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Throughout evolution, aerobic 
organisms have developed mul-
tiple defence systems to protect 
themselves against oxygen radicals 
(Benzie, 2000). One-, two-, and 
three-electron reductions of molecu-
lar oxygen give rise to, respectively, 
superoxide (O2

• −), hydrogen peroxide 
(H2O2, a radical precursor), and the 
highly reactive hydroxyl radical (•OH) 
or equivalent transition metal–oxy-
gen complexes (Miller et al., 1990). 
Reactions of oxygen radicals with 
cellular components can deplete an-
tioxidants, can cause direct oxidative 
damage to lipids, proteins, RNA, and 
DNA, and can result in the forma-
tion of a variety of other reactants 
with varying oxidative potentials, in-
cluding carbon- or nitrogen-centred 
radicals (West and Marnett, 2006). 
A growing body of literature presents 
radicals as mediators of various cell 
signalling processes (Ma, 2010). 

An imbalance between the normal 
production of oxygen radicals and 
their capture and disposal by pro-
tective enzyme systems and antiox-
idants results in oxidative stress, and 
this condition has been proposed 
to be the basis of many deleterious 
chronic health conditions and dis-
eases, including cancer.

Sources of oxygen radicals

Mitochondrial oxidative phosphor-
ylation is a major source of oxy-
gen radicals of endogenous origin. 
Mitochondrial complex I (reduced 
nicotinamide adenine dinucleotide 
[NADH]:ubiquinone oxidoreductase) 
and complex III (ubiquinol:cy-
tochrome c oxidoreductase) are 
sites of superoxide production, with 
as much as 1–2% of the electron 
flux shunted through one-electron 
reduction of molecular oxygen (St-

Pierre et al., 2002). Peroxisomes are 
a source of H2O2, through reactions 
involving acyl-CoA oxidase (which 
is involved in oxidation of long-chain 
fatty acids), d-amino acid oxidase, 
and other oxidases (Schrader and 
Fahimi, 2006).

When stimulated, inflammatory 
cells such as neutrophils, eosino-
phils, and macrophages produce ox-
ygen radicals during the associated 
respiratory burst (the rapid release of 
reactive oxygen species from cells) 
that involves nicotinamide adenine 
dinucleotide phosphate (NADPH) 
oxidase (Babior, 1999). This reac-
tion produces superoxide, which is 
converted by superoxide dismut-
ase to the more readily diffusible 
oxidant H2O2 and is involved in cell 
killing functions. Inflammatory cells 
such as macrophages are also ca-
pable of producing nitric oxide (•NO), 
through an inducible form of nitric 
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oxide synthase (Hibbs et al., 1988). 
•NO is also involved in cell killing but 
can also react with superoxide at 
diffusion-limited rates to form per-
oxynitrite, a potent oxidant with a 
longer half-life and diffusion distance 
than the hydroxyl radical (Beckman, 
1996).

Exogenous agents are also impli-
cated in the generation of reactive 
oxygen. Metals such as cadmium 
and arsenic can participate in reac-
tions that generate oxygen radicals 
(Liu et al., 2008; Kojima et al., 2009). 
Miller et al. (1990) presented a list of 
endogenous and exogenous agents 
that are capable of reducing oxygen 
to superoxide or that “autoxidize”, 
probably through reactions catalysed 
by transition metals. Metabolism of 
many exogenous agents through cy-
tochrome P450-mediated reactions 
can also result in the release of ox-
ygen radicals (Hrycay and Bandiera, 
2015), as can exposure to ionizing 
radiation. In addition, several life-
style factors, such as obesity, tobac-
co smoking, and alcohol consump-
tion, as well as chronic inflammatory 
conditions and viral infections are 
thought to involve radical-induced 
injury (Mena et al., 2009).

Oxidative damage

The hydroxyl radical or equivalent 
transition metal–oxygen complexes 
(Bucher et al., 1983) are highly re-
active entities, capable of abstract-
ing electrons from lipids, proteins, 
or DNA (Miller et al., 1990), and the 
resulting target molecule radical 
can then combine with molecular 
oxygen to participate in subsequent 
radical reactions, such as propaga-
tion of lipid peroxidation. Radical 
reactions with DNA result in single- 
and double-strand breaks (Toyokuni 
and Sagripanti, 1996), cross-links, 
and modified bases. The oxidation 

product 8-oxo-2′-deoxyguanosine is 
often used as a marker of oxidative 
DNA damage, although other bas-
es are also susceptible to oxidation. 
DNA bases can be modified by lip-
id peroxidation reaction products 
(trans-4-hydroxy-2-nonenal, 4-hy-
droperoxy-2-nonenal, and malondi-
aldehyde) to form various pro-mu-
tagenic exocyclic adducts (Bartsch 
and Nair, 2006).

