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HUMAN T-CELL LYMPHOTROPIC  
VIRUS TYPE 1

Human T-cell lymphotropic virus Type 1 was considered by a previous IARC Working Group 
in 1996 (IARC, 1996). Since that time, new data have become available, these have been 
incorporated in the Monograph, and taken into consideration in the present evaluation.

1.	 Exposure Data

1.1	 Taxonomy, structure, and biology

1.1.1	 Taxonomy

Retroviruses can be classified according to 
the morphology of their virion core or according 
to sequence homologies that become evident after 
phylogenetic analyses. Human T-lymphotropic 
virus type 1 (HTLV-1) is a member of the delta-
type retrovirus group, other members of which 
include HTLV types 2, 3 and 4, bovine leukaemia 
virus (BLV), and simian T-cell leukaemia virus 
(STLV) types 1, 2 and 3 (Matsuoka & Jeang, 2007). 
STLV-1 is found in Old World monkeys and great 
apes. HTLV-1 and STLV-1 are thought to origi-
nate from common ancestors (Vandamme et al., 
1998). Together with the STLVs, HTLVs form 
the primate T–cell lymphotropic viruses (PTLV) 
group. The PTLVs belong to the complex retro-
virus family since, in addition to the structural 
gag, pol and env genes, their genome also contains 
regulatory and accessory genes. Among these 
retroviruses, HTLV-1 and STLV-1 induce T-cell 
neoplasms (Tsujimoto et al., 1987; Gallo, 2002), 
BLV causes a B-cell neoplastic disease in cattle 

and in sheep, and HTLV-3 and HTLV-4 have not 
been clearly associated with any haematological 
disease (Mahieux & Gessain, 2009). A recent 
report demonstrated that HTLV-2 infection 
is linked with higher lymphocyte and platelet 
counts, although it has not been yet associated 
with oncogenesis (Bartman et al., 2008).

1.1.2	 Structure of the virion

The structure of retroviruses is reviewed in 
the Monograph on HIV-1 in this volume. HTLVs 
are enveloped viruses with a diameter of approx-
imately 80–100 nm. The HTLV virions contain 
two covalently bound genomic RNA strands, 
which are complexed with the viral enzymes 
reverse transcriptase (RT; with associated RNAse 
H activity), integrase and protease, and the capsid 
proteins. The outer part of the virions consists 
of a membrane-associated matrix protein and a 
lipid layer intersected by the envelope proteins 
(IARC, 1996).

1.1.3	 Structure of the viral genome

As stated above, HTLV-1 is a complex retro-
virus that contains regulatory genes (tax and rex) 
and accessory genes (p12, p13, p30 and HBZ), in 
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addition to structural genes (gag, pol and env) 
(see Fig. 1.1). The Gag precursor protein (53 kD) 
is translated from unspliced genomic RNA. This 
protein is cleaved into p19 (matrix), p24 (capsid), 
and p15 (nucleocapsid) by the viral protease. The 
protease–polymerase products are generated by 
two frameshifts, which produce protease, reverse 
transcriptase, and integrase. The Env precursor 
protein is translated from a single-spliced mRNA, 
and is cleaved by a cellular protease into the 
extracellular protein, gp46, and the transmem-
brane protein, gp21 (Seiki et al., 1983; Sakalian & 
Hunter, 1998; Matsuoka & Jeang, 2007; Verdonck 
et al., 2007).

1.1.4	 Host range

HTLV-1 naturally infects humans. However, 
several publications have clearly demonstrated 
that HTLV-1 can experimentally be inoculated to 

different animals, including rabbits, rats, mice, 
and New World monkeys (Lairmore et al., 2005).

1.1.5	 Target cells

HTLV-1 can infect different cell types (T 
cells, B cells, dendritic cells, fibroblasts, etc.) in 
tissue culture. However, it can transform only T 
cells both in vitro and in vivo. HTLV-1 induces 
the clonal proliferation of T lymphocytes, mainly 
CD4-positive T cells, and to a lesser extent, 
CD8-positive T cells (Etoh et al., 1997; Cavrois 
et al., 1998; Yasunaga et al., 2001). Proliferation 
is thought to be mediated by one or several viral 
genes, such as tax, rex, p12, p13, p30, or HBZ.

HTLV-1 infection of dendritic cells has been 
recently shown to play a major role in HTLV-1 
cell-to-cell transmission (Jones et al., 2008). In 
experimentally infected squirrel monkeys (S. 
Sciureus), HTLV-1 was mainly detected in the 
lymphoid organs, which were therefore suggested 
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Fig. 1.1 Scheme of the HTLV-1 genome: alternatively spliced mRNAs and putative proteins encoded 
by each mRNA are shown

￼
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to be a major reservoir of the virus (Kazanji et al., 
2000).

1.1.6	 Life cycle, replication, and regulation of 
gene expression

The glucose transporter 1 (GLUT1), neuro-
pilin 1, and heparan sulfate proteoglycan form 
the HTLV-1 receptor complex (Manel et al., 2003; 
Ghez et al., 2006). These proteins are ubiquitously 
expressed in cultured cells, therefore allowing 
HTLV-1 to infect a variety of cell types in vitro.

The life cycle of HTLV-1 is similar to that of 
other retroviruses. A characteristic of HTLV-1 
is that it is mainly spread through cell-to-cell 
contact, although the exact mechanism is still 
a matter of debate (Igakura et al., 2003). After 
reverse transcription and integration into the 
genome, HTLV-1 propagates through clonal 
expansion of infected cells (Etoh et al., 1997; 
Cavrois et al., 1998). The limited use of the viral 
reverse transcriptase explains the remarkable 
genetic stability of HTLV-1. This is why the 
administration of reverse transcriptase inhibitors 
in vivo does not influence provirus load (Miyazato 
et al., 2006; Taylor et al., 2006). Consequently, 
the HTLV-1 provirus sequence variability is 
very low (Gessain et al., 1992; Van Dooren et al., 
2004). This striking genetic stability is used as 
a molecular tool to follow the migration of 
infected populations in the recent or distant past 
to gain new insights into the origin, evolution, 
and modes of transmission of such retroviruses 
and their hosts. The few nucleotide substitutions 
observed among virus strains are indeed specific 
to the geographic origin of the patients rather 
than being linked to the pathology.

Three modes of transmission are known for 
HTLV-1, and for each of these routes, cell-to-cell 
contact is required. The transmission is discussed 
in Section 1.2.

(a)	 Regulation of gene expression

Viral gene expression initiates from the 
5′Long Terminal Repeat (LTR), and is highly 
dependent on the Tax protein. The details on 
the regulation of the viral LTR are described 
in Section 4. However, Tax is a major target of 
cytotoxic T cells in vivo (Koenig et al., 1993), 
and Tax-expressing cells are, therefore, rapidly 
eliminated by cytotoxic T cells (Hanon et al., 
2000; Asquith et al., 2007; Asquith & Bangham, 
2008). Despite a strong cytotoxic T-cell response, 
proliferation of HTLV-1-infected cells in vivo 
is likely to depend on viral gene expression 
(Asquith et al., 2007). Epigenetic changes to the 
5′LTR may control viral gene expression in vivo, 
enabling escape from cytotoxic T cells. A recent 
report demonstrated that the administration 
of valproate, a histone deacetylase inhibitor, to 
tropical spastic paraparesis/HTLV-1-associated 
myelopathy (TSP/HAM) patients decreased 
the provirus load in vivo without, however, 
improving the clinical symptoms (Lezin et al., 
2007). The mechanism by which the infected 
cells are eliminated is unknown, but these results 
indicate that increasing viral expression may 
represent a potential approach to decreasing the 
proviral load.

