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Introduction

The carcinogenic risk associated 
with exposure to ionizing radiation 
has been evaluated previously in the 
IARC Monographs: radon in Volume 
43 (IARC, 1988), X-rays, γ-rays, and 
neutrons in Volume 75 (IARC, 2000), 
and some internally deposited radio-
nuclides in Volume 78 (IARC, 2001). 
An updated review on all carcinogen-
ic types of radiation, also including 
solar and ultraviolet radiation, was 
published as Volume 100D (IARC, 
2012).

For certain types of ionizing radi-
ation, the evidence of carcinogeni-
city in humans is clear, but in other 
cases the data are few or non-exist-
ent. However, the overall conclusion 
reached in Volume 100D of the IARC 
Monographs was that all types of ion-
izing radiation should be considered 
as carcinogenic to humans (Group 1). 

The rationale for this was that all 
types of ionizing radiation transfer 
their energy to biological material in 
clusters of ionization and excitation 
events, primarily through a mecha-
nism mediated by free electrons. In 
addition, DNA damage is a common 
biological outcome of exposure to all 
ionizing radiation; energy deposition 
results in a wide variety of molecular 
damage, such as base damage and 
single- and double-strand breaks, 
some of which may be clustered to 
form complex lesions. Subsequent 
processing of these lesions may lead 
to chromosomal aberrations and mu-
tations. The generality of induction of 
and response to radiation damage 
is discussed for all types of ionizing 
radiation in greater depth later in this 
chapter.

In addition to the above-mentioned 
reviews in the IARC Monographs, 
there have been many major national 

and international reviews of the liter-
ature on radiation, as well as radia-
tion risk estimates. These include the 
publications of the United Nations 
Scientific Committee on the Effects 
of Atomic Radiation (UNSCEAR, 
2000, 2008, 2010) and the reports 
from the United States National 
Research Council (NRC, 1999, 
2006), the United States National 
Council on Radiation Protection and 
Measurements (NCRP, 1993, 1999, 
2001, 2005), and the International 
Commission on Radiological  
Protection (ICRP, 2003, 2007; 
Valentin, 2005).

Two major issues faced when 
studying radiation carcinogenesis is 
that radiation-induced cancers are 
indistinguishable from those that oc-
cur naturally, and that risk estimates 
rely on epidemiological data for which 
statistical significance is reached 
only at high doses. The existing data 

part 2.

mechanisms of carcinogenesis

chapter 18.

Ionizing radiation
Mark A. Hill and Robert L. Ullrich

P
A

R
T 

2
C

H
A

P
T

E
R

 1
8

Part 2 • Chapter 18. Ionizing radiation



176

are not powerful enough to enable 
comment on the shape of the dose–
response curve and the associated 
risks at doses associated with typi-
cal human exposures. Many of the 
in vitro and in vivo studies investi-
gating the mechanisms underlying 
cancer risk from exposure to ionizing 
radiation have concentrated on low-
dose exposures, typically of 0.1 Gy 
(= 0.1 J/kg) and below.

The nature of ionizing 
radiation

Ionizing radiation is a term used for 
any radiation that is capable of ion-
izing (i.e. removing electrons from) 
atoms or molecules of the medium 
being traversed. Ionizing radia-
tions are usually classified as either 
electro magnetic or particulate.

X-rays and γ-rays are both 
electro magnetic radiations. They do 
not differ in nature, but their designa-
tion reflects their origin; X-rays are 
produced by extranuclear processes 
and γ-rays by intranuclear process-
es. These types of radiation are of-
ten classified as indirectly ionizing, 
because the chemical and biological 
damage is dominated by the charged 
particles (mainly electrons) produced 
as a result of interactions within the 
medium. Neutrons are also clas-
sified as indirectly ionizing. They 
deposit energy and cause damage 
through recoil protons, α-particles, 
and nuclear fragments that result 
from neutron interactions.

