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EPSTEIN-BARR VIRUS
The Epstein-Barr virus was considered by a previous IARC Working Group in 1997 (IARC, 
1997). Since that time, new data have become available, these have been incorporated in 
the Monograph, and taken into consideration in the present evaluation.

1. Exposure Data

1.1 Taxonomy, structure, and biology

1.1.1 Taxonomy

The Epstein-Barr virus (EBV), the first isolated 
human tumour virus, was identified in 1964 by 
Epstein’s group in a cell line derived from Burkitt 
lymphoma (Epstein et al., 1964). EBV is a human 
herpesvirus, classified within the gammaher-
pesviruses subfamily, and is the prototype of the 
Lymphocryptovirus genus. In keeping with the 
systematic nomenclature adopted for all human 
herpesviruses, the formal designation of EBV is 
human herpesvirus 4 (HHV-4).

Two major EBV types have been detected in 
humans: EBV-1 and EBV-2 (also known  as types 
A and B). EBV-1 and EBV-2 differ in the sequence 
of the genes that code for the EBV nuclear anti-
gens (EBNA-2, EBNA-3A/3, EBNA-3B/4, and 
EBNA-3C/6) (Sample et al., 1990). EBV-2 immor-
talizes B cells less efficiently than EBV-1 in vitro, 
and the viability of EBV-2-infected lymphoblas-
toid cell lines is less than that of EBV-1-infected 
lines (Rickinson et al., 1987). The differences in 
the immortalizing efficiency of the EBV subtypes 
may relate to a divergence in the EBNA-2 
sequences (Cohen et al., 1989).

In addition to type-specific polymorphism, 
significant DNA-sequence heterogeneity has 
been found when comparing selected regions of 
the EBV genome isolated in certain geographic 
areas or even from the same area. These poly-
morphisms define different viral strains within 
both types (Aitken et al., 1994).

1.1.2 Structure of the virion

Like other herpesviruses, EBV is a DNA virus 
with a toroid-shaped protein core that is wrapped 
with DNA, a nucleocapsid with 162 capsomers, a 
protein tegument between the nucleocapsid and 
the envelope, and an outer envelope with external 
virus-encoded glycoprotein spikes (Liebowitz & 
Kieff, 1993).

1.1.3 Structure of the viral genome

The EBV genome is a linear, double-stranded, 
~172-kb DNA molecule that encodes > 85 genes 
(Fig. 1.1).

 The nomenclature for EBV open-reading 
frames (ORFs) is based on the BamHI-restriction 
fragment in which they are found. For example, 
the BARF1 ORF is found in the BamHI A frag-
ment, and extends rightwards (Fig. 1.1).

The many EBV ORFs are divided into latent 
and lytic genes (further divided into immediate 
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Figure 1.1 The Epstein-Barr virus genome

 
a   Electron micrograph of the Epstein-Barr virus (EBV) virion
b   Diagram showing the location and transcription of the EBV latent genes on the double-stranded viral DNA episome
c   Location of open reading frames of the EBV latent proteins on the Bam H1 restriction-endonuclease map of the prototype B95.8 genome
Reprinted by permission from Macmillan Publishers Ltd: Young & Rickinson, Nature Reviews, 4:757, copyright (2004)
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Table 1.1 Examples of identified EBV gene products and their open reading frames

Open reading frame Protein Main proposed function

Common name Alternative 
nomenclature

Latent genes
BKRF1 EBNA-1a Plasmid maintenance, DNA replication 

transcriptional regulation
BYRF1 EBNA-2a trans-activation
BERF1 EBNA-3Aa EBNA-3 Transcriptional regulation
BERF2 EBNA-3Ba EBNA-4 Unknown
BERF3/4 EBNA-3Ca EBNA-6 Transcriptional regulation
BWRF1 EBNA-LPa EBNA-5 trans-activation
BNLF1 LMP-1a B-cell survival, anti-apoptosis
BNRF1 LMP-2Aa/2B TP1/2 Maintenance of latency
BARF0 Not shown to be translated, unknown function
EBER1/2 Non-translated, regulation of innate immunity
Lytic genes
Immediate early genes
BZLF1 ZEBRA trans-activation, initiation of lytic cycle
BRLF1 trans-activation, initiation of lytic cycle
BI’LF4 trans-activation, initiation of lytic cycle
Early genes
BMRF1 trans-activation
BALF2 DNA binding
BALF5 DNA polymerase
BORF2 Ribonucleotide reductase subunit
BARF1 Ribonucleotide reductase subunit
BXLF1 Thymidine kinase
BGLF5 Alkaline exonuclease
BSLF1 Primase
BBLF4 Helicase
BKRF3 Uracil DNA glycosylase
Late genes
BLLF1 gp350/220 Major envelope glycoprotein
BXLF2 gp85 (gH) Virus–host envelope fusion
BKRF2 gp25 (gL) Virus–host envelope fusion
BZLF2 gp42 Virus–host envelope fusion, binds MHC class II
BALF4 gp110 (gB) Unknown
BDLF3 gp100–150 Unknown
BILF2 gp55–78 Unknown
BCRF1 Viral interleukin-10
BHRF1ab Viral bcl-2 analogue

a Gene products involved in immortalization and/or other aspects of tumour cell phenotypes
b Expressed in latently infected cells as well
EBNA, EBV nuclear antigen; LP, leader protein; LMP, latent membrane protein; ZEBRA, Z EBV replication activation; gp, glycoprotein; MHC, 
major histocompatibility complex
Compiled from Liebowitz & Kieff (1993), Li et al. (1995), Nolan & Morgan (1995), Thompson & Kurzrock (2004)
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early genes, early genes, and late genes). Most of 
these genes are translated into proteins whose 
main proposed functions are listed in Table 1.1. 
Several lytic genes encode for human homologues 
(Table 1.2). In addition, some latent genes are non-
translated; this is the case for EBV-encoded RNA 
(EBER)-1 and -2 (Kieff, 1996; Kieff & Rickinson, 
2001). EBV also encodes at least 17 micro-RNAs, 
arranged in two clusters: ten are located in the 
introns of the viral BART gene, and three adja-
cent to BHRF1 (Cai et al., 2006).

 The viral genome also contains a series 
of 0.5-kb terminal direct repeats at either end 
and internal repeat sequences that serve to divide 
the genome into short and long unique sequence 
domains that have most of the coding capacity 
(Cheung & Kieff, 1982). These terminal repeats 
are good markers to determine if EBV-infected 
cells are from the same progenitor: when EBV 
infects a cell, the viral DNA circularizes and 
mainly persists as a circular episome with a 
characteristic number of terminal repeats that 
depends on the number of terminal repeats in 
the parental genome, with some variation intro-
duced during viral replication. If the infection is 
permissive for latent infection but not replica-
tion, future generations will have EBV episomes 
with the same number of terminal repeats (Raab-
Traub & Flynn, 1986).

1.1.4 Host range

Although herpesviruses are ubiquitous in 
nature, humans serve as the only natural host for 
EBV. Almost all higher primates have their own 
EBV-like virus. Antibodies to EBV have been 
detected in several primate species, probably 
due to the presence of cross-reactive antibodies 
against their own species-specific EBV homo-
logues (Kieff et al., 1979). Infection of newborn 
marmosets with EBV resulted in the establish-
ment of a long-term permissive infection, indi-
cating similarities in the responses of marmosets 
and humans to EBV (Cox et al., 1996).

1.1.5 Target cells

Like other gammaherpesviruses, EBV estab-
lishes latent infection in lymphocytes and can 
induce proliferation of the latently infected cells 
(Young & Rickinson, 2004). EBV infection of 
B cells is mediated through the interaction of 
the viral envelope glycoprotein gp350/220 with 
the cellular receptor for the C3d complement 
component CR2 (CD21) (Fingeroth et al., 1984, 
1988; Tanner et al., 1987). After binding of the 
viral particle to the surface of the host cell and 
endocytosis, the viral envelope fuses with the 
host-cell membrane by a mechanism involving 
three other viral glycoproteins: gp85, gp25, and 
gp42 (Li et al., 1995). It is worth noting that gp42 
can bind to major histocompatibility complex 
(MHC) class II, and EBV uses this as a cofactor 
in the infection of B lymphocytes (Li et al., 1997).

It has been shown nonetheless that EBV can 
also infect cells, albeit at low efficiency, via CD21-
independent mechanisms. Indeed, cells that do 
not express CD21 (as some epithelial cells) can 
be infected by the virus, and furthermore a virus 
deficient in gp350/220 was shown to be still infec-
tious (Imai et al., 1998; Janz et al., 2000).

Although EBV is considered to be a 
B-lymphotropic virus, it can also infect T 
lymphocytes or epithelial cells because it is 
found in some T-lymphoma cells and several 
important diseases of epithelial cells, including 
nasopharyngeal and gastric carcinomas, and 
oral hairy leukoplakia (Thompson & Kurzrock, 
2004). Other CD21-independent pathways may 
be responsible for EBV infection of cells other 
than B lymphocytes (Imai et al., 1998; Janz et al., 
2000).

Current evidence suggests that EBV infec-
tion in healthy chronic virus carriers is largely 
restricted to B cells, although in certain situ-
ations the virus can be detected in epithelial 
cells. The most likely role for epithelial cells is 
as a site for replication and amplification of EBV 
rather than as a site of persistent latent infection, 
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however, this remains controversial (Kieff, 1996) 
(see Section 1.1.6 and Fig. 1.2).

1.1.6 Viral life cycle

EBV, probably the most potent transforming 
human virus in culture, is nonetheless known 
to infect and persist for life in > 90% of human 
adults without causing disease.

Several reviews have described how EBV 
exploits the physiology of the normal B-cell 
differentiation, and uses different combinations 
of latent viral gene expression to progress from 
initial infection to long-term persistence within 
the memory B-cell pool of the immunocompe-
tent host (Thorley-Lawson & Gross, 2004; Young 
& Rickinson, 2004; Thorley-Lawson & Allday, 
2008).

Fig.  1.2 depicts the putative interactions 
between EBV and its host. EBV spreads via the 
saliva entering the epithelium of the Waldeyer 
tonsillar ring situated in the oropharynx where 
it probably initiates a lytic infection that leads to 
amplification of the virus. The virus then infects 
naïve B cells in the underlying lymphoid tissues, to 
become activated lymphoblasts using the growth 
transcription programme (latency III). Three of 
the growth-programme proteins (EBNA-3A, 
EBNA-3B, and EBNA-3C) negatively autoregu-
late the growth programme. This allows the cell 
to migrate into the follicle to initiate a germinal 
centre reaction, and to establish the default tran-
scription programme (latency II). The default 

programme provides rescue or survival signals 
that allow the cell to exit the germinal centre as 
memory B cell. Then, the latency transcription 
programme (latency 0) in which all viral protein 
expression is turned off begins in the resting 
memory B cells. These cells are maintained by 
normal memory B cell homeostasis. When they 
occasionally divide, they express the EBNA-
1-only programme (latency I). The memory B 
cells eventually return to the tonsil, where they 
occasionally undergo plasma-cell differentiation, 
which triggers viral replication. The resulting 
virus may be released into saliva for spreading 
to other hosts or may infect other B cells (Young 
& Rickinson, 2004; Thorley-Lawson & Allday, 
2008).

Primary EBV infection elicits a strong 
cellular immune response which brings the 
infection under control, and newly infected 
cells are thought to be efficiently removed by the 
latent-antigen-specific T-cell response. The virus 
can persist for life in the host only in the resting 
memory B cells in which no viral proteins are 
expressed, and is therefore shielded from the 
immune system (Thorley-Lawson & Gross, 2004; 
Young & Rickinson, 2004; Thorley-Lawson & 
Allday, 2008).
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Table 1.2 Homology of EBV gene products with human proteins

Viral gene Human homologue Functional similarity established

BCRF1 Interleukin 10 Yes
BDLF2 Cyclin B1 No
BHRF1 BCL-2 Yes
BALF1 BCL-2 No
BARF1 C-FMS receptor Yes

ICAM-1 (CD54) No
Amino acid homology between viral and human product varies from ~20% to >80%.
Adapted from Thompson & Kurzrock (2004)
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Figure 1.2 Putative in vivo interactions between EBV and host cells

 
a   Primary infection
b   Persistent infection
Reprinted by permission from MacMillan Publishers Ltd: Young & Rickinson, Nature Reviews, 4:757, copyright (2004)
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1.1.7 Viral gene expression

(a) Viral gene expression in normal cells during 
the viral life cycle

Table 1.3 lists the different viral transcription 
programmes in normal B cells. The expression of 
EBV-encoded proteins differs depending on the 
type, differentiation, and activation status of the 
infected cell. The growth-stimulating programme 
is based on the expression of six nuclear and 
three membrane proteins. Six of these are essen-
tial for the activating and proliferation-driving 
effect of the virus. One virally encoded nuclear 
protein, EBNA-1 which is required for the main-
tenance of the viral episomes, is expressed to 
various degrees in these cells (Thorley-Lawson, 
2005). In all forms of latency, EBV expresses two 
classes of non-coding small RNA (EBER) 1 and 
2, which are highly structured RNAs of 167 and 
172 nucleotides, respectively. The expression of 
EBER-1 and -2 is restricted to the cell nucleus 
where they are present at approximately 107 
copies per cell (Sample & Sample, 2008). Also, 
EBV encodes at least 22 micro-RNAs which are 
expressed to various degrees in latency I, II, III 
(Cai et al., 2006; Grundhoff et al., 2006).