1.2	Epidemiology of infection

In 1977, Takatsuki et al. described regions in 
Japan with high frequencies of T-cell-associated 
lymphoproliferative disorders and proposed that 
these diseases shared a viral etiology (Takatsuki 
et al., 1977). This led to the discovery of HTLV-1 
just a few years later, and it became the first 
human retrovirus to be implicated as a causative 
agent for human malignancy (Poiesz et al., 1980; 
Hinuma et al., 1981). Its discovery paved the 
way to a greater understanding of retroviruses, 
notably HIV, and their effects on humans. It is 
now apparent that HTLVs have been infecting 
humans for thousands of years. An estimated 
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15–20 million persons worldwide are infected 
with HTLV-1 (Gessain & de Thé, 1996) [The 
Working Group noted that the accuracy of this 
estimate is unknown], and a vaccine is not yet 
available.

All HTLV types have simian counterparts, 
and the viral strains found are predominantly 
related to geography rather than pathology 
(Slattery et al., 1999). These are all believed to 
have originated from Africa, the only continent 
where all PTLVs have been found. From there, 
PTLV migrated to Asia, where it evolved into 
STLV-1. This Asian STLV-1 virus type diffused 
through India, Japan, and Indonesia before 
returning to Africa, where phylogenetic analyses 
and anthropological studies place PTLV-1 spread 
among non-human primates at approximately 
27300 years ago (95% confidence interval [CI]: 
19100–35500) (Van Dooren et al., 2001). 

Interspersed patterns of STLV-1 and HTLV-1 
strains suggest frequent interspecies transmis-
sions between humans and primates in Africa. 
Evidence of these frequent crossings are distin-
guished by the four major geographic subtypes: 
cosmopolitan HTLV-1 subtype A, Central 
African subtype B, Melanesian subtype C, and 
subtype D, also found in Central Africa (Cassar 
et al., 2007). The slave trade and an increase in 
human immigration and mobility facilitated the 
expansion of HTLV-1 into the New World, Japan, 
the Middle East, and North Africa (Verdonck 
et al., 2007). The majority of infected individuals 
from these regions are infected with cosmopol-
itan subtype A (HTLV-1A) (Proietti et al., 2005).

1.2.1	 Prevalence, geographic distribution

Even though the global geographic distri-
bution of HTLV-1 has been well defined in the 
literature, fine-scale variations in HTLV-1 preva-
lence are less well understood. HTLV-1 is often 
found in micro-epidemic regions surrounded 
by regions with low prevalence (Fig. 1.2). For 
example, regions of Kyushu and Okinawa, Japan, 

have rates as high as 20%; whereas, neighbouring 
the People’s Republic of China and the Republic 
of Korea have rates of less than 0.1% (Proietti 
et al., 2005). In general, regions of high ende-
micity include south-western Japan, parts of 
subSaharan Africa, the Caribbean Islands, and 
South America (IARC, 1996). Infection has also 
been detected in Melanesia, the Solomon Islands, 
and among Australian Aborigines; there is only 
low prevalence in Europe and North America.

￼ There is a characteristic age- and gender-
dependence of HTLV-1 seroprevalence in many 
populations. HTLV-1 prevalence increases with 
age and is higher in women (Beilke & Murphy, 
2006). Published studies from several countries 
including Jamaica, Japan, Brazil, and the United 
States of America (Beilke & Murphy, 2006) have 
demonstrated similar trends, in addition to a 
significant increase of seropositivity in low soci-
oeconomic strata, and in those with a history of 
blood transfusions. HTLV-1 is most prevalent in 
populations that have a low geographic mobility, 
and correspondingly higher rates of vertical and 
sexual transmission.

1.2.2	 Transmission, and risk factors for 
infection

There are three main modes of transmission in 
HTLV-1 infection: vertical transmission, sexual 
transmission, and parenteral transmission. 
Each has its respective risk factors: prolonged 
breastfeeding; unprotected sex with an infected 
partner, multiple lifetime sexual partners, infec-
tion with sexually transmitted diseases (STDs); 
blood transfusion before institution of HTLV-
antibody screening of donors, and injection drug 
use.

(a)	 Vertical transmission

The highest rates of HTLV-1 transmission 
are due to breastfeeding, and in southern Japan, 
the overall infection rate of breastfed children by 
HTLV-1-carrier mothers is estimated at 10–30% 
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(Tajima & Hinuma, 1992). There may be a 
higher rate of transmission of mother-to-female 
compared to mother-to-male infants for HTLV 
in French Guyana (Ureta-Vidal et al., 1999). In 
Japan, there does not appear to be gender differ-
ences in HTLV-1 before the age of 20 years (Hino, 
1990). In a longitudinal study of Japanese chil-
dren born to carrier mothers, those who did 
not seroconvert by the age of 3 years remained 
seronegative until the age of 18 years (Kusuhara 
et al., 1987). In-utero infectivity is much lower, 
probably because of limited trafficking of HTLV-
1-infected lymphocytes across the placenta. The 
risk of infection in children has been shown to 
correspond to the proviral load in the mother’s 
breast milk, and to the duration of breastfeeding 
(Wiktor et al., 1997). In Japan, the avoidance of 
breastfeeding by an HTLV-1-infected mother 
reduced the transmission from 20% to 3%, and 
efforts to eliminate breastfeeding or to at least 
reduce its duration to less than 12 months by 

seropositive mothers, significantly reduced 
HTLV-1 transmission to children. In a subset of 
children with HTLV-1 positive cord blood, none 
had seroconverted (Hino et al., 1996).

(b)	 Sexual transmission

The second main type of transmission is 
sexual. One prospective study of heterosexual 
discordant couples (one partner seropositive, one 
partner seronegative) suggested higher male- to- 
female transmission (Stuver et al., 1993), but 
another did not (Roucoux et al., 2005). In Latin 
America, gender differences in sexual practices 
and the seroprevalence of STDs between popula-
tions might partially explain these discrepancies 
(Plancoulaine et al., 1998; Sanchez-Palacios et al., 
2003). HTLV-1 carriers infect their spouses at low 
rates (1–2 per 100 person–years); however, within 
long-term sexual relationships, HTLV-1 proviral 
load and lower rates of condom use were shown 
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Fig. 1.2 Global geographic distribution of HTLV-1 infection: It should be noted that HTLV-1 endemic 
areas do not correspond exactly to the country boundarie shown in the map, for example, Brazil, 
Japan and Iran, where HTLV-1 is limited to residents of certain areas of each country

￼

Adapted from and reprinted by permission from Macmillan Publishers Ltd: Oncogene, Proietti et al. (2005). http://www.nature.com/onc/index.
html
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to increase transmission efficiency (Kaplan et al., 
1996; Iga et al., 2002; Roucoux et al., 2005).