Particulate radiations include 
electrons, positrons, protons, neu-
trons, α-particles, and other ions. 
With the exception of neutrons, all of 
these particles are charged and are 
classified as directly ionizing (if they 
have sufficient energy) because they 

directly ionize the medium they are 
traversing, producing chemical and 
biological damage.

The human body can be irradiat-
ed either from external sources or 
through internal exposure as a re-
sult of ingestion, inhalation, dermal 
absorption, or injection of radionu-
clides. The effects of radiation are 
directly related to the dose received 
by individual cells or organs, and 
by the radiation quality. Therefore, 
these effects can vary significant-
ly, depending on the resulting dose 
distribution or distribution of radionu-
clides throughout the body. The dose 
distribution may vary from being es-
sentially uniform after whole-body 
exposure to being highly heteroge-
neous in the case of non-uniform 
distribution of internal radionuclides 
that emit short-range α-particles or 
β-particles. Medium- to high-ener-
gy X-rays, γ-rays, and neutrons are 
typically highly penetrating and will 
traverse the body, whereas α-par-
ticles and β-particles typically have 
a short range (for α-particles, less 
than 100 μm, and for β-particles, 
from less than 1 μm to several mil-
limetres). In general, the penetra-
tion range of charged particles can 
vary significantly depending on their 
energy and the type of particle.

Genotoxicity and the 
importance of radiation track 
structure

Ionizing radiation interacts within 
cells and tissues by depositing en-
ergy in highly structured tracks of 
ionization and excitation events that 
are stochastic in nature. On average, 
these events are relatively sparsely 
distributed for high-energy X-rays 
and γ-rays, which deposit energy 
via electrons with relatively low lin-
ear energy transfer (LET), where 
LET corresponds to the energy loss 

per unit track length. For example, 
cobalt-60 γ-rays have an LET of 
about 0.25 keV/μm (where 1 eV = 
1.602 × 10−19 J). The ionization and 
excitation events are much closer 
together for low-energy charged par-
ticles, which are considered to be 
high-LET radiation. For example, an 
α-particle with an energy of 2 MeV 
has an LET of about 180 keV/μm.

All types of ionizing radiation in-
duce a wide range of damage and ef-
fects, including DNA damage, chro-
mosomal aberrations, mutations, cell 
transformation, and cell killing (NRC, 
1999, 2006; UNSCEAR, 2000; 
ICRP, 2003, 2007). The efficiency 
in causing damage and subsequent 
biological effects is related not only 
to the amount of energy transferred 
per unit mass (the absorbed dose, 
expressed in units of gray, where 
1 Gy = 1 J/kg) and the rate of energy 
transfer (the dose rate) but also to the 
microdistribution of energy, which is 
determined by the type of radiation 
and the associated track structure.

The relative biological effective-
ness is defined as the inverse ratio of 
the dose required to produce a given 
biological effect to the dose required 
by a reference radiation to produce 
the same effect. The relative biolog-
ical effectiveness typically increases 
with the LET value of the radiation, 
and it reaches a peak at about 100–
200 keV/μm for a range of biological 
end-points. Whereas the absorbed 
dose unadjusted for attenuation by 
the body is expressed in units of 
gray (Gy), the weighted organ dose 
(the equivalent or effective dose) is 
expressed in sieverts (Sv) or millisie-
verts (mSv), which are also the units 
in which radiation exposure limits are 
given.

For many biological effects, nu-
clear DNA is a critical target of ion-
izing radiation (UNSCEAR, 1993). 
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Ionizing radiation can cause DNA 
damage either by direct ionization 
of the constituent atoms in the DNA 
or indirectly by reactions with free 
radicals produced by interactions 
with water molecules (most notably 
the hydroxyl radical, which can in-
duce DNA strand breakage or base 
damage), or by a combination of di-
rect and indirect effects. In the cell, 
hydroxyl radicals will typically only 
diffuse a few nanometres (< 6 nm), 
thus preserving the spatial structure 
of the radiation tracks.