(b) Viral gene expression in EBV-associated 
malignancies

Specific latency EBV-transcription 
programmes have been demonstrated in many 
human tumours, including immunoblastic 
lymphoma in immunosuppressed patients, 
Burkitt lymphoma, Hodgkin disease, and naso-
pharyngeal carcinoma (Table 1.4). The origins of 
all of these tumours can be understood as arising 
from specific stages in the EBV life cycle, and 
appear to be associated with disturbances of the 
immune system as shown in Fig.  1.3 (Thorley-
Lawson, 2005).

 Latency I is generally associated with 
the EBV-related Burkitt lymphoma, latency 
II with Hodgkin disease, T-cell non-Hodgkin 
lymphoma, and nasopharyngeal and gastric 
carcinoma; latency III occurs mainly in 
immunocompromised individuals, in post-
transplant lymphoproliferative disorders, and 
HIV-associated lymphoproliferative disorders 
(Liebowitz & Kieff, 1993; Sbih-Lammali et al., 
1996; Niedobitek et al., 1997; Cesarman & Mesri, 
1999; Kis et al., 2006; Klein et al., 2007).
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Table 1.3 The EBV transcription programmes in normal B cells

Transcription programme Gene products expressed Infected normal B-cell typea Function

Growth (latency III) EBNA-1, -2, -3A, -3B, -3C, 
-LP, LMP-1, LMP-2A and 
LMP-2B, EBERs

Naive Activate B cell

Default (latency II) EBNA-1, LMP-1 and LMP-
2A, EBERs

Germinal centre Differentiate activated B cell 
into memory

True latency (Latency 0) EBERs Peripheral memory Allow lifetime persistence
EBNA-1 only (latency I) EBNA-1, EBERs Dividing peripheral memory Allow virus in latency 

programme cell to divide
Lytic All lytic genes Plasma cell Replicate the virus in plasma 

cell
a Except where indicated, the cell types are primarily restricted to the lymphoid tissue of the Waldeyer ring.
Adapted from Thorley-Lawson (2005)
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1.2 Epidemiology of infection

1.2.1 Prevalence, geographic distribution

In the 1970s, IARC demonstrated that more 
than 90% of adults worldwide are infected with 
EBV, based on the detection of antibodies to 
EBV (especially antibodies to viral capsid (VCA) 
and complement-fixing soluble (CF/S) antigens) 
(de Thé et al., 1975). Many other epidemiological 
studies have shown since that EBV is highly 
prevalent throughout the world (IARC, 1997; 
Young, 2008), including in remote populations 
(Black et al., 1970; Tischendorf et al., 1970).

The age at primary infection varies substan-
tially worldwide, and exposure to EBV is likely 
to be due to socioeconomic factors (Evans, 1971) 
such as overcrowded living conditions with poor 
sanitation (de Thé et al., 1975). For example, 
while more than 80% of children in Uganda 
are estimated to be seropositive for EBV by age 
one (Kafuko et al., 1972), this estimate is only 
approximately 45% in the rural United States 
of America (Sumaya et al., 1975; Hsu & Glaser, 
2000).

Although primary EBV infection during 
early childhood is usually subclinical or has 
symptoms that are similar to other respiratory 
illnesses, a delay in acquiring a primary EBV 
infection at an older age in childhood or adoles-
cence, which usually occurs in more developed 
countries (Rickinson & Kieff, 1996), can manifest 
itself as infectious mononucleosis (occurring in 
approximately 25–75% of EBV-infected persons) 
(Evans, 1971; Sawyer et al., 1971; Niederman & 
Evans, 1997; Hsu & Glaser, 2000).

In a study in the Hong Kong Special 
Administrative Region (Chan et al., 2001), 
sequential measurements for markers of EBV 
infection from serum samples of a group of 
infants demonstrated a sudden seroconversion at 
the age of 8 months, which may imply a protec-
tive role for persistent maternal antibodies, and 
also partially explain why primary EBV infection 
in early childhood, unlike during adolescence, is 
usually asymptomatic (Chan et al., 2001).

Two major types of EBV – EBV-1 and EBV-2 
– have been identified and differ in geographic 
distribution. The role of specific EBV types in 
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Table 1.4 EBV latency pattern and associated malignancies

Latency Type Viral products expressed Associated malignancies

Latency 1 EBNA-1 Burkitt lymphoma
EBERs Gastric carcinomab

BARF0
Latency II EBNA-1 Hodgkin disease

EBERs Nasopharyngeal carcinoma
LMP-1 Peripheral T/NK lymphoma
LMP-2A
BARF0

Latency III All EBNAsa AIDS-associated lymphomas
EBERs Post-transplant lymphoproliferative disorders
LMP-1
LMP-2A
BARF0

a EBNAs include EBNA-1, EBNA-2, EBNA-3A (EBNA-3), EBNA-3B (EBNA-4), EBNA-3C (EBNA-6), EBNA-LP (EBNA-5 or EBNA-4)
b Gastric carcinoma have been shown to express an intermediate Latency I/II pattern including expression of EBNA-1, EBERs, LMP-2A, BARF0 
and some lytic infection proteins such as BARF-1, BNRF-1 (Luo et al., 2005)
EBNA, EBV nuclear antigen; LMP, latent membrane protein; EBER, EBV-encoded RNA
Adapted from Thompson & Kurzrock (2004)
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Figure 1.3 Putative check points in the EBV life cycle that give rise to tumours

 
Events occurring normally in healthy carriers are denoted in thick arrows. EBV normally infects naive B cells in the Waldeyer ring, and can 
differentiate into memory cells and out of the cell cycle, and are not pathogenic. PTLD/HIV. If a cell other than the naive B cell in the Waldeyer 
ring is infected, it will express the growth programme and continue to proliferate because it cannot differentiate out of the cell cycle (thin dashed 
arrows) - a very rare event - highlighting how carefully controlled EBV infection is. Normally, these bystander B-cell blasts would be destroyed 
by CTLs, but if the CTL response is suppressed, then they grow into PTLD or AIDS-associated lymphomas. Note: a bystander-type cell could 
also arise if a latently infected germinal center or memory cell fortuitously switched on the growth programme. Hodgkin disease occurs from the 
default programme. Burkitt lymphoma evolves from a germinal-centre cell that is entering the memory compartment but is stuck proliferating. 
Consequently, the cell expresses EBNA-1 only. Nasopharyngeal carcinoma is assumed to occur from a latently infected epithelial cell blocked from 
terminal differentiation and viral replication.
Reprinted from the Journal of Allergy and Clinical Immunology, Volume 116, Thorley-Lawson DA, EBV the prototypical human tumor virus – just 
how bad is it?, 251–261, Copyright (2005), with permission from Elsevier.
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the etiology of different cancers is unknown. 
Immunocompromised patients more commonly 
harbour both subtypes of EBV (Borisch et al., 
1992; Thompson & Kurzrock, 2004). EBV-2 may 
be more common in Africa (Gratama & Ernberg, 
1995), and in homosexual men (van Baarle et al., 
2000; Higgins et al., 2007). It has been hypoth-
esized that the attenuated transforming ability 
of EBV-2 along with an immunosuppressive 
condition (HIV or malaria) may be necessary 
for EBV-2 to be capable of maintaining infection 
of B lymphocytes, and to cause transformation 
(Buisson et al., 1994; Thompson & Kurzrock, 
2004). However, other studies showing that 
HIV-infected haemophiliacs have lower rates of 
EBV-2 infection than HIV-infected homosexuals 
have challenged this hypothesis, and suggest that 
the acquisition of EBV-1 versus EBV-2 would 
rather be due to the opportunity for exposure 
(van Baarle et al., 2000; Thompson & Kurzrock, 
2004).

The fact that EBV is ubiquitous, and conse-
quently causes widespread and largely asymp-
tomatic infection, suggests that the specific 
geographic distribution of EBV-associated malig-
nancies, such as endemic Burkitt lymphoma and 
nasopharyngeal carcinoma, is probably not due 
to differences in EBV infection but rather due to 
the activation of viral replication by additional 
cofactors (Young, 2008).

1.2.2 Transmission and risk factors for 
infection

EBV infection usually occurs in individuals 
of a young age, with low socioeconomic status or 
development, from a larger than average family, 
and with poor hygienic standards. By their third 
decade of life, 80–100% of these individuals 
become carriers of the infection (IARC, 1997).

The oral route is the primary route of trans-
mission of the virus; however, transmission by 
transfusion has been documented. In developing 
countries, infection is acquired in the first few 

years of life. Crowding and/or the practice of 
pre-chewing food for infants may be contrib-
uting factors. In the developed world, infection is 
often delayed to adolescence, when transmission 
is more likely because of intimate oral exposure 
(Hjalgrim et al., 2007a). About 50% of primary 
EBV infections during young adulthood result in 
clinical infectious mononucleosis (CDC, 2006).

Infectious mononucleosis is usually acquired 
from a transfer of saliva, and in young adults, 
this is more likely to occur after the onset of 
sexual activity. However, only limited data are 
available to support this hypothesis (Macsween 
& Crawford, 2003). In a cohort study of sexually 
active young women, the development of detect-
able antibodies against EBV after primary infec-
tion increased with increasing number of sexual 
partners, and was greatest when a new sexual 
partner was encountered in the 2  years before 
seroconversion. In addition, transient EBV DNA 
loads were detected in cervical cytology samples 
in some of the women (Woodman et al., 2005). 
[The Working Group noted, however, that it is 
difficult to distinguish in this study whether 
transmission occurs through saliva or genital 
contact.]

1.2.3 Persistency, latency, and natural history 
of infection

Following primary infection via transmis-
sion of cell-free virus and/or of productively 
infected cells in saliva, EBV will enter into the 
circulating B-cell pool, and then remain in most 
cases undetected for life in a latent state (Young & 
Rickinson, 2004; Thorley Lawson, 2005). EBV can 
also infect the mucosal epithelial cells in which 
intermittent viral productive replication occurs 
(Frangou et al., 2005). The B-cell compartment, 
more precisely resting memory B cells, appears to 
be the true reservoir of the latent virus in healthy 
carriers. Resting memory B cells express a very 
restricted pattern of latent viral gene expression 
(see Table 1.3 and Miyashita et al., 1995); this is 
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how these infected cells can persist in the face of 
efficient cytotoxic T lymphocyte (CTL) surveil-
lance (Masucci & Ernberg, 1994). Nonetheless, 
cells that express the full repertoire of growth-
transformation-associated antigens are likely be 
generated sporadically in asymptomatic virus 
carriers, because memory CTLs that are reac-
tive against most EBNAs are maintained at high 
levels for life (see Fig. 1.2, and further details in 
Section 1.1, this Monograph; IARC, 1997).

Primary EBV infections occurring in adoles-
cence or early in adult life are manifested as infec-
tious mononucleosis, which is an acute form of 
primary infection occurring asymptomatically 
in early childhood.

EBV-associated malignancies are suspected 
to result from viral reactivation that is most 
likely due to interaction with additional cofac-
tors (Young, 2008).

1.2.4 Biological markers of the different 
status of EBV infection

(a) Antibody responses to EBV

The detection of antibodies to EBV in biolog-
ical fluids has been until recently the major 
means of diagnosis for EBV infection. Distinct 
patterns of antibody response have been identi-
fied during primary infection, latent infection of 
healthy carriers, viral reactivation, and in various 
EBV-associated diseases. Serological parameters 
include the detection of IgG, IgM, and occasion-
ally IgA, directed against EBNAs, early anti-
gens (EAs, divided into two components, EA-D 
(encoded by BMRF-1) and EA-R (a human BCL-2 
homologue encoded by BHRF-1)), and VCAs (for 
a review see IARC, 1997).

(i) Infectious mononucleosis
Most information available on primary anti-

body response has been provided by studies on 
infectious mononucleosis. Table  1.5 shows the 
variation over time of serological parameters both 
at and after the onset of infectious mononucleosis. 