(c)	 Parenteral transmission

HTLV-1 transmission is also known to occur 
by the transfusion of cellular blood components, 
requiring testing of blood products by blood 
banks in high prevalence regions. The “residual 
risk” of transfusion-transmitted HTLV-1 infec-
tion after serological testing has been estimated 
as 1 in 641000 blood units transfused in the 
USA (95%CI: 256000–2000000) (Schreiber et al., 
1996). Transmission through this route has been 
reduced by improvements in the sensitivity of 
serological assays for HTLV-1 and leukoreduc-
tion of blood products, so the current residual 
risk is probably less than 1 per million blood 
units transfused. Although nucleic-acid testing 
of blood products has been introduced for HIV, 
hepatitis C and hepatitis B viruses (HCV, HBV), 
it has not yet been developed for HTLV-1, because 
HTLV-1 would require a cell-based rather than 
a plasma-based assay (Murphy et al., 1999). 
HTLV-1 is also transmitted via needle-sharing 
associated with injection drug use. However, 
compared to HTLV-2, the prevalence of HTLV-1 
is relatively low among injection drug users and 
their sexual partners in the USA, Italy, Spain, 
Brazil, and Argentina (Gotuzzo, 2000), perhaps 
because injection drug use is less common among 
HTLV-1- as opposed to HTLV-2-risk groups 
(Roucoux & Murphy, 2004). However, increasing 
human mobility and cultural interaction create 
the opportunity for increased HTLV-1 transmis-
sion by this route.

1.2.3	 Persistence, latency and natural history 
of infection

The lifetime risk of developing adult T-cell 
leukaemia/lymphoma (ATLL) has been esti-
mated at 2–4% among HTLV-1 carriers, and the 
latency period from primary infection until ATLL 
onset is about 60 years in Japan, and 40 years 

in Jamaica (Tajima, 1988; Murphy et al., 1989; 
Takatsuki et al., 1994; Hanchard, 1996; Yasunaga 
& Matsuoka, 2007). The incubation period for 
HTLV-associated myelopathy is thought to be 
shorter: 10–20 years after sexual transmission but 
as little as 6 months after transfusion-transmitted 
HTLV-1 infection (Gout et al., 1990). Several viral 
and immunological markers have been proposed 
as markers for predicting which infected subjects 
will progress from latency to disease (see Section 
2.1), but prospective validation of these markers 
is lacking. HTLV-1 may also be associated with 
increased overall mortality (Arisawa et al., 2003; 
Orland et al., 2004).

Compared to HIV, the HTLV-1’s genome is 
very stable, with proviral integration predomi-
nating over production of viral RNA particles 
(Mortreux et al., 2003). Occasionally, abnormal, 
multilobulated lymphocytes “flower cells” can be 
observed in the peripheral blood (Hisada et al., 
1998; Sacher et al., 1999). Aside from detection 
in the peripheral blood, infected cells have also 
been detected in the cerebrospinal fluid, an indi-
cation of HTLV-1 ability to cross the blood–brain 
barrier (Mortreux et al., 2003). In an assessment 
of the patterns of HTLV-1 proviral DNA and 
antibody titre levels among transfusion recipi-
ents, in early infection, proviral loads are initially 
elevated with corresponding low antibody titres, 
and as proviral load begins to decrease, antibody 
titres increase, and later remain stable within 
each of the cases (Manns et al., 1999). Proviral 
load may also be related to the route of infection, 
with transfusion-transmitted HTLV associated 
with a higher proviral load (Murphy et al., 2004). 

Platelet and lymphocyte counts may be 
chronically elevated in HTLV-1 (Glynn et al., 
2000). Both higher platelet counts and lower 
eosinophils counts were found to be significantly 
associated with HTLV-1 status among blood 
donors from the USA (Bartman et al., 2008). 
HTLV-1 participants also had a small increase 
in absolute lymphocyte count compared with 
controls, which was not statistically significant.
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HTLV-1 preferentially targets CD4-positive T 
cells, and infection is transmitted through direct 
cell-to-cell contact. Recent reports also support 
a role for dendritic cells in HTLV-1 transmis-
sion (Jones et al., 2008). Once inside the cell, 
the HTLV-1 provirus integrates itself into the 
host genome. A study. demonstrated a signifi-
cant rate of viral integration within genes (as 
opposed to non-coding regions of the genome), 
which suggests an HTLV-1 preference to insert 
in growth-related genes over random integration 
(Hanai et al., 2004). Because of clonal expansion, 
T cells with identical integration sites are consid-
ered to have originated from the same infected 
cell. More sensitive assays with the ability to 
amplify regions of the host genome adjacent to 
the integration site, such as inverse polymerase 
chain reaction (PCR), may be used to identify 
clones of infected T lymphocytes in asympto-
matic carriers (Okayama et al., 2004; Tanaka 
et al., 2005).

In contrast to HIV, which produces a large 
amount of cell-free virions in plasma, HTLV-1 
increases its copy number through the prolifera-
tion of infected cells, and infection is maintained 
through this expansion. Early expression of 
viral tax protein and HTLV-1 accessory proteins 
induce and maintain initial replication (Manns 
et al., 1999). An increased proviral load derives 
from this persistent clonal expansion of virus-
infected cells (Wattel et al., 1995). After initial 
infection, individuals are asymptomatic with 
proviral loads ranging from 102–105 per million 
peripheral blood mononuclear cells (Wattel 
et al., 1992; Etoh et al., 1999; Mortreux et al., 
2003). The proviral load remains relatively stable 
within a single infected individual over several 
years (Mortreux et al., 2003; Kwaan et al., 2006).

2.	 Cancer in Humans

2.1	T-cell malignancies

2.1.1	 HTLV-1 infection and ATLL

As described in the previous IARC Monograph 
(IARC, 1996), ATLL occurs almost exclusively in 
areas where HTLV-1 infection is endemic, such as 
Japan, the Caribbean, and West Africa. In other 
areas, cases are usually found among immigrants 
from endemic populations. Evidence of HTLV-1 
infection was initially found in at least 90% of 
ATLL cases and subsequently, HTLV-1 infec-
tion became part of the diagnostic criteria for 
ATLL. In ATLL, the virus is monoclonally inte-
grated into the tumour cells. The previous IARC 
Working Group concluded that HTLV-1 infec-
tion was a necessary cause of ATLL (IARC, 1996). 
The current Monograph will focus primarily on 
recent evidence on predictors or risk of ATLL in 
HTLV-1 carriers. To date, no other malignancies 
have been convincingly liked to HTLV-1.

Since 1996, several case series have been 
published on ATLL occurring in diverse HTLV-
1-endemic and –non-endemic populations. 
These include reports from Japan (Tsukasaki 
et al., 1999); Brazil (Farias de Carvalho et al., 
1997; Barbosa et al., 1999; Pombo De Oliveira 
et al., 1999); Argentina (Marin et al., 2002); Chile 
(Cabrera et al., 2003); the Commonwealth of 
Dominica (Adedayo & Shehu, 2004); and Hong 
Kong Special Administrative Region (Chan & 
Liang, 1996; Au & Lo, 2005; see Table 2.1 available 
at http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-07-Table2.1.pdf). One report 
from the Hong Kong Special Administrative 
Region estimated an HTLV-1 prevalence of only 
4×10−5 but identified six cases of apparent ATLL 
by systematically screening all non-Hodgkin 
lymphoma cases for HTLV-1 antibody (Au & Lo, 
2005).

To date, there are a total of six cohort anal-
yses based in Japan that document the incidence 
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of ATLL among HTLV-1 carriers, and confirm 
that male carriers have about a 3–5 fold higher 
risk of developing ATLL than female carriers 
(Tokudome et al. 1991; Iwata et al., 1994; Arisawa 
et al., 2000, 2003, 2006; Hisada et al., 2001). It is 
worth noting that because HTLV-1-seropositivity 
is part of the diagnosis of ATLL, relative risks 
for ATLL can not be calculated (see Table 2.2 
available at http://monographs.iarc.fr/ENG/
Monographs/vol100B/100B-07-Table2.2.pdf). 
These cohort studies confirm the causal rela-
tionship between HTLV-1 infection and the 
incidence of ATLL, and also underline the higher 
risk among infected men. However, the reason 
for the apparently higher disease penetrance in 
HTLV-1-infected men than HTLV-1-infected 
women seen in Japan, and whether it exists else-
where, is unknown. Modelling data from the 
Carribean have not identified such male excesses 
(Murphy et al., 1989; see Table 2.3 available at 
http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-07-Table2.3.pdf).

