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The process of mutagenesis

The process of agent-induced mu-
tagenesis consists of three parts: the 
induction of DNA damage, the sen-
sing of the DNA damage by the cell 
(the DNA damage response), and 
the processing of the DNA damage 
by the cell, which may or may not 
result in a mutation. A key under-
lying concept is that mutagenesis is 
a cellular process, frequently invol-
ving DNA replication. Another key 
concept is that there is a distinct dif-
ference between DNA damage and 
mutation. Thus, mutagens, despite 
what their name suggests, generally 
do not produce mutations; instead, 
mutagens produce DNA damage, 
and they might more appropriately 

be called DNA-damaging agents. 
Instead, it is the cell that produces 
the mutation – either through faulty 
DNA repair of the mutagen-induced 
or spontaneous DNA damage, or 
by replicating past the unrepaired 
DNA damage, thereby introducing a 
replication error (Shaughnessy and 
DeMarini, 2009).

A description of the process of 
mutagenesis begins with the induc-
tion of DNA damage by an endoge-
nous or exogenous event. Examples 
of DNA damage are DNA adducts 
(i.e. a molecule bound covalently to 
DNA) and single- or double-strand 
breaks (i.e. breakage of the phos-
phodiester backbone). Other types 
of DNA damage are oxidized or frag-
mented bases and the intercalation 

of a molecule between a pair of 
bases. Again, DNA damage is itself 
not a mutation and generally does 
not alter the linear sequence of nu-
cleotides. A mutation is defined as a 
change in the sequence or number 
of nucleotides in the DNA.

When DNA damage occurs, the 
cell detects it by means of the DNA 
damage response system and de-
termines how it will be processed; 
the DNA damage response includes 
DNA repair and apoptosis path-
ways, which are described in detail 
by Ciccia and Elledge (2010). The 
DNA damage response can mediate 
the repair of the damage, attempt to 
repair the damage but instead pro-
cess it into a mutation, or direct the 
cell to undergo apoptosis. Another 
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possibility is that the damage is not 
repaired at all, and when the cell rep-
licates, the DNA polymerase correct-
ly bypasses the damage, resulting in 
a normal DNA sequence.

The cell can process DNA dam-
age into three general classes or 
types of mutation: gene mutation 
(mutations that occur within a gene), 
chromosomal mutation (mutations 
involving more than one gene, typ-
ically called chromosomal aberra-
tions), and genomic mutation (mu-
tations involving the whole genome 
– generally aneuploidy, which is 
the gain or loss of a whole chromo-
some). The standard definition of a 
gene refers to a segment of DNA that 
codes for an mRNA that codes for a 
protein. The recent Encyclopedia of 
DNA Elements (ENCODE) project 
indicates that at least 80% of the 
human genome is transcriptionally 
active, but only a small proportion 
of the expressed regions code for 
protein (Maurano et al., 2012).

In the context of the process of 
mutagenesis described above, the 
term “mutagen” refers to an agent 
that can induce DNA damage that 
the cell processes into a mutation. 
The more general term “genotox-
in” refers to an agent that induces 
DNA damage that may or may not 
be processed by the cell into a mu-
tation. Some assays for genotoxici-
ty, for example, measure only DNA 
damage, such as 32P-postlabelling 
and the comet assay, whereas oth-
er assays measure mutation, such 
as the Salmonella typhimurium re-
verse mutation test, the Hprt gene 
mutation assay in Chinese hamster 
ovary cells, and transgenic mouse 
mutation assays. Thus, finding that 
an agent induces DNA damage 
would permit it to be called genotox-
ic, and showing that the agent also 

induces mutations in a mutation 
assay permits it to be classified as 
mutagenic.

A brief history of the nexus 
between mutagens and 
carcinogens

As reviewed by Claxton et al. (2010), 
there was little direct evidence for 
the role of mutagenesis in carcino-
genesis until the early 1970s, and 
before that time only a few carcino-
gens had been shown to be muta-
gens (Burdette, 1955). Indeed, it is 
surprising to recall that at the time it 
was somewhat bold to propose that 
there was any direct connection be-
tween the two processes (Miller and 
Miller, 1971; Knudson, 1973). Many 
studies in the 1950s and 1960s 
showed binding of carcinogens to nu-
cleic acids (Wiest and Heidelberger, 
1953; Brookes and Lawley, 1964). 
However, before 1972 there was no 
direct proof that the electrophilicity 
of some chemical carcinogens had 
a necessary role in the potential mu-
tagenic activity of such compounds, 
or even that DNA, as opposed to 
protein, was the ultimate target of 
carcinogens (Miller, 1970).