At the onset of clinical symptoms of the disease, 
substantial titres of IgM antibodies to VCA are 
detected, with rising titres of IgG to EA, and to 
VCA. IgA antibodies to these antigens may also 
appear. Whereas anti-VCA IgM titres disappear 
over the next few months, anti-VCA IgG titres 
rise to a peak that may fall slightly, and anti-EA 
IgG titres become either undetectable or stabilize 
at very low levels. Neutralizing antibodies to the 
major envelop glycoprotein gp350 are detected 
during the acute phase of infectious mononu-
cleosis but only at very low titres, and increase to 
stable levels thereafter (IARC, 1997).

 The serology of infectious mononucleosis 
for the anti-EBNA response presents an interesting 
pattern. For the anti-EBNA response, during the 
acute phase of infectious mononucleosis, patients 
show an IgG response to EBNA-2 (and also prob-
ably to EBNA-3A, -3B, and -3C), whereas an IgG 
response to EBNA-1 is not usually detected until 
convalescence. The production of antibodies to 
EBNA-1 and EBNA-2 in the course of infectious 
mononucleosis follows an ordered progression. 
Anti-EBNA-2 is the first to be detected, reaches 
peak titres, and then declines to a lower persis-
tent level, and can remain undetected in about 
1/3 of the cases. Anti-EBNA-1 is detected long 
after anti-EBNA-2, and then persists indefinitely 
once it has reached its concentration plateau. 
Therefore, within the first year following infec-
tious mononucleosis, the ratio of anti-EBNA-1: 
anti-EBNA-2 is well below 1, but becomes well 
above 1 over time. The switch from dominant 
anti-EBNA-2 to dominant anti-EBNA-1 titres 
occurs in individual cases over a long span of 
time (Table 1.5; Henle et al., 1987; IARC, 1997).

(ii) Healthy EBV-carriers
IgG antibodies to VCA, to neutralizing anti-

gp350, and to EBNA-1 are consistently detected 
in the serum of healthy carriers. The titre of 
these antibodies is usually stable over time but 
can markedly differ among individuals (Henle & 
Henle, 1976). Antibodies to EA are only detected 
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in a proportion of healthy carriers. Although 
persisting for life, anti-EBNA-1 and anti-VCA 
do not appear to have much of a protective role 
(Moss et al., 1992).

Virus shed can be frequently detected from 
throat washes of asymptomatic carriers. The 
levels of shedding are thought to be quite stable 
over many months, although with different 
rate depending on the individuals. A direct 
relationship appears to exist between the level 
of virus shedding in the throat and the level of 
virus-infected B cells in the blood. However, no 
obvious relationship was shown between the 
levels of EBV virus shedding from the throat and 
either anti-VCA or anti-EA titres in the serum of 
healthy carriers (Yao et al., 1985).

(iii) EBV-associated malignant diseases
The major features of the humoral response 

to EBV in different EBV-associated malignancies 
have been reported (Khanna et al., 1995) but no 
specific pattern could be defined as useful prog-
nostic markers for these diseases.

Although anti-VCA IgA serology was 
proposed as an effective and sensitive prognostic 
and diagnostic marker for nasopharyngeal carci-
noma, more recent studies have shown high false 
positive rates for this antibody (Low et al., 2000). 
Furthermore, the follow-up of individuals with 
high titres of IgA to VCA demonstrated that a 
significant portion of those seroconverted back 
to normal, and did not develop nasopharyngeal 
carcinoma (Lo et al., 2004).
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Table 1.5 Serological parameters at various times after the onset of infectious mononucleosis

Months after onset Healthy 
controls 
(n=38)0 

(n=74)
2–3 

(n=44)
4–12 

(n=65)
13–24 
(n=83)

25–48 
(n=35)

IgM anti-VCA
% positive 100.0 73.1 0.0 0.0 0.0 0.0
Range of titres 80–640 10–80 <10 <10 <10 <10
Anti-EA
% positive 81.8 88.5 87.8 60.9 39.4 30.0
Range of titres 10–320 10–160 10–160 10–80 10–80 10–40
Anti-D
% positive 81.8 57.7 10.2 13.0 0.0 0.0
Range of titres 10–320 10–160 10–160 10–40 <10 <10
Anti-R
% positive –a 46.2 83.7 47.9 39.4 30.0
Range of titres – 10–160 10–160 10–80 10–80 10–40
Anti-EBNA-1
% positive 0.0 4.5 73.8 97.6 97.1 100.0
Geometric mean titre <2 <2 5.3 21.2 24.8 48.2
Anti-EBNA-2
% positive 0.0 93.2 87.9 60.2 71.4 71.1
Geometric mean titre <2 7.3 11.6 4.1 4.3 3.9
Ratio anti-EBNA-1/anti-EBNA-2
≤1.0 – 97.7 76.9 22.9 17.1 5.3
>1.0 – 2.3 23.1 77.1 82.9 94.7

a Anti-R can be measured only when exceeding anti-D in titre.
Adapted from Henle et al. (1987)
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(b) Detection of EBV in tissues and serum

(i) Healthy carriers
In healthy carriers, EBV is mostly present in a 

latent form as episomal DNA in resting memory 
B cells. The frequency of EBV-carrying cells in 
peripheral blood ranges from 1 in 2x105–107 
whole mononuclear cells or 1 in 2x104–106 B cells, 
and is quite stable in an individual over time. It 
was estimated that less than 1 in 40 EBV-infected 
cells can replicate the virus in the peripheral 
blood of healthy carriers (Miyashita et al., 1995; 
Decker et al., 1996). Therefore, only very highly 
sensitive polymerase chain reaction (PCR) assays 
can detect EBV DNA in peripheral blood cells.

(ii) EBV-associated malignancies

- EBV DNA in tumour tissues
The EBV genome can be detected in tumour 

cells by PCR or in-situ hybridization assays 
using the BamH1 internal fragment of the viral 
genome as a probe. However, a major technical 
breakthrough has been the use, especially by 
in-situ hybridization, of probes specific for the 
small nuclear EBV-encoded RNAs, EBER-1 and 
EBER-2, which are highly expressed in all forms 
of EBV infection (Wu et al., 1990). The high sensi-
tivity of this method allowed the determination 
of the incidence of EBV infection in the very 
scarce neoplastic Hodgkin and Reed-Sternberg 
cells (HRC) in biopsies from Hodgkin disease 
patient (IARC, 1997).

Detection of EBV genomic DNA by PCR 
using EBV genes (e.g. EBNA-1, EBNA-2, and 
LMP-1) as targets in tissue obtained from naso-
pharyngeal biopsy and fine-needle aspirate 
samples have also been shown as being reliable 
and accurate methods for the diagnosis of naso-
pharyngeal carcinoma (Yap et al., 2007). In addi-
tion, nasopharyngeal carcinoma patients have 
a very high load of EBV DNA as collected in 
non-invasive nasopharyngeal brushing. EBNA1 
and BARF1 mRNAs are detected at even higher 
levels in such samples, whereas no EBV mRNA is 

detected from nasopharyngeal brushing samples 
of healthy donors (Stevens et al., 2006).

- Cell-free EBV DNA in serum
Cell-free EBV DNA has been detected in 

the plasma and serum of patients with several 
EBV-associated malignant diseases: Hodgkin 
disease, post-transplant lymphoprolifera-
tive diseases, NK/T-cells lymphoma, Burkitt 
lymphoma, nasopharyngeal carcinoma, and 
EBER-positive gastric carcinoma; and, this detec-
tion correlated with the EBV status in tumours. 
In contrast, cell-free EBV DNA was not detected 
in any of the healthy control subjects (Lei et al., 
2000, 2002; Lo et al., 2001; Musacchio et al., 2006). 
Plasma EBV DNA, as measured by real-time 
quantitative PCR, has been proposed as a sensi-
tive and specific tumour marker for diagnosis, 
disease monitoring, and prediction of outcome 
for several of the EBV-associated diseases (Lo 
et al., 2001; Lei et al., 2002; Shao et al., 2004).

Low-level EBV DNA positivity in serum 
has been reported to occur relatively frequently 
after stem-cell transplantation, and may subside 
without specific treatment. However, high EBV 
DNA levels (i.e. > 50 000 copies/mL) are strong 
predictors for the development of post-trans-
plantation lymphoproliferative disease (Aalto 
et al., 2007).

The lack of detectable viral DNA in the serum 
of healthy carriers indicates that although most 
of these individuals are expected to be carrying 
EBV DNA in their lymphocytes, EBV DNA is not 
usually found in serum in the absence of active 
EBV disease. It is likely, however, that the viral 
DNA in serum is present in cases of EBV reac-
tivation as well as in cases of primary infection, 
and tests for viral DNA can not discriminate 
between the two cases unless they are used in 
conjunction with serology. EBV reactivation is 
particularly relevant in immunocompromised 
patients (Chan et al., 2001).
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2. Cancer in Humans

In the previous IARC Monograph, EBV infec-
tion was associated with several cancer types: 
Burkitt lymphoma, immunosuppression-related 
non-Hodgkin lymphoma, extranodal NK/T-
cell lymphoma (nasal type – Swerdlow et al., 
2008; previously known as angiocentric T-cell 
lymphoma – IARC, 1997); Hodgkin lymphoma, 
and nasopharyngeal carcinoma (IARC, 1997). 
The following text comprises updated relevant 
data from case–control and cohort studies for 
several cancer types in relation to infection with 
EBV.

2.1 Virus-associated B-cell lymphoma

2.1.1 Burkitt lymphoma

There are three subtypes of Burkitt lymphoma: 
endemic Burkitt lymphoma, sporadic Burkitt 
lymphoma, and immunodeficiency-associated 
Burkitt lymphoma. Endemic Burkitt lymphoma 
is defined as affecting children in equato-
rial Africa and New Guinea, sporadic Burkitt 
lymphoma affects children and young adults 
throughout the world, and immunodeficiency-
associated Burkitt lymphoma is primarily 
associated with HIV infection. The majority of 
endemic Burkitt lymphoma, sporadic Burkitt 
lymphoma, and immunodeficiency-associated 
Burkitt lymphoma form three distinct clinical 
entities. It has been reported that EBV is detected 
in the tumour tissue of almost 100% of the cases 
of endemic Burkitt lymphoma, this proportion is 
less in cases of sporadic and immunodeficiency-
associated Burkitt lymphoma (Carbone et al., 
2008).

With regard to endemic Burkitt lymphoma, 
two new studies (Carpenter et al., 2008; Mutalima 
et al., 2008) from Uganda and Malawi (with 325 
and 148 cases, respectively) add to the evidence 
from five case–control studies (including 431 
cases in total) (Henle et al., 1969, 1971b; Klein 

et al., 1970; Hirshaut et al., 1973; Nkrumah 
et al., 1976), and one cohort study (with 16 cases) 
(Geser et al., 1982) outlined in the previous 
IARC Monograph (IARC, 1997). Both studies 
(Carpenter et al., 2008; Mutalima et al., 2008) 
demonstrate there is a relationship between 
an increase in the titre of antibodies against 
EBV-VCA and an increase in risk for endemic 
Burkitt lymphoma (see Table  2.1 available at 
http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-01-Table2.1.pdf). There are no 
new data available relating to sporadic Burkitt 
lymphoma to add to the 90 cases in the four 
studies previously reported (Hirshaut et al., 1973; 
Ablashi et al., 1974; Gotleib-Stematsky et al., 
1976; Çavdar et al., 1994).

(a) Cofactors for endemic Burkitt lymphoma

A thorough review of potential cofactors 
for endemic Burkitt lymphoma (e.g. malaria, 
sickle-cell trait, Euphorbia tirucalli, and other 
medicinal plants) is outlined in the previous 
IARC Monograph (IARC, 1997), and, with the 
exception of malaria, no new data were avail-
able to the Working Group. Previously, the rela-
tionship between malaria and endemic Burkitt 
lymphoma was based mostly on ecological data 
– for example, geographic correlations between 
the prevalence of malaria and the reported 
incidence of endemic Burkitt lymphoma, and 
apparent declines in the incidence following 
widespread malaria eradication programmes. 
One intervention study (Geser et al., 1989) in 
the United Republic of Tanzania confirmed the 
relationship between malaria prevalence and the 
incidence of Burkitt lymphoma. More recently, 
two case–control studies have demonstrated an 
increasing risk of endemic Burkitt lymphoma in 
relation to an increase in the titre of antibodies 
against malaria, and also suggested that EBV and 
malaria act synergistically in the etiology of the 
disease (Carpenter et al., 2008; Mutalima et al., 
2008). In addition, the use of insecticides or bed 
nets in the home was associated with substantially 
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lower risks of endemic Burkitt lymphoma. There 
is evidence that malaria reduces T-cell-mediated 
immunosurveillance of EBV-infected cells, 
and is linked to an increased viral load of EBV 
(Moormann et al., 2005, 2007, 2009).