There are four case–control analyses nested 
within prospective HTLV-1 cohorts in Japan 
that have compared incident ATLL cases with 
matched HTLV-1 carriers. These have focused on 
viral or serological predictors of either ATLL or 
the prevalence of circulating abnormal lympho-
cytes that resemble ATLL cells (Hisada et al., 
1998a, b; Arisawa et al., 2002; Okayama et al., 
2004; see Table 2.4 available at http://mono-
graphs.iarc.fr/ENG/Monographs/vol100B/100B-
07-Table2.4.pdf). Pre-diagnosis predictors of 
ATLL included a higher proviral load, higher 
antibody titres, and a higher prevalence of soluble 
interleukin-2 receptor-α (sIL2-R). The predictors 
for higher levels of abnormal lymphocytes were 
a higher proviral load and male gender. However, 
these studies are based on a small number of inci-
dent cases, and have not been repeated in other 
HTLV-1-infected populations.

2.1.2	 Host susceptibility

As noted above, there is consistent evidence 
from cohorts in Japan that male carriers have a 
higher risk compared to female carriers for this 
malignancy.

It has long been proposed that the risk of 
ATLL is strongly related to very early HTLV-1 
infection. Testing this hypothesis would be diffi-
cult, requiring prospective follow-up of large 
birth cohorts. However, in a recent update of 
an ongoing study in the Caribbean of mothers 
of ATLL- and of HTLV-1-associated TSP/HAM 
patients, 35/36 mothers (97.2%) of ATLL cases 
were seropositive versus 5/15 mothers (33%) 
of TSP/HAM patients (P<0.001; Bartholomew 
et al., 1998). The cells of the sole seronegative 
mother of an ATLL case were also negative on 
PCR. However, the father and one older sister of 
this ATLL case were both HTLV-1 seropositive. 
All patients in the study were breastfed, and none 
of the patients or their mothers had a history of 
a blood transfusion. These findings support the 
proposal that early and/or mother-to-child infec-
tion with HTLV-1 plays an important role in the 
genesis of ATLL.

Finally, much of the notion of the epide-
miology of ATLL is based on epidemiological 
studies conducted in Japan. It is important to 
note that geographically defined social environ-
ments may alter the natural history of this infec-
tion. Specifically, the peak incidence of ATLL 
occurs earlier and at a reduced frequency among 
HTLV-1 carriers in the Caribbean in compar-
ison to Japan. Several studies compared viral 
and immune markers between HTLV-1 carriers 
and uninfected controls, and between Jamaican 
and Japanese HTLV-1 carriers as an approach 
to determine why the penetrance of ATLL may 
differ between populations.

Hisada et al. (2004) analysed viral markers 
between a matched set of Jamaican (n = 51) and 
Japanese carriers (n = 51) (Hisada et al., 2004). 
They found that the anti-HTLV-1 titres were 
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higher among the Jamaicans (P=0.03), as was the 
prevalence of antibodies against the tax protein 
(anti-tax) (P=0.002). There was no significant 
difference in proviral load between the Jamaican 
and Japanese carriers.

Birmann et al. (2009) further added a 
matched HTLV-1 seronegative subject to each 
carrier within each population reported in 
Hisada et al. (2004) to evaluate a set of serum 
immune markers (Birmann et al., 2009). HTLV-1 
infection was associated with activated T-cell 
immunity among the Jamaican subjects as indi-
cated by a higher prevalence of a low EBV nuclear 
antigens (EBNA-1:EBNA-2) ratio, higher serum 
levels of sIL2R, and of soluble CD30. The results 
among the Japanese subjects indicated dimin-
ished T-cell immunity among the carriers, as 
indicated by lower C-reactive protein levels. [The 
Working Group noted that the observed popula-
tion differences in non-carriers between the two 
populations and the impact of HTLV-1 infection 
within the population in immune profiles may 
begin to explain the divergent natural history 
of HTLV-1 infection in the two sentinel popu-
lations, and highlight the importance of social 
environments. Factors that may contribute 
to these findings include differences in age-
specific infection rates, co-existing infections 
and nutritional status.] See Table 2.5 available 
at http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-07-Table2.5.pdf.

2.2	Other malignancies

2.2.1	 Cutaneous T-cell lymphoma

One study reported that 60 patients with 
mycosis fungoides had detectable tax-related 
proteins in peripheral blood mononuclear cell 
samples; of these, they reported that 83% also 
had antibodies to HTLV-1 tax proteins (Pancake 
et al., 1996). However, several large studies on 
patients with cutaneous T-cell malignancies, 
including many cases of mycosis fungoides in the 

USA, Republic of Korea, Japan, Spain, Europe, 
Mali, and Taiwan (China) could not replicate 
these results, and did not confirm an asso-
ciation with HTLV-1 (Wood et al., 1996, 1997; 
Bazarbachi et al., 1997; Kikuchi et al., 1997a, b; 
Chang et al., 1998; Fouchard et al., 1998; Kim 
et al., 1998; see Table 2.6 available at http://mono-
graphs.iarc.fr/ENG/Monographs/vol100B/100B-
07-Table2.6.pdf). Overall, there is no consistent 
evidence that HTLV-1 is associated with cuta-
neous T-cell malignancies, with the exception of 
ATLL presenting in the skin.

2.2.2	B- and T-cell lymphomas

Since the previous IARC Monograph (IARC, 
1996), several case series have examined HTLV-1 
infection in B- and T-cell lymphomas (Farias 
de Carvalho et al., 1997; Marin et al., 2002; 
Cabrera et al., 2003; Suefuji et al., 2003; Adedayo 
& Shehu, 2004). With the exception of some 
T-cell lymphomas which may, in retrospect, have 
been cases of ATLL (Marin et al., 2002), there 
was no evidence that HTLV-1 infection played a 
role in these lymphomas (see Table 2.7 available 
at http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-07-Table2.7.pdf).

The majority of primary gastric lymphomas 
are of B-cell origin, and only rarely of T-cell 
phenotype (Isaacson et al., 2008). However, 
a study reported that 18/58 lymphoma-type 
ATLL patients had gastric involvement of ATLL 
cells; and of these, three had primary gastric 
lymphoma (Sakata et al., 2001). Another report 
described 67 cases of surgically resected primary 
gastric lymphoma, of which five were found to 
have T-cell lymphoma: two were HTLV-1 posi-
tive and three were HTLV-1 negative (Shimada-
Hiratsuka et al., 1997). A final report described 
14 T-cell lymphomas in 233 cases of primary 
gastric lymphoma (Nakamura & Tsuneyoshi, 
1998). [The Working Group remarked that 
although further research may be useful, it is not 
clear if gastric lymphoma represents a separate 
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entity, or simply ATLL involving the stomach or 
adjacent lymphoid tissue.] See Table 2.8 available 
at http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-07-Table2.8.pdf

Except for a few cases of ATLL, two studies 
were unable to find HTLV-1 in post-transplant 
lymphoproliferative disorders. Gentile et al. 
(1998) reported three patients who developed 
T-cell lymphoproliferative disorders after renal 
transplantation, but none had evidence of HTLV-1 
infection. The second study reported on 24 cases 
of post-transplant lymphoid proliferation in 
Japan: 12 B-cell, ten T-cell, and two natural killer 
phenotype. A total of 5/10 T-cell tumours were 
classified as ATLL (Hoshida et al., 2001). See Table 
2.9 available at http://monographs.iarc.fr/ENG/
Monographs/vol100B/100B-07-Table2.9.pdf.