Although sound theoretical rea-
sons had been proposed to support 
the notion that carcinogens might act 
through a mutagenic mechanism, 
a clear demonstration of this con-
nection did not yet exist (Miller and 
Miller, 1971). Thus, binding to DNA of 
metabolites of carcinogens had been 
identified, but there were no data to 
show that these DNA adducts were 
processed into mutations or that mu-
tations themselves played a role in 
carcinogenesis. Consequently, mu-
tagenesis was viewed at that time as 
an equally plausible mechanism for 
carcinogenesis, along with epigenet-
ic changes (Miller, 1970; Miller and 
Miller, 1971), altered expression of an 

integrated viral genome (Todaro and 
Huebner, 1972), and alteration of im-
munological factors by carcinogens, 
permitting the formation and growth 
of tumours (Baldwin, 1973). As time 
has shown, all of the above-men-
tioned mechanisms can play a role 
in the carcinogenic process, espe-
cially in the light of the accumulating 
evidence for the important role of 
epigenetic mechanisms (Baylin and 
Jones, 2011).

How did the paradigm shift occur 
that showed a connection between 
mutagenesis and carcinogenesis? 
The first screening studies to test 
the hypothesis that some carcino-
gens might also be mutagens were 
performed by Demerec et al. (1951) 
in Escherichia coli and then by 
Szybalski (1958), who tested more 
than 400 compounds in E. coli. 
Although additional testing proceed-
ed throughout the 1960s in a varie-
ty of systems in bacteria, fungi, and 
mammalian cells, few carcinogens 
other than the direct-acting alkylating 
agents were found to be mutagens, 
leading to the conclusion that carcin-
ogens were generally not mutagenic.

However, this view began to shift 
when Malling (1966) combined a 
chemical hydroxylating mixture with 
the carcinogens diethylnitrosamine 
and dimethylnitrosamine, which 
were not mutagenic in vitro, and 
showed that the resulting metabo-
lites were mutagenic in the fungus 
Neurospora crassa. Malling (1971) 
then prepared an enzymatic activa-
tion system composed of the super-
natant from mouse liver homogenate 
centrifuged at 30 000g (microsomes) 
plus cofactors, and showed that di-
methylnitrosamine was mutagenic 
in S. typhimurium in a liquid suspen-
sion assay in the presence of this ac-
tivation mixture. Additional evidence 
that carcinogens could be mutagens 
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after mammalian metabolism was 
provided by Legator and Malling 
(1971) with the host-mediated assay.

Ames et al. (1972) introduced the 
use of the plate incorporation assay 
in Salmonella and demonstrated that 
DNA-reactive metabolites of known 
carcinogens were direct-acting mu-
tagens. The connection between 
mutagenesis and carcinogenesis 
was extended when Ames et al. 
(1973) combined a rat liver homoge-
nate centrifuged at 9000g (S9 frac-
tion) plus cofactors prepared as de-
scribed by Garner et al. (1972) with 
Salmonella and a variety of rodent 
carcinogens then considered to be 
non-mutagenic in the plate incorpo-
ration assay and showed that these 
carcinogens were, in fact, muta-
genic. Additional refinements of the 
Salmonella tester strains and the 
conduct of multiple testing studies, 
involving not only Salmonella but 
also other test systems (Tennant 
et al., 1987), resulted in the current 
recognition that many carcinogens, 
by themselves or after metabolic 
activation, are mutagens, and that 
mutagenesis is a critical feature of 
carcinogenesis.

Despite the recognized impor-
tance of mutagenicity as a part of 
cancer induction and progression, by 
the 1990s it appeared that many ro-
dent and human carcinogens were, 
in fact, not clearly mutagenic or ge-
notoxic. Some operate through re-
ceptor binding, which can result in an 
alteration in gene expression, often 
leading to increased cell replication. 
However, an analysis of a set of so-
called non-genotoxic carcinogens 
found that most of them were, in fact, 
genotoxic (inducing DNA damage 
and/or mutation) when tested ade-
quately for both gene, chromosomal, 
or genomic (aneuploidy) damage 
and mutation (Jackson et al., 1993). 