Ionizing radiation can thus induce 
a range of different types of molecular 
damage in DNA, such as base dam-
age (including apurinic/apyrimidinic 
sites), strand breaks, DNA–protein 
cross-links, and combinations of 
these within a few base pairs of each 
other. Examples are double-strand 
breaks (DSBs) and non-DSB clus-
ters (two or more base damages 
and/or strand breaks within about 
10 base pairs, but not resulting in a 
DSB). The pattern and frequency of 
these lesions are determined by the 
clustering of ionization and excita-
tion events on the nanometre scale, 
which ultimately produces clustering 
of damage over the dimensions of 
the DNA helix and larger.

Theoretical analyses show that 
clustered DNA damage that is more 
complex than a single-strand break 
can occur at biologically relevant 
frequencies with all types of ionizing 
radiation (Goodhead 1987, 1994; 
Brenner and Ward, 1992). Such clus-
tered damage in DNA is produced 
mainly within a single track, with a 
probability that increases with in-
creasing ionization density (LET). 
Calculations show that a dose of 
greater than 10 000 Gy is required 
for a second track to have a reason-
able chance of contributing to the 
local complexity of DNA damage 

(Nikjoo and Goodhead, 1991). These 
more complex forms of damage are 
essentially unique to ionizing radia-
tion and are not seen spontaneously 
or with other DNA-damaging agents.

The number of DSBs induced in 
DNA is approximately 20–40 per 
cell per gray for low-LET X-rays and 
γ-rays, and a similar number is ob-
served for α-particles in standard 
assays. However, the percentage 
of complex DSBs (with extra strand 
breaks and/or associated base dam-
age within 10 base pairs) is about 
30–50% for electrons (similar to the 
percentage produced by X-rays and 
γ-rays) based on Monte Carlo calcu-
lations, and this percentage increas-
es with increasing ionization den-
sity (LET) of the radiation, to about 
90% for 0.3 MeV protons and about 
96% for high-LET 2 MeV α-parti-
cles (Nikjoo et al., 1991; Goodhead, 
2006). In addition to this increase in 
the frequency of complex DSBs with 
increasing LET, there is also an in-
crease in the overall complexity of 
the damage spectrum produced. 
Clustering of damage is not con-
fined to DNA but can occur in all 
biomolecules.

Complex non-DSB damage has 
been shown to be a significant com-
ponent of the lesions induced by 
radiation, occurring 4–8 times as 
frequently as direct DSB formation. 
Whereas isolated lesions (e.g. base 
damage or single-strand breaks) are 
repaired quickly and generally with 
high fidelity, for non-DSB clusters 
the rate of repair is typically impaired 
by the presence of additional lesions 
within the cluster. The delay and the 
ultimate consequence depend on 
the types of lesion and their rela-
tive positions. The longer lifetime of 
these clusters also results in an in-
creased probability that the damage 
will be present during DNA replica-

tion, which ultimately leads to stalled 
replication forks that may give rise to 
DSBs or mutations. Therefore, non-
DSB clusters are potentially highly 
mutagenic and are likely to play a 
more important role at low doses 
of low-LET radiation; because non-
DSB damage is produced at a higher 
frequency than DSBs at these lower 
doses, more cells will contain non-
DSB clustered damage compared 
with DSBs (reviewed by Eccles et al., 
2011).

