) - as a residue of the catalyst
employed in their synthesis. The amounts are
highly variable and may reach 20% in unpurified,
as-produced CNT (see also Section 1). Metals
may be present in different oxidation states as
ions, clusters, or even organized in metal nano-
particles. The iron in CNT has been reported to
be a mixture of a-Fe?, y-Fe?, and carbide phases;
much of the metal appears by TEM to be at least
superficially encapsulated by carbon (Guo et
al., 2007). Most of the iron is located within the
tube, and is thus not readily accessible to target
cells. The metal residues may be extracted from
the CNT, e.g. by acid treatment, but often a frac-
tion remains inside. Toxicologically significant
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amounts of iron can be mobilized from a diverse
set of commercial nanotube samples in the pres-
ence of ascorbate and the chelating agent, ferro-
zine. This mobilized iron is redox active and
induces single-strand breaks in plasmid DNA
in the presence of ascorbate. Iron bioavailability
is not fully suppressed by vendor “purification”
and is sensitive to partial oxidation, mechanical
stress, sample ageing, and intentional chelation
(Guo et al., 2007). Because iron sealed within the
graphene layers cannot be released in physiolog-
ical media, the amount of bioavailable iron in
CNT varies greatly from sample to sample and
cannot be predicted from the total iron content
(Guo et al., 2007, Fubini et al., 2011 and refer-
ences therein).

Redox active metals associated with CNT
(e.g. iron) have been reported to induce oxidative
stress and toxicity (Kagan et al., 2006; Pulskamp
et al., 2007). Clear evidence on the role of iron in
the toxicity of CN'T was obtained by showing that
simple removal of most of the iron residues caused
a remarkable decrease in the toxicity of SWCNT
(Kagan et al., 2006) and MWCNT (Aldieri et
al., 2013). Iron-rich SWCNT caused a signifi-
cant loss of intracellular low-molecular-mass
thiols (predominantly GSH) and accumulation
of lipid hydroperoxides in both zymosan- and
phorbol myristate acetate-stimulated RAW 264.7
macrophages (Kagan et al., 2006). Two MWCNT
differing only in the presence or absence of iron
were compared at dose ranges of 25-100 pg/cm?.
While iron-rich MWCNT (50 pg/cm?) were
significantly cytotoxic and genotoxic and induced
a potent cellular oxidative stress response, iron-
free MWCNT (50 pug/cm?) did not exert any of
these adverse effects (Aldieri et al., 2013).

Complete elimination of any metal trace can
be achieved only by heating CNT to a very high
temperature (2400 °C) at which metal vapour-
izes. Lung toxicity in vivo but not genotoxicity
in vitro induced by MWCNT was decreased,
but not completely eliminated, by heating at
600 °C, when metals are fully vapourized but

defects remain (Fenoglio et al., 2008; Muller et
al., 2008a).

4.2.4 Fibre durability (leaching, dissolution,
and breakage)

CNT are highly insoluble due to their
graphitic structure (Lam et al., 2004) and they
have been suggested to be as biopersistent as
amphiboles (Sanchez et al., 2009). However,
several studies reported that the carbon struc-
ture may be attacked and degraded, mainly by
endogenous oxidants in biological simulation
fluids or in vivo (Kagan et al., 2010; Shvedova et
al., 2012a, b).

(a) Invivo

Using MPO-deficient mice, Shvedova et al.
(2012a) showed that MPO contributes to the
pulmonary oxidative biodegradation of SWCNT
in vivo (see also Section 4.1.2 (f)).

(b) Invitro

Two different routes of attack and degra-
dation of CNT by endogenous oxidants were
reported in studies in vitro (see Section 4.1.2 (f)).
One enzymatic route is through degradation by
several peroxidases, such as MPO (Kagan et al.,
2010), lactoperoxidase, and EPO (Shvedova et al.,
2012b), while the second route follows non-en-
zymatic degradation when CNT are in contact
with simulated phagolysosomal fluid (Liu et al.
2010). Degradation of SWCNT after incubation
with human EPO and hydrogen peroxide has
been reported; the biodegradation was greater
in the presence of sodium bromide. However,
neither EPO nor hydrogen peroxide alone caused
SWCNT degradation (Andon et al., 2013).

Surface functionalization affects the biodeg-
radability of CNT (Liu et al., 2010; Bianco et al.,
2011). The rate of degradation is associated with
both the degree of surface functional groups and
the type of CNT; MWCNT are more resistant
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than SWCNT and thus require a longer time for
degradation (Bianco et al., 2011).

4.2.5 Physico-chemical determinants of
defined biological end-points

Because of the extreme variability of the
features of CNT, the method to be adopted to
associate a physico-chemical feature to a given
effect in vivo is to modify one single property at
a time of a well defined specimen of CNT and test
all modified specimens using exactly the same
procedure. Two typical examples of this type of
procedure taken from Table 4.2 are highlighted
below.

This approach showed clearly that a slight
modification in cytotoxicity and inflammo-
genicity occurred after purification, while acute
inflammogenicity (demonstrated by inflam-
masome activation in MWCNT in vitro and in
vivo) was dramatically reduced, with a conse-
quent reduction in pathogenicity after function-
alization of the surface with carboxyl (Hamilton
et al., 2013b; Sager et al., 2014).

Modification of MWCNT by progressive
heating during which metals and defects are
gradually eliminated (see Table 4.4) enabled an
association of genotoxicity in vitro with defects
and respiratory toxicity in vivo with both metals
and defects (Fenoglio et al., 2008; Muller et al.,
2008a).

4.3 Genetic and related effects

4.3.1 Humans

(a) Exposed humans

No data were available to the Working Group.

(b)  Human cells in vitro
See Section 4.3.2 (b)

100

4.3.2 Experimental systems

(a) Invivo
(i)  DNA damage

Investigations on the direct genotoxicity of
CNT have focused on end-points measured by
the comet assay and oxidatively generated DNA
lesions. Table 4.5 lists the in-vivo studies that
have assessed levels of DNA damage in rodent
tissues after exposure to CNT.

Intratracheal instillation of SWCNT into
mice (54 pg/animal) increased the levels of
DNA strand breaks in BALF cells 3 hours after
exposure (Jacobsen et al., 2009). Another study
showed that a single intratracheal instillation of
MWCNT (50 or 200 pg/mouse) was associated
with increased levels of DNA strand breaks in
lung tissues of mice 3 hours after exposure, and
also documented increased levels of 8-oxodeoxy-
guanosine (8-oxodG) and lipid peroxidation-de-
rived DNA lesions in lung tissues of mice 3-168
hours after exposure. However, the baseline
level of 8-0xodG was 4.8 lesions/10¢ nucleotides
(corresponding to 22 lesions/10° deoxyguanosine
[dG]), indicating spurious oxidation of DNA
during the processing or analysis of samples
(Kato et al., 2013). Another study showed that
pulmonary exposure to MWCNT once every
2 weeks for 24 weeks was associated with an
increased level of 8-0xodG in lung tissues of rats
[the detection method was not described and the
basal level of 8-oxodG was very high (1.3 ng/ug
DNA, corresponding to 7600 lesions/10¢ dG)]
(Xu et al., 2014).

Nose-only inhalation of 0.17-0.96 mg/m? of
MWCNT for 6 hours per day on 5 days per week
for 28 days was associated with increased levels
of DNA strand breaks in the lung tissues of rats
(Kim et al., 2014). A similar study by the same
authors in which rats were exposed by whole-
body inhalation of 0.16-0.94 mg/m? of MWCNT
for 6 hours per day for 5 days also showed
increased levels of DNA strand breaks in lung
tissues (Kim et al., 2012a). Weekly intratracheal
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Table 4.4 Example of an experimental mechanistic approach to evaluate specific physico-
chemical determinants of biological activity for ground multiwalled carbon nanotubes

Multiwalled carbon nanotubes  Defects Metals Quenching In-vivo respiratory toxicity In-vitro
activity genotoxicity
Lung Cytokines
response
Yes Yes (in oxidized Positive Positive Positive Positive
form)
Yes Yes (in reduced Positive Reduced Negative Positive
(less) form)
No No Negative Negative Negative Negative
Yes No Positive Positive Negative Positive

Created by the Working Group with data from Fenoglio et al. (2008) and Muller et al. (2008a)
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instillations of 25.6 ug of MWCNT for 5 weeks
were associated with elevated levels of DNA
strand breaks in the lung tissues of mice, whereas
unaltered levels of formamidopyrimidine glyco-
sylase (FPQG)-sensitive sites were found in the
same tissues (Cao et al., 2014). Two intratracheal
instillations of 0.5 mg/kg bw of SWCNT at an
interval of 24 hours did not increase the level
of DNA strand breaks or FPG-sensitive sites in
mice 2 hours after the last injection (Vesterdal
et al., 2014a). No difference in the levels of DNA
strand breaks was observed in the lung tissues
of rats after intratracheal instillation of a single
dose of 0.2 or 1 mg/kg bw or of 0.04 or 0.2 mg/kg
bw once per week for 5 weeks of MWCNT (Ema
et al., 2013a) or SWCNT (Naya et al., 2012).
Increased immunostaining of 8-oxodG was seen
in the lung tissues of mice exposed to SWCNT
by intratracheal instillation of 50 pg/mouse per
week for 6 weeks (Inoue et al., 2010).

Intraperitoneal injection of 0.25-0.75 mg/kg
bw of MWCNT once per day for 5 days resulted
in increased levels of DNA strand breaks in the
peripheral blood leukocytes of mice 24 hoursafter
the last exposure (Patlolla et al., 2010). A single
intraperitoneal injection of 2-10 mg/kg bw of
MWCNT was also associated with an increased
level of DNA strand breaks in the bone marrow
cells of mice 3 hours after exposure (Ghosh et
al., 2011).

Gastrointestinal exposure by gavage to 0.064
or 0.64 mg/kg bw of SWCNT in either saline
suspension or corn oil was associated with
increased levels of 8-0xodG in the liver and lung
tissues of rats, whereas the same doses did not
affect the level of 8-0xodG in colon mucosa cells
(Folkmann et al., 2009).

(il  Gene mutation

See Table 4.5

Inhalation exposure to 5 mg/m?* of SWCNT
for 5 hours per day for 4 days enhanced muta-
tion of the proto-oncogene K-ras in the lung
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of C57BL/6 mice. Mutations were found 1 day
after the end of inhalation and progressed at 28
days (compared with sham-exposed controls,
P =0.045), but mutations were not increased after
a single pharyngeal aspiration of 5-20 pg/mouse
(Shvedova et al., 2008). One year after exposure,
karyotypic changes were shown by micronuclei
and multinucleated cells in type II pneumocytes
(Shvedova et al., 2014). A study of the intratra-
cheal instillation of 0.2 mg/mouse of MWCNT
once per week for 4 weeks showed enhanced
guanine phosphoribosyltransferase Gpt gene
mutation frequencies in the lungs (Kato et al.
2013).

(il Chromosomal alterations

Table 4.6 lists the studies that have assessed
chromosomal alterations (micronucleus forma-
tion and chromosomal aberration) in rodents
after exposure to CNT.

Only one investigation examined CNT-
induced chromosomal aberrations in rodents.
In this study, Swiss-Webster mice (age, 6 weeks)
receivedintraperitonealinjections of0.25-0.75 mg/kg
bw of native and acid-washed MWCNT (diameter,
12 nm; length, < 12 um) once per day for 5 days. The
bone marrow cells were prepared for cytogenetic
analysis 24 hours after the exposure, which was
associated with a dose-dependent increase in the
levels of chromosome gaps, chromatid and isoch-
romatid breaks, fragments, and structural rear-
rangements, including centromeric fusions and
dicentric chromosomes (Patlolla et al., 2010).

Studies on the formation of micronuclei in
experimental animals have mainly explored
effects after non-pulmonary exposures, although
one study in Wistar rats showed an increased
frequency of micronuclei in type II pneumocytes
isolated 3 days after intratracheal instillation of
0.5-2 mg/rat of MWCNT (Muller et al., 2008b).
Oral exposure to 60-200 or 5-20 mg/kg bw of
SWCNT once per day for 2 days did not affect
the frequency of micronucleated polychromatic
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or immature erythrocytes in the bone marrow
cells of ICR or CD-1 mice (Naya et al., 2011;
Ema et al., 2013b). Intraperitoneal injection of
0.25-0.75 mg/kg bw of MWCNT once per day
for 5 days was associated with an increased
frequency of micronuclei in bone marrow cells in
one study in Swiss-Webster mice (Patlolla et al.
2010). Intraperitoneal injection of 2-10 mg/kg
bw of MWCNT in Swiss albino mice increased
the frequency of micronuclei in bone marrow
cells, whereas the percentage of polychro-
matic erythrocytes was unaltered (Ghosh et al.
2011). Another study showed no increase in the
frequency of micronuclei and no alteration in
the frequency of polychromatic erythrocytes in
the bone marrow cells of ICR mice after a single
intraperitoneal injection of 12.5-50 mg/kg bw of
MWCNT (Kim et al., 2011).

(b) Invitro

(i)  DNAdamage

Studies that have assessed the levels of DNA
damage in cell cultures after exposure to CNT
are presented in Table 4.7. The neutral version
of the comet assay showed unaltered levels of
double-strand breaks in human alveolar basal
epithelial adenocarcinoma A549 cells after expo-
sure to MWCNT (Ju et al., 2014).

Several studies have documented that expo-
sure to SWCNT or MWCNT increased the
levels of DNA strand breaks in human colon
carcinoma tissue HT29 cells (Pelka et al., 2013),
bronchial epithelial BEAS-2B cells (Lindberg et
al., 2009, 2013), lung adenocarcinoma A549 cells
(Karlsson et al., 2008; Cavallo et al., 2012), meso-
thelial cells (Pacurari et al., 2008b; Lindberg et
al., 2013), human gingival fibroblasts (Cicchetti
etal., 2011), Chinese hamster V79 fibroblasts and
primary mouse embryo fibroblasts (Kisin et al.
2007, 2011; Yang et al., 2009), human lympho-
cytes (Ghosh et al., 2011), phytohaemaggluti-
nin-stimulated human lymphocytes (Kim &
Yu, 2014), murine macrophages (Migliore et al.,
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2010; Di Giorgio et al., 2011; Aldieri et al., 2013),
human and rat kidney epithelial cells (Barillet et
al., 2010; Kermanizadeh et al., 2013), and human
hepatocytes (Kermanizadeh et al., 2012; Alarifi
et al., 2014; Vesterdal et al., 2014b). Increased
levels of DNA strand breaks were also observed
in rat aortic endothelial and human lung adeno-
carcinoma A549 cells after exposure to CNT,
but the statistical analysis appeared to have been
based on the total number of comets from a
single experiment rather than the mean values
from independent experiments (Yamashita et
al., 2010; Cheng et al., 2012). However, another
study used all comets in the statistical analysis
and showed no alteration in DNA strand breaks
in human peripheral lymphocytes exposed to
SWCNT (Zeni et al., 2008). [The Working Group
noted the uncertainty that replicates were inde-
pendent experiments.] Other studies have shown
no alterations in the levels of DNA strand breaks
in human lung adenocarcinoma A549 cells and
human HaCaT keratinocytes after exposure to
MWCNT (Thurnherr et al., 2011; McShan & Yu,
2014) or in FE1 MML mouse lung epithelial cells
exposed to SWCNT (Jacobsen et al., 2008).

The protocol of the alkaline comet assay that
measures DNA strand breaks can be extended
using an additional DNA digestion step with DNA
repair enzymes from bacterial or human cells.
The bacterial enzymes include FPG and endo-
nuclease III (ENDOIII). The FPG enzyme also
cleaves DNA at ring-opened formamidopyrimi-
dine lesions, including 2,6-diamino-4-hydroxy-
5-formamidopyrimidine and 4,6-diamino-5-
formamidopyrimidine. ENDOIII lesions
comprise oxidized pyrimidines, such as
uracil glycol, thymine glycol, 5-hydroxycyto-
sine, and 5-hydroxyuracil. Results from these
enzyme-modified comet assay measurements
have been reported either as total sites (DNA
strand breaks plus extra breaks generated by the
enzyme) or enzyme-sensitive sites (breaks gener-
ated by the enzyme minus the basal level of DNA
strand breaks).
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Exposure to SWCNT increased the level of
FPG-sensitive sites in FEI-MML mouse lung
epithelial and human hepatoblastoma HepG2
cells (Jacobsen et al., 2008; Vesterdal et al., 2014b).
Both SWCNT and MWCNT increased the level
of ENDOIII- and FPG-sensitive sites in rat RAW
264.7 macrophages (Migliore et al., 2010), but
the levels of FPG-sensitive sites in human lung
adenocarcinoma A549 cells were unaltered after
exposure to MWCNT, although the validity of
this observation is questionable due to the lack of
a positive control (Cavallo et al., 2012). Another
study also found unaltered levels of FPG-sensitive
sites in A549 cells after exposure to MWCNT
(Karlsson et al., 2008). [The Working Group
noted that the increased levels of FPG-sensitive
sites were observed in cells after exposure to zinc
oxide and copper oxide nanoparticles, indicating
a reliable methodology for measuring oxidative
damage to DNA.]

Exposure of human colon carcinoma cells
to SWCNT did not increase the level of extra
FPG sites (Pelka et al., 2013). Exposure to two
different types of MWCNT increased the levels
of total sites in human hepatoblastoma cells after
treatment with FPG, whereas the FPG-modified
assay generated fewer lesions compared with
DNA strand breaks with one type of MWCNT
(NM 402) but not with the other (NM 400)
(Kermanizadeh et al., 2012). The same authors
also showed increased levels of total sites in renal
cells exposed to the same types of MWCNT, but
the net level of FPG-sensitive sites did not appear
to differ between exposed and unexposed cells
(Kermanizadeh et al., 2013), indicating that the
exposure to MWCNT was not associated with
specific oxidative damage to DNA nucleobases
but did seem to generate DNA strand breaks.
Exposure of human HaCaT keratinocytes to
MWCNT was associated with increased levels of
total FPG sites (McShan & Yu, 2014).

Increased levels of lipid peroxidation product-
derived 3-(2'-deoxy-p-D-erythropentofuranosyl)-
pyrimido([1,2-a]-purin-10(3H)-one] adducts [M1dG
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or N1N2malondialdehyde-2'-deoxyguanosine]
were detected by immunoblot in human bronchial
epithelial BEAS-2B and human pleural mesothelial
Met-5A cells, after 48 hours of exposure to SWCNT
but decreased levels 72 hours after exposure
(Lindberg et al., 2013). No increase in the levels of
8-0x0dG, measured by high-performance liquid
chromatography with electrochemical detec-
tion, were observed in human pleural mesothe-
lial Met-5A cells after exposure to SWCNT or
MWCNT (Ogasawara et al., 2012). [The Working
Group noted the uncertainty that replicates were
independent experiments.] However, the base-
line level of 8-0x0dG (8 lesions/10¢ dG) was high,
indicating spurious oxidation of DNA during the
processing or analysis of samples (Ogasawara et
al., 2012). [In keeping with the recommenda-
tions of the European Committee on Oxidative
DNA Damage, reports with baseline levels of
8-0x0dG higher than 5 lesions/10¢ dG in unex-
posed cells or animals should be interpreted with
caution because of the risk of flawed method-
ology (ESCODD, 2003).] One study investigated
oxidative damage to DNA in cells using anti-
body-based techniques, and showed increased
levels of 8-oxodG by immunostaining in chicken
lymphoid cells after exposure to MWCNT
(Mohiuddin et al., 2014).

(il  Gene mutations

Exposure of mouse embryonic stem cells to
MWCNT increased the mutation frequency in
the adenine phosphoribosyltransferase (Aprt)
gene (Zhu et al. 2007). However, mutation
frequency in the hypoxanthine-guanine phos-
phoribosyltransferase (Hgprt) gene was unal-
tered after Chinese hamster lung cells were
exposed to MWCNT (Asakura et al, 2010).
Increased levels of mutations in the Hgprt gene
were observed in human lymphoblastic MCL-5
cells after exposure to SWCNT with a length of
1-3 um, whereas shorter (0.4-0.8 um) and longer
(5-30 pm) nanotubes were not associated with
mutagenicity (Manshian et al., 2013). Long-term
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exposure (24 days) of FE1-Muta™Mouse lung
epithelial cells to SWCNT (length < 1 um) did
not increase the frequency of mutation in the cII
gene (Jacobsen et al., 2008).

(iii)

Micronucleus formation

The results on the induction of micronuclei in
cultured cells after exposure to CNT have been
conflicting. No difference between the distribu-
tion of studies showing an increased formation
of micronuclei or a null effect was apparent, with
regard to the use of the cytokinesis-block micro-
nucleus protocol or other protocols to score
micronuclei. Specific assay protocols have there-
fore not been highlighted in the descriptions of
the findings in cell cultures. Table 4.8 lists the
studies that have assessed chromosomal altera-
tions in cell cultures after exposure to CNT.