2.1.2 Hodgkin lymphoma 

EBV is more commonly associated with 
classic Hodgkin lymphoma, especially the 
mixed-cellular subtypes. The non-classical 
nodular lymphocyte-predominant Hodgkin 
lymphoma cases are very rarely associated with 
EBV (Khalidi et al., 1997). Developing countries 
have an increased incidence of EBV-positive 
cases, which may be attributed to the existence 
of underlying immunosuppression (Jarrett et al., 
1991; Murray & Young, 2005). A bimodal age 
distribution has been recognized for EBV-positive 
Hodgkin lymphoma patients; children (<  15 
years) and older-age groups tend to have much 
higher rates than young adults (Flavell & Murray, 
2000). In western populations, the EBV genome 
has been detected in the tumour tissue of 40–50% 
of Hodgkin lymphoma cases (Weiss, 2000). The 
subclassification of Hodgkin lymphoma cases as 
EBV-positive or EBV-negative provides the poten-
tial to identify etiological subgroups (Alexander 
et al., 2000). EBV has been identified as a cause of 
infectious mononucleosis, a potential risk factor 
for Hodgkin lymphoma, which results from 
hyperproliferation of EBV-containing B cells, 
and a reactive T-cell response (Henle et al., 1968).

Previously, epidemiological data on the asso-
ciation between Hodgkin lymphoma and EBV 
were derived from several sources:

•	 Investigations of the relationship between 
infectious mononucleosis and Hodgkin 
lymphoma from six case–control studies 
(odds ratios (ORs) ranging from 1.0–8.2) 
(Table 18, IARC, 1997; Henderson et al., 
1979; Gutensohn & Cole, 1981; Gutensohn, 
1982; Evans & Gutensohn, 1984; Bernard 
et al., 1987; Serraino et al., 1991) and 

six cohort studies (ORs ranging from 
2.0–5.0) (Table 22, IARC, 1997; Miller & 
Beebe, 1973; Connelly & Christine, 1974; 
Rosdahl et al., 1974; Carter et al., 1977; 
Muñoz et al., 1978; Kvåle et al., 1979). A 
2–4-fold increased risk for Hodgkin lym-
phoma within the first 3 years following 
infectious mononucleosis was also dem-
onstrated (Rosdahl et al., 1974; Muñoz 
et al., 1978)

•	 41 case–control studies of Hodgkin lym-
phoma in which there was evidence of 
antibodies against EBV-VCA (22 studies; 
ORs, 0.8–79; Table 19, IARC, 1997), EA 
(11 studies; ORs, 1.2–infinity; Table 20, 
IARC, 1997), and EBNA (eight studies; 
five with equivocal results, and three with 
ORs ranging from 1.7–infinite; Table 21, 
IARC, 1997)

•	 Two large cohort studies, both report-
ing statistically significant excess risks 
associated with antibodies against EBV 
(Mueller et al., 1989; Lehtinen et al., 1993)

One further cohort study (Hjalgrim et al., 
2000) of patients with infectious mononucleosis 
(reporting 46 cases of Hodgkin lymphoma; 
OR, 2.6; 95%CI: 1.9–3.4), together with seven 
case–control studies (Gallagher et al., 1999; 
Alexander et al., 2000, 2003; Glaser et al., 2005; 
Berrington de González et al., 2006; Musacchio 
et al., 2006; Dinand et al., 2007; Hjalgrim et al., 
2007b) addressed the association between EBV 
and Hodgkin lymphoma (see Table 2.2 available 
at http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-01-Table2.2.pdf and Table 2.3 
available at http://monographs.iarc.fr/ENG/
Monographs/vol100B/100B-01-Table2.3.pdf). In 
two studies, one in the United Kingdom (Gallagher 
et al., 1999) and one in Brazil (Musacchio et al., 
2006), examining the association between EBV 
DNA (BamHI-W) in serum and risk for Hodgkin 
lymphoma, cases of both EBV-positive and 
EBV-negative Hodgkin lymphoma had a much 
higher proportion with detectable EBV DNA 
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in serum/plasma than that of healthy controls. 
In a case–control study involving 145 Hodgkin 
lymphoma cases and 25 follicular hyperplasia 
controls in India, EBV DNA was detected in the 
lymph nodes of 140 (96.6%) Hodgkin lymphoma 
cases and but not in controls (0%) (Dinand et al., 
2007). One case–control study from South Africa 
did not find a positive association between levels 
EBV antibody in serum and Hodgkin lymphoma 
(Berrington de González et al., 2006). In case–
control studies on the association between a 
history of infectious mononucleosis and risk for 
Hodgkin lymphoma, a significant association was 
observed in EBV-positive Hodgkin lymphoma 
cases, particulary in those with young age at 
onset in the United Kingdom (Alexander et al., 
2000, 2003), and Denmark and Sweden (Hjalgrim 
et al., 2007b). However, no significant association 
between a history of infectious mononucleosis 
and Hodgkin lymphoma was found in the USA 
(Glaser et al., 2005). A case–case analysis in a 
population-based case–control study compared 
95 EBV-positive and 303 EBV-negative Hodgkin 
lymphoma cases (Chang et al., 2004). EBV 
antibody titres were significantly higher in the 
EBV-positive cases, including anti-VCA IgG and 
IgA, EA and an EBNA-1:EBNA-2 ratio ≤ 1. With 
mutual adjustment, the odds ratios for elevated 
VCA IgG were 3.6 (95%CI: 1.4–8.7), and for low 
EBNA-1:EBNA-2 ratio, 3.2 (95%CI: 1.1–9.0).

2.1.3 Lymphomas in immunosuppressed 
individuals

(a) Post-transplant lymphoproliferative 
disorders

Since the original reports of post-trans-
plant lymphoproliferative disorders in 1969 
(McKhann, 1969; Penn et al., 1969), a higher inci-
dence of lymphoproliferative disorders in trans-
plant recipients of both a solid organ and bone 
marrow has been observed (Carbone et al., 2008). 
According to the WHO classification (Swerdlow 
et al., 2008), post-transplant lymphoproliferative 

disorders may be classified into: a) early lesions, 
generally represented by EBV-driven polyclonal 
lymphoproliferations; and, b) true monoclonal 
diseases, including polymorphic post-transplant 
lymphoproliferative disorders and monomorphic 
post-transplant lymphoproliferative disorders.

In addition to data presented previously 
(IARC, 1997), a case–control study of EBV DNA 
in plasma samples of four cases of post-transplant 
EBV-associated nasal NK/T-cell lymphoma, two 
cases of post-transplant lymphoproliferative 
disorders, and 35 healthy controls in the Hong 
Kong Special Administrative Region (Lei et al., 
2000) were considered – all six cases (100%) 
and no control (0%) had EBV DNA (BamHI-W) 
levels in plasma (see Table  2.4 available http://
monog r aphs . ia rc . f r/ ENG/Monog r aphs/
vol100B/100B-01-Table2.4.pdf).

(b) HIV-associated lymphoproliferative disorders

HIV-associated lymphoproliferative disor-
ders are a heterogeneous group of diseases 
that occur in the presence of HIV-associated 
immunosuppression. These aggressive disorders 
include both central nervous system and systemic 
lymphomas. Primary effusion lymphoma 
(reviewed in this volume, see Monograph on 
Kaposi Sarcoma Herpes Virus (KSHV)) also 
occurs and often involves EBV in addition to 
KSHV. The categories of HIV-associated non-
Hodgkin lymphoma (HIV-NHL) confirmed 
in the latest WHO Classification of Tumours 
(Raphael et al., 2001, 2008) are grouped as follows 
(Carbone et al., 2008):

•	 Lymphomas also occurring in immuno-
competent patients. Most of these HIV-
NHLs belong to three high-grade B-cell 
lymphomas: Burkitt lymphoma, diffuse 
large B-cell lymphoma with centroblastic 
features, and diffuse large B-cell lym-
phoma with immunoblastic features. 
According to the site of involvement, the 
present spectrum of HIV-NHL includes 
extranodal/nodal lymphomas, and 
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primary central nervous system lympho-
mas (Carbone et al., 2008);

•	 Unusual lymphomas occurring more 
specifically in HIV-positive patients – 
these lymphomas include two rare enti-
ties, namely, primary effusion lymphoma 
(Cesarman et al., 1995), and plasmablastic 
lymphoma of the oral cavity (Delecluse 
et al., 1997; Carbone et al., 1999);

•	 Lymphomas also occurring in other 
immunodeficient states (Carbone et al., 
2008).

One nested case–control study of non-
Hodgkin lymphoma among HIV-infected people 
identified an association between anti-VCA anti-
bodies and risk of disease, although no division 
by histological subtype of lymphoma was possible 
(Newton et al., 2006; see Table  2.5 available 
http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-01-Table2.5.pdf).

2.1.4 EBV-positive diffuse large B-cell 
lymphoma of the elderly

This is defined as an EBV-containing diffuse 
large B-cell lymphoma occurring in patients 
over 50 years of age without any prior lymphoma 
or other known immunodeficiency. These 
EBV-positive lymphomas account for 8–10% of 
diffuse large B-cell lymphomas in Asian coun-
tries, but there are little data from western coun-
tries (Oyama et al., 2007; Swerdlow et al., 2008).

2.2 Virus-associated T-cell and NK-cell 
lymphomas 

EBV is an established cause of extranodal 
NK/T-cell lymphoma (nasal type); previously 
called angiocentric T-cell lymphoma (IARC, 
1997; Chan et al., 2001b; Swerdlow et al., 2008). 
A higher incidence of extranodal NK/T-cell 
lymphoma (nasal type) has been described in 
central and south America, and in several east 
Asian countries (Suzuki et al., 2008). Several 

recent large case series confirm the presence of 
EBV in tumour cells in nearly 100% of cases 
(Barrionuevo et al., 2007; He et al., 2007). In a 
case–control study of anti-EBV VCA, EA, and 
EBNA in serum samples of 100 cases of peripheral 
NK/T-cell proliferative disease/lymphoma, and 
100 age- and sex-matched controls in Thailand 
(Mitarnun et al., 2002), elevated serum levels 
of anti-EBV VCA IgG and EA IgG were associ-
ated with an increased risk of the disease (see 
Table 2.4 on-line). In another case–control study 
of seven cases of peripheral NK/T-cell prolif-
erative disease, 38 cases of peripheral NK/T-cell 
lymphoma, and 45 age- and sex-matched healthy 
controls in Thailand (Suwiwat et al., 2007), 37 
(82.2%) cases and no control had detectable EBV 
DNA levels (BamHI-W) in their plasma .

Other T-cell lymphoproliferative disorders 
that have been reported to be associated with EBV 
include a subset of peripheral T-cell lymphomas 
(Dupuis et al., 2006a, b; Tan et al., 2006), enterop-
athy-type T-cell lymphomas (de Bruin et al., 1995; 
Quintanilla-Martínez et al., 1998; Isaacson et al., 
2001), γδ T-cell lymphomas (hepatosplenic and 
non-hepatosplenic) (Arnulf et al., 1998; Ohshima 
et al., 2000), T-cell lymphoproliferative disor-
ders after chronic EBV infection (Quintanilla-
Martinez et al., 2000), EBV-associated cutaneous 
T-cell lymphoproliferative disorders (especially 
in Asia) (Chan et al., 2001a; Kim et al., 2006), 
and aggressive NK-cell leukaemias/lymphomas 
(Chan et al., 2001b).

Angioimmunoblastic T-cell lymphoma is a 
distinct entity of peripheral T-cell lymphoma 
(Dupuis et al., 2006b). Angioimmunoblastic 
T-cell lymphomas are also nearly always asso-
ciated with EBV; however, the cellular origins 
remain unknown. The virus is present in B cells, 
rather than in the neoplastic T cells, suggesting 
an indirect role, hypothetically through anti-
genic stimulation (Knecht et al.,1990; Dupuis 
et al., 2006b; Dunleavy et al., 2007).
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2.2.1 Other non-Hodgkin lymphoma

Two cohort studies including a total of 115 
cases of non-Hodgkin lymphoma occurring 
in apparently immunocompetent individuals 
reported no excess risk in relation to anti-VCA 
antibody titres (Mueller et al., 1991; Lehtinen 
et al., 1993; IARC, 1997). Since then, four case–
control studies have investigated the serological 
evidence of infection with EBV: two reported no 
associations (Hardell et al., 2001a; Berrington 
de González et al., 2006), one reported a border-
line increased association (Hardell et al., 2001b), 
and the other showed a significant associa-
tion between abnormal reactive EBV antibody 
patterns and non-Hodgkin lymphoma (OR, 1.4; 
95%CI: 1.2–1.7; based on 1085 cases; de Sanjosé 
et al., 2007).