In one study, 12 cases of leukaemia of large 
granular lymphocytes with and tested for IgG 
antibodies to proteins related to HTLV-1 were 
reported (Starkebaum et al., 1987). Sera from 
6/12 cases reacted with the HTLV-1 proteins, 
while none of the ‘control’ serum (from healthy 
persons and patients with other disorders) 
reacted. By analogy, an initial report of HTLV-2 
and large granular lymphocytes (Loughran et al., 
1992) was not confirmed in a controlled study 
(Loughran et al., 1994). A set of 27 specimens 
from cases of splenic lymphoma on Kyushu 
Island, Japan – an HTLV-1-endemic area – were 
tested for anti-HTLV-1 antibody, and all were 
negative (Kumagawa et al., 2001).

2.2.3	Non-lymphomatous tumours

DNA from HTLV-1 and human foamy virus 
has been detected in recent studies of thymoma, 
and in 2002, a study reported that 11/12 samples 
from thymoma patients (91.6%) from Italy tested 
positive for the tax gene of HTLV-1/2 and 9/12 
samples (75%) positive for the tax and pol genes 
of HTLV-1 (Manca et al., 2002). However, a later 
study did not find any evidence for HTLV-1 or 

human foamy virus in 21 thymoma patients 
from the USA (Li et al., 2004).

Whether or not HTLV-1 is linked to an 
increased risk of solid malignancies has been 
studied with generally negative results. However, 
there is intriguing evidence for a possible protec-
tive effect of HTLV-1 on gastric carcinoma. In 
a prospective cohort study, 4136 adults living in 
four towns in the Nagasaki Prefecture in south-
western Japan were followed for 6 years (Arisawa 
et al., 2003). A total of 1063 were seropositive for 
anti-HTLV-1 antibodies at baseline, including 
439 (22.9%) men and 624 (26.2%) women. There 
were a total of 290 deaths in the cohort, with 
increased all-cause mortality for HTLV-1 both 
when ATLL was counted among the deaths (RR, 
1.5; 95%CI: 1.2–1.9), and when ATLL deaths were 
excluded (RR, 1.3; 95%CI: 1.0–1.7). HTLV-1 was 
not associated with an increased risk of all-site 
cancer mortality after excluding cases of ATLL 
(RR, 1.1; 95%CI: 0.77–1.7). Other interesting 
findings from the study included a decreased 
incidence of gastric cancer (RR, 0.42; 95%CI: 
0.17–0.99). These negative results for HTLV-1 
and solid tumours are in contrast to previous 
cross-sectional studies, which reported a higher 
HTLV-1 seroprevalence among 394 non-trans-
fused patients with non-ATLL malignancy than 
in age- and sex-matched healthy controls (Asou 
et al., 1986), and a higher prevalence of all malig-
nant neoplasms among siblings of ATLL patients 
compared to siblings of HTLV-1 seronegative 
non-Hodgkin lymphoma cases (Kozuru et al., 
1996).

In a recent retrospective cohort study in 
the Nagasaki Prefecture, Japan, 497 HTLV-1-
positive and 497 HTLV-1-negative persons who 
did not have gastric cancer at baseline were 
followed with serial endoscopy of the stomach 
(Matsumoto et al., 2008). Helicobacter pylori anti-
bodies were found in 61.7% of HTLV-1-positive 
cases compared to 71.6% of the HTLV-1-negative 
cases. There were 14 cases (2.8%) of gastric cancer 
in the HTLV-1-positive subjects compared to 35 
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cases (7%) in the age- and sex-matched HTLV-1-
seronegatives (OR, 0.38; 95%CI: 0.21–0.70). [The 
Working Group noted that these data suggest that 
HTLV-1 infection may reduce the inflammation 
usually associated with H. pylori infection, and 
thereby reduce the risk of gastric carcinoma.]

[The Working Group noted that further 
investigation is warranted on the subject of 
persistent H. pylori infection among HTLV-1 
seropositives to determine whether HTLV-1 
infection may reduce the inflammatory response 
to H. pylori and reduce the risk of gastric carci-
noma, as mentioned above (Arisawa et al., 2003; 
Matsumoto et al., 2008).]

Finally, one study of 85 cases of oesophageal 
squamous cell carcinoma in the Islamic Republic 
of Iran found no increase in HTLV-1 antibody 
prevalence compared to non-cancer controls 
(Mirsadraee et al., 2007).

See Table 2.10 available at http://monographs.
iarc.fr/ENG/Monographs/vol100B/100B-07-
Table2.10.pdf.

2.3	Cofactors

In addition to the roles of being of masculine 
gender and infected at a younger age (described 
above), undernutrition and repeated exposure to 
filariasis in childhood were proposed as potential 
risk factors for ATLL (Tajima & Hinuma, 1984).

Since then, there is some evidence that 
co-infection with Strongyloides stercoralis is 
detrimental to HTLV-1 carriers. Among 38 ATLL 
cases, those who were positive for S. stercoralis 
were younger at diagnosis then those uninfected 
(Plumelle et al., 1997).

Gabet et al. (2000) reported that among 
HTLV-1 carriers from West Guyana and 
Martinique, those who were co-infected with 
S. stercoralis had a substantially higher HTLV-1 
proviral load, and substantially more oligoclonal 
expansion of HTLV-1-infected lymphocytes 
than carriers who were negative for S. stercor-
alis. These observations were substantiated in a 

Japanese population of HTLV-1 carriers (Satoh 
et al., 2002). [The Working Group noted that, 
together, these papers suggest that co-infection 
with S. stercoralis may increase the risk of ATLL 
in HTLV-1 carriers, and presents a potential 
for risk reduction with parasite treatment and 
control.]

One case series reported three cases of ATLL 
among eight HTLV-1 carriers within 2 years after 
immunosuppression with tacrolimus for liver 
transplantation (Kawano et al., 2006). In another 
study, five cases of ATLL were reported following 
immunosuppression for kidney transplantation 
(Hoshida et al., 2001).

See Table 2.11 available at http://monographs.
iarc.fr/ENG/Monographs/vol100B/100B-07-
Table2.11.pdf.

3.	 Cancer in Experimental Animals

In this volume, the Working Group decided 
not to include a separate section on “Cancer in 
Experimental Animals” in the Monographs on 
viruses but rather to include description of such 
studies under Section 4 (below). The reasoning 
for this decision is explained in the General 
Remarks.

4.	 Other Relevant Data

4.1	Mechanism of HTLV-1-linked 
carcinogenesis

4.1.1	 Transforming capacity of HTLV-1

In vivo, HTLV-1 infection has been reported 
not only in T lymphocytes, but also in B lympho-
cytes, myeloid cells, monocytes, and dendritic 
cells (Koyanagi et al., 1993; Manel et al., 2005; 
Jones et al., 2008). However, HTLV-1 immortal-
izes only T lymphocytes in vitro through the 
action of the Tax viral protein.
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4.1.2	 Biochemical and biological properties 
of HTLV-1 proteins

HTLV-1 belongs to the complex retroviruses 
family. The pX region, which is localized between 
the env gene and the 3′LTR, encodes regulatory 
genes (tax and rex), and accessory genes (p12, 
p13, p30 and HBZ) (Matsuoka & Jeang, 2007). 
These proteins not only control viral gene tran-
scription, but also modulate the proliferation 
of infected cells. Indeed, the fact that HTLV-1 
induces the proliferation of infected cells facili-
tates its transmission through cell-to-cell contact 
rather than through the release of viral particles 
(see also Section 1 and Fig.1.1).