Indeed, a comprehensive analysis 
showed that more than 90% of the 
IARC Group 1 chemical carcinogens 
are genotoxic (Waters et al., 1999).

The current genetic toxicity test 
battery is based on this relationship 
between mutagenesis and carcino-
genesis. Consequently, mutagenic-
ity assays continue to be used as 
a potential screen for carcinogens, 
and the results are used for regula-
tory purposes throughout the world 
(Eastmond et al., 2009). For exam-
ple, a positive result in the Salmonella 
mutagenicity assay indicates a 70% 
probability that the test chemical is 
a rodent carcinogen (Zeiger, 1998). 
When a randomly selected set of 
100 organic compounds was tested 
in the Salmonella mutagenicity as-
say, about 20% of them were posi-
tive (Zeiger and Margolin, 2000). 
Thus, out of an estimated 80  000 
such compounds in commercial use, 
16  000 (20%) may be positive for 
mutagenicity in the Salmonella mu-
tagenicity assay, and 11  200 (70%) 
of those may be potential rodent 
carcinogens.

Mutations in tumours

Soon after the discovery of the 
correct number of human chromo-
somes (46) by Tjio and Levan in 
1956 (Gartler, 2006; Harper, 2006), 
cytogenetic studies began to show 
that tumours (specifically leukaemic 
cells) had higher frequencies of chro-
mosomal aberrations than did nor-
mal cells (Nowell and Hungerford, 
1960). A decade later, the develop-
ment of quinacrine fluorescence and 
Giemsa staining enabled the first 
discovery that a specific chromoso-
mal aberration was associated with 
a specific type of leukaemia (Rowley, 
1973). As evidence accumulated 
that chromosomal aberrations were 

present at high frequencies in tu-
mours, DNA sequencing methods 
were introduced in 1977 (Pettersson 
et al., 2009), which provided the tech-
nical means to directly determine the 
presence and types of mutations in 
any gene or chromosome.

DNA sequencing of mutations 
induced in selected genes by a lim-
ited number of mutagenic carcino-
gens in microbes in the 1980s and in 
mammalian cells and tumours in the 
1990s began to show that any par-
ticular mutagen produced an array 
of mutations and that these varied 
among the genes and cells exam-
ined. A variety of mutagens produce 
similar mutation spectra, and the 
predominant base substitution that 
an agent induces in one system 
is generally the same one that the 
agent produces predominantly in all 
other systems across the phyloge-
netic scale, from bacteria to humans 
(DeMarini, 1998, 2000). Thus, in 
terms of the predominant base sub-
stitution produced by agents, there is 
concordance across species in that 
the DNA damage induced by a par-
ticular agent is processed similarly 
by a wide range of species.

With regard to mutations in tu-
mours, generally elucidated without 
reference to any exogenous caus-
ative agent, the technology in use 
from the 1980s until the early 2000s 
permitted the determination of mu-
tations in only a few cancer-related 
genes, such as TP53 and KRAS. 
The first gene mutation in a human 
tumour was determined in 1982 
(Reddy et al., 1982), and by the end 
of the 20th century, there was clear 
evidence that some tumours had 
mutations in certain oncogenes and 
tumour suppressor genes that could 
be associated with the types of mu-
tations produced by the carcinogen 
associated with the induction of the 
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tumour – both in rodents and in hu-
mans (Dogliotti et al., 1998; Hainaut 
and Wiman, 2009). Examples in-
clude CC  →  TT mutations in the 
TP53 gene in skin tumours associat-
ed with exposure to sunlight, G → T 
mutations in codon 259 of the TP53 
gene in liver tumours associated with 
exposure to aflatoxin B1 (Ceccaroli 
et al., 2015), A → T mutations in the 
TP53 gene in tumours of the upper 
urinary tract associated with expo-
sure to aristolochic acid (Grollman, 
2013), and the different locations of 
G  →  T mutations in the TP53 and 
KRAS genes in lung tumours as-
sociated with exposure to cigarette 
smoke (IARC, 2012) or to emissions 
from smoky coal (DeMarini et al., 
2001). There are about 20 carcino-
gens that are known to produce ei-
ther unique or distinctive mutation 
spectra in tumours linked epidemi-
ologically to specific exposures in 
humans (Ceccaroli et al., 2015).