2.3 Cancers of the nasopharynx, 
stomach, and lymphoepithelium

2.3.1 Cancer of the nasopharynx

Cancer of the nasopharynx is rare in most 
populations around the world but common in 
South-East Asia (Ferlay et al., 2010). According to 
the WHO Classification of Tumours, cancers of 
the nasopharynx are classified into three types: 
keratinizing squamous cell carcinoma (Class 
I), non-keratinizing carcinoma (Class II), and 
basaloid squamous cell carcinoma (Class III) 
(Chan et al., 2005). Most cancers of the naso-
pharynx diagnosed in the high-risk areas belong 
to Class II. In the previous IARC Monograph, 
an increased risk of cancer of the nasopharynx 
was demonstrated in five case–control studies in 
which all 671 cases had evidence of infection with 
EBV (de Thé et al., 1978b; Lanier et al., 1980a; 
Pearson et al., 1983b; Chen et al., 1987; Zheng 
et al., 1994a), and one cohort study in which all 
seven cases had evidence of infection with EBV 
(Chan et al., 1991). Since then, two cohort (Chien 
et al., 2001; Ji et al., 2007) and eight case–control 

studies (Mutirangura et al., 1998; Lo et al., 1999; 
Chen et al., 2001; Lin et al., 2001, 2004; Fan et al., 
2004; Leung et al., 2004; Tiwawech et al., 2008) 
on the association between EBV and cancer of 
the nasopharynx have been reported.

The prospective cohort studies on the 
association between EBV biomarkers and the 
development of nasopharyngeal carcinoma are 
shown in Table  2.6 (available at http://mono-
graphs.iarc.fr/ENG/Monographs/vol100B/100B-
01-Table2.6.pdf) and include 22 and 131 cases 
(Chien et al., 2001; Ji et al., 2007, respectively). 
In one study (Chien et al., 2001), the relative 
risks of developing nasopharyngeal carcinoma 
were 22.0 (95%CI: 7.3–66.9) for anti-EBV VCA 
IgA-seropositivity, and 3.5 (95%CI: 1.4–8.7) for 
anti-EBV DNase-seropositivity. Compared with 
those who were seronegative for both anti-EBV 
markers as the referent group, the adjusted rela-
tive risk was 32.8 (95%CI: 7.3–147.2) for those 
who were seropositive for both anti-EBV markers 
(Chien et al., 2001). In the other study (Ji et al., 
2007), seropositivity of anti-EBV VCA IgA was 
associated with an increased risk of nasopharyn-
geal carcinoma during follow-up with a crude 
relative risk of [9.4; 95%CI: 6.8–13.5]. For seven 
case–control studies (see Table  2.7 available at 
http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-01-Table2.7.pdf), the odds ratios 
for nasopharyngeal carcinoma in relation to the 
evidence of infection with EBV ranged from 20.6 
to infinity (Mutirangura et al., 1998; Lo et al., 
1999; Lin et al., 2001, 2004; Chen et al., 2001; 
Fan et al., 2004; Leung et al., 2004). For only 
one study were the reported odds ratios below 3 
(Tiwawech et al., 2008).

Since the previous IARC Monograph, no new 
cofactors for cancer of the nasopharynx have 
been identified.
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2.3.2 Lymphoepithelioma-like carcinomas

Rare carcinomas with a histological simi-
larity to nasopharyngeal carcinoma (in that both 
have lymphoid stroma) are called lymphoepithe-
lial-like carcinomas (Tsang & Chan, 2005). These 
can occur in multiple organ sites with epithelial 
lining, and have been reported most frequently 
in the salivary glands, and in the stomach. In 
the previous IARC Monograph (Table 30, IARC, 
1997), 19 case series reported on the associa-
tion of EBV with cancers of the stomach. These 
included a total of 102 lymphoepithelial cancers 
of which 90 had evidence of infection with EBV. 
In addition, five case series of lymphoepithelial 
cancers of the salivary gland indicated that 25/27 
reported cases had evidence of infection with 
EBV (Table  28, IARC, 1997). More recently, in 
a case–control study of lymphoepithelial cancer 
of the salivary gland, 16/16 cases had evidence 
of EBV DNA in tumour tissue compared to 0/12 
salivary gland tumours of other histology (Wang 
et al., 2004; see Table 2.8 available at http://mono-
graphs.iarc.fr/ENG/Monographs/vol100B/100B-
01-Table2.8.pdf). More recently, multiple case 
series including 209 cases of parotid gland 
lymphoepithelial carcinoma reported that EBV 
DNA was present in the tumour cells of 208 cases 
(Leung et al., 1995; Kim et al., 1999; Squillaci 
et al., 2000; Białas et al., 2002; Saku et al., 2003; 
Wu et al., 2004; Jen et al., 2005; Hsu et al., 2006; 
Saqui-Salces et al., 2006). Therefore, the evidence 
of an association between EBV infection and 
lymphoepithelioma-like carcinomas has become 
substantially stronger since the previous IARC 
Monograph (IARC, 1997).

2.3.3 Cancer of the stomach

In 19 case series of cancer of the stomach 
reported in 1997 (Table 30, IARC, 1997), 115/1322 
(9%) of cases had evidence of EBV DNA in tumour 
tissue. None of these studies provided information 
on possible infection with H. pylori. Since then, 

three case–control studies have been published 
in which two include a total of 69/174 cases with 
evidence of EBV DNA in tumour tissue (Shinkura 
et al., 2000; Lo et al., 2001; see Table 2.9 available 
at http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-01-Table2.9.pdf), while the other, a 
nested case–control study, considered only sero-
logical responses against EBV in relation to all 
cancers of the stomach (Koshiol et al., 2007; see 
Table 2.10 available at http://monographs.iarc.fr/
ENG/Monographs/vol100B/100B-01-Table2.10.
pdf). Recent findings indicate that people with 
EBV-positive tumours tend to have higher anti-
body titres against EBV (Shinkura et al., 2000) 
or higher EBV viral loads (Lo et al., 2001) than 
people with EBV-negative tumours or controls 
without cancer of the stomach. A recent review 
of over 30000 cancers of the stomach identified 
evidence of EBV DNA in 8% of the patients (Sousa 
et al., 2008). It is important to note that EBV DNA 
is present within tumour cells and not in the 
surrounding epithelium, and that virus mono-
clonality has been demonstrated in tumour cells 
only (Sousa et al., 2008). [The Working Group 
noted that the interaction of H.pylori and EBV 
in the etiology of cancer of the stomach needs 
further clarification.]

2.4 Other cancers 

Several other studies investigating the 
evidence of infection with EBV in relation to 
cancers of the oral cavity, breast, cervix, testis, 
prostate, and multiple myeloma and leukaemia 
show limited or no evidence of an association.

See Table 2.11 available online at http://mono-
graphs.iarc.fr/ENG/Monographs/vol100B/100B-
01-Table2.11.pdf), Table 2.12 available at 
http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-01-Table2.12.pdf, and Table 2.13 
available at http://monographs.iarc.fr/ENG/
Monographs/vol100B/100B-01-Table2.13.pdf.
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3. Cancer in Experimental Animals

In this volume, the Working Group decided 
not to include a separate section on “Cancer in 
Experimental Animals” in the Monographs on 
viruses but rather to include description of such 
studies under Section 4 (below). The reasoning 
for this decision is explained in the General 
Remarks.

4. Other Relevant Data

The mechanistic evidence for EBV-associated 
oncogenesis was thoroughly reviewed in the 
previous IARC Monograph (IARC, 1997), and is 
based on the following:

•	 The ability of EBV to immortalize human 
B lymphocytes in vitro (Nilsson et al., 
1971)

•	 Other effects of EBV infection of human 
cells in vitro affecting their phenotype 
– migration and invasion (Pegtel et al., 
2005; Dawson et al., 2008)

•	 Convincing links of these phenotypic 
effects on cell proliferation, apoptosis, 
and cell migration to single EBV proteins 
or combinations thereof, primarily by the 
expression of or “knock down” of single 
proteins (Klein & Ernberg, 2007)

•	 Induction of EBV-positive lymphoprolif-
erative diseases or lymphomas by infec-
tion of animals (New World monkeys) 
with EBV, or transplantation of infected 
human B lymphocytes to immunosup-
pressed mice (SCID or nude; Mosier et al., 
1988; Young et al., 1989)

Although more circumstantial, in vivo 
evidence is also strong.

The EBV genome and the constant expression 
of viral proteins detected in a wide spectrum of 
human malignancies strongly support a role for 
EBV in carcinogenesis. EBV-associated tumours 

include diffuse large B-cell lymphomas that 
occur in immunocompromised persons, such as 
transplant recipients, certain congenitally immu-
nocompromised individuals, and HIV-infected 
persons. EBV is also involved in the pathogen-
esis of Burkitt lymphoma, Hodgkin lymphoma, 
some T/NK-cell lymphomas, cancer of the 
nasopharynx, and some cancers of the stomach 
(Ambinder & Cesarman, 2007; Table 4.1).

 In several of the high-risk groups for 
EBV-associated cancers, the EBV-genome load 
found in the peripheral blood lymphocytes or 
plasma precedes the development of malignancy 
(Lin et al., 2004).

Further convincing evidence comes from 
the successful prevention or regression of 
EBV-carrying lymphoid tumours in humans by 
the adoptive transfer of EBV-specific cytotoxic T 
cells (Heslop & Rooney, 1997; Gustafsson et al., 
2000; Bollard et al., 2007; Merlo et al., 2008).

4.1. Transforming capacity of EBV

In vitro, EBV has the unique ability to trans-
form resting B cells into permanent, latently 
infected lymphoblastoid cell lines, a system that 
has provided an invaluable, albeit incomplete, 
model of the lymphomagenic potential of the 
virus (Young & Rickinson, 2004). EBV can infect 
human B lymphocytes from any human donor 
as long as they express the CD21 consensus 
receptor for the attachment of EBV particles, 
and entry into the host cell (see Section 1.1). 
The B lymphocytes of several differentiation 
stages can be infected. The most efficient infec-
tion – and immortalization – has been seen in 
mature virgin B lymphocytes, which are IgM- 
and IgD-positive The virus establishes a ‘latent’ 
blastogenic “growth programme” (latency III) 
expressing nine latency-associated proteins and 
several non-translated genes, the two EBERs, 
micro-RNAs and BARF-transcripts. The infec-
tion results in the immortalization of the target 
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Table 4.1 EBV-associated tumours

Tumour type Approx % EBV positivity

Lymphoid tissues
Burkitt lymphoma
Endemic (Subequatorial Africa) >95a

Sporadic (Other countries) 20–80b

AIDS 30–50
AIDS-related DLBCL
Immunoblastic 70–100
Non-immunoblastic 10–30
CNS lymphomas >95
Plasmablastic lymphoma 60–75c

Primary effusion lymphoma 70–90
Post-transplant lymphoproliferative disorders >90
Primary effusion lymphoma 70–90
Hodgkin lymphoma 20–90d

EBV-positive diffuse large B cell lymphoma of the elderly 100
Extranodal T/NK cell lymphoma, nasal type 100
Epithelial tissues
Nasopharyngeal carcinoma 100
Lymphoepithelioma-like carcinoma >80e

Gastric carcinoma 5–10
Other tissues
Leiomyosarcoma in immunodeficient individuals 100

a The small fraction of EBV-negative cases in endemic regions may represent cases of sporadic Burkitt lymphoma.
b The proportion of positive cases varies widely with geographic distribution, ranging from 20% in some US and European studies to close to 
80% in India, Egypt, and Northeastern Brazil.
c EBV positivity in plasmablastic lymphoma of the oral cavity in AIDS patients is close to 100%.
d The proportion of positive cases varies widely with geographic distribution, age, histological type and immunocompetence status. It is more 
frequent in low-resource areas, in very young or older patients, in the mixed cellularity subtypes, and approaches 100% in patients with AIDS.
e Stomach, parotid and liver
Compiled by the Working Group mainly from two reviews (Ambinder & Cesarman, 2007; Cesarman & Chadburn, 2007)
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cells with a high efficiency, resulting in prolif-
eration with a 30–40-hour extended cell cycle 
(Einhorn & Ernberg, 1978).

In vivo, mucosal epithelial cells can also be 
infected (see Section 1.1). By contrast, the infec-
tion of epithelial cells in vitro does not activate 
the full growth-transforming programme of the 
virus, and rarely – if ever – achieves full lytic 
replication (Young & Rickinson, 2004).

4.2 Biochemical and biological 
properties of EBV gene products

This section provides an overview of the prop-
erties of the EBV-encoded latency-associated 
gene products, and their mechanism of action 
relevant to transformation and tumorigenesis.

4.2.1 The latent EBV nuclear gene products 
(EBNAs)

The main known functions of the six nuclear 
proteins, EBNA-1, -2, -3A, -3B, -3C and -LP are 
summarized in Table 4.2.