Defence mechanisms

Cytosolic and mitochondrial forms 
of superoxide dismutase catalyse 
the reduction of superoxide to H2O2, 
and when coupled with catalase 
within peroxisomes or with cytosolic 
glutathione peroxidase, can further 
convert these reactive species to 
water (Benzie, 2000). Sequestration 
of transition metals, principally iron 
and copper, in their oxidized forms 
through deposition in transport or 
storage proteins, or as chelates 
that do not support redox reactions, 
also limits radical reactions (Hatcher 
et al., 2009). 

Dietary and endogenously pro-
duced antioxidants also contribute in 
the defence against radical damage 
by serving as radical scavengers. 
Theoretically any oxidizable sub-
strate can act as a radical scavenger; 
ascorbic acid, tocopherols, uric acid, 
and sulfhydryl-containing amino ac-
ids provide considerable scavenging 
capacity (Benzie, 2000).

Interestingly, high concentrations 
of antioxidants in the presence of 
transition metals can actually drive 
formation of oxygen radicals (Tien 
et al., 1982). The importance of a 
balance between pro- and antioxid-
ant capacities is also emphasized 
by an emerging understanding of 
the role of radical species in cellular 
signal transduction.

Oxygen radicals in cancer

Hanahan and Weinberg (2011), in 
their landmark review “Hallmarks 
of cancer: the next generation”, 
identified sustaining proliferative 
signalling, reprogramming of en-
ergy metabolism, evading growth 
suppressors and immune destruc-
tion, resisting cell death, enabling 
replicative immortality, inducing 
angiogenesis, and activating inva-
sion and metastasis as signal trans-
duction pathways key to unravelling 
the cancer phenotype. They also 
described how genomic instability 
and tumour-promoting inflammation 
are principal drivers of these events. 
Oxygen radicals clearly contribute to 
genomic instability, are produced by 
inflammation, and – along with oth-
er radical species – play key roles 
in many of the processes identified 
above as necessary for conversion 
of normal cells into cancer cells.

Oxidative damage is considered 
to be a major factor in the generation 
of mutations, which are estimated to 
occur at a frequency of 10 000 per 
cell per day in humans (Lu et al., 
2001). More than 100 different oxi-
dative DNA lesions (Klaunig et al., 
2011) and at least 24 base modifica-
tions (Wilson et al., 2003) have been 
identified, along with DNA–protein 
cross-links (Cadet et al., 1997), all 
of which potentially lead to genomic 
instability. RNA has also been shown 
to be susceptible to radical attack (Li 
et al., 2006) but may be less chem-
ically susceptible than DNA (Thorp, 
2000). Oxidative damage to DNA 
can lead to point mutations, dele-
tions, insertions, or chromosomal 
translocations, which may cause 
activation of oncogenes and inacti-
vation of tumour suppressor genes 
and may lead to initiation of carcino-
genesis (reviewed by Bartsch and 
Nair, 2006; Klaunig et al., 2011).
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Clearly, high levels of oxygen rad-
icals can be fatal to the cell through 
overt necrosis or the induction of 
apoptosis, but lower levels may also 
contribute to the process of carcino-
genesis through stimulation of cellu-
lar proliferation and alterations in oth-
er cellular functions. There appear to 
be a myriad of potential mechanisms 
for these effects, involving induction 
of transcription factors for numer-
ous signalling pathways, particular-
ly nuclear factor erythroid 2-related 
factor 2 (Nrf2), mitogen-activated 
protein kinase (MAPK)/AP1, nucle-
ar factor kappa-light-chain-enhanc-
er of activated B cells (NF-κB), and 
hypoxia-inducible transcription fac-
tor 1 alpha (HIF-1α) (reviewed by 
Klaunig et al., 2011). Protein kinase 
C, which is also susceptible to acti-
vation by cellular oxidants, is a fam-
ily of serine/threonine kinases that 
is central to the regulation of many 
cellular functions, including prolifer-
ation, cell-cycle control, differentia-
tion, cytoskeletal organization, cell 
migration, and apoptosis (Wu, 2006). 
There is also evidence that the ac-
tivated oncogene v-Ha-Ras may act 
as a sustained proliferative stimulus 
in transformed fibroblasts through 
superoxide-mediated signalling 
pathways (Irani et al., 1997).