The assessment of micronucleus frequency
in human lymphocytes after exposure to six
different types of MWCNT did not show a
monotonic concentration-response relationship,
although one sample with a short fibre length
(0.4 pm) gave statistically significant results at
all concentrations tested and one other sample
yielded increased micronucleus frequencies at a
low concentration of 2.5 pg/mL. The diameter
and length of the tubes could not explain the
observed results and other structural differences,
including surface area and transition metal
content, might be implicated (Tavaresetal.,2014).
Observations from cultured lymphocytes indi-
cated no effect on micronucleus formation after
exposure to MWCNT (Szendi & Varga, 2008),
whereas both MWCNT and SWCNT increased
the frequency of micronuclei in another study in
lymphocytes (Cveticanin et al., 2010). Exposure
to SWCNT was also associated with an increased
frequency of micronuclei in phytohaemaggluti-

to MWCNT. Exposure of human immortalized
bronchial epithelial BEAS-2B cells to SWCNT
yielded either a null effect (Lindberg et al., 2009,
2013) or an increased frequency of micronuclei
(Manshian et al., 2013). Similarly, hamster lung
V79 fibroblasts responded with unaltered micro-
nucleus frequency (Kisin et al., 2007; Pelka et
al., 2013) or increased micronucleus frequency
(Asakura et al., 2010; Cicchetti et al., 2011; Kisin
et al., 2011) after exposure to either SWCNT or
MWCNT. Increased micronucleus frequencies
were also observed in human breast epithelial
MCEF-7 and lung adenocarcinoma A549 cells,
rat lung epithelial cells, mouse RAW 264.7
macrophages, and human B-lymphoblastoid
MCL-5 cells after exposure to either MWCNT
or SWCNT (Muller et al., 2008b; Di Giorgio et
al., 2011; Kato et al., 2013; Manshian et al., 2013).
A sample of MWCNT with a relatively short fibre
length (0.7 um) and low transition metal content
(iron, 0.48%; cobalt, 0.49%) was used to study the
impact of structural defects and metals content
on the formation of micronuclei in rat lung
epithelial cells. Ground MWCNT (producing
structural defects) increased the micronucleus
frequency, whereas heated (2400 °C) ground
MWCNT (which ablates the structural defects
and eliminates metals) did not (Muller et al.
2008a).

[Collectively, cell culture studies document
the ability of MWCNT and SWCNT to increase
the frequency of micronuclei in proliferating
cells, although substantial differences in effects
were seen between studies, possibly originating
from differences in cell types, characteristics
of the CNT, dispersion protocols, and assay
conditions.]

(iv)

Chromosomal aberrations

nin-stimulated human lymphocytes (Kim &
Yu, 2014). Increased frequencies of micronuclei
(Kato et al., 2013) or no increase in micronuclei
(Thurnherr et al., 2011) were observed in human
lung adenocarcinoma A549 cells after exposure

Table 4.8 lists in-vitro investigations in which
established cell lines were exposed to SWCNT
and MWCNT.

Increased chromosome breakage and
aneuploid cells were demonstrated in mouse
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macrophage RAW 264.7 cell lines, Chinese
hamster lung (CHL/IU) cell lines, primary
human respiratory epithelial SAEC cell lines,
and human bronchial epithelial BEAS-2B cells
(Sargent et al., 2009, 2012a; Asakura et al., 2010;
Di Giorgio et al., 2011; Siegrist et al., 2014). Other
investigations in immortalized Chinese hamster
lung fibroblasts and Chinese hamster ovary cells
did not show increased aneuploidy or chromo-
somal aberrations after exposure to SWCNT
(Naya et al., 2011; Ema et al., 2013b) or MWCNT
(Kim et al., 2011). Both SWCNT and MWCNT
increased chromosome and chromatid breakage
in phytohaemagglutinin-stimulated human
lymphocytes (Catalan et al., 2012).

Chromosome breakage and translocations
between chromosomes were observed in an
immortalized mouse macrophage RAW 264.7
cell line after exposure to 10 ug/mL of SWCNT or
MWCNT. The modal number of the macrophage
cell line karyotype was 40 chromosomes; however,
the mean number of chromosomes per cell after
exposure to either SWCNT or MWCNT was
20-60 with no distinct modal number, indicating
a high degree of aneuploidy in the original cell
line (Di Giorgio et al., 2011). Asakura et al. (2010)
demonstrated an 8-34-fold increase in poly-
ploidy in Chinese hamster lung cells treated with
MWCNT (diameter, 88 nm; length, 5 pm). The
authors of both studies attributed the increase in
polyploid cells to a failure of cytokinesis (Asakura
et al., 2010; Di Giorgio et al., 2011).

Chromosome breakage and errors in chro-
mosome number were observed in cultured
primary human respiratory epithelial cells after
exposure to either SWCNT or MWCNT deter-
mined by analysis of chromosomes spreads or
fluorescence in situ hybridization. The analysis
of cultured primary human respiratory cells
exposed to SWCNT demonstrated significantly
increased aneuploidy, which was due to an equal
number of gains and losses of chromosomes,
while MWCNT-exposed cells had a significantly
greater number of chromosomal gains than

losses, indicating polyploidy (Sargent et al., 2009,
2012a, b; Siegrist et al., 2014).

[Collectively, in-vitro investigations in
immortalized and primary cells documented
the ability of CNT to increase the frequency of
chromosomal damage and aneuploidy in prolif-
erating cells. Similar to the results from studies
of micronucleus frequency after exposure to
CNT, substantial effect differences between
studies were found, possibly originating from
differences in cell types, characteristics of CNT,
dispersion protocols, and assay conditions.]

(v)  Alterations in the mitotic spindle, cell cycle,
and sister-chromatid exchange

The data that demonstrated chromosomal
damage and errors in chromosomes after in-vitro
exposure to either SWCNT or MWCNT (see
Table 4.8) suggested an alteration in the integrity
of the mitotic spindle, which was investigated
by exposure to SWCNT (diameter, 1.0 nm) or
MWCNT (diameter, 10-20 nm). The exposure
to 1-nm SWCNT resulted in mitotic spindles
with multiple poles (Sargent et al., 2009, 2012a),
while cells treated with 10-20-nm MWCNT had
mitotic spindles with one pole (Sargent et al.,
2012b; Siegrist et al., 2014). Three-dimensional
reconstructions of 0.1-um optical sections
showed CNT integrated with microtubules,
DNA and within the centrosome structure.
Further analysis by confocal microscopy and
TEM demonstrated fragmented centrosomes
after exposure to either SWCNT or MWCNT
(Sargent et al., 2009, 2012a, b; Siegrist et al., 2014).
The mitotic disruption associated with SWCNT
treatment resulted in a G2/M block in the cell
cycle while MWCNT treatment was associated
with a block in G1/S (Sargent et al., 2009, 2012b;
Siegrist et al., 2014). [When mammalian cells
are exposed to agents that cause a block in the
S-phase, the DNA is repaired by homologous
recombination. The increased recombination
between sister chromatids can be observed by
the incorporation of 5-bromodeoxyuridine. The
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increase in sister chromatid exchange suggests
genotoxicity (Pfuhler et al., 2013).] The observa-
tion of increased sister-chromatid exchange in
Chinese hamster ovary AA8 cells after exposure
to MWCNT 90 nm in diameter further suggests
a block in the S-phase (Kato et al., 2013).

[To date, four studies have shown
CNT-induced mitotic spindle and cell-cycle
disruption and three investigations demon-
strated CNT-mediated centrosome disruption.
These investigations documented the ability of
CNT to disrupt the mitotic spindle, fragment the
centrosome, and cause a block in the cell cycle in
cultured cells.]

(vi)  Mutation in bacteria

See Table 4.9

The mutagenic effect of MWCNT was eval-
uated in the bacterial reverse mutation assay
(Ames test) in Salmonella typhimurium TA98
and TA100 and in Escherichia coli WP2uvrA
in the presence and in absence of a metabolic
activation system. MWCNT did not produce
mutagenic effects at any concentration tested.
In S. typhimurium TA98 in absence of meta-
bolic activation, a reduction in the number of
spontaneous revertant colonies was observed at
concentrations ranging from 0.13 to 9.0 pg/plate,
which was not concentration-dependent. In this
bacterial strain, spontaneous mutational DNA
damage is reverted to wild-type by specific
mechanisms of frameshift (Di Sotto et al., 2009).

Kim et al. (2011) studied high-aspect-ratio
(diameter, 10-15 nm;length, =10 nm) and low-as-
pect-ratio (diameter, 10-15 nm; length, =150
nm) MWCNT. Neither the high- nor the low-as-
pect-ratio MWCNT induced genotoxicity in the
bacterial reverse mutation test in Salmonella
typhimurium TA98, TA100, TA1535 and TA1537,
and in Escherichia coli WP2uvrA in the presence
and in absence of a metabolic activation system.
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44 Other mechanisms of
carcinogenesis

No published studies concerning the health
effects of CNT in exposed humans were avail-
able to the Working Group. The body of relevant
literature primarily comprises in-vivo studies
in experimental animals, in-vitro studies using
human cell lines, and a limited number of
studies of occupational exposure (see Section 1,
Table 1.5).

There were no studies in humans exposed
to CNT only. However, four studies have been
published in which several biological end-points
of an occupational cohort (in Taiwan, China)
exposed to engineered nanomaterials (n = 241)
were compared with those of an unexposed
control group (n = 196). Among the population
exposed to engineered nanomaterials, a subgroup
of workers (n = 57) was exposed to CNT origi-
nating from three facilities that used CNT and
one facility that used and produced CNT. [The
Working Group noted that the number of subjects
in each individual study varied, probably due to
missing data on specific end-points or follow-up.
With the exception of the study describing the
results on fractional exhaled nitric oxide, the
studies did not report results separately for the
CNT-exposed population.] Wu et al. (2014)
described an increase in fractional exhaled nitric
oxide in workers exposed to nanomaterials, that
was limited to the population exposed to tita-
nium dioxide (B = 0.351, SE = 0.166; P = 0.035).
Results among CNT-exposed workers (n = 57)
were null (B = 0.045, SE = 0.124; P = 0.715).
Liou et al. (2012) studied approximately the
same population and measured antioxidant
enzyme activities, markers of inflammation and
oxidative damage, cardiovascular biomarkers,
genotoxicity, lung function, and neurobehav-
jioural functions. In a cross-sectional evalua-
tion, associations were found with significantly
lower antioxidant enzyme activity (i.e. super-
oxide dismutase [SOD]), elevated markers of
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Table 4.9 Studies of mutation in bacteria exposed to carbon nanotubes

Material® Cells End- Concentration Resultse Reference
point (LEC or HIC)®
Without  With
metabolic metabolic
activation activation
system system
MWCNT (diameter, 110-170 nm;  Salmonella Reverse 9.0 pg/plate = - Di Sotto et
length, 5-9 pum) typhimurium TA98  mutation al. (2009)
and TA100 and
Escherichia coli WP2
uvrA
MWCNT (high-aspect-ratio: Salmonella Reverse 1000 pg/plate - - Kim et al.
diameter, 10-15 nm; length, typhimurium TA98,  mutation (2011)
=10 pum; low-aspect-ratio: TA100, TA1535, and
diameter, 10-15 nm; length, TA1537
=150 nm)
MWCNT (diameter, 110-170 nm;  Escherichia coli WP2  Reverse 9.0 pg/plate - - Di Sotto et
length, 5-9 pum) uvrA mutation al. (2009
MWCNT (high-aspect-ratio: Escherichia coli WP2  Reverse 1000 pg/plate - - Kim et al.
diameter, 10-15 nm; length, uvrA mutation 2011)

=10 um; low-aspect-ratio:
diameter, 10-15 nm; length,
~150 nm)

* Nanomaterial characteristics include diameter and length

b LEC, lowest effective concentration; HIC, highest ineffective concentration

¢ +, positive; -, negative
MWCNT, multiwalled carbon nanotubes

cardiovascular disease (i.e. fibrinogen and
intercellular adhesion molecule-1), and reduced
neurobehavioural function. No specific analyses
for the CNT-exposed population (n = 52) were
presented. In a longitudinal analysis of a subpop-
ulation of the same population with a follow-up
of 6 months, Liao et al. (2014a) reported a signifi-
cant association between exposure to engineered
nanomaterials and an increase in antioxidant
enzymes (SOD and GSH peroxidase [GPx]) and
cardiovascular markers (vascular cell adhesion
molecule and paraoxonase) among exposed
workers compared with control workers over the
follow-up period. The results were not presented
by subtype of engineered nanomaterials. Liao
et al. (2014b) studied the same exposed popul-
ation for work-related symptoms and diseases
and reported a significant worsening of allergic
dermatitis among workers exposed to engineered

nanomaterial. No specific results for workers
exposed to CNT were presented.

[The Working Group noted that the expo-
sure assessments of Liao et al. (2014a, b), Liou
et al. (2012), and Wu et al. (2014) were based
on the control-banding approach of Paik et al.
(2008). The exposure scores were based on both
an estimate of nano-toxicity and the expected
probability of exposure. The selection of controls
for the above studies was not clearly described,
although confounding factors did not seem
to differ between the exposed and unexposed
workers except for sex and level of education.]
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4.4.1 Inflammasome activation

(a)  Human cells in vitro

An interlaboratory validation study
confirmed the extracellular release of IL-1f
from the human THP-1 macrophage cell line
exposed to as-produced MWCNT (Cheap
Tubes Inc., Brattleboro, VT, USA) at non-cy-
totoxic doses (Xia et al., 2013). A comprehen-
sive analysis of surface functionalization of
the as-produced MWCNT (Li et al., 2013),
and the dispersion of MWCNT in bovine
serum albumin or by the triblock copolymer
Pluronic F108 (Wang et al., 2012a) showed that
surface charge, chemical functionalization, and
dispersal state were important determinants of
inflammasome activation and release of IL-1f
from THP-1 macrophages. Anionic functional-
ization (carboxylate or PEG) decreased, cationic
functionalization (polyetherimide) increased
(Li et al., 2013), and dispersion (using Pluronic
F108) prevented (Wang et al., 2012a) the release
of IL-1p from THP-1 macrophages .

Platelet-derived growth factor (PDGEF),
in combination with transforming growth
factor (TGF)-p, activates the “epithelial-mesen-
chymal trophic unit” in the lungs resulting in
collagen deposition and fibrosis (reviewed in
Bonner et al., 2013). These reciprocal interac-
tions of cytokines and growth factors, initiated
by inflammasome activation and the release of
IL-1P from macrophages, were repeated in tran-
swell co-cultures of human THP-1 macrophages
and immortalized human BEAS-2B lung epithe-
lial cells exposed to as-produced or cationic
functionalized MWCNT (Wang et al., 2012a; Li
et al., 2013).

Hamilton et al. (2013b) used the same as-pro-
duced MWCNT with variable diameters and
lengths to assess the role of dimensions in the
release of IL-1f from human THP-1 macrophages
or murine primary alveolar macrophages.
MWCNT with a greater diameter (30-50 nm) or
length (10-30 um) were more potent in inducing
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the release of IL-1p than shorter (length < 2 um)
or thinner (diameter, 10-20 nm) MWCNT. These
investigatorsalsostudiedapanelofnineMWCNT
(including the as-produced sample from Cheap
Tubes) and compared their potency for inflam-
masome activation and IL-13 and IL-18 release in
primary murine alveolar macrophages co-stim-
ulated with 20 ng/mL of lipopolysaccharide
(LPS). Linear regression analysis demonstrated
a significant correlation between the nickel
content of the MWCNT samples and the release
of IL-1p (Hamilton et al., 2012). Removal of nickel
contaminants from the as-produced MWCNT
sample slightly decreased the release of IL-1f in
this in-vitro assay (Hamilton et al., 2013a). Haniu
et al. (2011) confirmed that another commercial
MWCNT sample (VGCF; Showa Denko, Tokyo,
Japan) also induced IL-1p as well as the release
of tumour necrosis factor (TNF)-a from human
THP-1 macrophages. Inflammasome activation
and IL-1P and IL-18 release was also induced by
CNT (80% DWCNT; DWCNT, 0.1-100 pm in
length) synthesized by CVD in human periph-
eral blood monocytes primed with LPS (Meunier
et al., 2012).

(b)  Experimental systems in vivo
See Table 4.10

(i)  Inhalation

Three 13-week studies of two MWCNT and
one CNF in Wistar rats showed that exposure
to MWCNT induced persistent inflammation.
In the studies of Ma-Hock et al. (2009) and
Pauluhn (2010b), these inflammatory responses
to MWCNT were observed in the lungs of males
and females. The response to CNF was observed
at high concentration (Delorme et al., 2012). The
minimum concentrations that induced persistent
or moderate inflammation were 2.5 mg/m? and
1.5 mg/m* of MWCNT and 25 mg/m? of CNF
(Ma-Hock et al., 2009; Pauluhn, 2010b).

Histopathological analysis of the 13-week
inhalation study of MWCNT of Ma-Hock et al.
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(2009) demonstrated focal granuloma forma-
tion and the accumulation of subpleural cells
in a dose-dependent manner. Masson’s stain
established the presence of collagen within the
sites of granuloma formation, while a reticulin
fibre index further confirmed a dose-dependent
increase in collagen within the alveolar walls
(Treumann et al., 2013).

Two 4-week studies of SWCNT and MWCNT
in Wistar rats showed evidence of transient (not
persistent) inflammation. The maximum concen-
tration that did not induce significant inflamma-
tion was 0.13 mg/m? of SWCNT and 0.37 mg/m?
of MWCNT (Morimoto et al., 2012a, b).

A4-weekstudyof MWCNT (length, 330.18 nmy;
diameter, 10-15 nm) in Sprague-Dawley rats with
a 90-day recovery period showed no statistically
significant difference in the levels of inflammatory
cytokines, bronchoalveolar cell distribution, or
markers in the BALF or in histopathology (Kim
et al., 2014).

Exposure to MWCNT for 6 hours provided
evidence of persistent inflammation at high
concentrations in male rats (Ellinger-Ziegelbauer
& Pauluhn, 2009).

Kasai et al. (2015) reported a dose-inde-
pendent increase in inflammatory parameters
after exposure of male rats to a lower dose of
MWCNT (0.2 mg/m?). In male mice, subpleural
fibrosis increased 2 and 6 weeks after inhalation
of MWCNT (Ryman-Rasmussen et al., 2009a).

(i) Intratracheal instillation

Fifteen studies of intratracheal instillation in
rats and pharyngeal aspiration in mice have been
reported (Lam et al., 2004; Warheit et al., 2004;
Muller et al., 2005, 2008b; Shvedova et al., 2005;
Aiso et al., 2010; Cesta et al., 2010; Han et al.,
2010; Kobayashi et al., 2010, 2011; Mercer et al.,
2011; Porter et al., 2010; Morimoto et al., 2012b, ¢;
Murray et al., 2012; Sager et al., 2013; Fujita et al.,
2015), most of which revealed that exposure to
SWCNT and MWCNT led to persistent inflam-
mation in the lung. In contrast, several studies in

rats and mice revealed that exposure to SWCNT
and MWCNT led to transient responses in the
lung. [From the above studies, the Working
Group considered that the pulmonary responses
of rats and mice to SWCNT and MWCNT did
not differ significantly.]

(c)  Experimental systems in vitro

CNT, as well as asbestos fibres and poorly
soluble crystalline particles (IARC, 2012), have
been shown to induce inflammation, as assessed
by the release of pro-inflammatory mediators
(reviewed in Boyles et al., 2014). Two hypoth-
eses have been proposed for the pro-inflamma-
tory effects of high-aspect-ratio nanoparticles,
including CNT and asbestos fibres: (1) frustrated
phagocytosis; and (2) inflammasome activation
(see Fig.4.1). Frustrated phagocytosis is elicited in
response to high-aspect-ratio, fibrous nanoparti-
cleslonger than ~15 um that cannotbe completely
phagocytized by macrophages, resulting in their
impaired clearance from the lungs and pleural
linings and persistent inflammation accompa-
nied by the prolonged release of ROS, pro-in-
flammatory mediators, and proteases (Johnston
et al., 2010). Inflammasome activation triggered
by lysosomal damage after the phagocytosis of
crystalline minerals (e.g. silica, asbestos fibres) or
CNT is the second mechanism that leads to the
secretion of the pro-inflammatory mediators,
IL-1B and IL-18 (Biswas et al., 2011; Palomaki et
al., 2011). These two mechanisms are not exclu-
sive and Hamilton et al. (2009) proposed that
all high-aspect-ratio nanomaterials can induce
frustrated phagocytosis and inflammasome
activation similarly to asbestos fibres. The exper-
imental evidence for inflammasome activation
and the release of pro-inflammatory mediators
based on in-vivo and in-vitro studies is summa-
rized below.

Functionalized SWCNT produced by the
HiPCO procedure (Unidym Inc., Sunnyvale, CA,
USA) were evaluated for inflammasome acti-
vation and the release of IL-1p in LPS-primed,
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Fig. 4.1 Inflammasome activation and inflammation induced by nanoparticles, including carbon

nanotubes
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Adapted from Biswas et al. (2011). Copyright © 2011

ASC, apoptosis-associated specific-like protein containing a caspase recruitment domain (CARD); IL, interleukin; LPS, lipopolysaccharide;
NALP3, a member of the NOD-like receptor family; NF-«xB, nuclear factor-kappa B; TLR, toll-like receptor

immortalized, bone marrow-derived murine
macrophages (Yang et al, 2013). Oxidized
SWCNT increased the release of IL-13 while
benzoic acid functionalization decreased the
release of pro-inflammatory cytokines.