(a) EBNA-1

EBNA-1, encoded by the ORF BKRF1, is a 
protein of highly variable size (60–100  kDa) 
due to a glycine–alanine repetitive sequence 
(Hennessy et al., 1983). With the possible excep-
tion of latently infected resting B cells, EBNA-1 is 
expressed in most EBV-carrying cells, irrespec-
tive of the cell phenotype, level of differentiation 
or, in the case of lymphocytes, activation status 
(Section 1.1.7; Tables 1.3 and 1.4). EBV-positive B 
cells that only express EBNA-1 are poorly recog-
nized by CTLs. The glycine–alanine repeat of 
EBNA-1 inhibits its processing through the ubiq-
uitin–proteasome system and the subsequent 
MHC-class 1 association of the derived peptides, 
a prerequisite for recognition by CD8-positive 
CTLs (Levitskaya et al., 1995). This results in 
a dramatically extended half-life of EBNA-1 to 
more than 2 weeks, and may contribute to its 

likely presence in resting B cells without de novo 
synthesis.

EBNA-1 is a DNA-binding protein that can 
bind to three different specific palindromic 
target sites on the viral DNA, each of which 
occurs multiple times in the viral genome, and is 
involved in the control of episomal maintenance, 
DNA replication, and viral gene expression in 
latency. Twenty binding sites are located in the 
family of repeats (FR) element, four in the dyad 
symmetry (DS) element, both these elements 
being localized to the origin of replication (OriP), 
and finally, two EBNA-1-binding sites are situ-
ated downstream of the Q promoter (Ambinder 
et al., 1990; see also the map of the EBV genome 
depicted in Fig. 1.1). The dyad symmetry element 
controls S-phase-associated viral DNA replica-
tion. EBNA-1 regulates viral promoters via its 
multiple binding sites. The family of repeats 
element acts as an enhancer for the C promoter, 
directing transcription for all six EBNAs, and 
the Q-promoter elements are negative regulators 
of Q-promoter-driven EBNA-1 transcription 
through a negative autoregulatory feedback loop.

EBNA-1 acts as a transcriptional regulator 
of viral programmes, and maintains the viral 
genomes in the host cell. It is therefore neces-
sary for cell transformation. EBNA-1 might also 
directly contribute to the tumorigenic process 
as it is expressed in all tumour types (Sample 
& Sample, 2008). It has been shown to exert an 
anti-apoptotic effect. Blocking its function with 
dominant negative mutants induces apoptosis 
in Burkitt lymphoma cell lines (Kirchmaier & 
Sugden, 1997).

EBNA-1 induces the specific recombi-
nases RAG-1 and -2, which could contribute 
to genomic instability or even specific translo-
cations (Tsimbouri et al., 2002). EBNA-1 also 
induces genomic instability involving increases 
in the levels of reactive oxygen species (Gruhne 
et al., 2009).

Recently, it was shown that EBNA-1 can also 
physically bind to cellular promoters, but whether 
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or not this binding plays a role in regulating the 
transcription of these genes in vivo remains to be 
demonstrated (Dresang et al., 2009).

(b) EBNA-2

EBNA-2 is a phosphoprotein of about 82 kDa, 
and is among the earliest viral protein expressed 
in newly infected B cells. EBNA-2 is a potent 
transactivator of many cellular and viral genes 
but does not bind directly to DNA. It influences 
the responding promoters through its interac-
tion with CBF1/RBP-Jk, PU1, and other cellular 
proteins. The EBNA-2 protein complexes formed 
induce chromatin remodelling. Elements for 
EBNA-2 responsiveness have been found in the 
EBV-Cp, LMP-1, LPMP-2, and CD23 promoters 
(Klein & Ernberg, 2007).

EBNA-2 is essential for the transformation 
of B cells into immunoblasts, and for the deri-
vation of lymphoblastoid cell lines. EBNA-2-
defective viral substrains cannot immortalize B 
cells. EBNA-2 is the EBV-encoded oncoprotein 
that differs most extensively between EBV types 
1 and 2. EBV type 1 is a more efficient trans-
former of primary B lymphocytes than is type 2 
(Rickinson et al., 1987). Recruitment of EBNA-2 
to DNA is essential for the transforming activity 
of EBV, and CBF1/RBP-Jk is its most extensively 
studied partner. CBF1/RBP-Jk functions as a 
downstream target of the Notch cell-surface 
receptor. Notch genes encode cell-surface recep-
tors that regulate the developmental processes in 
a wide variety of organisms. The cleaved product 
of Notch is targeted to the nucleus where it binds 
to CBF1/RBP-Jk, and can activate transcription 
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Table 4.2 Overview of the EBNA proteins: Functions and Interactions

Name 
(alternative 
nomenclature)

Functions Interaction with cellular 
proteins

Expression in B 
cells

Evidence for 
role in B-cell 
immortalization

EBNA-1 - Viral episome 
maintenance 
- Viral DNA replication 
- Regulation of viral 
promoters

Karyopherins 2 α and β; 
TAP/p32; USP7 (HAUSP); 
RPA

Latency I, II, and 
III

Yes

EBNA-2 Activation of viral and 
cellular promoters

PU.1; hSNF5; Spi-B; CBF1/
RBP-J kappa; p300/CBP; 
DP103; p100; TFIIE; TFIIH; 
TFIIB; TAF40; Myb; TBP

Latency III Yes

EBNA-3A 
(EBNA-3)

Repression of the CBF1/
RBP-J kappa dependent 
transcription

CBF1/RBP-J kappa; RBP-2N; 
CtBP; epsilon-subunit of 
TCP-1; XAP-2 ; F538 (UK/
UPRT); AhR

Latency III Yes

EBNA-3B 
(EBNA-4)

CBF1/RBP-J kappa; RBP-2N Latency III No

EBNA-LP 
(EBNA-5)

Co-activation of EBNA-2-
dependent transcription

Hsp27; Hsp70 (Hsp72); 
Hsc70 (Hsp73); HAX-
1; HA95; alpha & beta 
tubulins; prolyl-4-
hydroxylase alpha-1 subunit; 
p14ARF; Fte-1/S3a

Latency III Yes

EBNA-3C 
(EBNA-6)

Repression of the CBF1/
RBP-J kappa dependent 
transcription

CBF1/RBP-J kappa; RBP-2N; 
DP103; ProT- alpha; SMN; 
NM23-H1; pRB

Latency III Yes

Adapted from Klein & Ernberg (2007)
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(Strobl et al., 1997). EBNA-2 is regarded as 
a constitutively active homologue of Notch. 
However, Notch can only partially substitute for 
EBNA-2 in B-cell transformation experiments, 
probably owing to its inability to upregulate 
the transcription of LMP1 or c-myc. Thus, the 
functional homology is partial (Höfelmayr et al., 
2001).

EBNA-2 induces a variety of activation 
markers and other cellular proteins in B cells, 
including CD23, CD21, c-fgr, and c-myc. It is 
required for the expression of EBV-encoded 
LMP-1 and LMP-2A in immunoblastic cells 
(Wang et al., 1990a, b; Kaiser et al., 1999; Klein & 
Ernberg, 2007). The essential role of EBNA-2 in 
the immortalization of B cells is therefore due to 
its role in the transactivation of viral promoters 
(Cp, LMP-1 and -2) and of cellular genes associ-
ated with B-cell activation and growth, among 
them c-myc. C-myc activation in lymphocytes, 
in turn, induces protein synthesis (e.g. D-type 
cyclins and cyclin E) but also the downregula-
tion of the inhibitors p21 and p27. The induction 
of c-myc is regarded as a major link between 
EBV infection and cell-cycle control (Kaiser 
et al., 1999). EBNA-2 is required to maintain 
the EBV-driven proliferation of B cells. EBNA-2 
can be replaced by the constitutive expression of 
exogenous c-myc. The switch from the EBNA-2-
driven to the c-myc-driven state is accompanied 
by a phenotypic change of the lymphoblastoid 
cell line-like cell to a more Burkitt lymphoma-
like cell, resembling dividing germinal centre B 
cells (Polack et al., 1996).

(c) EBNA-LP

EBNA-LP (also known as EBNA-5) is a 
nuclear phosphoprotein. Together with EBNA-2, 
EBNA-LP is the earliest viral protein expressed 
in freshly infected B cells. Co-expression of 
EBNA-LP with EBNA-2 enhances EBNA-2-
mediated transcriptional activation (Klein & 
Ernberg, 2007). The two proteins can induce the 
entry of resting B cells into the G1-phase (Sinclair 

et al., 1994). EBNA-LP is tightly associated with 
the nuclear matrix, and often accumulates in 
the nuclear promyelocytic leukaemia bodies. 
EBNA-LP is also necessary for immortalization 
(Pokrovskaja et al., 2001). EBNA-LP was shown 
in vitro to exert an inhibitory effect on the p53–
Rb axis by targeting the p53 regulator p14 ARF. 
The latter can bind MDM2, suppress its ability to 
mediate in the degradation of p53, and thereby 
increase the expression level of p53. It was 
suggested that EBNA-LP participates in the elim-
ination of the p14 ARF–MDM2–p53 complexes 
and contributes to the downregulation of p14 
ARF and p53 protein levels in EBV-infected B 
cells (Kashuba et al., 2003).

(d) EBNA-3

The EBNA-3 family – EBNA-3A (ORF: 
BLRF3 + BERF1), EBNA-3B (or EBNA-4, ORF: 
BERF2a + BERF2b), and EBNA-3C (or EBNA-6, 
ORF: BERF3 + BERF4) – comprises three large 
nuclear phosphoproteins in sizes ranging from 
140–180  kDa. All three proteins are stable 
proteins that accumulate in intranuclear clumps, 
sparing the nucleolus (Klein & Ernberg, 2007).

All EBNA-3 proteins share a limited 
homology in a region near the N terminus, and 
this conserved domain mediates the binding to 
CBF1/RBP-Jk. This is how they all act as repres-
sors of EBNA-2-mediated transactivation of 
the CBF1/RBP-Jk-dependent Cp, LMP-2A, and 
LMP-1 promoters. EBNA-3C also physically 
associates with histone deacetylase HDAC1, and 
can repress transcription through the Notch 
signalling pathway (Radkov et al., 1999).

EBNA-3C (but not EBNA-3A or -3B) can also 
activate the transcription of both cellular and 
viral genes (e.g. CD21, CD23, and LMP-1). This 
activation is clearly distinct from the interaction 
of EBNA-3C with CBF1/RBP-Jk, and requires 
an intact Spi binding site as well as a fully func-
tional EBNA-2 protein (Zhao & Sample, 2000). 
EBNA-3C disrupts cell-cycle checkpoints at 
several levels. One is by recruiting the SCFskp2 
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ubiquitin ligase complex, which mediates the 
ubiquitination and degradation of pRB (Knight 
et al., 2005).

EBNA-3A and EBNA-3C, but not EBNA-
3B, are necessary for in vitro immortalization 
(Tomkinson et al., 1993).

4.2.2 The latent membrane proteins

EBV expresses three latent membrane 
proteins (LMPs) during latency II and III in 
immunoblasts as well as in derived tumours and 
cell lines: LMP-1, LMP-2A, and LMP-2B. All three 
proteins are also detected in epithelial tumours 
of the nasopharynx, and during the early stages 
of oral hairy leukoplakia (Webster-Cyriaque & 
Raab-Traub, 1998) (see Section 1.1; Table  1.4). 
LMP-2A transcripts can also be expressed in 
resting virus-carrying B lymphocytes in healthy 
individuals – the reservoir of persistently latent 
EBV (Chen et al., 1995).

LMP-2A together with LMP-1 are necessary 
for continued lymphoma cell survival via TRAF2 
regulation of NF-κB (Guasparri et al., 2008).

The three LMP proteins are highly multifunc-
tional and interact with several cellular signal-
ling pathways (Table 4.3). They are expressed at 
the cell surface membrane as well as in intracel-
lular membranes of the Golgi and endoplasmic 
reticulum (Hennessy et al., 1984; Lynch et al., 
2002).

(a) LMP-1

LMP-1 is a 356-amino-acid protein which 
consists in a short N-terminal cytoplasmic 
domain, six membrane-spanning domains, and 
a C-terminal cytoplasmic domain 200 amino-
acid long (Liebowitz et al., 1986).

LMP-1 is essential although not mandatory 
for the transformation of B lymphocytes into 
lymphoblastoid cell lines, and EBV mutants 
lacking LMP-1 fail to efficiently immortalize B 
cells (Dirmeier et al., 2003).

LMP-1 can induce lymphomas and epithelial 
tumours in transgenic mice, acting as tumour 
promoter after chemical initiation (Curran et al., 
2001).

LMP-1 as an integral membrane protein 
acts like a constitutively activated receptor. It 
almost completely mimics the CD40-mediated 
signalling, and is thus functionally homologous 
to the TNF-receptor (TNFR)-family of proteins 
in B lymphocytes and epithelial cells. Indeed, it 
constitutively activates major signalling systems 
such as NF-κB (canonical and non-canon-
ical), JNK-kinase, and JAK/STAT-pathways. 
Protection from apoptosis is one of its major 
downstream effects (Lam & Sugden, 2003a, b).

