Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Reference, location enrolment/follow-up period, study design	Population size, description, exposure assessment method	Organ site	Exposure category or level	Exposed cases/deaths	Risk estimate (95\% CI)	Covariates controlled	Comments
Kuper et al. (2000) USA 1992-1997 Case-control	Cases: 549; Population-based. Controls: 516; None Exposure assessment method: Questionnaire	Ovary	All coffee (cups/day) Never <1 1 2-3 ≥ 4 Trend-test p-value	$y)$ 128 100 90 170 61 0.17	$\begin{aligned} & 1.35(0.9-2) \\ & 1.13(0.76-1.68) \\ & 1.1(0.78-1.54) \\ & 1.88(1.14-3.09) \end{aligned}$	Age, centre, parity, body mass index, OC, family history of breast/ovarian/prostate cancer, tubal alligation, education, alcohol consumption, smoking, marital status	Paper focused on coffee, alcohol and tobacco; direct association only in premenopausal women; no heterogeneity among histological subtypes; similar results for coffee and caffeine. Strengths: population-based; cases identified by medical records and cancer registries; FFQ tested for validity/reproducibility, although no validity specific for coffee intake; intervieweradministered FFQ; adjusted for major confounders, although not all. Limitations: no information on: exclusion of previous cancer among cases and controls and no exclusion of oophorectomized women from controls; no age distribution reported; no separate information for caffeinated/decaffeinated coffee
Tavani et al. (2001) Italy 1992-1999 Case-control	Cases: 1031; hospital-based. Controls: 2411; None Exposure assessment method: Questionnaire	Ovary	All coffee (cups/d $\begin{aligned} & <1 \\ & 1-<2 \\ & 2-<3 \\ & 3-<4 \\ & \geq 4 \end{aligned}$ Trend-test p-value	188 244 282 162 155 0.251	$\begin{aligned} & 1 \\ & 1.12(0.85-1.48) \\ & 1.13(0.86-1.47) \\ & 0.86(0.64-1.16) \\ & 0.93(0.69-1.27) \end{aligned}$	Age, study centre, year of interview, education, parity, age at menopause, OC, body mass index, total energy intake, family history of ovarian/breast cancer	Paper focused on coffee and alcohol; no association for coffee, cappuccino and slight inverse association for the caffeinated coffee (based on low numbers); no heterogeneity in strata of age, education, parity, OC, body mass index, energy intake, family history. Strengths: very large study; exclusion of previous cancer among cases and controls and of oophorectomized women from controls; FFQ tested for validity/reproducibility; interviewer-administered FFQ; fully adjusted; separate information for caffeinated/decaffeinated coffee and cappuccino. Limitations: hospital controls

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Reference, location enrolment/follow-up period, study design \& Population size, description, exposure assessment method \& Organ site \& Exposure category or level \& Exposed cases/deaths \& Risk estimate
(95\% CI) \& Covariates controlled \& Comments \\
\hline Goodman et al. (2003) \& \begin{tabular}{l}
Cases: \\
164; Population-based
\end{tabular} \& \multirow[t]{9}{*}{Ovary

Ovary} \& \multicolumn{2}{|l|}{All coffee (cups/day)} \& \& \multirow[t]{9}{*}{| Age, race, OC, tubal alligation |
| :--- |
| Age, race, OC, tubal |} \& \multirow[t]{5}{*}{Paper focused on coffee and caffeine; direct association for regular coffee and caffeine and no association with decaffeinated coffee; direct association only in the variant A / A of the CYP1A2 polymorphism in a subsample in women with intake above median of cruciferous vegetables, women with mucinous and OC; no significant similar increased risk in pre and post-menopausal women.} \\