See also Hamilton et al. (2013a); discussed in
Section 4.4.1 (b).
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4.4.2 Release of cytokines, chemokines, and
growth factors

(@) Exposed humans

Markers of inflammation and oxidative
stress were monitored among workers handling
engineered nanomaterials (Liao et al., 2014a, b).
No effects were reported for IL-6 and IL-6 recep-
tors, but depression of antioxidant enzymes was
found among these workers (Liou et al., 2012).
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(b) Human cells in vitro

A panel of well-characterized MWCNT was
investigated for their ability to stimulate cytokine
release from human THP-1 macrophages and
the immortalized human mesothelial Met-5A
cell line. Only long CNT samples (mean length,
13-36 um) at a sublethal dose of 5 pg/mL
induced the release of TNF-a, IL-1p, and IL-6
from macrophages but not from mesothe-
lial cells after 24 hours (Murphy et al., 2012).
Immortalized human lung epithelial BEAS-2B
cells were exposed to 30 ug/mL of highly purified
(10 minutes at 37 °C) MWCNT (HTT2800 (see
Haniuetal., 2010); diameter, 100-150 nm; length,
10-20 um) and assessed for the release of TNF-a,
IL-1B, IL-6, IL-8, IL-10, and IL-12 after 24 hours;
only the release of IL-6 and IL-8 was detected
(Tsukahara & Haniu, 2011). A dynamic cell
growth model designed to mimic expansion and
contraction during normal breathing was estab-
lished using human lung adenocarcinoma A549
cells. Two samples of SWCNT (Cheap Tubes)
were tested for the release of the cytokine, IL-8: a
short CNT (diameter, 1-2 nm; length, 0.5-2 pm)
and a long CNT (diameter, 1-2 nm; length, 5-30
pm). Only the long CNT induced the release of
IL-8 after 24-72 hours and the levels were signif-
icantly higher in the dynamic cell growth model
compared with static growth conditions (Patel &
Kwon, 2013). A triple co-culture model of human
lung epithelial 16HBE14o0 cells, primary human
blood-derived dendritic cells, and primary
human blood-derived macrophages in tran-
swell cultures was used to evaluate the release
of TNF-a and IL-8 after exposure to MWCNT
(3 or 30 pg/mL) for 24 hours. As-produced and
carboxylated MWCNT synthesized by CVD
(Chengdu Carbon Nanomaterials R&D Center,
Sichuan, China) were pre-coated with Curosurf
120 (porcine lung surfactant). Pre-coated,
as-produced, and carboxylated MWCNT elic-
ited the release of both TNF-a and IL-8 in this
model system (Gasser et al., 2012). Transwell

co-cultures of human THP-1 macrophages and
immortalized human lung epithelial BEAS-2B
cells exposed to MWCNT released the profi-
brotic mediators, TGF-pf1 and PDGF (Wang et
al., 2012a; Li et al., 2013).

[The use of in-vitro human or animal cell
systems does not represent physiological routes
of exposure for humans. The doses used in the
in-vitro studies should be relevant to those to
which humans are exposed, and the doses used
in in-vitro studies may lead to mechanisms that
differ from those that arise from the actual expo-
sure concentrations of humans. Thus, interpreta-
tion of the data, including those on cytotoxicity
and mechanisms, obtained from in-vitro studies
should be evaluated cautiously.]

(c)  Experimental systems in vivo

Several studies have investigated the
pulmonary effects of CNT after inhalation,
intratracheal or intranasal instillation, and
pharyngeal aspiration. The results of these studies
are summarized and the characteristics of the
CNT investigated are described in Table 4.11.

Inflammatory responses were assessed
after the inhalation of MWCNT (Ma-Hock et
al., 2009; Kim et al., 2014; Kasai et al., 2015).
Ma-Hock et al. (2009) performed a 5-day range-
finding inhalation study to select test concen-
trations for a 90-day inhalation toxicity study
with MWCNT (Nanocyl NC 7000). Groups of
male Wistar rats were exposed by head/nose-
only inhalation to an aerosol of MWCNT dust
for 6 hours per day on 5 consecutive days at
target concentrations of 0, 2, 8, and 32 mg/m?>.
Treatment-related increases in BALF total cell
counts (due to a significant increase in polymor-
phonuclear neutrophils), total protein content,
and enzyme activities were observed in all
treated groups 3 days after the last exposure.
At the end of the 24-day recovery period, the
same pattern of BALF findings was found. In the
animals exposed to 2 mg/m? (the lowest concen-
tration), slight recovery was observed; protein
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content and N-acetyl glucosaminidase activity
returned to control levels, but the other parame-
ters were still significantly increased. Kasai et al.
(2015) conducted a 13-week study in male and
female Fischer 344 rats exposed by whole-body
inhalation to MWCNT (Hodogaya Chemical
Co., Ltd, Tokyo, Japan) at concentrations of 0,
0.2, 1, and 5 mg/m? using a generation and expo-
sure system based on the cyclone sieve method.
In the BALF analyses, inflammatory parameters
were increased in a concentration-dependent
manner in both sexes from the lowest dose
upwards (Kasai et al., 2015). A 4-week inhalation
study of MWCNT (length, 330.18 nm; diam-
eter, 10-15 nm) in Sprague-Dawley rats with a
recovery period of up to 90 days showed that
the levels of inflammatory cytokines (TNF-a,
TGEF-B, IL-1, IL-2, IL-4, IL-5, IL-10, IL-12, and
interferon (IFN)-y) and inflammatory proteins
(albumin, total protein, and LDH) in the BALF
did not differ significantly (Kim et al., 2014).
No local pulmonary effects were observed in
C57BL/6 mice exposed to a mixture of MWCNT
and graphitic nanofibres (Mitchell et al., 2007).

Intratracheal or intranasal instillation and
pharyngeal aspiration are not physiological
routes of exposure for humans but have been
used in mice and rats to investigate the potential
pulmonary and systemic toxicity of high concen-
trations of CNT.

Biological responses to MWCNT (Mitsui &
Co. Ltd) were assessed in male rats after a single
intratracheal instillation (0.04-1 mg/kg bw)
(Kobayashi et al., 2010). Transient pulmonary
inflammatory responses were observed in the
lungs of the rats exposed to 1 mg/kg bw of
MWCNT. However, the levels of cytokines in
BALF did not change significantly at any time-
point (3, 7, 28, or 91 days after exposure).

Pulmonary and systemic responses were
assessed in male rats after the intratracheal instil-
lation of highly pure, well dispersed, and well-
characterized SWCNT. The numbers of BALF
inflammatory cells (neutrophils, macrophages,
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lymphocytes, and eosinophils) were increased
in a dose-dependent manner. LDH values and
the protein contents in BALF were signifi-
cantly greater in the groups exposed to doses of
SWCNT of 0.2 mg/kg bw and higher compared
with those in the control group up to 3 months
after instillation. Only small differences were
observed between the SWCNT-exposed groups
and the control group for the cytokines IL-1a,
IL-2, IL-4, IL-10, granulocyte macrophage colo-
ny-stimulating factor, IFN-y, and TNF-a at any
of the time-points, but significant increases were
observed for IL-1p and IL-6 at several time-
points (Kobayashi et al., 2011).

Intratracheal instillation of 0.5 mg of
SWCNT into male ICR mice induced alveolar
macrophage activation, various chronic inflam-
matory responses, and severe pulmonary gran-
uloma formation. Affymetrix microarrays were
used to investigate the molecular effects on the
macrophages exposed to SWCNT. A biological
pathway analysis, a literature survey, and exper-
imental validation suggested that the uptake
of SWCNT into the macrophages can activate
various transcription factors, such as nuclear
factor kappa B (NF-«kB) and activator protein
1 (AP-1), and that this leads to oxidative stress,
the release of pro-inflammatory cytokines, the
recruitment of leukocytes, the induction of
protective and anti-apoptotic gene expression,
and the activation of T-cells. [ The resulting innate
and adaptive immune responses may explain the
chronic pulmonary inflammation and granu-
loma formation in vivo caused by SWCNT (Chou
et al., 2008).]

Pulmonary and systemic immune responses
induced by intratracheal instillation of 5, 20,
and 50 mg/kg bw of MWCNT (Sigma-Aldrich,
St. Louis, MO, USA (Cat. No. 659258)) into male
mice were investigated (Park et al., 2009). Total
numbers of immune cells in BALF were signif-
icantly increased in the treated groups and the
distribution of neutrophils was elevated on day
1 after instillation. Pro-inflammatory cytokines




(IL-1, TNF-q, IL-6, IL-4, IL-5, IL-10, IL-12, and
IFN-y) were also increased in a dose-dependent
manner in both BALF and blood. The highest
levels of the cytokines were seen on day 1 after
instillation and then decreased. The levels of
T-helper (Th) 2-type cytokines (IL-4, IL-5, and
IL-10) in the treated group were higher than those
of the Th1-type cytokines (IL-12 and IFN-y).

Male Swiss mice were intranasally instilled
with 1.5 mg/kg bw of CNT (DWCNT, 80%;
SWCNT, 20%). Local oxidative perturbations
were investigated using electronic spin reso-
nance (ESR) spin trapping experiments, and
systemic inflammation was assessed by meas-
uring the plasma concentrations of TNF-a,
IL-1a, IL-1B, IL-6, insulin-like growth factor 1,
leptin, granulocyte-colony stimulating factor,
andvascularendothelial growth factor (Crouzier
et al., 2010). Examination of the lungs and the
elevation of pro-inflammatory cytokines in the
plasma (leptin and IL-6 at 6 h) confirmed the
induction of an inflammatory response, which
was accompanied by a decrease in the local
oxidative stress.

A dose-response and time-course study of
MWCNT (Mitsui & Co. Ltd) was conducted in
male mice exposed by pharyngeal aspiration.
Examination of the BALF demonstrated that
pulmonary inflammation and damage were
dose-dependent and peaked at 7 days after
exposure. By 56 days after exposure, markers
of pulmonary inflammation and damage began
returning to control levels, except in mice
exposed to the 40-ug MWCNT dose which
still had significantly higher levels than vehicle
controls (Porter et al., 2010).

Pharyngeal aspiration of SWCNT (CNI,
Inc.) by female C57BL/6 mice elicited unusual
pulmonary effects that combined robust but
acute inflammation with early-onset, progres-
sive fibrosis and granulomas. A dose-dependent
increase in LDH and y-glutamyl transferase
activities was found in the BALF, together with
an accumulation of 4-hydroxynonenal [an
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oxidative biomarker] and the depletion of GSH
in the lungs. An early accumulation of neutro-
phils, followed by lymphocyte and macrophage
influx, was accompanied by an early elevation of
pro-inflammatory cytokines (TNF-a and IL-1p)
followed by fibrogenic TGF-p1 (Shvedova et al.,
2005).

Female C57BL/6 mice were maintained
on vitamin E-sufficient or vitamin E-deficient
diets and were exposed by aspiration to
SWCNT (CNI, Inc.) to explore and compare
their pulmonary inflammatory reactions. The
vitamin E-deficient diet caused a 90-fold deple-
tion of a-tocopherol in the lung tissue and
resulted in a significant decline of other antioxi-
dants (reduced GSH and ascorbate) as well as an
accumulation of lipid peroxidation products. A
greater decrease in pulmonary antioxidants was
detected in SWCNT-treated vitamin E-deficient
mice compared with controls. The lower levels
of antioxidants in vitamin E-deficient mice
were associated with a higher sensitivity to
SWCNT-induced acute inflammation (increases
in the total number of inflammatory cells, the
number of polymorphonuclear leukocytes, the
release of LDH, total protein content, and the
levels of pro-inflammatory cytokines, TNF-a
and IL-6) and enhanced profibrotic responses
(elevation of TGF-P and collagen deposition).
Exposure to SWCNT also markedly shifted the
ratio of cleaved to full-length extracellular SOD
(Shvedova et al., 2007).

In female C57BL/6 mice, the inhalation of
stable and uniform dispersions of 5 mg/m? of
unpurified SWCNT (CNI, Inc.; iron, 17.7% wt)
for 5 hours per day for 4 days was compared
with the pharyngeal aspiration of varying doses
(5-20 g/mouse) of the same SWCNT. Overall, the
outcomes of inhalation exposure to respirable
SWCNT were very similar to those of pharyn-
geal exposure, both of which led to pulmonary
toxicity. However, inhalation of SWCNT was
more effective than aspiration in causing inflam-
matory response, oxidative stress, collagen

133



IARC MONOGRAPHS - 1M1

deposition, and fibrosis, as well as mutations at
the K-ras gene locus in the lung (Shvedova et al.,
2008).

(d)  Experimental systems in vitro

No data were available to the Working Group

4.4.3 Immune effects

(@) Exposed humans

No data were available to the Working Group.

(b)  Human cells in vitro

In in-vitro test systems, macrophages and
other relevant mammalian cells are frequently
used as test cells for nanomaterials because
they are primarily responsible for surveillance
in the body. However, they are highly reactive
with endotoxins and the distinction between the
response to endotoxins and that to nanomate-
rials is difficult to make. Consequently, contam-
ination with endotoxins confounds the result
of tests in vitro. A preliminary examination for
endotoxins is therefore required to minimize
contamination or confirm an insignificant level
in the test sample. Their quantification is also
important for an adequate interpretation of data
obtained in in-vitro biological test systems (ISO,
2010e).

Exposure to CNT may alter innate immune
responses by triggering the complement system,
the clearance of apoptotic cells by macrophages,
and the induction of adaptive immune responses
(reviewed by Andersen et al., 2012). Different
responses have been reported for as-produced
versus functionalized or coated CNT, and delib-
erate surface modifications have been attempted
to enhance biocompatibility for drug delivery
applications (Hamad et al., 2010; Moghimi et
al., 2010). The complement system is present in
the lining fluid of the lung, and inhaled particles
and fibres have been shown to induce comple-
ment-generating chemotactic activity that corre-
lates with macrophage accumulation in vivo
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(Warheit et al., 1985, 1988). Direct binding of
as-produced CNT to Clq protein, which leads to
the classical pathway of complement activation,
has been described in some studies while other
investigators reported that complement proteins
were bound to CNT but were not activated (Ling
etal., 2011). The macrophage-mediated clearance
of apoptotic cells is important for the regulation
of immune responses and the suppression of
macrophage function, and may lead to impaired
clearance of particle-laden neutrophils from the
lungs (Wiethoff et al., 2003) and chronic inflam-
mation (Witasp et al., 2008). Human peripheral
blood monocyte-derived macrophages exposed
to purified SWCNT (CNI, Inc.) at non-toxic
doses impaired the chemotaxis and phagocy-
tosis of apoptotic target cells — human Jurkat
T lymphoblastic leukaemia cells (Witasp et al.,
2009). In an in-vitro three-dimensional model of
granuloma formation, three commercial samples
of MWCNT (MWCNT-7, Mitsui & Co. Ltd; other
MWCNT, MER Corp., AZ, USA) or crocidolite
asbestos fibres (UICC) altered the phenotype
with the co-expression of pro-inflammatory
(M1) and profibrotic (M2) markers of murine
bone marrow-derived macrophages after 7-14
days (Sanchez et al., 2011).

Exposure of innate immune cells or lympho-
cytes to CNT in vitro may also impair the
presentation of antigens and the activation of
lymphocytes with variable results depending on
the physical properties and surface functionali-
zation of the CNT tested (Andersen et al., 2012).
For example, carboxylated MWCNT have been
reported to enhance cytokine secretion by puri-
fied human peripheral blood lymphocytes and
stimulate lymphocyte-mediated tumour cell
cytotoxicity (Sun et al., 2011), while amino-func-
tionalized or oxidized MWCNT activated human
monocytes and natural killer cells (Delogu et al.,
2012). Purified samples (SES Research) of short
SWCNT (length, 1-5 um) and short MWCNT
(length, 1-2 um) caused minimal activation of
antigen-presenting cells in vitro in contrast to
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titanium dioxide (rutile) or zinc nanoparticles
(Palomaiki et al., 2010).

(c)  Experimental systems in vivo

See Table 4.11

[The Working Group noted that, as in the
case of in-vitro experiments on immune effects,
the number of published in-vivo studies on CNT
is too limited to draw any general conclusions,
and the wide variation in the CNT used impedes
any comparison of the reports from different
studies.]

The pulmonary and systemic immune
responses of male C57BL/6 mice to the inhalation
of MWCNT were assessed (Mitchell et al., 2007).
Analysis by TEM revealed that the material
used was a mixture of MWCNT and graphitic
nanofibres (Lison & Muller, 2008; McDonald
& Mitchell, 2008). After whole-body inhalation
for 14 days, MWCNT were engulfed by alveolar
macrophages and were distributed throughout
the lung. However, no increases in inflammatory
cell infiltration were found and no inflammation,
granuloma formation, fibrosis, or tissue injury
occurred up to the highest dose (5.3 mg/m?)
tested. Despite thelack oflocal pulmonary effects,
systemic immunity was affected at all concentra-
tions tested. The measurement of immune func-
tion in spleen-derived cells showed a suppressed
T-cell-dependent antibody response, a decreased
proliferation of T-cells after mitogen stimula-
tion, and altered natural killer cell killing. These
results were accompanied by increased gene
expression of indicators of oxidative stress and
altered immune function [nicotinamide adenine
dinucleotide phosphate (NADPH) dehydro-
genase quinone 1 and IL-10] in the spleen, but
not in the lung. Immune suppression persisted
for up to 30 days after exposure (Mitchell et
al., 2007). A follow-up study investigated the
mechanism of the suppressed systemic immune
function. Mice exposed to a dose of 1 mg/m? of
MWCNT by whole-body inhalation presented
suppressed immune function, which involved

the activation of cyclooxygenase enzymes in
the spleen in response to a signal from the lung.
Inhaled MWCNT were shown to activate the
release of TGF-f in the lung, which was postu-
lated to have a direct effect on prostaglandin
production in spleen cells, leading to immune
suppression. However, to induce this altered
systemic immunity, an additional [yet unknown]
signalling mechanism from the lung would be
necessary because not all observed systemic
effects could be explained by this pathway
(Mitchell et al., 2009).

Based on the results from these two studies
(Mitchell et al., 2007, 2009), Aschberger et al.
(2010) concluded that systemic immune effects
are related to relatively short-term exposures to
MWCNT. [The Working Group noted that the
translocation of CNT from the lung does not
appear to be necessary for such effects, although
turther investigation is required to confirm this
hypothesis.]

In the study conducted by Park et al. (2009),
distributions of B-cells in the spleen and blood
were significantly increased on day 1 after
intratracheal instillation of MWCNT into ICR
mice, indicating that Th2-type cytokines had
activated B-cells and caused them to proliferate.
Together with the increased number of B-cells,
granuloma formation in the lung tissue and the
production of immunoglobulin (Ig) E were also
observed with an intensity that was dependent
on the dose of MWCNT instilled. [The Working
Group noted that this study suggested that
MWCNT may induce allergic responses in mice
through B-cell activation and the production of
IgE.]

(d)  Experimental systems in vitro

Murine bone marrow-derived dendritic cells
exposed to purified SWCNT (CNI, Inc.) in vitro
and co-cultured with splenic T lymphocytes
suppressed T-cell proliferation (Tkach et al.
2011). SWCNT (Chengdu Organic Chemicals Co.,
Ltd) also suppressed lymphocyte proliferation
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in co-cultures of primary murine peritoneal
macrophages and T lymphocytes activated by
concanavalin A (Dong et al., 2012).

4.4.4 Apoptosis

(@) Exposed humans

No data were available to the Working Group.

(b)  Human cells in vitro

Several mechanismshavebeen shown to cause
cell death in target cells exposed to engineered
nanoparticles in vitro, including apoptosis,
necrosis, and autophagic cell death (reviewed in
Andon & Fadeel, 2013). In general, acute expo-
sure to high concentrations (~30-400 pg/mL)
of engineered nanoparticles can cause mito-
chondrial injury, increased intracellular gener-
ation of ROS, impaired adenosine triphosphate
synthesis, and lysosomal damage leading to cell
death. Therefore, the selection of doses of CNT
for short-term in-vitro toxicity testing is prob-
lematic. Ideally, the doses should reflect the
mass dose retained in workers exposed to CNT
expressed as dose per alveolar epithelial cell
surface area (Gangwal et al., 2011).

For a lifetime exposure to an airborne
concentration of 1 mg/m? over 45 years, the
relevant in-vitro dose would be ~50-70 ug/mL.
However, short-term in-vitro toxicity testing is
usually conducted after 24 hours of exposure and
the equivalent dose for a 24-hour exposure of
workers to an airborne concentration of 1 mg/m?
would be ~0.2-0.6 pg/mL, which is two orders
of magnitude lower, and doses > 50 pg/mL have
been considered to be an “extraordinary high
concentration” for use as a bolus dose in short-
term in-vitro toxicity assays (Oberdorster, 2012).

The mechanistic pathways leading to cell
death vary depending on the dose as well as the
physicaland chemical characteristics of the nano-
particles and the target cell type (see Section 4.2).
Additional caveats in short-term in-vitro toxicity
studies include other variables in experimental
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design (Table 4.12) and the variability and purity
of the sample (Table 4.13).

Various mechanisms have been proposed for
the induction of cell death by CNT, including
direct membrane damage, intracellular gener-
ation of ROS, and destabilization of lysosomal
membranes. Thin, rigid MWCNT (Mitsui & Co.,
Ltd) directly penetrated human mesothelial cells
and induced the depletion of adenosine triphos-
phate and cell death at a dose of 5 pg/cm? after
4 days (Nagai et al., 2011). In normal and malig-
nant human mesothelial cell lines, exposure to
MWCNT prepared by the CVD process (Mitsui
& Co., Ltd) inducedlowlevels of intracellular ROS
and induced apoptosis at doses > 50 pg/cm? after
24 hours (Pacurarietal., 2008a,b). A commercial
sample of carboxylated SWCNT (Sigma-Aldrich)
induced autophagic cell death in the human
lung adenocarcinoma A549 cell line at a dose of
1 mg/mL after 24 hours (Liu et al., 2011).