Vulnerable tissue sites 
and selected carcinogenic 
exposures

The synthesis of thyroid hormones 
requires iodination of thyroglobu-
lin in a peroxidase-catalysed re-
action that is dependent on H2O2. 
Krohn et al. (2007) reviewed evi-
dence suggesting that the thyroid is 
particularly sensitive to formation of 
malignant nodules induced by oxida-
tive stress. During active hormone 
synthesis, H2O2 levels are held in 
check with increased concentra-

tions of glutathione peroxidases 
along with thyroid peroxidase, 
and high levels of glutathione per-
oxidases can interfere with the 
synthesis of thyroid hormones. 
Immunostaining for 8-oxo-2′-deoxy-
guanosine shows greater intensity in 
thyroid follicular cells near the lumen 
where H2O2 is generated than in the 
spleen, liver, or lung, suggesting a 
high level of oxidative DNA damage 
in the thyroid (Maier et al., 2006).

Environmental insults may aug-
ment oxidative DNA damage in the 
thyroid. Thyroid uptake of iodine-131 
released during the accident with the 
Chernobyl Nuclear Power Plant in 
Ukraine is thought to be responsible 
for the high rate of papillary carci-
noma observed in exposed children 
(Bennett et al., 2006). Rats and mice 
exposed to iodine-131 develop fol-
licular cell tumours (IARC, 2012b). 
Thiocyanate from cigarette smoke 
may, by inhibiting uptake of iodine, 
cause oxidative damage through 
iodine deficiency. Production of 
thyroid-stimulating hormone is in-
creased during periods of iodine 
deficiency, and this hormone stimu-
lates H2O2 production in the thyroid. 
Levels of antioxidant enzymes have 
been shown to be elevated by iodine 
deficiency (Krohn et al., 2007).

The lung is also a vulnerable tar-
get for oxidative damage, by virtue 
of its exposure to air, which contains 
21% oxygen, as opposed to the 
much lower oxygen concentrations 
in systemic tissues (Carreau et al., 
2011). A key role of oxygen radicals 
in the pulmonary toxicity resulting 
from prolonged exposure to hyper-
oxia is demonstrated by the dramatic 
difference in the sensitivity of adult 
animals of various species, which 
succumb to oxygen toxicity after less 
than a week of exposure to 100% 
oxygen, compared with the ability of 

neonates of certain of these species 
to survive such exposures with little 
evidence of injury. The neonates of 
species resistant to pulmonary injury 
are capable of increasing their levels 
of antioxidant enzymes in response 
to hyperoxia, in contrast to the adults, 
which are incapable of mounting a 
similar response (Frank et al., 1978).

Several metals, metalloids, and 
fibres that contain metals or are fre-
quently contaminated with metals 
have been demonstrated to cause 
cancer of the lung in humans and 
experimental animals (IARC, 2012a). 
These include certain forms of ar-
senic, asbestos, beryllium, cadmi-
um, chromium, and nickel. Although 
carcinogenesis induced by metals 
appears to involve many mecha-
nisms common to the process for 
other carcinogens, oxidative stress 
has been implicated as an important 
contributing factor for several met-
als (reviewed by Beyersmann and 
Hartwig, 2008).

Certain metals may undergo di-
rect redox cycling, as demonstrated 
by the participation of nickel(II) in a 
Fenton-like reaction with H2O2, or in 
the metabolism of trivalent to pen-
tavalent arsenic. Other metals, such 
as cadmium, may inhibit antioxidant 
enzymes or deplete antioxidants 
(cadmium and arsenic bind with 
sulfhydryl groups in glutathione) or 
potentially delocalize iron or copper 
from protected storage sites (e.g. tri-
valent arsenic can release iron from 
ferritin), making them available for 
participation in oxygen radical reac-
tions. Still other metals, such as ar-
senic (reviewed by Shi et al., 2004), 
may activate signalling pathways 
through increased production of oxy-
gen radicals, and potentially promote 
radical reactions through a variety 
of mechanisms. Finally, many stud-
ies have shown that asbestos or 
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asbestos-like materials (respirable 
elongated mineral particles or fibres) 
are capable of generating oxygen 
radicals, primarily through reactions 
catalysed by iron that is present in 
coordination bonding within the min-
eral structure, is associated with the 
surface, or is chelated and released 
from the fibre by various intracellular 
organic acids, such as citrate (Aust 
et al., 2011).

Summary

Many substances recognized as 
carcinogens in both humans and 
experimental animals are capable 
of influencing redox processes and 
redox balance within target cells. 
Oxygen radicals are capable of in-
teracting with and influencing many 
cellular processes believed to be 
involved in the dysregulation of nor-
mal cellular physiology, thus sending 
the cells down the pathway to can-
cer. Oxygen radical reactions are 

intimately involved in many well-rec-
ognized mechanisms of carcino-
genesis, such as inflammation, 
genomic instability, and cell prolifer-
ation. Because of the fundamental 
involvement of the oxygen radical in 
many of these processes, substanc-
es that have been shown to promote 
cellular injury induced by oxygen 
radicals should be considered as pu-
tative human carcinogens until it has 
been adequately demonstrated oth-
erwise (Bucher and Portier, 2004).
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