(a)	 Rex

The Rex protein binds to Rex-responsive 
elements (RxRE), a highly stable stem-loop 
structure in the R/U3 region of the 3′LTR (Hanly 
et al., 1989). Rex regulates viral gene expression 
at the post-transcriptional level, by increasing 
the level of unspliced RNA in the nucleus, and 
by enhancing the nuclear export and the expres-
sion of the unspliced gag/pol and single-spliced 
env transcripts (Inoue et al., 1991).

(b)	 p12

The open reading frame I of the pX region 
of HTLV-1 encodes the protein p12, which is 
located in the endoplasmic reticulum and the 
Golgi. In quiescent primary lymphocytes and in 
vivo, p12 is important for establishing HTLV-1 
infection and optimal viral infectivity. The p12 
protein therefore facilitates host-cell activation, 
and the establishment of persistent infection 
(Collins et al., 1998; Albrecht et al., 2000; Nicot 
et al., 2005).

(c)	 p13

The protein p13 contains a mitochondrial-
targeting signal, and exists in the nucleus and 
mitochondria. Mutation of the p13 gene impairs 
viral proliferation in vivo, indicating that p13 

is critical for viral replication (Hiraragi et al., 
2006). In addition, p13 expression is associated 
with a suppressed cell proliferation in vitro (Silic-
Benussi et al., 2004).

(d)	 p30

The protein p30 is a nuclear and nucleolar 
protein (Koralnik et al., 1993) that binds to and 
retains the tax/rex mRNA within the nucleus. 
Therefore, p30 is a post-transcriptional nega-
tive regulator of viral replication and viral gene 
expression (Nicot et al., 2004).

(e)	 Tax

Tax, a 40-kD phosphoprotein, encoded from 
a spliced mRNA, is found mainly in the nucleus 
but also in the cytoplasm (Meertens et al., 2004). 
Tax interacts with several host factors (Boxus 
et al., 2008), which results in trans-activation of 
some genes, trans-repression of others, modula-
tion of the cell cycle, and dysregulation of apop-
tosis (Matsuoka & Jeang, 2007).

The transduction of a pX-containing sequence 
into primary human T Lymphocytes by use of 
a defective simian herpesvirus is sufficient to 
immortalize these cells (Grassmann et al., 1989). 
However, since this vector could express not only 
tax but also the genes p12, p13, p30 and HBZ, it 
was difficult to conclude whether Tax was the only 
responsible viral protein for cell transformation. 
Subsequently, immortalization (IL-2-dependent 
growth) of human CD4-positive T cells was 
demonstrated in vitro by the use of a retroviral 
vector expressing only the tax gene (Akagi et al., 
1995). In addition, the transforming ability of 
Tax was demonstrated in the Rat-1 fibroblast cell 
line in vitro in a soft-agar assay, and in vivo in 
nude mice (Tanaka et al., 1990). These findings 
clearly showed that Tax is oncogenic. In addition, 
several studies with animals transgenic for Tax 
have clearly demonstrated that Tax expression 
leads to the induction of tumours, confirming 
that Tax is oncogenic in vivo (see Section 4.1.6).
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Transcription pathways activated by Tax 
include those of NF-κB, CREB, SRF and AP-1 
(Azran et al., 2004). To turn on the NF-κB 
pathway, Tax binds to IKKγ, and activates the 
IKK complex, leading to phosphorylation of 
IκB (Jin et al., 1999). For survival, the Akt/PI3K 
pathway is also implicated in addition to the 
NF-κB pathway. Tax also activates this pathway 
by binding to the p85α subunit of PI3K, leading 
to activation of AP-1 (Peloponese & Jeang, 2006).

The transcription factor p53 is a crucial 
element in the cellular defence against tumour 
development. Mutations in the TP53 gene are 
frequently found in human cancers (IARC p53 
database available online at http://www.p53.iarc.
fr). Mutations in TP53 occur in less than 30% of 
adult T-cell leukaemia (ATLL) cells, depending 
on the clinical stage, which indicates that other 
mechanisms are involved. The precise mecha-
nism that leads Tax to inhibit the function of p53 
is still a matter of debate: some authors suggested 
that competition with the transcription co-acti-
vators CBP/p300 plays a major role (Mulloy 
et al., 1998; Suzuki et al., 1999), whereas others 
reported that activation of the NF-κB pathway 
was needed (Pise-Masison & Brady, 2005).

Tax activates the transcription of viral genes 
through three imperfect 21 base-pair repeat 
elements, the Tax-responsive element (TRE) 
(Fujisawa et al., 1986). The neighbouring GC-rich 
sequences of TRE are required for the binding of 
Tax (Paca-Uccaralertkun et al., 1994). The TRE 
contains sequences that are similar to that of 
the cyclic adenosine monophosphate (cAMP)-
responsive element (CRE). CRE-binding protein/
activating transcription factor (CREB/ATF) 
family members bind to TRE in a Tax-dependent 
manner (Franklin et al., 1993). Tax can interact 
with transcriptional co-activators, CREB-
binding protein (CBP) and p300, that acetylate 
histones in the promoter region. In addition, 
CREB co-activators – termed transducers of 
regulated CREB activity (TORCs) – activate 
Tax-mediated viral gene transcription through 

the LTR. Tax interacts with TORCs (Siu et al., 
2006). Thus, co-activators, TORCs, and CBP/
p300 are necessary for the Tax-mediated activa-
tion of viral gene transcription.

Tax also inhibits transforming growth factor 
β (TGF-β)-mediated signals. It is likely that the 
inhibition of TGF-β-signalling enables HTLV-1-
infected cells to escape TGF-β-mediated growth 
inhibition (Mori et al., 2001; Lee et al., 2002).

The Tax sequence contains several important 
domains that are involved in CREB and NF-κB 
activation. Recently, the C-terminal sequence of 
Tax was shown to contain a PDZ-binding motif. 
This PDZ-binding motif, which is absent from 
HTLV-2 Tax, seems critical for the ability of 
HTLV-1 Tax to transform cells in vitro (Rousset 
et al., 1998; Endo et al., 2002). It should be noted 
that Tax is not expressed in 60% of ATLL cases, 
due to deletions, epigenetic changes of the 
5′LTR, and genetic changes in the Tax sequence 
(Matsuoka, 2005, 2010; Giam & Jeang, 2007).

(f)	 HBZ

The HTLV-1 bZIP factor (HBZ) is tran-
scribed from the complementary strand of the 
proviral genome (Larocca et al., 1989; Gaudray 
et al., 2002). Viral transcription from the 5′LTR 
is highly dependent upon Tax expression and 
this is due to the presence of three TREs, as indi-
cated above. Conversely, the transcription from 
the 3′LTR is dependent on Sp1 (Yoshida et al., 
2008). Therefore, HBZ gene transcription is rela-
tively constant, and is correlated with proviral 
load (Usui et al., 2008). Interestingly, and in 
contrast to the finding that the tax gene has not 
been frequently detected in ATLL cells, the HBZ 
mRNA could be detected in all ATLL cases. Even 
if defective proviruses are commonly detected in 
ATLL cells, the HBZ gene always remains intact 
(Miyazaki et al., 2007). Importantly, HBZ expres-
sion is associated with the proliferation of ATLL 
cells since the knock-down of HBZ in ATLL 
cells decreases the growth of the leukaemic cells 
(Satou et al., 2006), which further indicates that 
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HBZ is critical and essential for the growth of 
these cells. Several transcription factors bind 
HBZ, including c-Jun, JunD, JunB, RelA/p65, 
p300, and CREB (Basbous et al., 2003; Hivin 
et al., 2007; Clerc et al., 2008).