\hline Hawaii \& Controls: \& \& No drinkers \& 32 \& 1 \& \& \\
\hline 1993-1999 \& 194; None \& \& \& \& \& \& \\
\hline \multirow[t]{6}{*}{Case-control} \& \multirow[t]{6}{*}{Exposure assessment method: Questionnaire} \& \& <1
≥ 1 \& 68
64 \& $1.3(0.7-2.5)$
$1.5(0.8-2.7)$ \& \& \\
\hline \& \& \& Trend-test p-valu \& \& \& \& \\
\hline \& \& \& Caffeinated (regu \& \& \& \& Strengths: population controls, participation rates reported; interviewer-administered FFQ \\
\hline \& \& \& No drinkers \& 50 \& 1 \& \& for most participants; fully adjusted; separate information for coffee/decaffeinated \\
\hline \& \& \& <1 \& 62 \& 1.8 (1-3) \& \& coffee/caffeine and in strata of selected covariates. \\
\hline \& \& \& ≥ 1
Trend-test p-valu \& 52
0.07 \& 1.7 (1-3.1) \& \& Limitations: no mention on time between diagnosis and interview; no information: on exclusion of previous cancer among cases and controls, on no exclusion of oophorectomized women from controls, on FFQ validity/reproducibility and other characteristics \\

\hline \multirow[t]{9}{*}{| Jordan et al. (2004) |
| :--- |
| Australia |
| 1990-1993 |
| Case-control |} \& \multirow[t]{9}{*}{| Cases: |
| :--- |
| 696; Population-based Controls: 786; None Exposure assessment method: Questionnaire |} \& \multirow[t]{9}{*}{Ovary} \& \multirow[t]{9}{*}{All coffee (cups/d

No drinkers
<1
1
$2-3$
≥ 4

Trend-test p-value} \& \& \& \multirow[t]{9}{*}{Age, body mass index, OC, parity, smoking, alcohol consumption, education, energy intake} \& \multirow[t]{9}{*}{| Paper focused on coffee, caffeine and tea; mainly instant coffee; inverse association for coffee and caffeine; inverse association in all invasive tumours, invasive serous and endometrioid tumours; no association in all borderline tumours and invasive mucinous; inverse association only in postmenopausal women and in OC never users; no heterogeneity in strata of smoking, alcohol, body mass index, parity; no different association in women with stage I or advanced disease. |
| :--- |
| Strengths: population controls; participation |} \\

\hline \& \& \& \& \& \& \& \\
\hline \& \& \& \& 127 \& 1 \& \& \\
\hline \& \& \& \& 127 \& \& \& \\
\hline \& \& \& \& 176 \& 0.98 (0.69-1.39) \& \& \\
\hline \& \& \& \& 107 \& 0.88 (0.59-1.3) \& \& \\
\hline \& \& \& \& 200 \& 0.9 (0.64-1.28) \& \& \\
\hline \& \& \& \& 86 \& 0.62 (0.41-0.95) \& \& \\
\hline \& \& \& \& 0.05 \& \& \& \\
\hline
\end{tabular}

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Reference, location enrolment/follow-up period, study design	Population size, description, exposure assessment method	Organ site	Exposure category or level	Exposed cases/deaths	Risk estimate (95\% CI)	Covariates controlled	Comments

Trend-test p-value: $0.6 \quad$| administered FFQ; no clear information on |
| :--- |
| participation rate; no information: on exclusion |
| of previous cancer among cases and controls | of previous cancer among cases and controls and no exclusion of oophorectomized women from controls; on FFQ validity/reproducibility, major confounders adjusted for

Hirose et al. (2007) Japan	Cases:	Ovary	All coffee (cups/day)	
166; Hospital-based		No drinkers	35	1
Case-control	Controls:	<1	42	$1.25(0.75-2.09)$
	3224; None Exposure assessment method: Questionnaire	$1-2$	66	$0.83(0.51-1.37)$
		≥ 3	20	$1.33(0.68-2.6)$

Age, year of interview,
motivation of consultation related cancer (hospital-based Epidemiological parity, age at first birth, smoking, alcohol consumption, physical activity, body mass index, various dietary items related cancer (hospital-based Epidemiologi
Research Program et Aichi Cancer Center, HERPACC); population with a low prevalence of coffee drinking (33\%); the FFQ was selfadministered and then checked by an interviewer; caffeine no related with ovarian cancer.
Strengths: cases identified through medical records and cancer registries; self-administered FFQ checked by an interviewer
Limitations: hospital controls (although no difference in lifestyle with a sample of general population); no information: on participation rates, on exclusion of previous cancer among cases and controls, on no exclusion of oophorectomized women from controls, on FFQ validity/reproducibility and other characteristics; no adjustment for menstrual factors and exogenous hormones; no separate information for coffee/decaffeinated coffee