With the advent of next-genera-
tion DNA sequencing, exome and 
genome sequencing of tumours 
was first reported by Wood et al. 
(2007) and Parsons et al. (2008). 
These initial studies revealed that tu-
mours had large numbers of mutat-
ed genes; however, it appeared that 
only a few (six to eight) genes were 
involved directly in the carcinogenic 
process. As few as three driver gene 
mutations are required for the devel-
opment of lung cancer or colorec-
tal cancer (Tomasetti et al., 2015). 
Large-scale sequence analysis of 
the genomes of thousands of human 
tumours has identified new genes 
that are important for cancer and 
new mutational signatures that are 

specific to particular tumour types 
and subtypes (Hoang et al., 2013; 
Alexandrov and Stratton, 2014).

As discussed elsewhere in 
this Scientific Publication (see 
Chapter  11, by Stewart, and 
Chapter 19, by Caldwell et al.), can-
cer is a genetic disease that pro-
ceeds by a type of Darwinian evolu-
tion (Hanahan and Weinberg, 2011). 
In this way, changes in gene function 
(by mutation) and in gene expression 
(by epigenetic mechanisms) that re-
sult in a cell having a specific growth 
advantage may be selected for in 
certain tissue microenvironments 
(Hanahan and Weinberg, 2011; 
Solomon et al., 2011; Whitfield and 
Soucek, 2012).

Stratton (2011) estimated that 
most human tumours contain 1000 
to 10  000 base substitution muta-
tions; tissues exposed more directly 
to the environment, such as the lung 
and the skin, have tumours with more 
than 100  000 mutations. However, 
only about 400 genes (~2% of the 
coding genome) appeared to be 
involved directly in tumorigenesis; 
the rest were likely to be passenger 
mutations, i.e. mutations not relat-
ed to the carcinogenic process and 
possibly resulting from the genomic 
instability of the tumour (Bozic et al., 
2010).

Genome or exome sequencing 
has identified 20 distinct mutational 
signatures among human tumours 
and confirmed that tumours of the 
most “protected” organs (e.g. the 
brain) have only a few mutations, 
whereas those in organs exposed 
more directly to the environment 
(e.g. the lung and the skin) have 
thousands of mutations (Alexandrov 
et al., 2013). The vast majority of mu-
tations in tumours are base substitu-
tions (Vogelstein et al., 2013). Only 
one or two mutated genes appear to 

be required for some haematopoietic 
tumours, whereas at least five or 
six are required for solid tumours 
(Stratton, 2011). In addition, all tu-
mours have many genes with altered 
gene expression (Baylin and Jones, 
2011).

A recent discovery is “shattered” 
chromosomes in tumours, a phe-
nomenon termed chromothripsis, 
which results in massive chromo-
somal rearrangements in 1–3% of 
human tumours (Stephens et al., 
2011). Studies indicate that these 
shattered, highly rearranged chro-
mosomes may appear exclusively 
in micronuclei (Crasta et al., 2012; 
Maher and Wilson, 2012), providing 
a new insight into the potential role 
of micronuclei in tumours (Hatch and 
Hetzer, 2015).

As evidence had accumulated 
that mutation and mutagenesis are 
essential features of carcinogenesis, 
the notion that tumours might be mon-
oclonal became popular, because 
of the monoclonality of haemato-
poietic malignancies and because 
this notion appeared to support the 
prevalent initiation–promotion model 
of carcinogenesis. However, as mo-
lecular analyses of tumours became 
more sophisticated, it soon became 
clear that tumours are not monoclo-
nal and that they are, in fact, highly 
heterogeneous (Parsons, 2008).