4.1.3	 Biological properties of HTLV-1 proteins 
relevant to carcinogenesis

(a)	 Immortalization

HTLV-1 can transform CD4-positive T 
lymphocytes in vitro. Among all the viral 
proteins, only Tax has the ability to immortalize 
CD4-positive T cells in vitro (see above).

(b)	 Genetic instability

Cytogenetic abnormalities that are specific 
to ATLL have not been found, but trisomies, 
deletions, and structural rearrangements are 
frequently reported in two of the four ATLL 
subtypes (acute leukaemia and lymphoma ATLL) 
(Kamada et al., 1992). This is therefore indicative 
of chromosomal instability in ATLL cells where 
the altered functions of several centrosome-
associated proteins seem also to be involved in 
the Tax-driven aneuploidy (Afonso et al., 2007). 
As an example, the functions of HsMAD1 (also 
known as TXBP181) functions are impaired 
in Tax-expressing cells. HsMAD1 acts at the 
G2/M-checkpoint and has been found on the 
centrosome during metaphase. It is tempting 
to speculate that the loss of HsMAD1 function 
could be linked to the loss or modification of the 
centrosomal activity (Jin et al., 1998).

Tax has also been reported to interact with 
the anaphase-promoting complex/cyclosome 
(APC/C). This interaction leads to a premature 
mitotic exit, and may contribute to aneuploidy 
(Liu et al., 2005).

Recently, another partner of Tax, the 
centrosome-associated TAX1BP2 protein (also 
known as TXBP121) was also implicated in the 
Tax-dependent initiation of aneuploidy (Ching 
et al., 2006). By the use of in-situ fluorescence 

microscopy the authors demonstrated that Tax 
binds to and co-localizes with endogenous 
TAX1BP2, forming peri-nuclear dots. In the 
absence of Tax, overexpression of TAX1BP2 leads 
to a reduction in the number of cells that contain 
supernumerary centrosomes. In contrast, deple-
tion of endogenous TAX1BP2 induces centro-
some amplification. Therefore, Tax and TAX1BP2 
have opposite effects. Besides, a Tax mutant that 
does not interact with TAX1BP2 can no longer 
induce centrosome duplication. This suggests 
that Tax targets TAX1BP2 to cause aneuploidy. 
In addition, during mitosis, Tax binds to Ran 
and RanBP1, which fragments spindle poles, 
and induces multipolar segregation (Peloponese 
et al., 2005).

(c)	 DNA-damage responses

Tax has been reported to suppress the expres-
sion of DNA polymerase β (Jeang et al., 1990), 
which is implicated in DNA repair. This suppres-
sion is associated with impaired DNA repair 
in HTLV-1-infected cells. In addition, it has 
been reported that Tax inhibits ATM-mediated 
DNA-damage response, resulting in premature 
DNA replication in the presence of genomic 
lesions (Chandhasin et al., 2008).

(d)	 Cell proliferation and differentiation

As mentioned above, the HTLV-1 provirus 
can be detected not only in CD4-positive T 
cells, but also in CD8-positive T cells as well as 
in dentric cells in vivo. Among CD4-positive 
T cells, the HTLV-1 provirus was detected in 
memory/effector T cells. After infection followed 
by a couple of cycles during which HTLV-1 uses 
its reverse transcriptase, the virus is ampli-
fied via clonal proliferation of the infected cells 
(Takemoto et al., 1994; Wattel et al., 1995). The 
same infected clones survive in vivo, indicating 
that clonal proliferation is persistent (Etoh et al., 
1997; Cavrois et al., 1998). A prospective study has 
shown that this clonal proliferation is associated 
with the onset of ATLL in some cases (Okayama 
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et al., 2004), although oligoclonal proliferation 
without ATLL occurs in most asymptomatic 
HTLV-1 carriers. Of note, the proviral load 
ranges from less than 0.1% up to 30% (of total 
peripheral blood mononuclear cells) in asymp-
tomatic carriers. It is likely that a high proviral 
load is associated with a higher risk of developing 
ATLL (Tachibana et al., 1992).

4.1.4	 Role of HTLV-1 in malignant conversion

(a)	 Requirement of HTLV-1 expression for cell 
growth

Viral gene expression differs between 
in-vitro-transformed cell lines and primary 
ATLL cells in a manner that is similar to the rela-
tion between EBV-transformed cells and Burkitt 
lymphoma cells. Tax expression is usually high 
in transformed cells in vitro but TAX gene tran-
scription is detected in only about 40% of ATLL 
cells cultured ex vivo (Matsuoka & Jeang, 2007). 
Analyses of the HTLV-1 provirus identified three 
mechanisms that inactivate Tax expression: 1) 
genetic changes in the TAX gene sequence that 
lead to a premature stop codon or to insertions/
deletions; 2) DNA methylation of the provirus; 
and, 3) deletion of the proviral 5′LTR (Matsuoka 
& Jeang, 2007). Deletion or DNA methylation 
of the 5′LTR silenced transcription of the viral 
genes, including TAX, REX, P12, P13, and P30. 
The 3′LTR, on the other hand, was intact and 
unmethylated in all ATLL cases examined, and 
HBZ was shown to be expressed in all ATLL 
cases tested, and to induce lymphocyte prolifera-
tion (Satou et al., 2006). Interestingly, there is a 
correlation between the proviral load and HBZ 
mRNA levels (Li et al., 2009).

(b)	 Persistence of the HTLV-1 genome

HTLV-1 induces ATLL in a subset of carriers 
after a long latency period. As an example, the 
cumulative lifetime risk of developing ATLL was 
estimated to be 6.6% for men and 2.1% for women 
among Japanese HTLV-1 carriers (Arisawa et al., 

2000). ATLL cells retain the HTLV-1 provirus in 
the genome, but as stated above, defective provi-
ruses are frequently detected, which are classi-
fied into two types. A type-1 defective provirus 
was found in 43% of all defective viruses; it lacks 
internal sequences such as gag, pol and env but 
retains both LTRs. A type-2 defective provirus 
lacks the 5′LTR and internal sequences. It is 
frequently observed in acute and lymphoma-
type ATLLs whereas it is quite rare in chronic 
ATLL, indicating that this defective provirus is 
likely to be associated with disease progression 
(Tamiya et al., 1996). Detailed analyses show 
that the type-2 defective provirus can be gener-
ated before and after integration. A defective 
provirus formed after integration suggests that 
the deletion of the 5′LTR may block Tax expres-
sion, enabling ATLL cells to escape the host 
immune system. The frequency of type-2 defec-
tive proviruses is low in carriers, indicating that 
these defective proviruses were selected during 
leukaemogenesis. Another possibility is that 
infected cells with the type-2 defective provirus 
tend to transform into ATLL cells. ATLL cells 
with the type-2 defective provirus frequently 
cannot produce Tax as a result of the deletion of 
the promoter or the deletion of the second exon. 
However, all cases with the type-2 defective 
provirus maintain an intact HBZ gene sequence 
(Miyazaki et al., 2007).