(c)  Experimental systems in vivo

After the intratracheal instillation of 0, 1, 10,
or 100 pg of MWCNT (dispersed with albumin)
into rats, inflammation, apoptosis, fibrosis,
respiratory function, and granuloma formation
were assessed after 1, 7, 30, 90, and 180 days. The
resultswere obtained by plethysmography, soluble
collagen quantification, quantitative real-time
polymerase chain reaction (QRT-PCR), luminex
measurement of cytokine expression, and histo-
pathological examination. Only evidence of
apoptosis of the alveolar macrophages was shown
(Elgrabli et al., 2008).

(d)  Experimental systems in vitro

High-aspect-ratio  fibrous nanomaterials,
including MWCNT, have been shown to cause
direct plasma membrane penetration and
increased permeability in the murine ]774.1
(Hirano et al., 2008) and RAW 264 (Shimizu et
al., 2013) macrophage cell lines after exposure to
~100 ug/mL. Acid-functionalized SWCNT synthe-
sized by the CVD process (Chengdu Organic
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Table 4.12 Limitations of in-vitro assays for nanoparticle-induced toxicity

Experimental design

Examples and selected references

Target cells:  primary, immortalized or malignant
cell lines

Culture monolayer, suspension, transwell, or

format: three-dimensional (3-D) culture

single-cell, multicellular

Use of dispersants to prevent agglomeration in cell
culture medium: influence on cell uptake
Secondary modification of nanoparticles during
dispersion

Failure to confirm toxicity through morphology or
different assays

Stress induced by isolation of primary cells (Stone et al., 2009)

Transwell models (Snyder-Talkington et al., 2012)
3-D models (Movia et al., 2011; Sanchez et al., 2011)

Co-cultures more predictive for in-vivo end-points (Miiller et al.
2010; Clift et al., 2014)

Inhibition of cell uptake after dispersal with pluronic F127 (Ali-
Boucetta et al., 2011) or pluronic F108 (Wang et al., 2012a)

Sonication-induced damage (Bussy et al., 2012)

Monteiro-Riviere et al. (2009)

Physical or chemical interference

Examples and selected references

Physical adsorption to probes or reaction products

Blocking or quenching of transmitted or emitted light

Direct oxidation of probed or substrates by
nanoparticles

Adsorption or inactivation of cellular enzymes

Adsorption of secreted cytokines
Contamination with endotoxin
Adsorption of micronutrients from cell culture media

Neutral red assay (Davoren et al., 2007)
Formazan product of the MTT assay (Worle-Knirsch et al., 2006)
Thiobarbituric acid assay (Fenoglio et al., 2006; Creighton et al., 2013)

Surface generation of radicals (Fenoglio et al., 2008; Tournebize et al.,
2013)

Inactivation of lactate dehydrogenase (Karajanagi et al., 2004; Zhang
etal., 2011)

Val et al. (2009), Horie et al. (2013)
Adsorption to carbon surfaces (Delogu et al., 2010)

Medium depletion (Casey et al., 2008)
Micronutrient depletion (Guo et al., 2012)

Compiled by the Working Group with data from Stone et al. (2009) and Tournebize et al. (2013)

Chemicals Co.) induced autophagy and cell death
in primary murine peritoneal macrophages at
doses of 10-50 ug/mL after 24 hours (Wan et al.

2013).

4.4.5 Activation of intracellular signalling

pathways

(a) Exposed humans

No data were available to the Working Group.

Human cells in vitro

®)

In addition to inflammasome activation,

Japan) at a dose of 10 pg/mL for 24 hours
induced the release of IL-1fB via the activation
of the Rho-kinase pathway (Kanno et al., 2014).
In human lung fibroblast (IMR-90 or CRL-1490)
cell lines, exposure to MWCNT prepared by the
CVD method or SWCNT (CNI, Inc.) prepared
by the HIPCO method activated the mitogen-ac-
tivated protein kinase (MAPK)/p38 pathway at
low doses < 5 pg/mL, leading to the upregula-
tion of pro-inflammatory gene expression and
collagen deposition (Ding et al., 2005; Azad
et al., 2013). In normal and malignant human
mesothelial cell lines, MWCNT (Mitsui & Co.,
Ltd) induced the activation of the MAPK/p38

other intracellular signalling pathways have
been shown to be activated by the exposure of
macrophages in vitro to CNT.

In human THP-1 macrophages, MWCNT
(XNRI, Bussan Nanotech Research, Ibaraki,

pathway at a dose of 25 pg/cm? after 30-120
minutes (Pacurari et al., 2008a). Exposure of
normal and malignant human mesothelial cell
lines to unpurified SWCNT (National Institute
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Table 4.13 Minimal criteria required for the interpretation of in-vitro nanotoxicology assays

Criteria

Selected references

Complete physico-chemical characterization of nanoparticles

Sample variability depending on batch, synthesis technique, and later

processing
Consideration of contaminants (e.g. amorphous carbon)
Bioavailability of metal catalyst residues

Agglomeration state

Comparison with positive and negative reference particles
Positive controls for toxicity assays

Use of doses that reflect potential human inhalation exposures

Warheit (2008
Fubini et al. (2011

Wang et al. (2011c
Kagan et al. (2006), Pulskamp et al. (2007), Liu et
al. (2008Db), Aldieri et al. (2013)

Wick et al. (2007), Murray et al. (2012)
Stone et al. (2009

Stone et al. (2009

Oberdorster et al. (2013)

Consideration of dose-dependent mechanisms of adaptation and toxicity ~Slikker et al. (2004), Bhattacharya et al. (2011)

Compiled by the Working Group with data from Warheit (2008) and Stone et al. (2009)

of Standards and Technology, Gaithersburg,
MD, USA) induced the intracellular generation
of ROS and activation of the AP-1 and NF-«xB
pathways at a dose of 25 pg/cm? after 1-4 hours
(Pacurari et al., 2008b).

(c)  Experimental systems in vivo

Some studies revealed that a Th2-associated
response to CNT is activated through both adap-
tive and innate immune responses. In studies
of MWCNT (NanoTechLabs, Inc., Yadkinville,
USA)-exposed mice, the expression of IL-33
was accompanied by lung dysfunction and the
upregulation of Th2-associated cytokines, such
as IL-5 and eotaxin (Katwa et al., 2012; Beamer
et al., 2013). The exposure of mice to SWCNT or
MWCNT produced a dose-dependent increase
in ovalbumin (OVA)-specific IgE and IgG1 in the
serum (Nygaard et al., 2009).

With regard to signal transduction, the
expression of four genes (coiled-coil domain
containing-99, muscle segment homeobox gene-2,
nitric oxide synthase-2, and wingless-type inhib-
itory factor-1) among 63 genes in the lung of
mice exposed to MWCNT (Mitsui & Co. Ltd)
was altered at two time-points, as determined by
a quantitative PCR assay (Pacurari et al., 2011).
In a study in mice, exposure to semi-SWCNT
[semi-conductive components of SWCNT] (metal
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content approximately 10% wt, selectively sepa-
rated from a mixture of metallic and semi-metallic
SWCNT) induced phosphorylation of the signal
transducer and activator of transcription-3, which
forms part of the Janus kinase/signal transducers
and activators of transcription signalling cascade,
at two time-points (Park et al., 2011a). With regard
to transcription factors, cFos mRNA levels in
whole blood were increased in SWCNT-exposed
mice (Erdely et al., 2009). In another study in mice,
although the dose used for intratracheal instilla-
tion was excessive (1 mg/mouse, 10 mg/kg bw),
NF-kB and AP-1 transcription factors were acti-
vated in the lung after exposure to SWCNT (Chou
et al., 2008; Zhang et al., 2013).

(d) Experimental systems in vitro

The MAPK/extracellular  signal-regulated
kinase 1,2 pathway was upregulated in the
murine macrophage RAW 264.7 cell line exposed
to MWCNT (Helix Material Solutions, Inc.,
Richardson, TX, USA) at doses > 50 pg/mL for
24 hours, resulting in an increased expression
of cyclooxygenase-2 and inducible nitric oxide
synthase (Lee et al., 2012). The exposure of murine
epidermal JB6P+ cells to partially purified SWCNT
produced by the HiPCO process (CNI, Inc.) at
doses > 60 pg/mL for 24 hours, activated the NF-«kB
pathway dose-dependently (Murray et al., 2009).




Exposure of Chinese hamster ovary K1 cells (trans-
fected with an NF-kB reporter gene construct) to
MWCNT (XNRI, Bussan Nanotech Research)
prepared by the CVD process at doses between 1
and 10 pug/mL for 20 hours upregulated the NF-xB
pathway (Hirano et al., 2010).

4.4.6 Resistance to apoptosis

(@) Exposed humans

No data were available to the Working Group.

(b) Human cells in vitro

No data were available to the Working Group.

(c) Experimental systems in vivo

The formation of large tumours from injected
SWCNT-transformed cells (which were also
reported to be resistant to apoptosis due to a low
level of p53 phosphorylation in an in-vitro study)
was observed in immunodeficient mice (Wang
et al., 2011a). The expression of LC3B and the
autophagy-related proteins p62 and Beclin-1 was
upregulated and the expression of proliferating
cell nuclear antigen was also elevated in mice
exposed intratracheally to 100 pg of MWCNT
(Yu et al., 2013). In another study, the expression
of anti-apoptotic genes, such as cIAP2, SOD2,
and A20, was induced in mouse lung by an
[excessive] dose of SWCNT (1 mg/mouse) (Chou
et al., 2008).

(d)  Experimental systems in vitro

No data were available to the Working Group.

4.4.7 Cell proliferation

(a) Exposed humans

No data were available to the Working Group.

(b)  Human cells in vitro

Human cell lines were exposed to titanium
dioxide nanobelts or purified MWCNT (Cheap
Tubes, Inc.) at doses of 10 or 100 pg/mL for 1 and
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24 hours. The target cell lines included human
THP-1-derived macrophages and primary
cultures of small airway epithelial cells. Total
RNA was isolated and used for microarray anal-
ysis using Human Genome U133A 2.0 GeneChips
(Affymetrix, Sana Clara, CA, USA). An analysis
of the Global proteomics was conducted using
liquid chromatography tandem mass spectrom-
etry on tryptic digested cell lysates. The short
exposure elicited similar proteomic responses
to titanium dioxide nanobelts and MWCNT
with different patterns of expression in various
cell types. THP-1 macrophages showed the most
significant transcriptional responses in 272
genes after 24 hours of exposure to MWCNT
with unique patterns of gene expression in
pathways related to cell-cycle regulation and
cell proliferation (MYC and CDK1), as well as
anti-apoptosis (survivin). Genes involved in the
Spl/AhR-dependent stress response were down-
regulated by exposure to MWCNT (Tilton et al.
2014).

In a study in human lung small airway
epithelial cells exposed to SWCNT or MWCNT,
occupationally relevant concentrations of CNT
produced a neoplastic-like transformation pheno-
type depicted by increased cell proliferation,
anchorage-independent growth, invasion, and
angiogenesis (Wang et al., 2014).

(c)  Experimental systems in vivo

(i)  Bronchiolar and alveolar epithelial cells

Some, but not all, studies provided evidence
of the proliferation of bronchiolar and alveolar
epithelial cells.

In a 13-week inhalation study, exposure to
CNF (VGCF-H) induced cell proliferation in
the terminal bronchioles, alveolar ducts, and
subpleural region of the respiratory tract in the
lungs of male and female rats; however, this
proliferation was not persistent and was absent in
the subpleural region in females 3 months after
exposure (Delorme et al., 2012).
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Two studies of exposure by intratracheal
instillation of rats to MWCNT (Roda et al.
2011) and mice to SWCNT (Murray et al., 2012)
were performed. Exposure to as-produced or
functionalized MWCNT induced proliferation
of the alveolar and bronchiolar epithelial cells
and alveolar macrophages in rats (Roda et al.
2011). Exposure to SWCNT decreased the prolif-
eration of splenic T cells in mice (Murray et al.,
2012). In another study in rats (Warheit et al.
2004), intratracheal instillation of SWCNT did
not induce the proliferation of lung parenchymal
cells assessed by 5-bromo-2-deoxyuridine.

(i)  Other cells

The proliferation of T-cells was induced in
mice exposed to MWCNT in one study (Grecco
et al., 2011) but was decreased in another study
(Murray et al., 2012).

Exposure of mice to SWCNT increased the
occurrence of epithelial-derived fibroblasts. The
aberrant activation of TGF-p/p-Smad2 or p-cat-
enin was postulated to induce epithelial-mesen-
chymal transition during SWCNT-induced
fibrosis (Chang et al., 2012). In rats, MWCNT
induced visceral mesothelial cell proliferation,
(assessed by proliferating cell nuclear antigen
immunostaining), accompanied by increases in
the number of macrophages and of the concen-
tration of protein in the pleural lavage (Xu et al.
2012).

(d)  Experimental systems in vitro

Murine lung epithelial FE1 cells are a spon-
taneously immortalized cell line isolated from a
Muta™ Mouse (Sos Poulsen et al., 2013). These
cells were exposed to 12.5, 25, or 100 pg/mL
of MWCNT (Mitsui-7; MWCNT-XNRI-7, lot
05072001K28, Hadoga Chemical Industry, Japan)
suspended by sonication in cell culture medium.
After 24 hours, the cells were harvested and
total RNA was extracted for microarray analysis
(Agilent 8 x 66K oligonucleotide microarrays);
selected genes were verified using qRT-PCR. A
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total of 565 genes were differentially expressed
at all concentrations. Classification of gene
ontology revealed that most of the differentially
expressed genes were involved in cell prolifer-
ation. At the highest exposure concentration,
differentially expressed genes were related to cell
death, cell-cycle arrest, oxidation reduction, and
other metabolic pathways. Genes involved in
fibrosis, cholesterol biosynthesis, GSH-mediated
detoxification, and aryl hydrocarbon receptor
signalling molecular canonical pathways were
downregulated.

4.4.8 Granuloma formation and fibrosis

(a) Exposed humans

No data were available to the Working Group.

(b) Human cells in vitro

No data were available to the Working Group.

(c)  Experimental systems in vivo
See Table 4.10

(i)  Inhalation

Two 13-week studies of MWCNT in Wistar
rats provided evidence of granulomatous inflam-
mation and fibrosis in the lungs of male and
female rats. The minimum concentrations of
MWCNT that induced the persistent or slight
fibrotic responses were 0.5 mg/m? (Pauluhn
2010b) and 0.4 mg/m? (Treumann et al., 2013),
respectively.

Two 4-week studies of MWCNT and
SWCNT in Wistar rats showed no evidence of
fibrosis in the lung at maximal concentrations
of 0.37 mg/m?* of MWCNT and 0.13 mg/m? of
SWCNT (Morimoto et al., 2012a, b).

Two 6-hour exposure studies to MWCNT
provided evidence of persistent fibrosis at high
concentrations (241 and 30 mg/m?) in male rats
(Ellinger-Ziegelbauer & Pauluhn, 2009) and mice
(Ryman-Rasmussen et al., 2009a).
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(i) Intratracheal instillation

Fifteen studies of intratracheal instillation
in rats and pharyngeal aspiration in mice have
been reported (Lam et al., 2004; Muller et al.,
2005; Warheit et al., 2004; Shvedova et al., 2005;
Aiso et al.,, 2010; Cesta et al., 2010; Han et al.,
2010; Kobayashi et al., 2010, 2011; Porter et al.,
2010; Mercer et al., 2011; Morimoto et al., 2012b,
¢; Murray et al.,, 2012; Sager et al., 2013; Fujita
et al., 2015). Most of the studies revealed that
exposure to SWCNT and MWCNT resulted
in persistent or progressive fibrosis in the lung
(Muller et al., 2005; Shvedova et al., 2005; Aiso
et al., 2010; Cesta et al., 2010; Porter et al., 2010;
Mercer et al., 2011; Murray et al., 2012; Sager et
al., 2013), whereas some studies in rats and one
study in mice demonstrated transient or minimal
fibrosis in the lung (Kobayashi et al., 2010, 2011;
Morimoto et al., 2012b, c). In a long-term study,
the formation of granuloma in the lungs disap-
peared over time (Fujita et al., 2015). [No signif-
icant differences in pulmonary responses were
observed between rats and mice.]

(iii)  Intraperitoneal injection

Exposure tolong MWCNT led to granuloma-
tous inflammation in the peritoneal cavity but
exposure to tangled MWCNT induced weak or
slight responses (Poland et al., 2008). In another
study, MWCNT did not induce sustained inflam-
matory responses (Muller et al., 2009).

(d)  Experimental systems in vitro

No data were available to the Working Group.

4.4.9 Alterations in DNA damage-induced
response pathways

(a) Exposed humans

No data were available to the Working Group.

(b)  Human cells in vitro
See Table 4.14

Human cells were used to study the effect
of SWCNT on the expression of stress-response
genes. The target cells included primary normal
human bronchial epithelial cells, diseased
human bronchial epithelial cells from asthma
patients or from patients with chronic obstruc-
tive pulmonary disease, lung adenocarcinoma
A549 cells and pharyngeal carcinoma FaDu
cells. Cells were exposed to 0.1 or 1.0 mg/mL of
SWCNT (Meijo Nano Carbon Co., Ltd, Nagoya,
Japan) for 6 hours. A PCR array was conducted
to examine 84 stress-response genes. Expression
levels of 11 stress-response genes, including
ERCC1 encoding a DNA repair enzyme, were
downregulated more than twofold after expo-
sure to SWCNT. Other genes belonging to the
inflammatory responses, IL-6 and TNF-a, were
significantly downregulated in normal human
bronchial epithelial cells indicating that inflam-
matory cytokines were not activated under these
conditions (Hitoshi et al., 2012).

Protein expression was investigated in human
monoblastic leukaemia U937 cells exposed to
MWCNT (100 pug/mL) that had been thermally
treated at 1800 °C or 2800 °C. An analysis of
proteomics was performed after two-dimensional
electrophoresis and protein identification by
matrix-assisted laser desorption/ionization-time
of flight mass spectrometry. The expression of
proteins involved in stress responses and DNA
repair (such as DNA mismatch repair protein
Msh2 and DNA damage-binding protein 1) was
enhanced, suggesting the induction of DNA
repair; however, the efficiency of repair was not
evaluated (Haniu et al., 2010).

Gene and protein expression was studied
in three human cell lines exposed to two types
of high-aspect-ratio nanoparticles: MWCNT
and titanium dioxide nanobelts that are known
to exert low and high toxicity, respectively, in
other cell systems. The sizes of the MWCNT and
titanium dioxide nanobelts were 375 + 23 nm
and 1590 + 126 nm in RPMI medium and
458 + 16 nmand 634 + 86 nm in DMEM medium,
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respectively. The cell lines were human THP-1
cells, primary small airway epithelial cells, and
Caco-2/HT29-MTX co-cultures. The Caco-2
is a malignant human intestinal epithelial cell
line and HT29-MTX is a goblet cell line. This
co-culture mimics the intestinal epithelium.
The cells were exposed to 10 or 100 pug/mL for
1 and 24 hours and 3 and 24 hours for tran-
scriptomic and proteomic analyses, respectively.
Titanium dioxide nanobelts were more cytotoxic
than MWCNT, but the toxicity was low at early
time-points. THP-1 cells were the most respon-
sive and showed time-, concentration-, and
particle type-dependent responses; the highest
responses occurred at 100 pug/mL. Fewer genes
were differentially expressed between untreated
and treated cells in the other cell types. Cells
responded to these nanoparticles by differen-
tially regulating both common and unique sets
of biological processes. In this study, the results
were analysed by a comparison of the changes
in regulatory pathways. When comparing signa-
tures induced by titanium dioxide nanobelts and
MWCNT in THP-1 cells, three pathways were
upregulated specifically by MWCNT and not
by titanium dioxide nanobelts: DNA damage
checkpoint, DNA strand break repair, and
cytoskeleton spindle microtubules. These results
were consistent with others that demonstrated
DNA damage and mitotic perturbations caused
by MWCNT (Tilton et al., 2014). [Globally, these
data showed common differential expression
across the cell types and common pathways in
response to exposure to titanium dioxide nano-
belts or MWCNT, possibly linked to a common
mechanism. However, they also showed cell-spe-
cific responses and particle-specific effects, thus
addressing the question of target cell specificity.]

(c) Experimental systems in vivo and in vitro

See Table 4.15

Female Fischer 344 rats received a single
intragastric dose of SWCNT (Thomas Swan
and Co. Ltd, Consett, United Kingdom) or C,

Carbon nanotubes

fullerenes by gavage (0.064 or 0.64 mg/kg bw).
Both C,, fullerenes (highest dose only) and
SWCNT significantly enhanced the 8-oxodG
level in the liver and lung tissues of rats in
comparison with controls. SWCNT did not
produce a significant increase in the gene
expression of the DNA repair enzyme 8-oxog-
uanine DNA glycosylase in the liver. DNA
repair activity was assessed in the liver using
substrate nuclei containing 8-0xodG, and the
level of 8-oxoguanine DNA glycosylase was not
significantly altered (Folkmann et al., 2009).

In RAW 264.7 macrophages, SWCNT
(Chengdu Organic Chemicals Co., Ltd) down-
regulated several genes involved in the DNA
repair process (Dong et al., 2012).

The assessment of MWCNT genotoxicity in
rats (Kim et al., 2012a, 2014) and mice (Ghosh et
al., 2011) showed a persistence of DNA damage
up to 90 days after exposure. [The findings may
suggest a low or lack of DNA repair.]