DNA is wrapped around histone 
proteins to form nucleosomes, which 
are organized into 30 nm chromatin 
fibres that are typically arranged in 
loops. As a result of the sequence of 
ionization events along individual ra-
diation tracks, especially in the case 
of densely ionizing high-LET parti-
cles such as α-particles, these tracks 
can lead to multiple correlated DSBs 
over short sections of DNA arranged 
in these structures. Conventional 
DSB assays (e.g. pulsed-field gel 
electrophoresis and γH2AX assays) 
are not able to resolve these addi-
tional DSBs and therefore typically 
underestimate the absolute yields 
(Friedland et al., 2008). However, 
experimental and theoretical data 
have demonstrated the existence of 
these short fragments for these par-
ticles, showing a significant deviation 
from a random distribution (Rydberg 
et al., 1998; Friedland et al., 2008). 
Whereas viable radiation-induced 
mutations are rarely associated with 
visible chromosomal exchanges 
observed by use of fluorescence in 
situ hybridization (FISH), molecular 
analysis of these sites shows that 
high-LET particles can induce gene 
mutations of greater complexity than 
simple deletions or point mutations, 

P
A

R
T 

2
C

H
A

P
T

E
R

 1
8

Part 2 • Chapter 18. Ionizing radiation



178

consistent with the correlation of 
damage along the radiation track 
(Singleton et al., 2002).

The pattern of energy deposition 
is also important on the cellular or 
nuclear scale (over distances in the 
micrometre range). When an α-parti-
cle traverses a cell, the dose distribu-
tion of the energy deposited is highly 
heterogeneous across the cell, with 
a greater probability of correlated 
damage and DSBs within a single 
chromosome or adjacent chromo-
somes. Studies with multiplex FISH 
(mFISH) have shown that commonly 
four and up to a maximum of eight 
different chromosomes may be in-
volved in rearrangements after the 
nuclear traversal of a human periph-
eral blood lymphocyte by an α-parti-
cle (Anderson et al., 2002, 2006); a 
similar response was seen in human 
CD34-positive haematopoietic stem 
cells (Anderson et al., 2007). This is 
in contrast to the production of mainly 
simple rearrangements between two 
chromosomes observed for low dos-
es of low-LET X-rays. Complex rear-
rangements have been observed in 
radiation workers with a large body 
burden of α-particle-emitting pluto-
nium (Anderson et al., 2005). Stable 
intrachromosomal rearrangements 
were also found in lymphocytes of 
former nuclear weapons workers 
who were exposed to plutonium 
(Hande et al., 2003), although not 
consistently for all cases of in vivo 
high-LET exposures (reviewed by 
Hada et al., 2011).

Other potential mechanisms 
for modifying cancer risk 
from radiation exposure

Ionizing radiation also produces a 
whole range of effects with poten-
tial implications for carcinogenesis 
(UNSCEAR, 2012). For example, the 
patterns of gene and protein expres-

sion are critical in determining cellu-
lar function and response. Ionizing 
radiation has been shown to modu-
late protein phosphorylation (Yang 
et al., 2006) and gene expression 
in a dose- and dose rate-dependent 
manner (Ding et al., 2005; Fachin 
et al., 2009). Epigenetic changes 
can also result in modifications in 
gene expression, and ionizing ra-
diation produces DNA methylation 
(Kovalchuk et al., 2004), histone 
methylation (Pogribny et al., 2005), 
and chromatin modification (Kim 
et al., 2009; Luijsterburg et al., 2009; 
Nagarajan et al., 2009; Pandita and 
Richardson, 2009), along with mod-
ulation of microRNA expression 
(Templin et al., 2011).

Intercellular communication 
and the bystander effect

Within tissues of multicellular organ-
isms, cells do not act in isolation; in-
tercellular signalling is vital for main-
taining the multicellular organization 
of the tissue and for normal func-
tioning of the constituent cells (Park 
et al., 2003). These cellular inter-
actions and the microenvironment 
are also important in influencing the 
growth and development of cancer 
cells.

Radiation can initiate stress-in-
ducible signals, which can perturb 
this signalling and affect not only 
irradiated cells but also non-irra-
diated cells. Many studies have 
shown a wide range of responses 
in non-irradiated “bystander” cells, 
including induction of DNA damage, 
chromosomal aberrations, delayed 
genomic instability, mutations, onco-
genic transformation, and cell killing 
(Morgan, 2003a, b).