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Table 2.19 Case-control studies on cancer of the ovary and coffee drinking (web only)

Reference, location enrolment/follow-up period, study design	Population size, description, exposure assessment method	Organ site	Exposure category or level	Exposed cases/deaths	Risk estimate (95\% CI)	Covariates controlled	Comments
Gosvig et al. (2015) Denmark 1995-1999 Case-control	Cases: 382; Population-based; 30% of the cases (115) were borderline tumours. Controls: 911; None Exposure assessment method: Questionnaire	Ovary Ovary (others): Borderline ovarian cancer	All coffee (cups/d 0 $>0-<1$ 1-3 ≥ 4 Increment of 1 cup/day Trend-test p-value All coffee (cups/d 0 $>0-<1$ 1-3 ≥ 4 Increment of 1 cup/day Trend-test p-value	27 25 106 109 381 0.001 y) 10 18 42 45 115	$\begin{aligned} & 1.13(0.59-2.15) \\ & 1.17(0.7-1.94) \\ & 0.88(0.53-1.45) \\ & 0.9(0.84-0.97) \\ & 1 \\ & 1.7(0.72-3.99) \\ & 1.16(0.55-2.45) \\ & 0.86(0.41-1.81) \\ & 0.92(0.83-1.01) \end{aligned}$	Age, parity, OC Age, parity, OC	Papers focused on coffee, tea and caffeine; cases include invasive and borderline tumours; most Danish women drinks caffeinated filtered coffee; similar no or weak inverse association (sometimes statistically significant) for all cases (all stages) and for histological subtypes (serous/ mucinous/endometrioid/other) or for total tumours and borderline tumours; results for caffeine were similar overall and in subgroups. Strengths: cases identified by cancer registries; population controls; exclusion of oophorectomized women from controls; fully adjusted. Limitations: self-administered FFQ within a larger questionnaire on other variables; no separate information for caffeinated/decaffeinated coffee; no information: on exclusion of previous cancer among cases and controls; on FFQ validity/reproducibility

[^0]
References

Baker JA, Boakye K, McCann SE, Beehler GP, Rodabaugh KJ, Villella JA, et al. (2007). Consumption of black tea or coffee and risk of ovarian cancer. Int J Gynecol Cancer. 17(1):50-4. http://dx.doi.org/10.1111/j.1525-1438.2006.00773.x PMID:17291231
Byers T, Marshall J, Graham S, Mettlin C, Swanson M (1983). A case-control study of dietary and nondietary factors in ovarian cancer. J Natl Cancer Inst. 71(4):681-6. PMID:6578362

Cramer DW, Welch WR, Hutchison GB, Willett W, Scully RE (1984). Dietary animal fat in relation to ovarian cancer risk. Obstet Gynecol. 63(6):833-8. PMID:6728366
Goodman MT, Tung KH, McDuffie K, Wilkens LR, Donlon TA (2003). Association of caffeine intake and CYP1A2 genotype with ovarian cancer. Nutr Cancer. 46(1):23-9. http://dx.doi.org/10.1207/S15327914NC4601_03 PMID:12925300

Gosvig CF, Kjaer SK, Blaakær J, Høgdall E, Høgdall C, Jensen A (2015). Coffee, tea, and caffeine consumption and risk of epithelial ovarian cancer and borderline ovarian tumors: Results from a Danish case-control study. Acta Oncol. 54(8):1144-51. http://dx.doi.org/10.3109/0284186X.2014.1001035 PMID:25629440

Hartge P, Lesher LP, McGowan L, Hoover R (1982). Coffee and ovarian cancer. Int J Cancer. 30(4):531-2. http://dx.doi.org/10.1002/ijc.2910300422 PMID:7141746
Hirose K, Niwa Y, Wakai K, Matsuo K, Nakanishi T, Tajima K (2007). Coffee consumption and the risk of endometrial cancer: Evidence from a case-control study of female hormone-related cancers in Japan. Cancer Sci. 98(3):411-5. http://dx.doi.org/10.1111/j.1349-7006.2007.00391.x PMID:17270030