LMP-1 has been shown to interact with 
several proteins of the TNFR-signalling pathway 
through its C-terminal activation region (CTAR) 
1 and 2 (Table 4.3; Lam & Sugden, 2003b). These 
interactions result in the NF-κB-dependent 
upregulation of several genes. LMP-1 can block 
apoptosis due to the upregulation of several anti-
apoptotic proteins, including A20 and Bcl-2, 
and the block of p53-mediated apoptosis by the 
latter (Henderson et al., 1991; Hatzivassiliou & 
Mosialos, 2002). It may also alter the ratio of 
caspase-8, an initiator caspase, and its compet-
itor FLIP (FLICE inhibitor protein) (Tepper & 
Seldin, 1999).

LMP-1 also activates JNK-kinase (Eliopoulos 
et al., 1999; Kieser et al., 1999). It can also induce 
telomerase activity (Terrin et al., 2008).

Through its interference with several major 
signalling pathways in B cells and epithelial cells, 
LMP-1 mediates deregulation of several hundred 
cellular proteins. LMP-1 induces the expression 
of adhesion molecules such as ICAM-1 and LFA, 
and also MHC Class I and II (Hatzivassiliou & 
Mosialos, 2002).

Moreover, LMP-1 expressed in epithelial cell 
lines in vitro inhibits DNA repair and induces 
micronuclei formation, chromosomal aberra-
tions, and consequent genomic instability (Liu 
et al., 2004).
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(b) LMP-2A and LMP-2B

LMP-2A contains 12 trans-membrane 
domains, and two intracellular tails: a 27-amino-
acid C-terminal tail, important for protein aggre-
gation, and a 119-amino-acid N-terminal tail 
that confers the capacity of LMP-2A to activate 
signal cascade. LMP-2A has been reported to 
aggregate into ‘cap-like’ structures at the plasma 
membrane and specifically associate with lipid 
rafts, sites enriched for signalling molecules 
(Dykstra et al., 2001; Higuchi et al., 2001).

LMP-2A signalling mimics signalling 
through the B-cell receptor with which it 
shares structural and functional similari-
ties. The N-terminal tail of LMP-2A contains 
eight phosphotyrosine motifs that interact 
with SH2-domain-containing proteins such as 
the immunoglobulin-receptor (IgR)-induced 
kinases Lyn. In addition, LMP-2A also possesses 
an Immunoglobulin Transactivation Motif 
(ITAM) with complete homology to the corre-
sponding IgR-ITAM-motif of its gamma-chain 
that binds the Syk kinase in its activated phos-
phorylated state (Klein & Ernberg, 2007).

When expressed as a B-lineage-specific 
transgene in mice, it can both drive B-cell 

development, and promote the survival of 
mature B-cells in the absence of surface immu-
noglobulin expression (Merchant et al., 2000). 
EBV mutants with a deleted LMP-2A gene fail 
to allow germinal centre B cells to survive; it is 
thus essential for growth transformation of these 
B cells (Mancao & Hammerschmidt, 2007).

If LMP-2A mimics B-cell receptor signal-
ling, there is evidence however that expression 
of LMP-2A in B lymphocytes also attenuates 
normal activation through B-cell receptors. It was 
shown that LMP-2A blocks both B-cell receptor 
signalling and antigen-processing function in 
lymphoblastoid cell lines (Dykstra et al., 2001). 
It inhibits apoptosis pathways that are normally 
activated by B-cell receptor activation in Ramos 
and Akata cells, and prevents EBV reactivation 
in these cells. Thus, LMP-2A has an important 
role in maintaining viral latency.

LMP-2A has also been shown to activate 
PI3 kinase and the downstream phosphoryla-
tion of Akt in epithelial cells and B cells. This 
may modulate cell growth and apoptosis (Swart 
et al., 2000; Moody et al., 2005). It was shown 
to induce cell mobility and invasion in epithelial 
cells (Pegtel et al., 2005).
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Table 4.3 Overview of the EBV latent membrane proteins: functions and interactions

Name Functions Major protein 
interactions

Expression in B cells Evidence for role in 
oncogenesis

LMP-1 Mimics CD 40 
Activation of NFkB, JNK 
kinase, JAK/STAT, MAP 
kinase, Akt 
Cell survival 
Induction of adhesion and 
immune regulatory membrane 
proteins

RAF 1,2,3,  
TRADD 
BRAM 1 
LMP-2A

Latency II-III Yes 
- Anti-apoptotic 
- Survival of lymphoma cells 
- Transformation of primary 
rat embryo fibroblasts 
- Tumours in transgenic 
animals

LMP-2A Interacts with phosphotyrosine 
kinases including Src-family 
and PI3-kinase 
Blocks lytic cycle 
Block BCR activation

Src, Lyn, Lck 
ZAP-70, Syk, 
AIP4/Nedd4

Latency I-III Yes 
- Survival of B-cells and 
lymphoma cells 
- Cell migration and 
invasion

LMP-2B Modulates function of LMP-2A LMP-2A Latency III No
Adapted from Klein & Ernberg (2007)
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LMP-2A can also associate with Nedd4-
ubiquitin ligases via its PPPPY-motif located at its 
AA-terminus. It is conceivable that the binding 
of LMP-2A to the Nedd4 family of proteins can 
result in fast destruction of LMP-2A itself and 
LMP-2A-associated kinases, by guiding the 
complex to the ubiquitin–proteasome system 
(Winberg et al., 2000).

A major role of LMP-2A in relation to latent 
EBV infection may stem from its ability to inhibit 
the activation of lytic EBV replication in infected 
B cells by cell-surface-mediated signal transduc-
tion (Miller et al., 1994). This may prevent lytic 
replication in latently infected B cells as they 
circulate in the blood, bone marrow or lymphatic 
tissues, where they might encounter antigens or 
other ligands capable of engaging B-cell recep-
tors and activating the viral cycle.

LMP-2B is a splice variant of LMP-2A which 
lacks the N-terminal tail with its kinase-inter-
acting domains. It is thought to interact with 
LMP-2A, and thereby modulates its functions 
(Rovedo & Longnecker, 2007).

4.2.3 The non-coding RNAs

(a) The EBV-encoded RNAs (EBERs)

The EBERs are two non-coding, non-polyade-
nylated RNAs, EBER-1 (166 nucleotide long) and 
EBER-2 (172 nucleotides long), which are always 
expressed in very high abundance (105–106 copies/
cell) in latently EBV-infected cells irrespective of 
cell phenotype. Structural predictions suggest 
that they can form a compact structure with five 
major hairpin structures. They act as regulators 
of signalling and transcription factors, resulting 
in the production of interferons and cytokines 
(Samanta et al., 2008). The EBERs were shown to 
induce the anti-inflammatory cytokine IL10 as 
an autocrine growth factor in Burkitt lymphoma 
cells. This effect is produced via retinoic-acid-
inducible gene I (RIG-I, a sensor of innate 
immunity)-mediated activation of IRF-3. In cell 
lines derived from nasopharyngeal carcinoma, 

the EBERs induce insulin-like growth factor 1 
(IGF-1), which also acts as an autocrine growth 
factor. This is corroborated in vivo because naso-
pharyngeal carcinoma biopsies consistently 
express IGF-1 (Wu et al., 2007; Samanta et al., 
2008).

EBERs may also contribute to B-cell transfor-
mation; this was shown for EBER-2 RNA via its 
efficient induction of IL6 (Wu et al., 2007).

(b) The EBV micro-RNAs

Micro-RNAs are small non-coding RNAs, 
generally 20–24 nucleotides in length, that can 
transcriptionally downregulate the expression 
of mRNAs, bearing complementary sequences. 
EBV encodes at least 22 micro-RNAs which 
are expressed to various degrees in all forms of 
latency, and in tumour tissues (Pfeffer et al., 2004; 
Cai et al., 2006; Grundhoff et al., 2006). All EBV 
tumours that have been studied express at least 
some of the EBV-encoded micro-RNAs. They 
have been shown to target several interesting 
cellular genes, and thus they may very well turn 
out to play a central role in the tumorigenesis of 
EBV. Target genes identified so far include PUMA 
of the p53 pathway, and the chemokine CXCL11 
(Choy et al., 2008; Xia et al., 2008).

4.3 In vivo and in vitro evidence 
for a role of EBV in human 
malignancies

4.3.1 EBV-associated B-cell lymphomas

There are three histologically and clini-
cally distinct types of EBV-associated B-cell 
lymphomas that show different patterns of latent 
gene expression and seem, from the immuno-
globulin gene sequencing, to derive from cells 
at different position in the B-cell differentiation 
pathway (Fig. 1.3).
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(a) Lymphomas in immunosuppressed 
individuals

T-cell-immunocompromised patients — 
organ transplant recipients, congenitally immu-
nocompromised individual, particularly the 
X-linked lymphoproliferative syndrome (XLP) 
and AIDS patients — are at a high risk of devel-
oping B-cell lymphomas.

Most post-transplant lymphoproliferative 
diseases occur as polyclonal or monoclonal 
lesions within the first year of allografting, when 
immunosuppression is most severe. Almost all of 
these early onset tumours are EBV-positive, and 
express the full latency III programme, which 
identifies them as virus-transformed B cells that 
grow out in the absence of effective T-cell surveil-
lance. Some of the lymphomas that are seen in 
highly immunocompromised AIDS patients, 
particularly central nervous system lesions, 
show essentially the same phenotype. (Young & 
Rickinson, 2004). The EBV proteins expressed 
include the highly immunogenic members of the 
EBNA-3 triad (EBNA-3A, -3B, and -3C), which 
is why passive immunotherapy with in vitro-
expanded EBV-antigen-specific CD8-positive 
CTLs can bring about dramatic regression, even 
of widely disseminated tumours (Rooney et al., 
1995; Khanna et al., 2001).

(b) Burkitt lymphoma

EBV is associated with almost all of the 
paediatric Burkitt lymphomas in high ende-
micity areas, but only with a fraction of sporadic 
or AIDS-associated Burkitt lymphomas (Kelly & 
Rickinson, 2007).

In equatorial African endemic areas, high 
EBV VCA antibody titres are regularly detected 
in children as early as 4  years before tumour 
development, which indicates an early infection 
and a high viral load (Geser et al., 1982). In these 
countries, malaria is holoendemic and this infec-
tion appears to be a strong risk factor of Burkitt 
lymphoma (reviewed in Rochford et al., 2005).

EBV gene expression in Burkitt lymphoma 
is strictly latent and very constrained. Most cells 
express only EBNA-1 and the EBERs (latency I 
programme). The BARTs have also been detected 
in Burkitt lymphoma samples by PCR. In addi-
tion, some genes traditionally thought to be 
confined to expression during the lytic cycle can 
also be expressed in Burkitt lymphoma cells, by 
alternative splicing of transcripts driven from 
latent promoters. The expression of the bcl-2 
homologue BHRF-1 by this mechanism might be 
particularly significant (Kelly et al., 2006).

All Burkitt lymphomas, irrespective of form 
or EBV status, carry c-myc translocations to one 
of the immunoglobulin loci, the heavy chain 
locus on chromosome 14 or the light chain loci 
on chromosomes 2 or 22. Theses translocations 
are the hallmark of all Burkitt lymphomas. This 
may reflect the timing of the initiation of the 
lymphoma in relation to B-cell differentiation 
and at the time of the immunoglobulin gene rear-
rangement. As a result, the c-myc gene is in these 
cells under the control of a highly active immu-
noglobulin gene promoter leading to constitutive 
expression of c-myc (Klein, 1983).

Apart from the possible role of expanding 
the lifespan of the EBV-carrying B cells before 
lymphomagenesis, thus increasing the likelihood 
of secondary genetic events (such as the c-myc 
translocation), EBV can also play a direct role 
in lymphoma initiation. First, the expression of 
dominant-negative EBNA-1 mutants in Burkitt 
lymphoma cells in vitro induces apoptosis, 
which points to the requirement of EBNA-1 for 
the continued survival of EBV-positive Burkitt 
lymphoma cells (Kirchmaier & Sugden, 1997). 
In addition, genomic instability induced by 
EBNA-1 could be another possible mechanism 
(Tsimbouri et al., 2002; Gruhne et al., 2009).

It has also been proposed that EBV, by virtue 
of its anti-apoptotic BHRF1 gene, provides protec-
tion against apoptosis induced by deregulated 
c-myc expression (Kelly et al., 2006). Another 

76



Epstein-Barr virus

possibility is apoptotic protection by the EBERs 
(Takada, 2001).

(c) Hodgkin lymphoma

Hodgkin lymphoma is characterized by an 
expansion of Reed-Sternberg cells, which are now 
postulated to be of B-cell lineage. Several lines of 
evidence link EBV to Hodgkin lymphoma: 

•	 A 4-fold increase in risk in individu-
als with a past history of infectious 
mononucleosis; 

•	 Increased antibody titres to EBV viral 
capsid antigen; and,

•	 The detection of monoclonal EBV 
genomes in the HRCs.