As a mechanism of retroviral oncogenesis, 
the integrated LTR activates the transcription 
of cellular oncogenes, flanking integration sites. 
However, there are no common integration sites 
of HTLV-1 provirus in ATLL cells (Doi et al., 
2005).

(c)	 Alterations of oncogenes and tumour-
suppressor genes

Several ways by which tumour-suppressor 
genes can be inactivated have been demon-
strated in cancer cells. Mutations of the TP53 
gene occur in up to 40% of all ATLL patients 
(Sakashita et al., 1992; Yasunaga & Matsuoka, 
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2003). Deletion or mutation of the p16INK4A gene 
has also been reported. Such genetic changes in 
the p53 and p16INK4A gene sequence and/or func-
tion are detected in the more aggressive disease 
states, indicating that somatic DNA changes in 
these two genes are associated with the progres-
sion of ATLL (Yasunaga & Matsuoka, 2003).

Cytogenetic analysis of ATLL cells showed a 
common breakpoint cluster region in chromo-
some 10p11.2. Further analyses have shown that 
the transcription factor 8 (TCF8) is frequently 
disrupted by several mechanisms, including 
epigenetic silencing. Suppressed expression of 
TCF8 is associated with resistance to TGF-β. 
Mice carrying a mutation in TCF8 frequently 
developed thymic T-cell lymphoma, indicating 
that TCF8 is a tumour-suppressor gene (Hidaka 
et al., 2008).

There have been a few reports of cellular 
oncogenes in ATLL cells. By screening cDNA 
expression-libraries derived from leukaemic cells 
of ATLL patients for the potential to transform 
NIH3T3 mouse fibroblasts, a novel transforming 
gene, Tgat, was identified. Expression of Tgat in 
NIH3T3 cells resulted in cell transformation, 
indicated by anchorage-independent growth in 
semisolid medium, and tumorigenicity in nude 
mice (Yoshizuka et al., 2004).

4.1.5	 Interaction between HTLV-1 and 
environmental agents

The frequency of opportunistic infections is 
fairly high among ATLL patients, indicating that 
T-cell-mediated immunity is severely impaired 
in such patients. The presence of the parasite 
S. stercoralis is commonly seen in immuno-
suppressed patients. In a study in the Japanese 
districts of Kyushu and Okinawa, where stron-
gyloidiasis is endemic, 36 patients were identi-
fied as seropositive for HTLV-1. Fourteen of these 
patients (39%) had HTLV-1 DNA monoclonally 
integrated in their blood lymphocytes. It has 
been suggested that the parasitic infestation with 

S. stercoralis may act as a cofactor for HTLV-1-
induced leukaemogenesis (Nakada et al., 1987).

4.1.6	 Animal models for HTLV-1-associated 
cancers

Animals, including rabbits, rats, and 
monkeys can be experimentally infected with 
HTLV-1 (Lairmore et al., 2005). In rabbits and 
rats, HTLV-1 infection is persistent, and induces 
host immune response. However, HTLV-1 
does not lead to definite diseases in these two 
species. A large number of Old World monkeys 
are naturally infected with STLV-1. This virus 
is almost identical at the nucleotide level with 
HTLV-1, and several cases of ATLL have been 
described in monkeys (Tsujimoto et al., 1987; 
Akari et al., 1998). Experimental infection with 
HTLV-1 of squirrel monkeys (S. Sciureus) led 
to a substantial decrease in the proliferation 
rate of the CD4-positive T-cell population in 
those infected animals that were affected by a 
pathology similar to ATLL in humans (Debacq 
et al., 2005). Co-infection of rhesus macaques 
(Macaca mulatta) with HTLV-1 and simian 
immunodeficiency virus 1 (SIV-1) increased the 
number of multilobulated lymphocytes in the 
circulation. The study showed that SIV-1 may 
have the potential to upregulate HTLV-1 and 
disease expression (Traina-Dorge et al., 2007). 
So far, non-human primates represent the only 
suitable animal model to study human ATLL.

Several groups have shown that HTLV-1 can 
infect immunocompetent mice, although in 
most of these studies, no viral mRNA produc-
tion or HTLV-1 antibody response were detected. 
In addition, these mice did not show progression 
to ATLL (Lairmore et al., 2005). Several trans-
genic animal models have been established to 
study HTLV-1; the Tax protein has been shown 
to be oncogenic in several of these models. The 
type of tumour depends on the promoter used in 
each study: transgenic mice expressing Tax using 
the granzyme B promoter developed tumours of 
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natural killer cells (Grossman et al., 1995), and 
transgenic mice with Tax expression via the lck 
promoter developed a disease that resembles 
ATLL (Hasegawa et al., 2006). The major differ-
ence between most of these animal tumours 
and ATLL is the fact that, as stated above, a 
subset of human ATLL cells do not express Tax. 
HBZ-transgenic mice have also been shown to 
display increased T-cell proliferation (Satou 
et al., 2006).

4.2	HTLV-1, host immune system, and 
genetic susceptibility

The host immune system influences the 
condition of viral infection, and the diseases 
induced by it. Large interindividual variations in 
proviral load are commonly observed between 
HTLV-1 carriers, but the amount of provirus is 
relatively constant in HTLV-1-infected individ-
uals over time (Kwaan et al., 2006), suggesting 
that host factors, including the immune system, 
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Fig. 4.1 Natural history of HTLV-1 infection leading to onset of ATL

￼

After infection, HTLV-1 is transmitted mostly through cell-to-cell contacts. Tax and HBZ viral proteins promote oligoclonal proliferation of 
HTLV-1-infected cells. Tax expression is suppressed by cytotoxic T-lymphocytes in vivo. A fraction of carriers develop ATL after a long period. At 
the leukaemic stage, about 60% of ATL cases do not express Tax. ATLL, adult-T-cell leukaemia
Prepared by the Working Group



IARC MONOGRAPHs – 100B

determine the provirus load. In spite of eliciting 
a strong immune response, HTLV-1 infection 
persists in vivo, mainly in CD4-positive T cells, 
and part of the CD8-positive T cells are infected 
by HTLV-1 (Yasunaga et al., 2001). An in vivo 
study of HTLV-1-infected cells used diuterium-
labelled glucose to investigate lymphocyte 
kinetics, and showed that CD4+CD45RO+ and 
CD8+CD45RO+ T-lymphocyte proliferation was 
elevated in HTLV-1-infected subjects (Asquith 
et al., 2007). This was associated with viral gene 
expression, and indicates that active prolifera-
tion induced by viral infection induces the host 
immune response, and that the proviral load is 
determined by a balance between Cytotoxic T 
Lymphocytes activity and viral gene expression. 
The host immune system probably prevents the 
development of ATLL in vivo as suggested by a 
study where 3/8 HTLV-1-positive carriers, who 
were immunosuppressed during the course of a 
liver transplantation, developed ATLL (Kawano 
et al., 2006).

4.3	Synthesis

There is strong mechanistic evidence 
supporting the role of HTLV-1 in human 
carcinogenesis. The viral protein Tax has the 
ability to immortalize and to transform human 
T cells. At the leukaemic stage, the expression of 
Tax is often not maintained, but the viral protein 
HBZ continues to be expressed, and supports 
the sustained growth of the leukaemic cells (see 
Fig. 4.1).

5.	 Evaluation

There is sufficient evidence in humans for the 
carcinogenicity of HTLV-1. HTLV-1 causes adult 
T-cell leukaemia/lymphoma.

HTLV-1 is carcinogenic to humans (Group 1).
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