The most exquisite evidence for 
this has been provided by Gerlinger 
et al. (2012), who showed that ap-
proximately two thirds of all somat-
ic mutations were not present in all 
regions of a set of kidney tumours 
analysed by a combination of exon 
sequencing, chromosomal aberra-
tion analysis, and mRNA expression 
analysis. Recently, Martincorena 
et al. (2015) demonstrated that this 
heterogeneity is established early 
on, by showing that physiologically 
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normal human skin contains a 
patchwork of thousands of evolving 
clones, with more than one quarter 
of such cells having cancer-causing 
mutations.

Although there is now also over-
whelming evidence for the essential 
role of epigenetic changes in the car-
cinogenic process (Grønbaek et al., 
2007; Baylin and Jones, 2011) and 
for the fact that many carcinogens 
can induce such changes (Ceccaroli 
et al., 2015; Nicolaidou and Koufaris, 
2015), as discussed below there is 
emerging information that mutation 
itself might underlie some, if not 
most, of these epigenetic changes.

There are three primary epigenet-
ic mechanisms by which cells regu-
late gene expression: methylation of 
DNA (Hsiao et al., 2009), modifica-
tions of histones (Ellis et al., 2009), 
and binding of microRNAs and other 
non-coding RNAs to the genome or 
to other RNAs (Garzon et al., 2009). 
However, studies have shown that 
mutations in genes involved in these 
three processes may be the basis for 
many of the epigenetic events me-
diated by these mechanisms (You 
and Jones, 2012). For example, mu-
tations in specific chromatin-modi-
fying genes appear to occur in spe-
cific cancers, such as in JARID1C 
in renal cancer, in SMARCA4/BRG1 
in lung cancer, and in ARID1A in 
ovarian cancer (Jones et al., 2010). 
Also, mutations in the DNA meth-
yltransferase genes DNMT1 and 
DNMT3A are found in colorectal 
cancer or acute myeloid leukaemia, 
the histone lysine methyltransferas-
es or demethylases HK4, H3K9, and 
H3IK27 are mutated in kidney can-
cer and colon cancer, and the his-
tone acetyltransferases H3K18 and 
H3K27 are mutated in acute lymph-
oblastic leukaemia (Peltomäki, 2012; 
Ryan and Bernstein, 2012). Although 

epigenetic changes per se are not 
mutations because the sequence of 
nucleotides has not been changed, 
as evidenced above, mutation may 
be the basis for some epigenetic 
events.

Models of agent-induced 
carcinogenesis

Data generated in recent years have 
led to a reconsideration of the dichot-
omy between so-called non-geno-
toxic versus genotoxic carcinogens 
(Waters et al., 1999) and indicate 
that some epigenetic events may 
have a mutational basis (You and 
Jones, 2012). In addition, chronic 
inflammation, which is associated 
with increased cancer risk (Colotta 
et al., 2009), causes DNA damage 
(etheno-base lesions and other exo-
cyclic DNA adducts) that appears to 
be the basis for the increased risk, 
as demonstrated by the fact that re-
pair of the damage by base excision 
repair enzymes (alkyl glycosylases) 
reduces the risk of cancer (Calvo 
et al., 2012). Indeed, an analysis of a 
dozen human studies found strong-
ly increased risks of cancer among 
individuals with high levels of DNA 
adducts relative to those with low lev-
els, and the cancer risks were even 
higher for the group with high adduct 
levels when other risk factors, such 
as infection and inflammation, were 
taken into account (Poirier, 2012). As 
noted in Chapter 19, by Caldwell et 
al., host susceptibility factors mod-
ulate all of these events and are a 
critical element in the overall cancer 
risk.

Within the context of both the ini-
tiation–promotion model of carcino-
genesis and the “hallmarks” of can-
cer (Hanahan and Weinberg, 2011), 
these data have led to the view that 
(i)  cancer is essentially a genetic 

disease and (ii) an agent that causes 
cancer induces alterations in gene 
function (by mutation) and/or gene 
expression (by epigenetic changes), 
either by direct interaction with DNA 
or chromatin or by indirect mecha-
nisms, such as through generation 
of reactive oxygen species, inflam-
mation, and/or receptor-mediated 
interactions. These considerations 
suggest that carcinogens must be ge-
notoxic in the broadest sense of the 
term, i.e. they damage DNA or alter 
its expression either directly or indi-
rectly, leading to a change in function 
or expression of genes. Such chang-
es in the appropriate genes with pro-
motion through cell replication and 
selective pressure can then lead to 
a tumour. For colorectal tumours 
this concept has been characterized 
as the “Big Bang” model for tumour 
growth, in which tumours start early 
on producing mixed subclones that 
are not subject to stringent selection, 
thus explaining the heterogeneity of 
tumours (Sottoriva et al., 2015).