Almost half of the Hodgkin lymphoma cases 
in Western countries carry EBV-positive HRCs 
that express the latency II pattern with EBNA-1, 
LMP-1, LMP-2A, LMP-2B, and the EBERs being 
expressed (reviewed in Thompson & Kurzrock, 
2004).

4.3.2 EBV-associated epithelial cancers

(a) Cancer of the nasopharynx

EBV is consistently detected in patients with 
cancer of the nasopharynx, with a stronger 
association with non-keratinizing carcinoma 
than with keratinizing carcinoma (Maeda et al., 
2009). Regardless of whether the patient with 
nasopharyngeal carcinoma lives in an area of 
endemic or sporadic incidence (see Section 1.2), 
all tumour cells contain EBV DNA as multiple 
clonal episomes as shown by terminal repeats 
analysis. The clonality of EBV DNA suggests 
that nasopharyngeal carcinoma occurs from the 
clonal expansion of a single EBV-infected cell, 
and that EBV infection is an early, possibly initi-
ating, event in the development of nasopharyn-
geal carcinoma (Raab-Traub & Flynn, 1986). This 
is further supported by studies showing that 
preneoplastic and preinvasive lesions of the naso-
pharynx are also infected by EBV, and express 

the same latency programme (Pathmanathan 
et al., 1995).

Nasopharyngeal carcinoma cells express an 
EBV-latency II pattern (see Section 1.1) including 
the expression of EBNA-1, LMP-1, LMP-2A, 
LMP-2B, the EBERS, and micro-RNAs.

Several genes relevant for the tumorigenic 
phenotype of the nasopharyngeal carcinoma 
cell are induced by LMP-1 (Thornburg & Raab-
Traub, 2007).

However, only about two-thirds of naso-
pharyngeal tumours express LMP-1 in vivo as 
measured by Western blot or in-situ staining. 
Clinical and follow-up data from 74 cases of 
nasopharyngeal carcinoma showed that LMP-1-
positive nasopharyngeal carcinoma grew faster 
and more expansively than LMP-1-negative 
tumours, in a short two-year follow-up (Hu et al., 
1995). In the LMP-1 non-expressing tumours, 
the promoter region of the LMP-1 gene is hyper-
methylated (Hu et al., 1991).

In a few early precancerous lesions in situ 
that could be studied, LMP-1 is always expressed 
(Pathmanathan et al., 1995). It might thus have 
an important role in the early process, but its 
functions can later be replaced by cellular genes.

LMP-2A induces migration and invasion of 
epithelial cells including nasopharyngeal-carci-
noma-derived cell lines, which could affect the in 
vivo phenotype of the tumour (Allen et al., 2005).

Both EBERs and some of the EBV micro-
RNAs are expressed in nasopharyngeal carci-
noma, but their respective role in tumorigenesis 
has not yet been addressed (Cosmopoulos et al., 
2009).

(b) Cancers of the stomach

EBV is detected in 5–10% of gastric carci-
nomas worldwide (see Section 1.2). It has been 
suggested that EBV-positive gastric carcinoma 
belongs to a separate clinico-histopatholog-
ical entity, distinguishable from most gastric 
carcinomas as this occurs at younger age, 
with a distinct histopathology (ranging from 
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adenocarcinoma with lymphoid infiltration to 
lymphoepithelioma-like), and with a more prox-
imal location (Fukayama et al., 2008). In these 
tumours, the EBV genome is present in (almost) 
all cells and is monoclonal, suggesting that the 
infection takes place at tumour precursor cell 
state. The latent pattern of EBV in gastric carci-
noma corresponds to an intermediate latency I /
II programme, with EBNA-1, EBERs, BARF-0, 
LMP-2A, and micro-RNAS. In addition, some 
lytic infection genes such as BARF-1 and BHRF-1 
have also been detected in these tumours. All 
tumour cells express the EBERs as shown by 
PCR and by in-situ hybridization, while expres-
sion of LMP-2A and the lytic genes is variable 
(Luo et al., 2005).

In gastric carcinoma cells in culture, EBV 
expresses a latency pattern that is similar to 
gastric carcinoma in vivo, including the viral 
micro-RNAs. In these cells, EBV uses LMP-2A 
to activate the NF-κB-surviving pathway which 
confers some resistance to apoptosis induced by 
serum deprivation (Hino et al., 2008). In parallel 
with the results in vitro, the NF-κB-surviving 
pathway has been shown to be highly activated in 
nearly all EBV-associated gastric carcinomas in 
the advanced stage, and the frequency is signifi-
cantly higher than that in EBV-negative gastric 
carcinomas (Luo et al., 2005). Various viral 
proteins (e.g. HTLV-1 Tax, HPV-16E6, HBx) are 
known to upregulate surviving protein expres-
sion in human neoplasms; this may be a common 
denominator in the mechanisms of human viral 
oncogenesis (Hino et al., 2008).

(c) Other carcinomas

Carcinomas showing morphological features 
that are similar to undifferentiated nasopharyn-
geal carcinomas or EBV-related gastric carci-
nomas, so-called lymphoepithelial carcinomas, 
can occur at other sites. Lymphoepithelial carci-
nomas of the salivary glands, of the lungs, and 
possibly of the thymus are frequently associated 
with EBV infection (IARC, 1997), but there is no 

mechanistic data demonstrating a specific role of 
EBV in these tumours.

4.4 Interaction between EBV and 
other agents; mechanisms 
involved in EBV reactivation

EBV coexists for a lifetime in a latent state 
in most human hosts without overt serious 
consequences. This strongly suggests that cofac-
tors able to reactivate EBV viral replication 
may potentially be required for EBV-associated 
carcinogenesis.

EBV can be reactivated from its latent state by 
several means, and its reactivation could poten-
tially lead to the development of EBV-related 
pathology.

(a) Foreign antigen

In healthy carriers, EBV remains silent 
and expresses only EBERs in infected resting 
memory B cells. Viral replication can only occur 
in dividing cells; this is the case when memory 
B cells divide for cell maintenance or when they 
differentiate into plasma cells following activa-
tion by the presence of a foreign antigen (Laichalk 
& Thorley-Lawson, 2005). This means that any 
additional infection may potentially reactivate 
EBV in these cells.

(b) Immunodeficiency

EBV infection is strictly kept under very 
tight control by cell-mediated immunity in 
immunocompetent individuals (see Fig.  1.2). 
Immunodeficiency (iatrogenic as in transplant 
recipients, congenital, or HIV-related) allows 
the spread of uncontrolled reactivated EBV from 
infected memory B cells, which can give rise to 
various lymphoproliferative disorders (Fig.  1.3 
and Section 4.3.1).
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(c) Malaria

Infection with both EBV and Plasmodium 
falsiparum are recognized to be required for 
the genesis of endemic Burkitt lymphoma. 
Children living in areas endemic for malaria 
have an elevated EBV load, and have diminished 
EBV-specific T-cell immunosurveillance between 
the ages of 5–9 years, which coincides with the 
peak age incidence of the diseases (Moormann 
et al., 2005, 2007). In addition, acute malaria 
infection leads to increased levels of circulating 
EBV that are cleared following anti-malaria 
treatment (Rasti et al., 2005; Donati et al., 2006). 
A direct molecular mechanism of interaction 
has been demonstrated between P. falsiparum 
and EBV. CIDR1α, a cystein-rich domain of the 
P. falsiparum membrane protein 1 was shown to 
act as a polyclonal B-cell activator, and to induce 
the EBV lytic cycle (Chêne et al., 2007).

(d) Food

In the southern region of the People’s Republic 
of China, where nasopharyngeal carcinoma is a 
very common malignancy, the ingestion of salted 
fish especially during weaning has been shown 
to be an important risk factor for the condition 
(Yuan et al., 2000). Other preserved food prepa-
rations such as the spiced mixture “harissa” in 
Tunisia have also been identified as potential risk 
factors for nasopharyngeal carcinoma (Jeannel 
et al., 1990). Using Raji cells, an in vitro study 
demonstrated a strong EBV reactivation activity 
in aqueous extracts of some Cantonese salted fish 
from China, and harissa, and to a lesser extent 
qaddid (dry mutton preserved in olive oil) from 
Tunisia (Shao et al., 1988).

(e) Inflammation

TGFβ-1, a multifunctional cytokine, induces 
EBV reactivation in EBV-infected gastric carci-
noma cell lines in vitro as shown by the induc-
tion of EBV-early immediate BZLF-1 RNA, and 
its protein product ZEBRA (Fukuda et al., 2001). 

[The Working Group noted that TGFβ is highly 
expressed during inflammation suggesting that 
chronic inflammation may potentially reactivate 
latent EBV infection in vivo; this hypothesis still 
needs to be demonstrated.]

(f) Chemical agents and drugs

Stimuli that can activate the latency-to-lytic 
switch in cultured cell lines, include phorbol 
esters, which are protein kinase C agonists; 
sodium butyrate and trichostatin A, which are 
histone deacetylase inhibitors; 5-aza-2-deox-
ycytidine, which is a DNA methyltransferase 
inhibitor; and anti-immunoglobuline G, which 
activates the B-cell antigen receptor. While oper-
ating by different modes of action, these agents all 
lead to the expression of the EBV lytic activator 
genes BZLF-1 and BRLF-1, which encode ZEBRA 
and Rta (Countryman et al., 2009).

4.5 Transgenic models for EBV-
associated cancers

Transgenic mice models expressing EBNA-1 
and LMP-1 under various tissue-specific 
promoters are available. They show dysregulation 
of the haematopoetic and epithelial compart-
ments, depending on which tissue the transgene 
is directed to. Transplantable tumours occur 
with an elevated frequency in LMP-1-transgenic 
mice (Kulwichit et al., 1998; Curran et al., 2001; 
Shair et al., 2007). EBNA-1-transgenic mice have 
also been shown to develop tumours (Wilson 
et al., 1996).

A humanized mouse model in which the 
functional human immune system (including T, 
B, and natural killer lymphocytes) is reconsti-
tuted, can simulate key aspects of EBV infection. 
Inoculation of EBV in these mice causes B-cell 
lymphoproliferative disorder, with histopatho-
logical findings and latent EBV gene expression 
that are similar to that in immunocompromised 
patients (Yajima et al., 2008).
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4.6 Synthesis

Mechanistic data that strongly support an 
oncogenic role of EBV in human cancer can be 
summarized as follows:

•	 EBV immortalizes normal B cells in 
culture.

•	 One or several EBV gene products are 
expressed in all EBV-associated cancers.

•	 At the molecular level, these EBV-encoded 
gene products associated with latent viral 
infection induce cell proliferation, block 
apoptosis, induce genomic instability or 
modulate cell migration. These events 
occur before or during tumour initiation. 
Several of these gene products are also 
involved in mechanisms contributing 
to continued tumour maintenance, cell 
growth, and progression.

Mechanistic data strongly support an 
oncogenic role of EBV in diffuse large B-cell 
lymphomas in immunocompromised individ-
uals (post-transplant patients, XLP, AIDS). In 
these tumours, EBV adopts the growth-prolifer-
ative programme seen in EBV-infected human B 
cells, which is solely driven by the virus.

Mechanistic data strongly support an onco-
genic role of EBV in Burkitt lymphoma, where 
EBV promotes the survival of B cells that have 
undergone the pro-apototic myc-translocation.

Mechanistic data strongly support an onco-
genic role of EBV in Hodgkin lymphoma and 
nasopharyngeal carcinoma, where LMP-1 can 
act as a transforming viral protein.

There is positive mechanistic data for a role 
of the virus in EBV-positive gastric carcinoma.

Regarding the role of EBV in EBV-positive T/
NK-cell lymphomas, in vitro model systems still 
require optimization, and as a result, only weak 
mechanistic evidence is available to support a 
role of EBV in these types of cancer.

At the time of writing, no mechanistic studies 
have been published that directly investigate a 

role of EBV in lymphoepitheliomas of the sali-
vary gland.

5. Evaluation

There is sufficient evidence in humans for 
the carcinogenicity of EBV. EBV causes Burkitt 
lymphoma, immunosuppression-related non-
Hodgkin lymphoma, extranodal NK/T-cell 
lymphoma (nasal type), Hodgkin lymphoma, 
and cancer of the nasopharynx. Also, a positive 
association has been observed between exposure 
to EBV and lymphoepithelioma-like carcinoma.

In the case of gastric carcinoma, there is 
insufficient epidemiological evidence for the 
involvement of EBV. However, the fact that 
the EBV genome is present in the tumour cell 
in a monoclonal form, and that transforming 
EBV proteins are expressed in the tumour cell 
provides a mechanistic explanation of how EBV 
might cause a proportion of gastric cancer. 

EBV is carcinogenic to humans (Group 1).
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