Jordan SJ, Purdie DM, Green AC, Webb PM (2004). Coffee, tea and caffeine and risk of epithelial ovarian cancer. Cancer Causes Control. 15(4):359-65. http://dx.doi.org/10.1023/B:CACO.0000027482.00077.8b PMID:15141137
Kotsopoulos J, Vitonis AF, Terry KL, De Vivo I, Cramer DW, Hankinson SE, et al. (2009). Coffee intake, variants in genes involved in caffeine metabolism, and the risk of epithelial ovarian cancer. Cancer Causes Control. 20(3):335-44. http://dx.doi.org/10.1007/s10552-008-9247-1 PMID:18941913

Kuper H, Titus-Ernstoff L, Harlow BL, Cramer DW (2000). Population based study of coffee, alcohol and tobacco use and risk of ovarian cancer. Int J Cancer. 88(2):313-8. http://dx.doi.org/10.1002/1097-0215(20001015)88:2<313::AID-IJC26>3.0.CO;2-5 PMID:11004686
La Vecchia C, Franceschi S, Decarli A, Gentile A, Liati P, Regallo M, et al. (1984). Coffee drinking and the risk of epithelial ovarian cancer. Int J Cancer. 33(5):559-62. http://dx.doi.org/10.1002/ijc.2910330502 PMID:6724734

Miller DR, Rosenberg L, Kaufman DW, Helmrich SP, Schottenfeld D, Lewis J, et al. (1987). Epithelial ovarian cancer and coffee drinking. Int J Epidemiol. 16(1):13-7. http://dx.doi.org/10.1093/ije/16.1.13 PMID:3570612

Mori M, Harabuchi I, Miyake H, Casagrande JT, Henderson BE, Ross RK (1988). Reproductive, genetic, and dietary risk factors for ovarian cancer. Am J Epidemiol. 128(4):771-7. PMID:3421242

Polychronopoulou A, Tzonou A, Hsieh CC, Kaprinis G, Rebelakos A, Toupadaki N, et al. (1993). Reproductive variables, tobacco, ethanol, coffee and somatometry as risk factors for ovarian cancer. Int J Cancer. 55(3):402-7. http://dx.doi.org/10.1002/ijc.2910550312 PMID:8375923

Riman T, Dickman PW, Nilsson S, Nordlinder H, Magnusson CM, Persson IR (2004). Some life-style factors and the risk of invasive epithelial ovarian cancer in Swedish women. Eur J Epidemiol. 19(11):1011-9. http://dx.doi.org/10.1007/s10654-004-1633-8 PMID:15648594

Song YJ, Kristal AR, Wicklund KG, Cushing-Haugen KL, Rossing MA (2008). Coffee, tea, colas, and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev. 17(3):712-6. http://dx.doi.org/10.1158/1055-9965.EPI-07-2511 PMID:18349292

Tavani A, Gallus S, Dal Maso L, Franceschi S, Montella M, Conti E, et al. (2001). Coffee and alcohol intake and risk of ovarian cancer: an Italian case-control study. Nutr Cancer. 39(1):29-34. http://dx.doi.org/10.1207/S15327914nc391_4 PMID:11588899

Tzonou A, Day NE, Trichopoulos D, Walker A, Saliaraki M, Papapostolou M, et al. (1984). The epidemiology of ovarian cancer in Greece: a case-control study. Eur J Cancer Clin Oncol. 20(8):1045-52. http://dx.doi.org/10.1016/0277-5379(84)90107-X PMID:6540687

Whittemore AS, Wu ML, Paffenbarger RS Jr, Sarles DL, Kampert JB, Grosser S, et al. (1988). Personal and environmental characteristics related to epithelial ovarian cancer. II. Exposures to talcum powder, tobacco, alcohol, and coffee. Am J Epidemiol. 128(6):1228-40. PMID:3195564

[^0]: FFQ, food frequency questionnaire; CI, confidence interval; NR, not reported; OC, oral contraceptive; OR, odds ratio