Signalling has been demonstrat-
ed to occur via intercellular gap 
junctions and media-borne fac-
tors. Several signalling pathways 

have been implicated, and these 
typically result in the modulation of 
reactive oxygen species and reac-
tive nitrogen species as a result of 
signalling through molecules such 
as nitric oxide, peroxidase, and the 
cytokine transforming growth factor 
beta (TGF-β) and other inflammatory 
markers (Burdak-Rothkamm et al., 
2007; Han et al., 2007; Portess et al., 
2007; Coates et al., 2008). Radiation 
is capable of perturbing intercellular 
signalling down to very low doses 
(on the order of 2 mGy for γ-rays 
and 0.3 mGy for α-particles), which 
are directly relevant to typical human 
exposures (Portess et al., 2007).

Reactive oxygen species are ex-
pected to be important in initiating 
and maintaining the inflammatory 
process (Barcellos-Hoff et al., 2005; 
Mantovani et al., 2008). In addition, 
radiation can lead to a modification in 
the immune response; at high whole-
body doses, this results in immuno-
suppression, whereas at low doses 
and dose rates, this can lead to ei-
ther suppression or stimulation of 
the immune response (UNSCEAR, 
2008).

There is increasing evidence to 
suggest that radiation-induced per-
turbation of intercellular signalling 
and of the microenvironment may 
play a role in modulating cancer risk. 
However, the relative importance of 
these effects to cancer induction af-
ter human exposure is unclear, and 
it is not generally known whether the 
dominant consequences of these 
effects are beneficial or detrimental.

Radiation-induced genomic 
instability

In addition to being capable of pro-
ducing mutations directly in the irra-
diated cell, ionizing radiation can also 
lead to genomic instability, resulting 
in the cell and its progeny having a 
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reduced ability to replicate the geno-
type faithfully and therefore showing 
a permanently increased rate of ac-
quisition of alterations in the genome 
(Kadhim et al., 1992, 1994; Little, 
2000; Morgan, 2003a, b; Barcellos-
Hoff et al., 2005). This may lead to 
an increased probability that the cell 
and its progeny will undergo the var-
ious genetic and epigenetic changes 
necessary in multistage carcino-
genesis. It is thus possible that the 
instability phenotype plays a major 
role in radiation-induced cancer, es-
pecially because genomic instability 
is a well-recognized feature in many 
tumours (Bielas et al., 2006).

Radiation-induced genomic insta-
bility typically becomes manifest sev-
eral cell generations after irradiation 
and can be detected via a range of 
end-points, including chromosomal 
and chromatid aberrations, micro-
nuclei, changes in ploidy, gene mu-
tations and amplifications, and mini- 
and microsatellite instabilities. The 
frequency of genomic instability was 
observed to be too high to be ex-
plained by the induction of a mutator 
genotype. Several mechanisms have 
been proposed, including dysfunc-
tional telomeres (Goytisolo et al., 
2000; McIlrath et al., 2001; Williams 
et al., 2009) and inflammatory (free 
radical) responses (Barcellos-Hoff 
et al., 2005; Natarajan et al., 2007; 
Coates et al., 2008; Lorimore et al., 
2008), along with DNA damage and 
response, for example long-term 
response to directly induced DNA 
damage and reduced ability to han-
dle subsequent damage or cell di-
vision (Snyder and Morgan, 2005; 
Maxwell et al., 2008; Toyokuni et al., 
2009).

Epigenetic modification has been 
implicated as playing an important 
role in the promotion and mainte-
nance of transmissible instability 

(Kadhim et al., 2004; Barber et al., 
2009; Filkowski et al., 2010; Rugo 
et al., 2011). Genomic instability has 
also been observed in non-irradiated 
cells that were in the neighbourhood 
of irradiated cells, demonstrating the 
importance of intercellular signalling 
in initiating this instability response 
(Lorimore et al., 1998). Although 
genomic instability is a plausible 
mechanism for cancer induction, its 
precise role, if any, remains to be 
proven.