Pregnant heterozygous p53 mice (p53+-)
received an intravenous injection of MWCNT
(200 puL, 2 mg/kgbw). DNA integrity was assessed
using a long PCR assay. In general, DNA damage
was found in the fetuses and in placental cells,
with an enhancement of the mRNA expression
of bax and p21. Nonetheless, DNA damage was
higher in p53-- and p53+- fetuses than in p53+/+
fetuses and neither Bax nor p21 expression levels
were modified in p53-- fetuses, in agreement
with a defective DNA repair system in these
mice cells due to the absence of p53 (Huang et
al., 2014). [These results were consistent with the
induction of p53-dependent apoptosis in this
test system, and showed that the repair of DNA
damage and apoptosis are dependent on the p53
status resulting from the intravenous injection
of MWCNT into mice. They did not directly
demonstrate that DNA repair was impaired by
MWCNT, but showed an impaired response in
p53-deficient mice.]
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4.4.10 Depletion of antioxidants

As described previously, CNT have been
shown to generate (or catalyse the formation of)
ROS directly; however, this does not exclude a
secondary generation of ROS by target cells in
vitro or in vivo after exposure to CNT (Stone et
al., 2009; Fubini et al., 2010, 2011).

(@) Exposed humans

No data were available to the Working Group.

(b)  Human cells in vitro
See Table 4.16

(i)  SWCNT

The effects of SWCNT (NASA-JSC, TX, USA)
were determined in cell cultures of immortalized
human epidermal HaCaT keratinocytes. The
generation of HOe was observed in HaCaT kerat-
inocytes exposed to SWCNT at 0.24 mg/mlL,
using the ESR spin trapping technique. Both GSH
and the antioxidant levels of the HaCaT kerati-
nocytes were decreased at doses of 0.06, 0.12, and
0.24 mg/mL. In parallel, a significant increase in
the accumulation of lipid peroxidation products
(thiobarbituric acid-reactive substances) was
seen in cells exposed to SWCNT (Shvedova et
al., 2003).

Human BJ foreskin cells were exposed
to SWCNT (Sigma) dispersed in dimethyl
formamide. ROS production was determined
using the 2,7-dichlorofluorescein diacetate assay,
and was induced by exposure to SWCNT at doses
of 6, 8, and 10 ug/mL after 3 hours of incubation.
Antioxidant defences were assessed in BJ cells
co-incubated with exogenous antioxidants, NAC
and GSH, in the presence or absence of SWCNT
(6 pg/mL). Exogenous NAC and GSH decreased
the induction of ROS by SWCNT approximately
two- and 2.5-fold, respectively (Sarkar et al.
2007). [Theseresults suggested that compromised
cellular antioxidant defences may be responsible
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for the generation of excess ROS in response to
SWCNT in BJ foreskin cells.]

The effects of SWCNT were investigated in
human macrophage-like cells differentiated
from a human monocytic leukaemia THP-1 cell
line. Affymetrix microarrays were performed
to investigate the changes in gene expression
after exposure to SWCNT. Cells were exposed
to 0.05 ug/mL of SWCNT for 24 hours, which
resulted in an increased expression of SOD2; the
levels of catalase, GPx1, GSH reductase, GSH
synthetase, and NADPH-dependent oxidase
were not altered (Chou et al., 2008).

Human hepatoma HepG2 cells were exposed
to purified HIPCO SWCNT (Unidym) produced
by the CVD process or to graphene. Proteins
were extracted and their profile analysed using
the iTRAQ-coupled two-dimensional liquid
chromatography tandem mass spectrometry
approach. Peptides and proteins were identified
automatically using the Spectrum Proteomics
Workbench software. Protein ratios were deter-
mined in treated and untreated control HepG2
cells. Only quantification data on proteins with
relative changes in expression of > 1.25 or < 0.8
were considered. After exposure to 1 pg/mL for
48 hours, 37 differentially expressed proteins
were found in cells exposed to SWCNT or to
graphene. Differentially expressed proteins
involved in metabolic pathways, redox regula-
tion, and cytoskeletal dynamics were identified.
The antioxidant protein SOD2 was downregu-
lated (Yuan et al., 2011).

Human colon adenocarcinoma Caco-2
cells were exposed to 0, 5, 10, 50, 100, 500, and
1000 pg/mL of F-SWCNT (Sigma-Aldrich,
Madrid, Spain). The production of ROS and
biomarkers of oxidation were quantified,
including lipid peroxidation, generation of ROS,
GSH levels, and SOD, GPx, GSH reductase, and
catalase activities. ROS generation was increased
at a dose of 100 ug/mL and lipid peroxidation at
a dose of 50 pg/mL. Catalase activity increased
at doses up to 500 pg/mL, then significantly
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decreased at 1000 pg/mL. SOD activity was
also increased at doses up to 100 pg/mL. GPx
activity was enhanced at the highest doses and
GSH reductase at a dose of 1000 pg/mL. GSH
level was depleted at all doses tested (significant
at 1000 pg/mL) (Pichardo et al., 2012). [These
results showed the induction of antioxidant
defences in response to exposure to F-SWCNT
and an increase in lipid peroxidation products,
possibly causing toxic effects.]

Intracellular generation of ROS and expres-
sion profiles of oxidative stress response genes
were assessed in human bronchial epithe-
lial BEAS-2B cells exposed to SWCNT. Three
SWCNT samples were tested (diameter, 1-2 nm
; length, 400-800 nm, 1-3 um or 5-30 pm).
Crocidolite asbestos fibres were used as posi-
tive control. Gene expression profiles were
studied using a pathway-specific RT-PCR array
(SuperArray) comprising primers for 84 oxida-
tive stress and antioxidant defence pathway
genes. All SWCNT samples and crocidolite
asbestos fibres induced the formation of micro-
nuclei; the generation of ROS was detected
in cells exposed to the two shortest SWCNT
samples and crocidolite asbestos fibres. The
1-3-um SWCNT sample upregulated the
expression of several genes: epoxide hydrolase
2, surfactant protein D, and neutrophil cytosolic
factor 1. Few genes showed differential expres-
sion with the other SWCNT samples; however,
400-800-nm SWCNT induced the upregulation
of three proteins: copper chaperone for SOD,
metallothionein 3, and nitric oxide synthase
2. Differentially expressed genes common to
all SWCNT included the upregulation of titin
and copper chaperone for SOD and downreg-
ulation of the GPxs, GPX4 and GPX7, and the
peroxidase cytoglobin that may be involved in
protection against oxidative stress; neutrophil
cytosolic factor 1 (required for the activation of
latent NADPH oxidase, which is necessary for
superoxide anion production) was also upregu-
lated by all samples (Manshian et al., 2013).

Carbon nanotubes

The effects of SWCNT dispersed in sodium
cholate on total GSH levels was evaluated in the
human colon carcinoma HT29 cell line. Nine
doses of SWCNT were tested (from 0.01 ng/mL
to 0.2 pg/mL). Exposure to SWCNT in a dose
range of 0.0001 pug/mL to 0.01 pg/mL increased
the intracellular level of total GSH (significant at
0.001 and 0.01 pg/mL) (Pelka et al., 2013).

(i)  MWCNT

Human epidermal keratinocytes were
exposed to MWCNT manufactured using a
microwave plasma-enhanced CVD system.
After exposure to 0.4 mg/mL for 24 and 48
hours, proteins were extracted and analysed by
two-dimensional gel electrophoresis and mass
spectrometry. Of these, 152 were observed to
be differentially expressed and to be associ-
ated with several pathways: metabolism, cell
signalling, stress, the expression of cytoskeletal
components, and vesicular trafficking. Among
them, SOD2 protein was decreased by 1.4- and
1.9-fold at 24 and 48 hours, respectively, in
comparison with untreated cells (Witzmann &
Monteiro-Riviere, 2006).

MWCNT produced by an electric arc
process using graphite as a source (MWCNT1)
and by CVD using methane as the hydro-
carbon (MWCNT?2) were obtained from the
Centre for Environment, Institute of Science
and Technology, JNTU, Hyderabad, India.
Cytotoxicity and oxidative stress were studied
in the human embryonic kidney HEK 293 cell
line. Cellular levels of reduced GSH and MDA
content were measured to assess lipid peroxi-
dation. Exposure of HEK 293 cells to MWCNT
(10-100 pg/mL) for 48 hours resulted in concen-
tration-dependent cytotoxicity, increased levels
of MDA, and decreased intracellular levels
of GSH (Reddy et al., 2010b). [These findings
suggested that MWCNT induced oxidative stress
and cytotoxicity in these target cells.]

Oxidative stress was studied after expo-
sure to MWCNT of the human monocytic
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THP-1 cell line differentiated into macrophages
using phorbol myristate acetate. Three types of
MWCNT were used: long straight MWCNT
(length, approximately 50 pm; diameter,
20-100 nm; NT1); micron-sized aggregated
MWCNT (relatively straight MWCNT; diam-
eter, approximately 150 nm; NT2);and MWCNT
with an aggregated entangled structure (indi-
vidual diameter, approximately 20 nm; NT3).
Control particles were carbon black 260 nm in
diameter, carbon black 14 nm in diameter and
long fibre amosite asbestos (length > 5 pm;
diameter < 200 nm). Investigations included the
assessment of gene expression using RT-PCR
(GSH S-transferase [GST]pi and haeme oxidase
1[HO-1]), expression of HO-1 protein (enzyme-
linked immunosorbent assay) and GST activity.
After exposure of THP-1 cells to 62.5 ug/mL of
particles for 4 hours, GSTpi expression was not
modified after any treatment; HO-1 expression
was enhanced in cells exposed to NT1 (statis-
tically significant) and NT2 (not statistically
significant), and reduced in cells exposed to NT3,
260-nm carbon black and long fibre amosite
asbestos. No significant difference from the
control was observed with any of the treatments
for either GST activity or HO-1 protein expres-
sion. However, an enhancement of the Nrf2
protein expression was found in the nucleus of
cells treated with NT1, which was eradicated by
the addition of antioxidants (Brown et al., 2010).
[This study suggested that the activation of the
antioxidant response pathway is mediated by the
antioxidant response element and Nrf2.]
Human umbilical vein endothelial cells were
exposed for 2 hours to 0, 5, and 20 pug/mL of
MWCNT (from Dr F. Chen, Lawrence Berkeley
National Laboratory, Berkeley, CA) synthesized
using a CVD method. Lipid peroxidation and
antioxidant defences were determined by the
quantification of MDA, and the activity of SOD
and GPx. These cells were also incubated with
the antioxidant NAC to explore the role of ROS
in the induction of cell injury. Cellular ROS

152

levels were significantly increased by exposure to
20 ug/mL of MWCNT. The activities of SOD and
GPx were enhanced at the lowest concentrations
but reduced at 20 pg/mL. When human umbil-
ical vein endothelial cells were pretreated with
NAC before exposure to MWCNT, ROS prod-
uction was reduced compared with the groups
exposed to MWCNT only, and cytotoxicity and
DNA damage (DNA breakage by quantification
of YH2AX foci) were also reduced (Guo et al.

2011). [These results showed that depletion of
antioxidants was associated, at least partially,
with cytotoxicity and DNA damage.]

Cellular levels of GSH were determined in
the human embryonic kidney HEK 293 cell line
exposed to four MWCNT with different dimen-
sions (CNM1, CNM2, CNM4, and CNM3; size:
100-800, 200-500, 150-750, and 230-1700 nm,
respectively) from the Centre for Environment
(Institute of Science and Technology, JNTU,
Hyderabad). In-vitro exposure of HEK 293 cells
to 3-300 pg/mL of these MWCNT for 48 hours
produced cytotoxicity and oxidative stress in a
concentration-dependent manner. Increased
lipid peroxidation (measured by MDA content)
and decreased intracellular GSH levels were
observed at concentrations of 30 and 100 pg/mL
(Rama Narsimha Reddy et al., 2011).

Human lung adenocarcinoma epithelial
A549 cells were exposed to MWCNT (provided
byProfessor D.G. Weiss, Department of Biological
Sciences, Institute of Cell Biology and Biosystems
Technology, Rostock University, Germany) at
0.5-100 pg/mL for 6-72 hours. Apoptotic cells
were detected after exposure to 50 pg/mL for 72
hours. Significant ROS production was found at
doses of 10 and 50 pg/mL, which was not due to
mitochondrial activity. Lipid peroxidation was
determined using a Lipid Peroxidation Assay Kit,
and GSH levels determined using a colorimetric
assay. Increasedlipid peroxidation wassignificant
at all concentrations of MWCNT after 24 hours
of treatment, and both intracellular GSH levels




and catalase activity were significantly reduced
at a dose of 50 pug/mL (Srivastava et al., 2011).
The effects of two types of MWCNT - NM
400 (Nanocyl; diameter, 30 nm; length, 5 pm)
and NM 402 (Arkema Graphistrength C100 ;
diameter, 30 nm; length, 20 pm) - were assessed
in the human hepatoblastoma C3A cell line.
Intracellular ROS generation was measured
using the 2,7-dichlorofluorescein diacetate
assay, and GSH was quantified by the reac-
tion of sulthydryl groups with the fluorescent
substrate ortho-phthalaldehyde. Both samples
of MWCNT induced the generation of ROS and
decreased total GSH and cellular GSH content
after 24 hours. Pretreatment with the antioxi-
dant, Trolox, prevented MWCNT-induced prod-
uction of ROS. Cytotoxicity was also reduced in
C3A cells pretreated with Trolox before expo-
sure to MWCNT (Kermanizadeh et al., 2012).
The intracellular level of GSH was quanti-
fied in telomerase-immortalized human kerat-
inocytes (N-hTERT) exposed to 100 pg/mL
of MWCNT (NanocylTM NC7000 MWCNT
from Nanocyl, produced by catalytic CVD) for
30 minutes or 24 hours. Oxidative stress was
assessed using 2,7-dichlorofluorescein oxida-
tion. MWCNT stirred or sonicated in water were
marked by increased dichlorofluorescein fluo-
rescence, suggesting an increased intracellular
generation of ROS. In contrast, MWCNT soni-
cated in dispersants (HPC, Fagron, or Pluronic
F108) showed no significant effects. The addition
of the antioxidant, Trolox, a hydrophilic analogue
of thelipophilic antioxidant vitamin E, prevented
2,7-dichlorofluorescein oxidation. Moreover,
GSH was significantly decreased compared with
untreated controls (Vankoningsloo et al., 2012).

(c)  Experimental systems in vivo
See Table 4.17

Carbon nanotubes

(i)  SWCNT

C57BL/6 mice were maintained on vitamin
E-sufficient or vitamin E-deficient diets and were
exposed to SWCNT (CNI, Inc.) by pharyngeal
aspiration. Antioxidant levels were determined
in lung homogenates 28 days after exposure to
40 pg/mouse of SWCNT. Treatment with SWCNT
induced greater increase in lipid peroxidation
products and greater decrease in GSH levels in
mice fed a vitamin E-deficient diet than in those
fed basal diet, showing that SWCNT produced
antioxidant depletion which was associated with
a higher sensitivity to SWCNT-induced acute
inflammation (Shvedova et al., 2007).

C57BL/6 mice were exposed to 5 mg/m? of
SWCNT in inhalation chambers for 5 hours per
day for 4 days. The level of oxidative damage
produced was measured in the lung homoge-
nates. GSH levels were significantly depleted,
and the level of lipid peroxidation products -
measured as malondialdehyde (MDA) - showed
a significant accumulation compared with
controls 7 and 28 days after exposure. Total anti-
oxidant capacity was reduced 1 and 7 days after
treatment, but returned to the control level by 28
days after exposure (Shvedova et al., 2008).

SKH-1immune competent hairless mice were
exposed to SWCNT (CNI, Inc.) by daily skin
application at doses of 40, 80, or 160 ug/mouse
for 5 days. A reduction in GSH levels was found
in skin homogenates of mice treated with the
highest dose, but no change was found with the
other doses (Murray et al., 2009).

Male BALB/c mice were exposed to 5 pg/g
bw of aerosolized SWCNT (diameter, 1-2 nm;
length, 0.5-2.0 um; from Aldrich) in PBS or to
PBS only, for 20 minutes per day on 7 consec-
utive days in a nose-only exposure system. The
animals were killed at the end of the exposure
period and lung tissues were collected. The intra-
cellular levels of MDA and ROS, and the activ-
ities of SOD, catalase, and GPx were measured.
Apoptosis was assessed by the measurement of
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caspase-3 and -8 activities in lung homogen-
ates. MPO activity was measured in the BALFE.
MPO activity was higher in the BALF from
SWCNT-exposed mice compared with controls.
ROS and MDA levels were significantly higher
in the lungs of SWCNT-exposed mice compared
with controls, and SOD, catalase, and GPx were
reduced. In parallel, apoptosis was demonstrated
by the enhancement of caspase-3 and -8 activi-
ties (Ravichandran et al., 2011).

(i)  MWCNT

The antioxidant status of rat serum was
evaluated after intratracheal instillation of
MWCNT into male Wistar albino rats. Two
MWCNT samples were used (from the Centre
for Environment, Institute of Science and
Technology, JNTU, Hyderabad), produced
either by the electric arc process using graphite
as a source or CVD using methane as the hydro-
carbon. The rats received a single dose of 0.2, 1,
or 5 mg/kg bw of MWCNT or quartz-crystalline
silica particles (positive control). Blood samples
were collected at 1, 7, 30, and 90 days after the
instillation. Antioxidantcapacity wasdetermined
by the measurement of GSH, a lipid peroxidation
product (MDA), and SOD and catalase activities.
Both MWCNT induced a significant dose-de-
pendent depletion of GSH levels, decrease in SOD
activity, and a transient dose-dependent decrease
in catalase activity. Similarly, the amount of
MDA was increased by both MWCNT in a
dose-dependent manner 1 day after instillation
and later decreased. Total antioxidant capacity,
assessed by the ability to scavenge the free radical
a,a-diphenyl-B-picryl hydrazyl, was decreased
after exposure to MWCNT (Reddy et al., 2011).
[These results indicated a reduction in antioxi-
dant defence mechanisms after an instillation of
MWCNT,]

Wistar rats received a single intraperitoneal
injection of 270 mg/L of MWCNT (exte-
rior diameter, 15-25 nm; interior diameter,
10-15 nm; surface, 88 m?/g) synthesized by the
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CVD technique and functionalized with single-
strand DNA. The level of GSH was measured in
the plasma and liver 1, 3, 6, 24, 48, and 144 hours
later. A significant decrease in the level of GSH
was observed in the plasma at all timepoints
after exposure, and after 3 and 24 hours (but
not after 48 or 144 hours) in the liver. This result
was consistent with a depletion of antioxidants
by this single-strand DNA-MWCNT sample.
The GSH level returned to normal within 6 days.
The activity of manganese SOD (SOD2) in the
liver was decreased after 1, 24, and 48 hours, but
not after 144 hours (Clichici et al., 2012). [These
results could be consistent with a decrease in
antioxidant defence after exposure to this single
strand DNA-MWCNT sample.]

In a transplacental study carried out on
mouse embryo fibroblasts from fetuses of p53+-
heterozygous mice, the treatment of dams with
MWCNT and an antioxidant, NAC, abolished
the MWCNT-only induced DNA breakage
observed in these cells (Huang et al., 2014). [This
result was consistent with the generation of ROS
in cells exposed to MWCNT]

Male BALB/c mice were exposed daily to
5 ug/g bw of aerosolized MWCNT (diameter,
20-50 nm; length, 6-13 nm; from Sigma) in PBS
or to PBS only for 20 minutes on 7 consecutive
days, in a nose-only exposure system. Animals
were killed at the end of the exposure period
and lung tissues were collected. The intracel-
lular levels of MDA and ROS, and the activi-
ties of SOD, catalase, and GPx were measured.
Apoptosis was assessed by the measurement of
caspase-3 and -8 activities in lung homogenates.
MPO activity was measured in the BALF. MPO
activity was higher in the BALF from MWCNT-
exposed mice compared with controls. ROS
and MDA levels were significantly higher in
the lungs of MWCNT-exposed mice compared
with controls, and SOD, catalase, and GPx were
reduced. In parallel, apoptosis was demon-
strated by the enhancement of caspase-3 and -8
activities (Ravichandran et al., 2011).




(c)  Experimental systems in vitro
See Table 4.16

(i)  SWCNT

Rat lung epithelial cell cultures were exposed
to SWCNT (Sigma Chemical Co.). The levels of
ROS (2,7-dichlorofluoroscein diacetate assay),
GSH content, and the levels of SOD1 and SOD2
antioxidant enzymes were quantified. The results
showed the production of ROS in a concen-
tration-dependent manner. GSH levels were
decreased in cells treated with 10 ug/mL for
6 hours. Expression of SOD1 and SOD2 proteins
was decreased after 24 hours in comparison with
control cells (Sharma et al., 2007). [Globally,
exposure to SWCNT induced oxidative stress
and depletion of antioxidants.]

Rat adrenal gland pheochromocytoma PC12
cells were exposed to SWCNT (diameter, 1-2 nm;
length, ~20 pm) (Beijing Nachen Technology &
Development Co. Ltd, Beijing, China) at concen-
trations of 5-600 ug/mL for 24 and 48 hours.
Exposure to SWCNT induced mitochondrial
membrane damage, the formation of ROS, and
increased levels of the lipid peroxidation product
MDA. GSH levels, and activities of SOD, GPx,
and catalase were decreased at cytotoxic concen-
trations in a concentration-dependent manner
(Wang et al., 2011b). [These findings revealed
that SWCNT induced oxidative stress in these
target cells.]

