Table 2.20 Case-control studies on childhood leukaemia and coffee drinking (web only)

Table 2.20 Case-control studies on childhood leukaemia and coffee drinking (web only)

Reference, location enrolment/follow-up period, study design	Population size, description, exposure assessment method	Organ site	Exposure category or level	Exposed cases/deaths	Risk estimate (95\% CI)	Covariates controlled	Comments
Petridou et al. (1997) Greece 1993-94 Case-control	Cases: 153; cases of childhood leukaemia (89\% were ALL) diagnosed and confirmed by bone marrow sampling. Ascertained through nationwide oncology network thought to be virtually complete. Controls: 300; Hospital controls (2 per case) selected from children hospitalized at same time as the case, matched on age and sex. Admitted with 'acute conditions' Exposure assessment method: Other; Intervieweradministered questionnaire. Included questions on maternal coffee consumption during pregnancy	Leukaemia: Childhood leukaemia	Coffee drink week Yes vs No	during pregn 93	$\begin{aligned} & \text { v: } 3+\text { cups per } \\ & 0.89(0.55-1.46) \end{aligned}$	Maternal age at birth, maternal education, sibship size, birth order, persons per room, Day care, maternal smoking, maternal alcohol consumption, breastfeeding, pet ownership, pregnancy radiography, pregnancy ultrasound, residential floor, house heating, hair dryer use, pregnancy anaemia, pregnancy diabetes, birth weight, neonatal jaundice, blood transfusions, allergic disease hospitalized, Total Diphtheria-tetanuspertussis shots, Bacille CalmetteGuérin vaccination, Total viral vaccination shots	Strengths: Multivariable analysis so control for confounding addressed. Limitations: All leukaemia types combined in the analysis. Lack of detail about control diagnoses. Limited exposure categories so exposure response cannot be assessed
Menegaux et al. (2005) France (Paris, Lille, Lyon, Nancy) 1995-1999 Case-control	Cases: 280; Incident cases of childhood acute leukaemia from hospitals Controls: 288; Hospital controls same hospital, mainly orthopaedics	Leukaemia (Childhood cancer): Childhood leukaemia	Coffee intake Never ≤ 3 cups/day 4-8 cups/day	uring pregnanc 56 162 49	1 1 (0.7-1.5) 2.1 (1.2-3.8)	Age, sex, ethnic origin, hospital	Results were unchanged with additional adjustment for SES or maternal education, alcohol intake, smoking, early infection, breastfeeding, fetal loss, family history of cancer. Strengths: Standardized

Table 2.20 Case-control studies on childhood leukaemia and coffee drinking (web only)

Reference, location enrolment/follow-up period, study design	Population size, description, exposure assessment method	Organ site	Exposure category or level	Exposed cases/deaths	Risk estimate (95\% CI)	Covariates controlled
	Exposure assessment method: Questionnaire; Face to face interview with the mother using standardized questionnaires that included questions on coffee consumption in any period of the pregnancy or breastfeeding. (among other exposures)	Leukaemia (Childhood cancer): Childhood Acute	Lymphocytic	Never	Coffee intake during pregnancy	
Leukaemia						

Table 2.20 Case-control studies on childhood leukaemia and coffee drinking (web only)

Table 2.20 Case-control studies on childhood leukaemia and coffee drinking (web only)

Table 2.20 Case-control studies on childhood leukaemia and coffee drinking (web only)

Table 2.20 Case-control studies on childhood leukaemia and coffee drinking (web only)

References

Bonaventure A, Rudant J, Goujon-Bellec S, Orsi L, Leverger G, Baruchel A, et al. (2013). Childhood acute leukemia, maternal beverage intake during pregnancy, and metabolic polymorphisms. Cancer Causes Control. 24(4):783-93.http://dx.doi.org/10.1007/s10552-013-0161-9 PMID:23404349

Menegaux F, Ripert M, Hémon D, Clavel J (2007). Maternal alcohol and coffee drinking, parental smoking and childhood leukaemia: a French population-based casecontrol study. Paediatr Perinat Epidemiol. 21(4):293-9.http://dx.doi.org/10.1111/j.1365-3016.2007.00824.x PMID:17564585

Menegaux F, Steffen C, Bellec S, Baruchel A, Lescoeur B, Leverger G, et al. (2005). Maternal coffee and alcohol consumption during pregnancy, parental smoking and risk of childhood acute leukaemia. Cancer Detect Prev. 29(6):487-93.http://dx.doi.org/10.1016/j.cdp.2005.06.008 PMID:16289502

Milne E, Royle JA, Bennett LC, de Klerk NH, Bailey HD, Bower C, et al. (2011). Maternal consumption of coffee and tea during pregnancy and risk of childhood ALL: results from an Australian case-control study. Cancer Causes Control. 22(2):207-18.http://dx.doi.org/10.1007/s10552-010-9688-1 PMID:21113653

Orsi L, Rudant J, Ajrouche R, Leverger G, Baruchel A, Nelken B, et al. (2015). Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy, and childhood acute leukemia: the ESTELLE study. Cancer Causes Control. 26(7):1003-17.http://dx.doi.org/10.1007/s10552-015-0593-5 PMID:25956268

Petridou E, Trichopoulos D, Kalapothaki V, Pourtsidis A, Kogevinas M, Kalmanti M, et al. (1997). The risk profile of childhood leukaemia in Greece: a nationwide casecontrol study. Br J Cancer. 76(9):1241-7.http://dx.doi.org/10.1038/bjc.1997.541 PMID:9365177

Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LL (1996). Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children's Cancer Group. Cancer Causes Control. 7(6):581-90.http://dx.doi.org/10.1007/BF00051700 PMID:8932918