This greater appreciation for how 
chemical, physical, and biological 
agents may induce cancer leads to 
a model for agent-induced carcino-
genesis that integrates portions of 
the classic initiation–promotion mod-
el with elements of the hallmarks of 
cancer. Such a model would envi-
sion a carcinogenic agent establish-
ing the process by either genetic or 
epigenetic mechanisms that cause 
changes in gene function and ex-
pression, resulting in the plethora of 
characteristics of cancer cells, i.e. 
the hallmarks of cancer: mutations 
in key oncogenes, altered gene ex-
pression, changes in cell signalling, 
altered cell growth, evasion of ap-
optosis, sustained angiogenesis, 
increased genomic instability, and 
eventual metastasis. Much of this 
can be modulated by various sus-
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ceptibility factors, including genetic 
or epigenetic factors, as well as by 
a large number of environmental and 
lifestyle factors (see Chapter 19, by 
Caldwell et al.). However, a geno-
toxic carcinogen may not necessar-
ily cause cancer via a genotoxicity 
mechanism alone or predominantly, 
and further mechanistic studies are 
needed to delineate the carcinogenic 
mechanisms of any particular agent.

This generalized model no longer 
makes a distinction between ini-
tiation and promotion, which was an 
operational model derived largely 
from mouse skin-painting studies. 
Similarly, it does not divide carcin-
ogens into genotoxic and non-ge-
notoxic categories. Instead, an in-
tegrated model of agent-induced 
carcinogenesis as described above 
emphasizes the ability of the car-
cinogen (chemical, physical, or bi-
ological) to alter gene structure (by 
mutation) and/or gene expression 
(by genetic or epigenetic changes), 
leading to functional changes in the 
genome that manifest themselves 
through changes in cell signalling, 
altered cell growth, and genomic 
instability, resulting in the hallmarks 
of cancer, with susceptibility factors 
modifying various aspects of these 
processes and outcomes. The im-
portance of epigenetic changes, 
cell signalling, and tissue–cell inter-
actions have suggested alternative 
models to the somatic mutation 

theory of cancer, such as tissue 
organization field theory (Baker, 
2015) and tissue programming theo-
ry (Burgio and Migliore, 2015).

Summary

Work since the 1970s demonstrat-
ed that many carcinogens are either 
directly or indirectly genotoxic or 
mutagenic and/or alter gene expres-
sion. Analyses of tumours, first by 
cytogenetic methods in the 1970s, 
then by single-gene analysis in the 
1990s, and most recently by exome 
or whole-genome sequencing, have 
demonstrated clearly that mutagen-
esis is a central feature of carcino-
genesis. Thus, it is not surprising 
that more than 90% of the known 
human chemical carcinogens (IARC 
Group 1) are positive in convention-
al short-term tests for genotoxicity 
(Waters et al., 1999).

Cancer is now recognized as an 
essentially genetic disease, with car-
cinogens causing genetic damage 
and/or changes in gene expression 
either directly or indirectly. This rec-
ognition should prompt a reconsid-
eration of the distinction between 
genotoxic and non-genotoxic car-
cinogens. A generalized model of 
agent-induced carcinogenesis would 
no longer make a distinction between 
initiation and promotion but would in-
stead emphasize the initial effects of 
the agent that then lead to a series of 

changes in cell signalling that result 
in the hallmarks of cancer, with the 
entire process being modified by a 
variety of susceptibility factors.

The ability of carcinogenic agents 
to induce mutation and/or alter gene 
expression, with either ability being 
sufficient to initiate the process of 
tumour formation (Grønbaek et al., 
2007; Halazonetis et al., 2008), is 
now an established feature of 
agent-induced carcinogenesis. This 
deeper understanding of the rela-
tionship between genotoxicity and 
carcinogenicity is the culmination of 
research that provided the first evi-
dence for such a relationship only 
about 40 years ago.
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