The effects of SWCNT (diameter, 1-2 nm;
length, ~20 um; Beijing Nachen Technology &
Development Co. Ltd) were studied in rat adrenal
gland pheochromocytoma PC12 cells. The activ-
ities of catalase, SOD, and GPx and the GSH
content were determined 24 and 48 hours after
exposure to 50 ug/mL. The generation of ROS
was enhanced in SWCNT-treated PC12 cells,
but the level of the lipid peroxidation product,
MDA, did not appear to be elevated. The activi-
ties of SOD, catalase, and GPx were all decreased
(Wang et al., 2012b).

Carbon nanotubes

Oxidative stress was assessed in RAW 264.7
macrophages exposed to SWCNT produced by
the HiPCO disproportionation technique, with
iron carbonyl as the iron-containing catalyst
precursor (CNI, Inc.). The SWCNT used were
unpurified (iron, 26.0 wt%) or purified (iron, 0.23
wt%) to determine the effects of iron. Specific free
radical intermediates produced by RAW 264.7
cells exposed to 0.12-0.5 mg/mL for 1-2 hours
were determined using electron paramagnetic
resonance spectroscopy. Neither purified nor
unpurified SWCNT induced the intracellular
production of superoxide radicals or nitric oxide
in RAW 264.7 macrophages. The production of
radicals was observed when RAW 264.7 cells
were stimulated with zymosan (0.25 mg/mL), an
agent known to activate the generation of ROS
in macrophages. Under these conditions, HOe
production was enhanced in zymosan-treated
cells, and unpurified iron-rich SWCNT were
more potent than purified SWCNTT. Lipid peroxi-
dation assessed by MDA levels was enhanced and
GSH content was decreased in zymosan-stimu-
lated RAW 264.7 macrophages. The addition of
SWCNT lowered both lipid peroxidation and
GSH content in comparison with zymosan-stim-
ulated macrophages (KKagan et al., 2006).

Murine epidermal JB6 P+ cells were exposed
to SWCNT (CNI, Inc.) produced by the HiPCO
disproportionation process. A  significant
concentration-dependent decrease in GSH
content was observed after a 24-hour incubation
of JB6 P+ cells with 0.06 mg/mL, 0.12 mg/mL,
and 0.24 mg/mL of partially purified SWCNT.
Exposure to unpurified (iron, 30 wt%) SWCNT
induced a greater reduction in GSH than expo-
sure to partially purified (iron, 0.23 wt%) SWCNT
(Murray et al., 2009).

Primary mouse embryo fibroblasts were
exposed to various manufactured nanoparticles:
SWCNT (diameter, 8 nm; length < 5 pm), carbon
black, silicon dioxide,and zincoxide. Intracellular
generation of ROS, GSH and MDA levels, and
SOD activity were determined after exposure to
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particle suspensions at doses of 5, 10, 20, 50, and
100 pg/mL for 24 hours. ROS production was
enhanced by all particles in a concentration-de-
pendent manner up to 50 pg/mL. Intracellular
GSH levels decreased dose-dependently and the
activity of SOD was decreased in treated fibro-
blasts in comparison with untreated control cells.
Lipid peroxidation was significantly enhanced in
cells exposed to SWCNT at a dose of 100 pg/mL
only. In this study, SWCNT exhibited greater
genotoxicity than zinc oxide nanoparticles,
although zinc oxide induced more oxidative
stress (Yang et al., 2009).

(i)  MWCNT

Two types of MWCNT - MWCNT1 (diam-
eter, 10-20 nm; average length, 2 um) and
MWCNT?2 (diameter, 40-100 nm; average length,
10 um) — were studied in the C6 rat glioma cell
line with regard to effects on MDA levels and
SOD activity. Exposure of C6 rat glioma cells to
MWCNT (25-400 ug/mL) for 24 hours resulted
in an increased level of oxidative stress, and
MWCNT1 was more cytotoxic than MWCNT?2.
MDA levels increased significantly after treat-
ment with 100 pg/mL of both MWCNT1 and
MWCNT2 compared with those in untreated
controls. SOD activity was decreased by both
MWCNTs (Han et al., 2012).

4.4.11 Activation of oncogenes and
inactivation of tumour-suppressor
genes

The expression of an important number of
oncogenes and tumour-suppressor genes has
been analysed in CNT-exposed experimental
animals. Overall, most of these genes had
different expression levels compared with unex-
posed control animals.

Lists of oncogenes, tumour-suppressor genes
and cancer genes are available in the supplemen-
tary tables in Vogelstein et al. (2013).
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(a) Exposed humans

No data were available to the Working Group.

(b) Human cells in vitro
See Table 4.18

(i)  SWCNT

Cell-cycle regulation was investigated
using microarray analysis in human embryo
kidney HEK 293 cells exposed to 25 pg/mL of
SWCNT (Carbon Nanotechnologies, Inc.) for
48 hours. Under these experimental conditions,
cell viability was approximately 84%. Exposure
to SWCNT was associated with the induction
of apoptosis and cell-cycle control genes, and
several oncogenes or tumour-suppressor genes
were either downregulated (e.g. CDK2, CDK4,
CDKG6), or upregulated (e.g. CDKN2A, TP53),
consistent with the activation of an apoptotic
response and cell-cycle arrest (Cui et al., 2005).
[A discrepancy was noted by the Working Group
between the text and Table 2 in Cui et al. (2005)
regarding the up- or downregulation of TP53.]

Human BJ foreskin CRL-2522 cells were
exposed to 0 (control) or 6 ug/mL of SWCNT
(Sigma) in dimethylformamide vehicle for 24
hours. Gene expression was assessed using
a Stress and Toxicity Array (Super Array,
Frederick, MD, USA) and was altered in 96
genes in SWCNT-treated cells compared with
controls; 28 of these genes showed significant
upregulation, with a ratio ranging from 1.5 to 3.
The altered genes were involved in several path-
ways — apoptosis, xenobiotic metabolism, DNA
repair, and oxidative stress - and may repre-
sent potential oncogenes or tumour-suppressor
genes (i.e. DNAJB4, ATM, CCNC) (Sarkar et al.
2007). [These genes play a role in the response
to stress, DNA repair and apoptosis, and cell-
cycle progression. Their activation in SWCN'T-
exposed cells was not indicative of damage to
these cells but signified the activation of defence
mechanisms by BJ cells.]
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The effects of SWCNT (CNI, Inc.) produced
by the HiPCO technique were evaluated in
human bronchial BEAS-2B cells using the
Human Apoptosis Array (R&D Biosystems)
which detects the 35 most common apopto-
sis-regulatory proteins by immunoblotting. The
cells were continuously exposed to a subcyto-
toxic concentration (0.02 pg/cm?) of SWCNT
in culture and were passaged weekly. After 24
weeks of exposure, SWCNT-treated cells showed
the morphological features of malignant trans-
formation. Transformed SWCNT-exposed cells
exhibited differential expression of apoptosis-re-
lated proteins compared with controls. A differ-
ential expression of the phosphorylated forms of
p53 was observed which was lower in SWCNT-
treated cells than in untreated cells. [Because
the phosphorylation of p53 is an indicator of the
activation of the p53 tumour suppressor, these
results suggested a loss of p53 activity.] (Wang et
al., 2011a). [This SWCNT sample can be assumed
to have impaired the apoptotic potential of p53.
However, these results should be interpreted
with caution because BEAS-2B cells are immor-
talized with SV40 viral oncoproteins and express
large SV40 T-antigen, a protein that binds to and
inactivates p53 protein.]

Toxicity (cell growth, ROS production,
DNA damage assessed by the comet and micro-
nucleus assays, and p53 induction) of SWCNT
dispersed in sodium cholate was studied in the
human colon carcinoma HT29 cell line. Eight
doses from 0.05 ng/mL to 0.2 ug/mL were tested.
Phosphorylation of the tumour-suppressor
protein p53 was investigated in exposed and
untreated control cells using Western blot anal-
ysis. After 3 and 24 hours of exposure, the phos-
pho-p53 protein was induced at concentrations
> 5 ng/mL. A decline was observed at higher
concentrations (0.1 and 0.2 pg/mL) (Pelka et al.
2013). [These results are consistent with the acti-
vation of DNA repair at subcytotoxic doses.]

Human mesothelial cells were continuously
exposed to SWCNT synthesized by HIPCO (CNI,
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Inc.) at concentrations of 0.02, 0.06, or 0.2 ug/cm?
for 2 months. Expression of the HRAS oncogene
was assessed using HRAS protein analysis by
Western blot and the activation of downstream
signalling of the HRAS pathway. In parallel,
phenotypical changes characteristic of neoplastic
transformation were studied (cell growth in soft
agar and invasion capability). Increased HRAS
protein expression and activation of the ERK1/2
pathway were found to be associated with more
neoplastic phenotypes. SWCNT enhanced the
expression of a potential oncogenic protein
(AKT) and downregulated expression of genes
(TWIST and SNAII) known to be involved in
the epithelial-mesenchymal transition process
(Lohcharoenkal et al., 2014).

(i)  MWCNT

A whole genome expression array (GeneChip®
assay) was performed using human skin HSF42
fibroblasts and human embryonic lung IMR-90
fibroblasts exposed for 48 hours to 0.6 and
6 pg/mL of multiwalled carbon nano-onions
and 0.06 and 0.6 pg/mL of MWCNT synthesized
by the CVD method. Numerous genes showed
changes in expression after treatment with the
different particles. Similar to multiwalled carbon
nano-onions, exposure to MWCNT upregulated
the expression of genes involved in pathways
related to cellular transport, metabolism, cell-
cycle regulation, and stress response, but no
evidence of oncogene activation or tumour-sup-
pressor gene inactivation was found (Ding et al.,
2005).

Human lung adenocarcinoma A549 cells
were exposed to 1-50 pg/mL of MWCNT
(provided by Professor D.G. Weiss, Department
of Biological Sciences, Institute of Cell Biology
and Biosystems Technology, Rostock University,
Germany) for 3, 6, 12, 24, and 48 hours. Gene
expression was analysed using semiquantita-
tive PCR (RT-PCR). mRNA expression of TP53
and CDKNIA (that encode p53 and p21Cirt/Wafl,
respectively) and the apoptotic gene BAX, was




increased in comparison with untreated cells at
doses of 10 and 50 pg/mL, and the expression of
the anti-apoptotic and potential oncogene BCL2
was decreased. Protein levels were determined
using Western blot analysis and confirmed differ-
ential mRNA expression. Apoptotic cells were
detected after exposure to a dose of 50 pg/mL of
MWCNT for 72 hours (Srivastava et al., 2011).
[These results were consistent with a change
in the expression of tumour-suppressor genes/
oncogenes related to the induction of apoptosis.]
Normal human bronchial epithelial cells
were exposed to MWCNT or crocidolite asbestos
fibres at doses of 0.01-0.1% for 24 or 48 hours.
Gene expression was investigated using the
Whole Human Genome Microarray (44 K)
(Agilent Technology). A total of 1201 and 1252
genes were upregulated and 1977 and 1542
genes were downregulated by both asbestos
and MWCNT after 6 and 24 hours of exposure,
respectively. These lists were compared with a
list of genes known to be deregulated in human
malignant mesothelioma or human lung cancers,
using a data mining database (GeneCards).
The authors found 12 and 22 genes modulated
by exposure to both MWCNT and crocidolite
in malignant mesothelioma and lung cancers,
respectively, some of which were oncogenes and
known or potential tumour-suppressor genes.
One tumour-suppressor gene — CDKN2A - was
downregulated 24 hours after exposure to each
of the particles; and CTGF was upregulated simi-
larly to human lung cancers. In addition, the
expression of the BCL2 oncogene was enhanced
in comparison with control cells, similarly to
both malignant mesothelioma and lung cancers
(Kim et al., 2012b). [These results demonstrated
that exposure to MWCNT in vitro (i) downreg-
ulated or upregulated some tumour-suppressor
genes and oncogenes, respectively, and (ii) modi-
fied the expression of cancer genes also found
to be deregulated in human lung cancers and
malignant mesotheliomas with similar effects
produced by exposure to crocidolite asbestos.]

Carbon nanotubes

A transcriptomic analysis was performed in
telomerase-immortalized human keratinocytes
(N-hTERT) exposed to MWCNT (NanocylTM
NC7000 MWCNT; from Nanocyl) produced by
catalytic CVD. Cells were exposed to a dose of
100 pg/mL for 24 hours and mRNA expression
was investigated using small-scale transcrip-
tomic TagManlow densityarray profiling (TLDA,
Applied Biosystems). The relative expression
levels of 46 mRNAs in treated cells compared
with untreated cells were reported. Expression of
the BCL2 oncogene was increased after exposure
to water-sonicated MWCNT (Vankoningsloo et
al., 2012). [The authors did not discuss the statis-
tical analysis of these results.]

Carboxylated MWCNT were studied in
human embryonic kidney epithelial HEK 293
cells, mouse mesenchymal stem C2C12 cells,
and human neuroblastoma NB1691 cells. The
expression of cell-cycle regulatory proteins
was analysed using Western blot and mRNA
expression was assessed using RT-PCR after
exposure to 100 pg/mL of MWCNT for 24
hours. Expression of the protein p21, encoded by
CDKNIA (a potential tumour-suppressor gene),
was enhanced in MWCNT-exposed prolifer-
ating C2C12, HEK 293, and NB1691 cells. This
was associated with an increased expression of
the unphosphorylated form of pRb, concordant
with cell-cycle downregulation. The expression
of CDKNIA (an inhibitor of cell-cycle progres-
sion) was also enhanced at the transcriptional
level as assessed using RT-PCR. Interestingly,
expression of the p53 protein was not found
to be enhanced, consistent with the absence of
apoptosis (Zhang & Yan, 2012). [These results
suggested the p53-independent induction of p21
in this experimental model.]

(c)  Experimental systems in vivo
See Table 4.19
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(i)  SWCNT

C57BL/6 mice were exposed to 5 mg/m?
of SWCNT by inhalation for 5 hours per day
for 4 days, or to 10 pg of SWCNT delivered by
pharyngeal aspiration, after which DNA was
isolated from lung sections. Three different types
of mutation were detected in the K-ras gene after
inhalation; two at codon 12, one of the most
common mutation sites in human lung cancer,
and one double mutation at codons 12 and 8.
Pharyngeal aspiration did not significantly
enhance K-ras gene mutations (Shvedova et al.,
2008).

ICR mice were exposed to 100 pg/kg bw of
SWCNT (ASP-100F from Hanhwa Nanotech,
Republic of Korea) delivered by intratracheal
instillation. The lungs were harvested 1, 7, 14,
and 28 days after injection, and proteins were
extracted from the lung tissue and analysed using
Western blots. The expression of p53 protein was
enhanced as early as 1 day after exposure (Park
et al., 2011a). [The authors did not discuss the
origin of the cell or the mechanism responsible
for increased p53 protein expression.]

Exposure of male ICR mice to 100 pg/kg bw
of SWCNT (metal content, approximately 10%
wt; diameter, 1.2 nm; length, 2-10 pm; ASP-100F,
Hanhwa Nanotech) by intratracheal instillation
resulted in the modification of the expression of
several proteins assessed by Western blot. One,
7, and 14 days after exposure, the expression of
p53, cyclooxygenase 2, and caspase-3 proteins
was increased in the lungs of exposed mice in
comparison with controls, then decreased after
28 days (Park et al., 2011b). [These findings were
consistent with an increase in the expression of
the p53 tumour-suppressor gene that is related to
the induction of apoptosis.]

The effects of SWCNT (diameter, 1.2 nm;
length, 2-10 um; ASP-100 F, Hanhwa Nanotech)
were studied in CCR5++ (wild-type) and CCR5-
(knockout) mice exposed to a dose of 100 pg/kg
bw delivered by intratracheal instillation. CCR5
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isachemokinereceptor that playsaroleininflam-
matory responses. The cell cycle was analysed to
determine the expression of apoptosis-related
proteins, and p21C¢pvWafl, cyclin D1 (ccdl), and
TGF-B in the lungs 7 days after instillation.
The expression of apoptosis-related proteins -
caspase-9, caspase-3, and cleaved poly(ADP-ri-
bose) polymerase — and phospho-p53 protein
was more markedly increased in the lung tissue
of knockout mice than in that of wild-type mice.
The expression of other proteins — p21Cipl/Wafl
and ccdl (both potential oncogenes) — was also
increased in knockout mice (Park et al., 2013).
[These results were consistent with SWCNT-
induced apoptosis, but also showed that the
expression of some known or potential onco-
genes (Cdknla and Ccndl encoding p21Cipt/Wafl
and ccdl, respectively) can be altered in the lungs
of mice exposed to SWCNT.]

(i)  MWCNT

Male C57BL/6] mice were exposed to 10,
20, 40, or 80 pg of MWCNT (MWCNT-7, lot #
05072001K28, from Mitsui & Co.) or vehicle by
pharyngeal aspiration for 7 or 56 days. Total
RNA was extracted from frozen lung and quan-
tified using qQRT-PCR. A total of 63 genes were
investigated, 47 of which were selected from
previous studies that had identified gene expres-
sion signatures of human non-small cell lung
cancers, determined using genome-wide DNA
microarray analyses as being potentially associ-
ated with lung cancer risk, and 16 of which were
hallmarks of cancer signalling pathways. At 7
and 56 days after exposure, a set of seven and 11
genes, respectively, showed differential expres-
sion in the lungs of mice exposed to MWCNT
compared with the vehicle-treated control group.
Among these, Wifl (a gene functioning as a
tumour-suppression gene that has been found
to be epigenetically silenced in various cancers)
was downregulated and an oncogene, Bcl-2, was
also downregulated. Four genes from these two
subsets of genes showing significant differential




mRNA expression at both time-points were
either upregulated (Ccdc99, Msx2, and Nos2)
or downregulated (Wifl) (Pacurari et al., 2011).
[These results demonstrated that exposure
to this sample of MWCNT could modify the
expression of genes that have been shown to be
prognostic biomarkers in human lung cancers,
including persistent downregulation of a puta-
tive tumour-suppressor gene.]

C57BL/6] mice were exposed to 0 (vehicle
control), 10, 20, 40, or 80 pg of MWCNT
(MWCNT-7, lot # 05072001K28; from Mitsui &
Co.) by pharyngeal aspiration. RNA extracted 1,
7,28, and 56 days after exposure was analysed for
gene expression profiling using Agilent Mouse
Whole Genome Arrays (Agilent, Santa Clara,
CA). Selected genes showed significant changes
at a minimum of two time-points and with a
more than 1.5-fold change at all doses, and were
significant in the linear model for dose or inter-
action of time and dose. The authors compared
the list of differentially expressed genes from
the microarray gene expression data with two
published studies on microarray profiles in
human lung carcinomas. In treated mice, 24
genes were consistently differentially expressed.
From data at 56 days after exposure, 38 genes
were selected as being associated with cancer.
When matched in human genomes using gene
symbols, 16 and 35 genes were found to predict
the risk and prognosis of human lung cancer
from data obtained at all time-points and at 56
days, respectively. Among the proteins encoded
by the list of 35 genes with differential expres-
sion induced by exposure to MWCNT, several
were implicated in lung cancer development,
including two potential oncogenes - BCL3 and
EGFR. However, both genes were downregulated
after exposure to MWCNT (Guo et al., 2012).

Microarray gene expression profiling was
investigated using RNA isolated from the lungs
of male C57BL/6] mice exposed to 0 (vehicle
control), 10, 20, 40, or 80 pg of MWCNT
(MWCNT-7, lot #05072001K28; from Mitsui &
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Co.) delivered by pharyngeal aspiration for 1,
7, 28, or 56 days. The authors applied a novel
computational model to generate genome-wide
mRNA expression profiles that correlated with
histopathological analysis of mouse lungs,
focusing on inflammatory and fibrosis path-
ways identified using Ingenuity Pathway iden-
tification. Twenty-three genes were found to
be involved in both MWCNT-induced inflam-
mation and fibrosis - 67 in inflammation and
69 in fibrosis. Two of these genes are potential
oncogenes; egfr was downregulated and junb
was overexpressed across all days at most doses,
possibly in relation to persistent inflammation
(Snyder-Talkington et al., 2013a).

The expression of Tgffl was measured in
spontaneously hypertensive male rats exposed to
PBS (control) or 0.6 mg/rat of short (0.5-2 pm) or
long (20-50 um) unpurified MWCNT (Nanotech
Port, Chengdu, China) suspended in PBS by
non-surgical intratracheal instillation once per
day for two consecutive days. Tgffl expression
was evaluated by immunohistochemistry on
the lung tissue sections and by qRT-PCR anal-
ysis. mRNA expression of other genes involved
in the TGF-P Smad signalling pathway was also
measured. [Several genes — Tgfbr2, Smad2, and
Smad3 - are potential tumour-suppressor genes.]
TGF-p1 protein expression was detected in lung
macrophages and near the bronchiolar epithe-
lium in response to MWCNT; the expression
of both TgfBl and Tgfbr2 genes was increased
after 7 days of exposure (other times tested: 1
and 30 days). Additional results suggested that
the TGF-p/Smad signalling pathway was upreg-
ulated only in rats exposed to long MWCNT
(Wang et al., 2013).

Pregnant heterozygous p53*- mice received
an intravenous injection of 2 mg/kg bw of
MWCNT. Exposure to MWCNT induced
mRNA expression of two tumour-suppressor
genes — Cdknla (encoding p21°#!) and Bax - in
p53++ fetuses, but to a lesser extent in p53+- and
p53-- mice (Huang et al., 2014). [These results
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suggested that exposure to MWCNT triggers
apoptosis in mice, a process decreased or inacti-
vated in p53-deficient mice, depending on their
p53 status.]