The importance of dose 
distribution with respect to 
tumour sites

The passage of ionizing radiation 
through the body results in the depo-
sition of energy within the irradiat-
ed tissue volume. External irradia-
tion with photons is typically highly 
penetrating and will often result in all 
cells and tissues in the radiation field 
being irradiated. In contrast, emis-
sion from internalized radionuclides 
typically occurs from specified lo-
cations occupied by the emitting nu-
clide source. This will often lead to a 
non-uniform dose distribution in the 
body, especially if the emitted radia-
tion has only a short range (e.g. for 
α-particles and β-particles).

The biological effects of deposit-
ed radionuclides in the body depend 
on the amount and activity of the 
radionuclide deposited, the type of 
radiation emitted, the physical half-
life of the isotope, the mode of entry, 
the organs and tissues in which the 
radionuclide is retained, the duration 
of retention, and the rate of excretion 
from the body. The chemical char-
acteristics of the radionuclide (or the 
compound in which it is incorporat-
ed) along with its physical properties 
(such as size and shape) determine 
its behaviour, including absorption 
and transport within the body, elim-

ination route and rate, and uptake 
and retention in organs. In some cas-
es, for example for radioactive heavy 
metals, the health effects and carci-
nogenic potential may also be relat-
ed to, and potentially dominated by, 
the chemical properties rather than 
the radiation emitted.

In some cases, a radionuclide 
may spread throughout the whole 
body; in other cases, it will concen-
trate in specific organs or locations 
within the body. If the emitted ra-
diation has a short range (e.g. for 
α-particles and β-particles), this can 
lead to significant heterogeneity in 
the resulting dose distribution, with 
certain organs receiving a significant 
dose while for others the radiation 
dose is minimal. Biokinetic models 
(ICRP, 1989, 1993, 1994, 1995a, b, 
c, 2001) are used to estimate the 
spatial and temporal uptake of radio-
nuclides as well as their subsequent 
distribution and ultimate excretion. 
Dosimetry models (Eckerman, 1994) 
are then used to calculate the result-
ing dose distribution over the body 
and organs, based on the physical 
characteristics of the radionuclides.

The ability of internal radionu-
clides to produce a biological re-
sponse and ultimately cancer in 
various organs is related to the bio-
distribution of these emitters within 
the body (which will depend on the 
chemical and physical properties of 
the particles and the route of entry). 
Examples are iodine-131, which con-
centrates largely in the thyroid, and 
strontium-90 and plutonium-239, 
which are deposited mainly in the 
bone. The same radionuclide may 
result in a different range of tumours 
if it is delivered in such a way as to 
produce a different biodistribution 
pattern. In addition, there may be 
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confounding factors, such as chem-
ical toxicity, that may contribute to or 
even dominate the cancer response.

Human exposures to ionizing 
radiation typically occur at 
low dose and low dose rate

The effects of radiation are most no-
table at the high doses (above a few 
gray) that are usually associated with 
significant radiation accidents and 
radiotherapy treatments, and that 
are observed in atomic bomb sur-
vivors. These effects include erythe-
ma, oedema, ulceration, necrosis, fi-
brosis, telangiectasia, inflammation, 
immunosuppression (through bone 
marrow depletion), and pneumonitis 
(HPA, 2007; Stewart et al., 2012). 
Although there is clear evidence from 
epidemiological data for significant 
cancer risks associated with high-
dose exposures, the existing data for 
the low-dose range are limited, such 
that below approximately 0.1 Gy – 
doses associated with typical human 
exposures – the data are not power-
ful enough to enable comment on the 
shape of the dose–response curve 
and the associated risks.