Pulmonary responses of C57BL/6 mice after
exposure to MWCNT (Mitsui 7) were compared
with in-vitro studies using cultured lung epithe-
lial FEI1 cells at the global transcriptomic level.
Mice were exposed by intratracheal instillation
to doses of 18, 54, and 162 ug/mouse of MWCNT,
and lung samples were collected 24 hours after
exposure. Microarray analyses were performed
using Agilent 8 x 66K oligonucleotide microar-
rays, and gene expression was analysed using the
gene ontology classifications of all of the differ-
entially expressed genes. After in-vivo expo-
sure, several pathways were commonly (more
than one dose) or uniquely (one dose) affected.
Referring to human orthologous genes, expres-
sion of some oncogenes was upregulated (Aurka
and Bcl3). Downregulated genes also included
known or potential oncogenes (Wntl, Myb,
and Dnaja4) (Ses Poulsen et al., 2013). [When
comparing in-vivo and in-vitro models, most of
the genes associated with exposure to MWCNT
involved the same pathways, but the number of
differentially expressed genes, in comparison
with untreated mice, was higher in vivo than
in vitro, which was at least partly linked to the
multicellular versus unicellular nature of these
model systems.]

(d)  Experimental systems in vitro
See Table 4.18

(i)  SWCNT

Murine monocytic RAW 264.7 cells were
exposed to 0, 1, 10 or 50 ug/mL of acid-function-
alized SWCNT (AF-SWCNT) for 24 hours. Gene
expression profiles were analysed using cDNA
microarrays. Based on the criteria of signifi-
cance (P < 0.001 and fold change > 2), differen-
tially expressed genes were identified at a dose of
10 ug/mL. A total of 130 genes were differentially
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expressed: 126 were underexpressed and four
were overexpressed. Among these genes, MYC
(oncogene) mRNA expression was upregulated in
AF-SWCNT-treated RAW 264.7 cells in compar-
ison with controls, confirmed using RT-PCR
analyses. Several genes involved in DNA repair
were downregulated, including XPA, XRCCI,
XRCC4, and CHEKI1 (potential tumour-sup-
pressor genes). Globally, AF-SWCNT altered the
expression of genes related to ribosome function,
mitochondrial function, inflammatory response,
cell cycle/apoptosis, and the proteasome pathway
(Dong et al., 2012). [These results showed that
AF-SWCNT may downregulate tumour-sup-
pressor genes involved in the repair of DNA
damage and stimulate the expression of onco-
genes in RAW 264.7 cells.]

(i)  MWCNT

Rat lung epithelial RL 65 cells exposed to
MWCNT (diameter, 6-13 nm; length, 2.5-20
um; Sigma-Aldrich) showed increased levels of
P53, p21Cipt/Wafl and bax protein expression after
12 hours of exposure to 5 ug/mL, probably related
to the induction of apoptosis (Ravichandran et
al., 2010).

SWCNT (outside diameter, 1-2 nm;
length, ~20 pm; Beijing Nachen Technology
& Development Co. Ltd) were studied in rat
adrenal gland pheochromocytoma PCI12 cells.
After 24 and 48 hours of exposure to 50 ug/mL
of SWCNT, the expression of proteins involved
in apoptosis — Bcl-2, an oncogenic protein, and
bax - was determined using flow cytometry.
Bcl-2 expression was decreased and bax protein
and caspase-3 activity were increased in compar-
ison with control cells, consistent with the induc-
tion of apoptosis in SWCNT-treated PC12 cells
(Wang et al., 2012b).

Mouse embryonic J11 stem cells were exposed
to MWCNT (Tsinghua and Nanfeng Chemical
Group Cooperation, China) and the DNA damage
response induced was analysed by measuring
p53 protein expression levels. The expression




of p53 protein was observed within 2 hours of
exposure, and increased proportionally with the
dose (5 and 100 pg/mL). Phosphorylation of p53
protein was assessed using the phospho-spe-
cific antibody to p53-Ser-23 and confirmed the
activation of the p53 DNA damage-induced
response pathway (Zhu et al., 2007). [Increased
p53 protein expression suggests that MWCNT
could cause DNA damage.]

The expression of TGFfI, a tumour-sup-
pressor gene that might also be an oncogene, was
assessed in a co-culture of the mouse leukaemic
monocyte macrophage RAW 264.7 cell line and
the mouse embryonic fibroblast NIH 3T3 cell
line, using RT-PCR analysis. RAW 264.7 cells
seeded in the bottom well were first exposed
to short (length, 0.5-2 pm) or long (20-50 pm)
MWCNT (15 pg/mL) for 24 hours, and then
NIH 3T3 cells that had attached on the top of the
insert for 24 hours were co-cultured with RAW
264.7 for another 24 hours. mRNA expression of
TGF-p1wasmore upregulated by exposuretolong
MWCNT in comparison with short MWCNT. In
parallel, more TGF-P1 protein was expressed in
co-cultures exposed to long MWCNT than those
exposed to short MWCNT (Wang et al., 2013).

A comparison of the in-vivo pulmonary
responses of C57BL/6 mice to MWCNT (Mitsui
7) with the in-vitro response of lung epithe-
lial FE1 cells (a spontaneously immortalized
lung epithelial cell line derived from a normal
healthy MutaTM Mouse) was made at the global
transcriptomic level (Sos Poulsen et al., 2013).
This cell line retains key endogenous metabolic
capacity and intact p53 signalling pathways,
and expresses both type I and type II alveolar
phenotypes (Berndt-Weis et al., 2009). FE1
cells were exposed to 12.5, 25, or 100 pg/mL
of MWCNT for 24 hours. Microarray analyses
were performed using Agilent 8 x 66K oligonu-
cleotide microarrays and gene expression was
analysed using the gene ontology classification
of differentially expressed genes. After in-vivo
exposure, several pathways were commonly
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(several doses) or uniquely (one dose) affected.
In FEI cells in vitro, genes commonly affected
included pathways involving aryl hydrocarbon
receptor signalling, GSH-mediated detoxifi-
cation, acute phase response signalling, and
the nuclear factor (erythroid-derived 2)-like
2-mediated oxidative stress response. Among
the upregulated genes, several were known or
potential oncogenes or genes involved in cancer,
including Jun, Ddit3, Hmga2, Ctgf, Runxl, and
Fosl1, some of which may also have tumour-sup-
pressor functions in specific models. Among the
downregulated genes, several were also known
or potential tumour-suppressor genes or genes
involved in cancer, such as Pdgfrl, Id4, Cdkn2c,
Cdkn2d (p19), TgfB2, Gstm2, and Gsttl, some
of which may also have oncogenic functions in
specific systems (Pdgfra and Cdkn2d). In-vitro
data showed a high degree of overlap across the
exposure groups, with some exceptions at the
highest concentration (Sos Poulsen et al., 2013).
[When comparing the two in-vitro and in-vivo
models after exposure to MWCNT, most of the
genes were associated with the same pathways,
but the number of differentially expressed genes
was lower in vitro and in vivo in comparison with
untreated mice, which was at least partly linked
to the multicellular versus unicellular nature of
the systems.]

(e)  Acellular systems in vitro

The generation of radicals by MWCNT was
studied in an acellular system. MWCNT were
synthesized by the decomposition of ethylene
on an alumina support doped with a cobalt-
iron catalyst mixture and purified by subse-
quent treatment with sodium hydroxide. The
potential of MWCNT to release free radicals
in aqueous suspensions was thus monitored by
ESR spectroscopy, using 5,5-dimethyl-1-pyrro-
line-N-oxide as a trapping agent. A suspension
of 5 mg of MWCNT did not generate oxygen or
carbon-centred free radicals in the presence of
hydrogen peroxide or formate, respectively. In
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contrast, MWCNT were able to scavenge radicals
in the presence of an external source of hydoxyl
radicals, «OH, or superoxide radicals, O2-
(Fenoglio et al., 2006). [Although not formally
demonstrated, it is possible that MWCNT might
protect against antioxidant depletion.]

The ability of various types of MWCNT to
generate/scavenge radical formation was studied
in both cell-free systems and human bronchial
BEAS-2B cells. Printex 90 carbon black, croci-
dolite asbestos, and glass wool were also used.
Hydrogen peroxide-induced free radical forma-
tion was determined by ESR. All CNM were
found to scavenge the induction of «OH, but the
presence of bovine serum albumin abolished
«OH production in some samples. In addition to
a scavenging effect, two types of long, needle-like
MWCNT (average diameter, > 74 and 64.2 nm;
average length, 5.7 and 4.0 um, respectively)
induced the dose-dependent formation of a
unique, as yet unidentified radical in both the
absence and presence of cells, which also coin-
cided with cytotoxicity. The ability of MWCNT to
protect against oxidant formation also depended
on the composition of the medium (Nymark et
al., 2014).

4.5 Susceptible populations

See Table 4.20

No data on human populations were available
to the Working Group. One study was carried
out in transgenic animals with increased suscep-
tibility to carcinogenic substances (Takanashi et
al., 2012). Several experimental studies focused
on the possible aggravation of airway disease and
the effects of CNT on pulmonary vessels using
models of asthma in mice.

Studies of genes related to inflammation in
genetically deficient mice are also reported below.
Although not related to cancer, these studies are
summarized in relation to their pertinence to
inflammatory processes.
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4.5.1 Modification of risks for cancer of the
lung

(a MWCNT

The effects of MWCNT on allergic airway
inflammation were studied in four groups of
ICR mice that received intratracheal injections
of vehicle, MWCNT (50 pg/animal; one of two
types: Bussan Nanotech Research and SES
Research), OVA, and OVA+MWCNT. Biological
parameters were measured in the BALF (cellu-
larity), lungs (histology, protein levels of
cytokines related to allergic inflammation in
lung homogenates and BALF), and serum (Ig
levels). MWCNT exacerbated murine allergic
airway inflammation, as demonstrated by an
aggravation of allergen-induced airway inflam-
mation and an increased number of goblet cells
in the bronchial epithelium, and exhibited
adjuvant activity for allergen-specific IgG1 and
IgE. OVA+MWCNT amplified the lung levels of
Th2 cytokines (e.g. IL-4, IL-5, and IL-13) and
chemokines (e.g. thymus- and activation-reg-
ulated chemokine and macrophage-derived
chemokine) compared with OVA (Inoue et al.
2009).

The effects of the inhalation of MWCNT
on airway fibrosis were investigated in normal
and OVA-sensitized mice with allergic asthma.
Quantitative morphometry showed signifi-
cant airway fibrosis in OVA-sensitized mice
14 days after exposure to MWCNT but not in
mice treated with OVA or MWCNT alone. The
levels of inflammatory factors in the BALF
differed according to the exposure: IL-13 and
TGF-B1 were elevated in OVA-sensitized mice
while PDGF-AA was elevated in MWCNT-
treated mice, suggesting that the airway fibrosis
resulting from the combined effect of OVA and
MWCNT required PDGEF (a fibroblast mitogen)
and TGF-p1 that stimulates collagen production
(Ryman-Rasmussen et al., 2009b). [These find-
ings indicated that individuals with pre-existing
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allergic inflammation may be susceptible to
airway fibrosis from inhaled MWCNT]

Whether sensitization by MWCNT (30 pL
of 0.01, 0.1, or 1 mg/mL) and OVA (30 pL of
2.5 mg/mL) (combined) promotes an allergic
asthmatic response was examined in mice. An
increase in airway resistance was observed in
the groups treated with OVA + 0.1 or 1 mg/mL
of MWCNT compared with controls and those
treated with OVA or MWCNT alone. In OVA
+ 1-mg/mL MWCNT-treated mice, the concen-
tration of pro-inflammatory cytokines (IL-4,
IL-5, IL-13, and IL-17) was increased in lung
tissues and that of the anaphylatoxin C3a in the
BALF. OVA-specific IgE, I1gGl, and IgG2a were
increased in the serum of mice sensitized with
OVA and MWCNT (Mizutani et al., 2012).

The effects of MWCNT on the systemic
immune response, airway inflammation, and
remodelling induced by house dust mites (HDM)
was investigated in BALB/cBy] mice. MWCNT
increased the systemic immune response (signif-
icantly enhanced levels of specific and total
IgGl in the serum of HDM+MWCNT-treated
mice compared with control mice and mice
treated with the highest dose of HDM), airway
inflammation (significantly enhanced number of
eosinophils, neutrophils, and lymphocytes in the
BALF of HDM+MWCNT-treated mice compared
with control mice and mice treated with the
highest dose of HDM), mucus production, and
fibrotic response in a dose-dependent manner,
as demonstrated by histological analyses of the
lungs (Ronzani et al., 2014). [HDM are the most
frequent allergens associated with asthma to
date; using this model of asthma in mice, expo-
sure to MWCNT was found to aggravate aller-
gen-induced systemic immune responses, as well
as airway inflammation and remodelling.]

The instillation of CNT has been shown to
induce granulomatous changes and a study was
performed to determine whether peroxisome
proliferator-activated receptor gamma (PPARY)
deficiency would enhance granuloma formation

Carbon nanotubes

after exposure to MWCNT (Huizar et al., 2013).
PPARYy is a transcription factor that acts as aneg-
ative regulator of genes linked to inflammatory
events. The alveolar macrophages of healthy
individuals constitutively express PPARy but
PPARYy is deficient in the alveolar macrophages of
patients with severe sarcoidosis, a granulomatous
disease. PPARYy was therefore hypothesized to
play a role in the formation of MWCNT-induced
granulomas. Wild-type and macrophage-spe-
cific PPARy knockout C57BL/6 mice received
oropharyngeal instillations of 100 ug of MWCNT.
The expression and activity of PPARy by alve-
olar macrophages were significantly reduced in
MWCNT-treated wild-type mice bearing gran-
ulomas. Granuloma formation was more exten-
sive in MWCNT-treated macrophage-specific
PPARy knockout mice than in wild-type mice.
PPARy knockout mice exposed to MWCNT
also demonstrated an elevated expression of
pro-inflammatory cytokines in the lung tissues,
laser-microdissected lung granulomas, and
BALF cells. [These data suggested that PPARy
deficiency may promote inflammation and gran-
uloma formation.]

Wild-type or cyclooxygenase 2 knockout
mice were sensitized to OVA to induce allergic
airway inflammation before exposure to 4 mg/kg
bw of MWCNT by oropharyngeal aspiration.
Exposure to MWCNT significantly increased
OVA-induced lung inflammation and mucus-
cell metaplasia in knockout mice compared with
wild-type mice. Allergen-induced cytokines
involved in Th2, Thl, and Thl7 inflamma-
tory responses were significantly enhanced in
MWCNT-treated knockout but not in wild-type
mice (Savyers et al., 2013).

MWCNT were implanted subcutaneously
into transgenic rasH2 mice that overexpress
the c-Ha-ras oncogene and are highly sensitive
to carcinogens. Carbon black and N-methyl-N-
nitrosourea were used as controls. No tumour
developed in MWCNT-treated mice. In the
carbon black-treated group, one mouse had a
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haemangioma in the spleen and another had an
adenoma in the lung. Neoplasms developed in
all mice in the N-methyl-N-nitrosourea-treated
group but in none of the solvent-treated group
(Takanashi et al., 2012). [These results showed
that carcinogen-sensitive rasH2 mice did not
develop neoplasms after subcutaneous implan-
tation of MWCNT under these experimental
conditions.]

(b) SWCNT

OVA-sensitized rats were exposed to SWCNT
by intratracheal instillation. SWCNT exacer-
bated OVA-induced allergic asthma and this
exacerbation was counteracted by the concurrent
administration of vitamin E (Li et al., 2014).

The effects of SWCNT on allergic airway
inflammation was studied in four groups of
ICR mice that received intratracheal instilla-
tions of vehicle, SWCNT (50 pg/animal), OVA,
and OVA+SWCNT. Two types of SWCNT
were administered: one type ranged from 0.8
to 1.2 nm in diameter and 100 to 1000 nm in
length and contained < 35% (by weight) iron; the
other type (SES Research) was formed in the arc
process and ranged from 1.2 to 2 nm in diameter
and 1 to 15 um in length. Both types of SWCNT
contained up to 75% nanotubes (the remaining
material consisted of amorphous carbon and
other carbon nanoparticles) and were auto-
claved at 250 °C for 2 hours before use. SWCNT
aggravated allergen-induced pulmonary inflam-
mation with mucus hyperplasia. OVA+SWCNT
enhanced the protein levels of Th cytokines and
chemokines related to allergy in the lung and
exhibited adjuvant activity for allergen-spe-
cific IgGl and IgE compared with OVA alone.
OVA+SWCNT-treated mice also had enhanced
oxidative stress-related biomarkers in the airways
(Inoue et al., 2010). [These results were consistent
with an exacerbation of allergic airway inflam-
mation in mice via the enhanced activation of Th
immunity and increased oxidative stress.]

176

The effects of SWCNT were investigated
in wild-type and Ccr5 (a C-C chemokine
receptor predominantly expressed on T-cells,
macrophages, dendritic cells, and microglia,
which plays an important role in inflamma-
tory responses to infections) knockout mice. A
comparison of wild-type and knockout mice
exposed to SWCNT showed a significant decrease
in the levels of neutrophils and an increase in
the expression of apoptosis-related proteins,
TGF-Bl, and mesothelin in knockout mice.
Histopathological lesions were also observed
more frequently in knockout mice. The concen-
trations of the pro-inflammatory cytokines
IL-6, IL-13, and IL-17 in BALF were significantly
higher in knockout than in wild-type mice, but
the levels of IL-1f, IL-10, and IFN-y were similar
in both models. Ccr5 deficiency may delay the
resolution of inflammatory responses trig-
gered by SWCNT and shifts the inflammatory
response for SWCNT clearance from a Thl-type
to a Th2-type (Park et al., 2013).

Nanoparticles have been reported to produce
respiratory damage associated with adverse
cardiovascular effects. To evaluate the effects of
SWCNT on the progression of atherosclerosis,
apolipoprotein E knockout (ApoE--) C57BL/6
mice were fed normal or atherogenic diets and
were exposed by intrapharyngeal instillation to
SWCNT. ApoE-"- mice lack ApoE, a high-affinity
ligand for lipoprotein receptors, and conse-
quently have elevated plasma levels of cholesterol
and triglycerides and develop atherosclerotic
plaques. Exposure to SWCNT did not modify the
lipid profiles of ApoE-- mice but induced accel-
erated plaque formation in mice fed an athero-
genic diet. This response was accompanied by
increased mitochondrial DNA damage but not
inflammation (Li et al., 2007b). [These findings
suggested that ApoE deficiency may enhance
sensitivity to SWCNT.]
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4.6 Mechanistic considerations

4.6.1 Physical and chemical properties
associated with biological activity

See Fig. 4.2
The physico-chemical properties of CNT

may be modulated by their production method,
by applying post-synthesis modification (puri-
fication), and/or by covalent functionalization
of their external surface. The resulting large
variety of CNT, their different features and their
impact on biological activity and pathogenicity
are reviewed in Section 4.2 and summarized in
Table 4.2 and Fig. 4.2.

4.6.2 Deposition, biopersistence,
translocation, and associated end-
points

See Table 4.21

The lung interstitium and pleura were the
target tissues for the carcinogenic (see Section
3), inflammogenic, and fibrotic effects that have
been reported to be associated with exposure to
MWCNT in rats and mice.

The biokinetic factors that relate to the
mechanisms of carcinogenicity are those that
influence the dose to the target tissue. These
factors include the particle characteristics that
determine the efficiency of their deposition in
the respiratory tract, their clearance or retention,
and their potential for translocation to distal
sites. Airborne CNT include inhalable (capable
of depositing in any region of the respiratory
tract; 50% cut size, 10 um) or respirable size parti-
cles (capable of depositing in the pulmonary or
alveolar region of the lungs where gas exchange
occurs; 3 and 5 pm for adults and children,
respectively) (Brown et al., 2013). Particles that
are deposited in the pulmonary region can be
cleared from the lungs by alveolar macrophages,
and those that are not cleared have the potential
to translocate beyond the lungs.

CNT of respirable size have been shown to be
deposited in the lungs of rats and mice exposed
by inhalation, with estimated pulmonary
deposition fractions of approximately 1-4% for
SWCNT or MWCNT in mice (Shvedova et al.,
2008; Mercer et al., 2013a) and approximately
5-20% for MWCNT in rats (Pauluhn, 2010b;
Ovyabuetal., 2011). Estimated human pulmonary
deposition fractions for MWCNT or SWCNT
studied in rodents were approximately 8 to 10%
(NIOSH, 2013).

CNT can enter cells by passive internalization
(diffusion or penetration of the cell membrane)
or active internalization (phagocytosis or other
types of endocytosis) (Kunzmann et al., 2011;
Ye et al., 2013). The mechanisms of cell uptake
depend on the surface properties of the CNT,
the cell type encountered and its activation state.
SWCNT uptake into alveolar macrophages was
low (10% of alveolar burden in mice) (Shvedova
etal., 2005) and 90% of dispersed SWCNT struc-
tures were observed in the lung interstitium
(Mercer et al., 2008). More effective uptake of
MWCNT has been observed (Mercer et al., 2010,
2011; Treumann et al., 2013). F-MWCNT signifi-
cantly increased the alveolar macrophage uptake
in comparison with O- or P-MWCNT (Silva et
al., 2014).

CNT translocated from the lungs of mice
and were observed in blood samples (Ingle et
al., 2013). Two sizes of MWCNT (diameter,
60-80 nm or 90-150 nm) were observed as black
pigments in liver tissue 1 day after intratracheal
administration; dose-dependent toxicity and
necrosis were observed in the liver and kidney
(Reddy et al., 2010a). MWCNT seen by TEM
were located in alveolar macrophages in the
subpleural region, where focal subpleural fibrosis
was also observed 2 weeks after inhalation expo-
sure of 30 mg/m?® in mice (Ryman-Rasmussen
et al., 2009a). MWCNT administered to rats
by intrapulmonary spraying were observed to
penetrate directly from the lungs to the pleural
cavity through the visceral pleura, where visceral
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Fig. 4.2 Physical and chemical properties of carbon nanotubes associated with biological activity

Fibrosis
Defects?
CNTs Genotoxicity

Pure carbon backbone
Metal impurities
Carbon impurities

Attacked by Low
biomolecules biodurability
Short Normal
Rigid clearance

fibre-like behaviour

L Frustrated
SWCNTs MWCNTs < ong==) Frustrate

phagocytosis, impaired

One wall Many walls lung clearance,
trapping at lymphatic
stomata
Flexible
(tangled agglomerates)® => De-agglomeration in
particle-like behaviour lung
As produced < > Pure or
purified®
Metals bioavailable No bioavailable metals
(metal ions migrating in the body)
Functionalization via oxidation or other means
Functional groups are linked to the CNT framework
Improved dispersion in Modifications in acidity
aqueous media (solubility) and charges
Affects kinetics Modified cellular response

= CNTs do not generate radicals/reactive oxygen species (ROS) per se, but act as quenchers of radicals/ROS. When in contact with cells, an
oxidative stress response may take place, but the radicals/ROS generated by cells may be totally or partially quenched by CNT. A balance
between radicals/ROS generated or quenched depends on cell activity and the quenching potential of CNT, and is strictly related to defects
® Tangled or less dense material may lead to volumetric overload mechanism. Reagglomeration may occur dur to hydrophobic interaction

¢ Nitric acid purification may also lead to defects

CNT, carbon nanotube; MWCNT, multiwalled carbon nanotube; SWCNT, single-walled carbon nanotube

Prepared by the Working Group
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pleural cell proliferation was apparent at the end
of the 9-day exposure (Xu et al., 2012). MWCNT
(as-produced, CM-100; diameter, ~10-15 nmy;
length, ~20 um) were observed in the pleura
28 days after a 90-day exposure by inhalation
in rats, and DNA damage was observed (by the
comet assay) up to 90 days after exposure (Kim
etal., 2014). [The Working Group noted the short
length of the aerosol generated.]

The numbers of MWCNT in the lungs and
other organs were quantified after a 12-day expo-
sure of mice to 5 mg/m? for 5 hours per day; most
of the MWCNT in the lungs were agglomerated,
but only singlet MWCNT structures (average
length, 6.9 um) were observed in the liver, kidney,
heart, brain, chest wall, and diaphragm (Mercer
et al., 2013a, b). Rapid translocation of MWCNT
occurred and 0.6% of the dose administered by
pharyngeal aspiration was seen in the subpleura
of mice 1 day after exposure (Mercer et al.
2010). “C-Radiolabelled MWCNT administered
to mice by pharyngeal aspiration was detected
in the spleen and liver 1 day after exposure,
increasing to 0.1-1% of the administered dose by
6-12 months after exposure, while the lung dose
decreased to 10-20% of the administered dose
over that time (Czarny et al., 2014).

The length and rigidity of the MWCNT
influenced their clearance from the pleura after
intrapleural injection; mice given the longer
structures (mean length, 13 pm) developed
significant inflammation and fibrosis of the
parietal pleura compared with those given the
shorter MWCNT (length, 0.5-5 pm) (Murphy et
al., 2011).

The rat lung retention rate of short MWCNT
(geometric mean length, 1.1 um; GSD, 2.7) was
similar to that for respirable poorly soluble
spherical particles, with a retention half-time of
approximately 50 days after inhalation exposure
to 0.37 mg/m? of MWCNT (Oyabu et al., 2011).
The rat lung retention half-times were greater for
another MWCNT (Baytubes; MMAD, ~3 pm;
GSD, ~2), ranging from 151 to 375 days in rats

Carbon nanotubes

exposed to inhalation concentrations ranging
from 0.1 to 6 mg/ mg/m? (Pauluhn, 2010a).

4.6.3 Persistent inflammation, granuloma
formation, fibrosis, and pleural end-
points

The studies on the toxicity of CNT in vivo
are summarized in Table 4.22, in which the types
of CNT and biological end-points are identified.
Acute or persistent pulmonary inflammation
(Fig. 4.3), pulmonary granuloma, fibrosis, and
pleural end-points with well-defined effects were
observed in the studies of MWCNT, SWCNT,
and other CNT. Regardless of the number of
walls or extent of purification, significant dose-
response relationships were observed for these
pulmonary end-points.

Occupational exposures to CNT may be to
various types and forms of CNT that vary with
respect to purity, especially in the content and
bioavailability of metal catalyst residues. In
general, MWCNT and SWCNT used in their
“as-produced” or pure or purified forms produce
a marked acute inflammatory response in the
lungs after inhalation/aspiration. There is some
evidence that “fully purified” MWCNT showed
less severe responses than “as-produced” or
partially purified MWCNT. Repeated expo-
sure to CNT by inhalation/aspiration induces a
persistent inflammatory response with concom-
itant focal granuloma formation and co-locali-
zation of fibrosis in a dose-dependent fashion.
Even acute exposure to MWCNT can lead to
their translocation to the pleura with subpleural
cellular infiltration, collagen deposition, and
pleural (mesothelial) cell hyperplasia.

4.6.4 Genotoxicity

See Table 4.23, Table 4.24, and Table 4.25

[The Working Group recognized the difficul-
ties in evaluating the results of studies of geno-
toxicity due to the lack of standardized methods
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Fig. 4.3 Persistent inflammation and exposure to carbon nanotubes
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for genotoxicity testing, and variations in sample
preparations and characterization of CNT.]

The Working Group did not identify any
studies on genotoxicity end-points in presumed
target tissues, surrogate cells (peripheral blood
leukocytes), or matrices (e.g. urine) in humans
with well-defined exposure to CNT and there-
fore regarded the observations in cultured
human cells as being the most relevant with
regard to supporting mechanistic evidence for
carcinogenicity. In particular, both MWCNT
and SWCNT induced aneuploidy in primary
or immortalized human airway epithelial cells
(Sargent et al., 2009, 2012a). This mechanism,
which is described as a physical interference
between CNT and the mitotic apparatus or frag-
mentation of the centrosome, is considered to be
relevant for (airway) exposure of humans in vivo.
These observations of chromosomal damage are
supported by positive findings for SWCNT in
cultured primary human lymphocytes (Catalin
et al., 2012) and for MWCNT in the bronchial

epithelial BEAS-2B cell line (Siegrist et al.,
2014). Further supporting evidence in six out of
eight studies showed an increased frequency of
micronuclei in human cell lines after exposure
to either SWCNT or MWCNT (Muller et al.
2008b; Cveticanin et al., 2010; Cicchetti et al.,
2011; Thurnherr et al,, 2011; Lindberg et al., 2013;
Manshian et al., 2013; Kim & Yu, 2014; Tavares et
al., 2014). Studies that gave negative results inves-
tigated the effects of pure MWCNT (length, 2-5
um; diameter, 6-26 nm; 0.4% iron) (Thurnherr
et al.,, 2011) and SWCNT (length, 1-5 pm; diam-
eter, < 2 nm; impurities not reported) (Lindberg
et al, 2013) that did not appear to differ from
samples that caused the formation of micronu-
clei. In addition, one study showed that only two
out of six MWCNT samples generated micronu-
clei, although they did not have overtly different
physico-chemical characteristics compared with
non-genotoxic samples (Tavares et al., 2014).

The strongest evidence of mutagenesis derives
from animal studies that showed increased
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Fig. 4.4 Mechanisms of genomic instability generated by carbon nanotubes

Lung cancer
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CNT, carbon nanotubes; ssDNA, single-strand DNA; DSB, double-strand break; ROS, reactive oxygen species

Cancer arises from genomic instability (GIN), and the genotoxic effects of carbon nanotubes (CNT) are consistent with an ability to generate
GIN. Inhaled CNT may induce local inflammation associated with the production of cytokines, growth factors, and reactive oxygen species,
which can induce genomic insult and stimulate cell growth. Alternatively, fibres can be internalized by many cell types, resulting in a physical
insult due to fibre load. In these “targeted and/or fibre-loaded” cells, DNA lesions produce defects in DNA structure. DNA breakage is generated
by replication stress, and mitosis stress generates both DNA breaks and chromosome defects. Various repair mechanisms and cell-cycle
checkpoints are then activated to control genome integrity. Unrepaired or error-prone repair processes can entail mutations, chromosomal
rearrangements and variations in chromosome number or morphology, which are the causes of GIN. Selection and amplification of genomically

unstable cells can progress to lung cancer and mesothelioma.
Compiled by the Working Group

levels of guanine phosphoribosyltransferase
(Gpt) mutations in the lung tissues of mice after
intratracheal exposure to MWCNT (Kato et al.
2013) and of K-Ras mutations after inhalation
exposure to SWCNT (Shvedova et al., 2008,
2014). The results for mutagenesis in cultured
cells have been negative, including one study in
human lymphoblastoid MCL-5 cells (Manshian
et al., 2013). Genotoxicity studies have provided
information on the mechanisms of genomic
instability generated by CNT (Fig. 4.4). Studies
of DNA damage - essentially DNA strand breaks
and oxidatively damaged DNA measured by the
cometassay - in cultured human cells have shown
genotoxicity after exposure to either MWCNT or
SWCNT. Increased levels of DNA strand breaks
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in the lungs of rodents after pulmonary exposure
to either MWCNT or SWCNT were found in four
studies (Kim et al., 2012a; Kato et al., 2013; Cao et
al., 2014; Kim et al., 2014) while no increase was
found in three studies (Naya et al., 2012; Ema et
al., 2013a; Vesterdal et al., 2014a); intraperitoneal
injection of MWCNTT yielded positive results in
two studies (Patlolla et al., 2010; Ghosh et al.,
2011). No data were available regarding the rela-
tionship between the characteristics of CNT and
their ability to generate DNA damage in human
cultured cells and organs of exposed animals.
[These observations indicate that the mechan-
isms of genotoxicity involve chromosomal aber-
rations and oxidative stress, although a formal
assessment of the inhibition of DNA damage




through supplementation with antioxidants in
CNT-exposed cells has not been pursued.] This
mechanism of DNA damage is known to occur
in human cells after exposure to particulate
matter. Two human mesothelial (pleural Met-5A
and peritoneal LP-9) cell lines showed features
of morphological transformation and H-RAS
expression after continuous exposure to SWCNT
(Lohcharoenkal et al., 2014).

Pulmonary exposure to MWCNT and
SWCNT had no effect on oxidative DNA damage
(i.e. FPG-sensitive sites) in studies that mainly
focused on cardiovascular effects in atheroscle-
rosis-prone (ApoE-- knockout) mice, but the
administered doses were low (maximal dose of
1 mg/kg bw as two intratracheal instillations
(Vesterdal et al., 2014a) and 25.6 pg/mouse per
week (Cao et al., 2014)). [Therefore, these studies
cannot rule out the possibility that DNA damage
is generated by oxidative stress in pulmonary
tissues after airway exposure to MWCNT and
SWCNT.] One study showed increased levels
of pro-mutagenic 8-oxodG lesions in both lung
and liver tissues after gastrointestinal adminis-
tration of low doses (0.064 and 0.64 mg/kg bw)
of SWCNT (Folkmann et al., 2009). [This study
suggests the involvement of a genotoxic mecha-
nism arising as a consequence of oxidative stress,
although it is impossible to distinguish between
direct and indirect genotoxic mechanisms.]

The MWCNT and SWCNT investigated orig-
inated from different manufacturing processes,
leading to substantial differences in dimensions
and residual transition metal content. The avail-
able literature supports the conclusion that expo-
sure to a range of different MWCNT (including
Mitsui-7) and SWCNT can generate DNA strand
breaks, oxidized DNA nucleobases, micronu-
clei, and chromosomal aberrations in animal
and human cells through various mechanisms
according to the type of CNT material. Overall,
there is strong evidence that a genotoxic mecha-
nism in human cells leads to carcinogenesis after
exposure to both MWCNT and SWCNT.

Carbon nanotubes

5. Summary of Data Reported

5.1 Exposure data

Carbon nanotubes (CNT) are comprised of
graphene sheets rolled into cylinders, some of
which may be hundreds of micrometres in length
and be composed of either a single graphene
cylinder (single-walled carbon nanotube;
SWCNT) or many graphene cylinders inside
one another in concentric layers (multiwalled
carbon nanotubes; MWCNT). The outer diam-
eter of SWCNT is generally 1-3 nm and that of
MWCNT is 10-200 nm. The thickness of CNT
mainly depends on the number of graphene
layers contained therein and on the chirality of
the tubes. The length of a typical CNT is a few
micrometres, but their length can vary from only
a few hundreds of nanometres to several tens of
micrometres.

The production of CNT involves the use of a
carbon source at a high temperature and/or pres-
sure in the presence of transition metals. Both
SWCNT and MWCNT are normally produced
by one of three principal techniques: chemical
vapour deposition, arc discharge, or laser abla-
tion. Chemical vapour deposition is the most
common production method. Depending on the
production technique, the physical and chem-
ical characteristics (e.g. diameter, length, atomic
structure, surface chemistry, and defects) and
the levels of impurities (such as metal catalysts,
amorphous carbon, carbon black, fibres, soot,
graphite, and non-tubular fullerenes) present in
the final preparation may vary greatly.

Industrial-scale commercial production of
CNT began in the twenty-first century. In 2006,
global production of MWCNT and SWCNT
was estimated at 300 and 7 tonnes, respectively.
Because the industrial production and use of
CNT material are relatively recent and the size
of the workforce in CNT is still small, currently
available data on occupational exposure are
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limited. The main route of exposure in occupa-
tional settings is anticipated to be inhalation.

Due to the limitations of exposure assess-
ment methods and the lack of a consensus on
the most relevant exposure metrics, the available
data do not allow complete characterization of
occupational exposure to SWCNT and MWCNT
and only permit a limited description of some
occupational exposure situations. The opera-
tions that yield the highest release of CN'T mate-
rial include production, blending, transferral,
sieving, pouring, weighing, and cleaning. CNT
were more frequently found in the form of large
entangled agglomerates; individual CNT were
rarely observed and may be dependent on the
work process or task.

CNT have a wide variety of applications,
including incorporation into fabrics, plastics,
rubbers, electronics, reinforced structures,
composite materials, and other household prod-
ucts to improve their strength and water- and
wear-resistance and reduce their weight. No
quantitative data on consumer exposure to CNT
have been identified, but exposure can occur in
principle at all phases of the life-cycle of CNT,
ranging from production to waste treatment.
Several studies describing the release of CNT
from consumer products have been conducted
to estimate exposures from abrasion and weath-
ering, but quantitative values of CNT or CNT
composites released from the products have not
been specified.

5.2 Human carcinogenicity data
No relevant data were available to the
Working Group.

5.3 Animal carcinogenicity data

MWCNT-7 significantly increased the
incidence of peritoneal mesothelioma in one
study by intrascrotal injection in male rats, of
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mesothelioma in one study by intraperitoneal
injection in male and female rats (combined),
and of peritoneal mesothelioma in two studies
by intraperitoneal administration in male p53+-
mice. In one inhalation study in male mice,
MWCNT-7 was a promoter of 3-methylcholan-
threne-initiated bronchiolo-alveolar adenoma
and carcinoma.

In one study, intraperitoneal administration
of two types of MWCNT with physical dimen-
sions similar to those of MWCNT-7 (length,
1-19 um; diameter, 40-170 nm) significantly
increased the incidence of mesothelioma in male
and female rats (combined).

One study of intraperitoneal administra-
tion of MWCNT in male rats and one study of
subcutaneous administration of MWCNT in
male mice gave negative results. One study of
intratracheal instillation of MWCNT in male
mice and one study of intraperitoneal implanta-
tion of MWCNT in rats were inadequate for an
evaluation.

Onestudy of intratracheal instillation and one
study of intraperitoneal implantation of SWCNT
in rats were inadequate for an evaluation.

5.4 Mechanistic and other relevant
data

5.4.1 Biopersistence, pleural translocation,
and injury

MWCNT havebeen associated with increased
retention half-times in rat lungs at lower mass
doses than those observed for other poorly
soluble, respirable particles. MWCNT and
SWCNT enter the lung interstitium in rodents
exposed by inhalation.

Inrodents, three types oflong, rigid MWCNT
(MWCNT-7, MWCNT-N, and Helix) reached
the subpleural tissues after inhalation, and one
of these (Helix) induced subpleural fibrosis in
mice. The three types of MWCNT also translo-
cated to lung-associated lymph nodes and distal



organs at increasing concentrations after inhal-
ation or intrapulmonary spraying into the lungs.
MWCNT-7 rapidly translocated to the pleura
and intrapleural space in mice (small percentage
of the dose within 1 day of administration).

No studies evaluated the pleural penetration,
translocation, or injury of other types of CNT
administered by lung instillation or inhalation.

5.4.2 Lung inflammation and fibrosis

Acute exposure to CNT was associated with
transient inflammation that resolved over time,
although CNT were able to persist in the tissues.
Long-term exposure to CNT induced a sustained
inflammatory response associated with gran-
uloma formation, fibrosis, and subpleural
thickening. Acute or persistent pulmonary
inflammation, pulmonary granuloma or fibrosis,
and bronchiolar or bronchoalveolar hyper-
plasia were observed in most of the studies with
MWCNT, SWCNT, and other CNT. Regardless
of the number of walls or extent of purification,
statistically ~significant dose-response rela-
tionships were observed for these pulmonary
end-points.

Lung epithelial cell proliferation was
observed in one study in rats exposed to as-pro-
duced or functionalized MWCNT by pharyngeal
aspiration.

5.4.3 Genotoxicity in vivo and in vitro

SWCNT and MWCNT induced genetic
lesions in experimental animals and similar
genetic injuries (end-points) in cultured human
and animal cells. Positive and negative results
were observed in human primary and immor-
talized lung and mesothelial cells in short-term
assays in vitro. DNA strand breaks, oxidized
DNA bases, mutations, micronucleus formation,
and numerical and structural chromosomal
abnormalities have been reported. SWCNT and
MWCNT interacted with and perturbed the

Carbon nanotubes

cellular mitotic apparatus, including microtu-
bules and centrosomes, in human lung epithe-
lial cells. K-Ras point mutations were observed
in the lung tissues of mice 1 and 28 days and
1 year after a 4-day inhalation exposure to one
type of SWCNT; 1 year after exposure, karyo-
typic changes were shown by micronuclei and
multinucleated cells in type II pneumocytes.
In two studies, MWCNT was genotoxic (by the
comet assay) in rats after inhalation exposure.
Overall, experimental studies are too limited to
link the specific physical and chemical proper-
ties of SWCNT or MWCNT with genotoxicity.
Consistent evidence indicated that SWCNT
and MWCNT are genotoxic in vitro to relevant
human target cells in the lungs and pleura.

5.4.4 Conclusion

The results of studies of genotoxicity in
vivo and in vitro were positive for SWCNT
and MWCNT. Lung inflammation, granuloma
formation, and fibrosis were observed in rats
and mice exposed by inhalation, intratracheal
instillation, or pharyngeal aspiration to SWCNT,
double-walled CNT, or MWCNT. Pleural inflam-
mation or proliferation was observed in mice or
rats exposed by inhalation or intrapulmonary
spraying to three types of MWCNT (MWCNT-7,
MWCNT-N, and Helix).

For end-points related to mesothelioma, the
mechanistic evidence is moderate for MWCNT
and is weak for SWCNT due to the lack of data.

For end-points related to cancer of the
lung, the mechanistic evidence is moderate for
MWCNT and equivocal for SWCNT.

The mechanistic evidence for other CNT is
weak due to limited data.

The mechanistic events relevant to genotox-
icity, lung inflammation, and fibrosis as well as
translocation to the pleura, are liable to occur in
humans exposed to CNT by inhalation.

Due to the heterogeneity of CNT and the
limited long-term studies, significant data
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gaps remain with regard to understanding the
mechanisms of carcinogenicity.

6. Evaluation

6.1 Cancer in humans

There is inadequate evidence in humans for
the carcinogenicity of carbon nanotubes.

6.2 Cancer in experimental animals

There is sufficient evidence in experimental
animals for the carcinogenicity of MWCNT-7
multiwalled carbon nanotubes.

There is limited evidence in experimental
animals for the carcinogenicity of two types of
multiwalled carbon nanotube with dimensions
similar to MWCNT-7.

There is inadequate evidence in experimental
animals for the carcinogenicity of multiwalled
carbon nanotubes other than MWCNT-7.

There is inadequate evidence in experimental
animals for the carcinogenicity of single-walled
carbon nanotubes.

6.3 Overall evaluation

MWCNT-7 multiwalled carbon nanotubes
are possibly carcinogenic to humans (Group 2B).

Multiwalled carbon nanotubes other than
MWCNT-7 are not classifiable as to their carcino-
genicity to humans (Group 3).

Single-walled carbon nanotubes are not clas-
sifiable as to their carcinogenicity to humans
(Group 3).
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