For an average annual environ-
mental background exposure of ap-
proximately 0.001 Gy for low-LET ra-
diation, individual cells may receive 
no track at all or only single tracks, 
well isolated in time. The nucleus of 
each cell in a tissue will experience 
on average one electron track per 
year from background radiation, as-
suming a spherical nucleus of 8 μm 
diameter. Exposure from diagnostic 
procedures can vary from 0.005 Gy 
for dental exposures to approximate-
ly 0.01 Gy for typical exposures from 
computed tomography (CT), or occa-
sionally up to 0.1 Gy for some pro-
cedures over a short period (Brenner 
and Hall, 2007, 2012). Individuals are 
also exposed to high-LET α-parti-

cles as a result of naturally occurring 
radon gas. With typical residential 
levels of radon gas, the cell nuclei 
in the bronchial epithelium of the in-
habitants are estimated to receive on 
average between 0.15 and 0.6 α-par-
ticle traversals per year (NRC, 1999). 
However, for those cell nuclei that 
are occasionally traversed, the dose 
to the traversed nucleus is significant 
(on the order of 0.1–0.5 Gy).

For the high doses associated 
with radiotherapy or significant acci-
dental exposures, it is expected that 
classical direct effects of radiation 
are likely to dominate the response, 
as a result of radiation-induced 
DNA damage. However, at the very 
low doses associated with typical 
human exposures, where only a 
small fraction of cells have a DNA 
DSB, it is possible that other mech-
anisms for cancer induction or mod-
ulation of cancer incidence (such as 
radiation-induced genomic instability 
or effects associated with perturba-
tion of intercellular signalling) may 
play a more important role.

Generality of response after 
exposure to different types of 
ionizing radiation

All types of ionizing radiation ulti-
mately lead to clusters of ioniza-
tion and excitation events, along 
with the production of electrons, 
through which energy is deposited. 
Interaction of X-rays and γ-rays with 
tissues generates fast electrons that 
interact with atoms or nuclei, produc-
ing additional electrons as they slow 
down and deposit energy. Charged 
particles such as α-particles and pro-
tons also interact with tissue, produc-
ing primary ionization and excitation 
events, and also a trail of secondary 
electrons along the path of the pri-
mary particle. Uncharged neutrons 
also interact with tissue and depos-

it energy via lower-energy charged 
particles such as protons, deuterons, 
α-particles, and heavy-ion recoils, ul-
timately leading to energy deposition 
via secondary electrons.

Therefore, energy deposition by 
way of electrons is common to all ion-
izing radiation. Indeed, isolated track 
ends of low-energy electrons (pro-
duced by all ionizing radiations) have 
been shown not only to be capable of 
affecting a wide range of genotoxic 
end-points but to do so with a high 
efficiency per unit dose (Goodhead 
and Nikjoo, 1990; Hill et al., 2001; 
Hill, 2004; HPA, 2007). Because of 
their increased local ionization den-
sity, these track ends of low-energy 
(0.1–5.0 keV) electrons have been 
proposed as the biologically critical 
component of low-LET radiation, 
rather than the isolated ionization 
and excitation events along the path 
of fast electrons (Goodhead and 
Nikjoo, 1990; Botchway et al., 1997).

In addition, α-particles emitted by 
radionuclides, irrespective of their 
source, produce the same pattern of 
secondary ionizations and the same 
pattern of localized damage to bio-
logical molecules, including DNA, 
and ultimately the same biological ef-
fects. Therefore, due to the commu-
nality in their interactions within the 
body and in the biological responses 
induced, all types of ionizing radia-
tion have been classified by IARC as 
carcinogenic to humans (Group 1), 
even though in some cases direct 
evidence is weak or non-existent, 
with the risk of cancer depending on 
dose and radiation quality. Although 
internal radionuclides can vary sig-
nificantly in the range of cancers and 
cancer sites observed, the cancer 
response is ultimately dominated by 
the biodistribution of these emitters 
within the body.
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