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1. Exposure Data

Terrestrial life is dependent on radiant energy 
from the sun. Solar radiation is largely optical 
radiation [radiant energy within a broad region 
of the electromagnetic spectrum that includes 
ultraviolet (UV), visible (light) and infrared 
radiation], although both shorter wavelength 
(ionizing) and longer wavelength (microwaves 
and radiofrequency) radiation is present. The 
wavelength of UV radiation (UVR) lies in the 
range of 100–400 nm, and is further subdivided 
into UVA (315–400  nm), UVB (280–315  nm), 
and UVC (100–280  nm). The UV component 
of terrestrial radiation from the midday sun 
comprises about 95% UVA and 5% UVB; UVC 
and most of UVB are removed from extraterres-
trial radiation by stratospheric ozone.

Approximately 5% of solar terrestrial radia-
tion is UVR, and solar radiation is the major 
source of human exposure to UVR. Before the 
beginning of last century, the sun was essentially 
the only source of UVR, but with the advent of 
artificial sources the opportunity for additional 
exposure has increased.

1.1 Nomenclature and units

For the purpose of this Monograph, the 
photobiological designations of the Commission 
Internationale de l’Eclairage (CIE, International 
Commission on Illumination) are the most 
relevant, and are used throughout to define 
the approximate spectral regions in which 
certain biological absorption properties and 
biological interaction mechanisms may domi-
nate (Commission Internationale de l’Eclairage, 
1987).

Sources of UVR are characterized in radio-
metric units. The terms dose (J/m2) and dose rate 
(W/m2) pertain to the energy and power, respec-
tively, striking a unit surface area of an irradi-
ated object (Jagger, 1985). The radiant energy 
delivered to a given area in a given time is also 
referred to as ‘fluence’, ‘exposure dose’ and ‘dose’ 
(see IARC, 1992 for further details).

A unit of effective dose [dose weighted in 
accordance with its capacity to bring about a 
particular biological effect] commonly used 
in cutaneous photobiology is the ‘minimal 
erythemal dose’ (MED). One MED has been 
defined as the lowest radiant exposure to UVR 
that is sufficient to produce erythema with sharp 
margins 24 hours after exposure (Morison, 1983). 
Another end-point often used in cutaneous 
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photobiology is a just-perceptible reddening 
of exposed skin; the dose of UVR necessary to 
produce this ‘minimal perceptible erythema’ is 
sometimes also referred to as a MED. In unac-
climatized, white-skinned populations, there is 
an approximately 4-fold range in the MED of 
exposure to UVB radiation (Diffey & Farr, 1989). 
When the term MED is used as a unit of ‘expo-
sure dose’, a representative value for sun-sensitive 
individuals of 200 J/m2 is usually chosen. Since 
1997, the reference action spectrum for erythema 
on human skin (McKinlay & Diffey, 1987) has 
become an International Standards Organization 
(ISO)/CIE norm, which, by convolution with the 
emission spectrum of any UVR source, enables 
the calculation of the erythemal yield of the 
source. A Standard Erythema Dose (SED) has 
been proposed as a unit of erythemally effective 
UVR dose equivalent to 100 J/m2 (Commission 
Internationale de l’Eclairage, 1998).

Notwithstanding the difficulties of inter-
preting accurately the magnitude of such impre-
cise units as the MED and the SED, they have the 
advantage over radiometric units of being related 
to the biological consequences of the exposure.

The UV index is a tool intended for the 
communication of the UVR intensity to the 
general public. It has been developed jointly 
by the World Health Organization, the United 
Nations Environment Program, the International 
Commission on Non-Ionizing Radiation 
Protection and was standardized by ISO/CIE. 
It expresses the erythemal power of the sun as 
follows:
UV Index = 40 times the erythemally effective 
power of the sun in W/m2

The clear sky UV Index at solar noon is gener-
ally in the range of 0–12 at the Earth’s surface, 
with values over 11 being considered extreme.

1.2 Methods for measuring UVR

UVR can be measured by chemical or physical 
detectors, often in conjunction with a monochro-
mator or band-pass filter for wavelength selection. 
Physical detectors include radiometric devices, 
which respond to the heating effect of the radia-
tion, and photoelectric devices, in which incident 
photons are detected by a quantum effect such as 
the production of electrons. Chemical detectors 
include photographic emulsions, actinometric 
solutions and UV-sensitive plastic films. 

The solar UV irradiation of large portions 
of the Earth is currently measured using multi-
frequency imaging detectors on meteorological 
satellites.

1.3 Sources and exposure

1.3.1 Solar UVR

Optical radiation from the sun is modified 
substantially as it passes through the Earth’s 
atmosphere, although about two-thirds of the 
energy from the sun that enters the atmosphere 
penetrates to ground level. The annual variation 
in extraterrestrial radiation is less than 10%; the 
variation in the modifying effect of the atmos-
phere is far greater (Moseley, 1988).

On its path through the atmosphere, solar 
UVR is absorbed and scattered by various 
constituents of the atmosphere. It is scattered by 
air molecules, particularly oxygen and nitrogen, 
by aerosol and dust particles, and is scattered 
and absorbed by atmospheric pollution. Total 
solar irradiance and the relative contributions of 
different wavelengths vary with altitude. Clouds 
attenuate solar radiation, although their effect 
on infrared radiation is greater than on UVR. 
Reflection of sunlight from certain ground 
surfaces may contribute significantly to the total 
amount of scattered UVR (Moseley, 1988).

The levels of solar UVB radiation reaching 
the surface of the Earth are largely controlled 
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by the stratospheric ozone layer, which has been 
progressively depleted as a result of accumula-
tion of ozone-destroying chemicals in the Earth’s 
atmosphere – mostly chlorofluorocarbons 
(CFCs) and hydrochlorofluorocarbons (HCFCs), 
whose main use has been in refrigeration and 
air-conditioning. The accumulation of ozone-
depleting chemicals in the atmosphere ceased 
largely as a result of the Montreal Protocol on 
“Substances that deplete the ozone layer,” which 
was opened for signature in 1987, and has been 
ratified by 196 states.

Global climate change due to the accumula-
tion of carbon dioxide (CO2) in the atmosphere 
can also adversely affect stratospheric ozone. This 
will influence whether, when, and to what extent 
ozone levels will return to pre-1980 values. The 
current best estimate is that global (60°S–60°N) 
ozone levels will return to pre-1980 levels around 
the middle of the 21st century, at or before the 
time when stratospheric concentrations of ozone-
depleting gases return to pre-1980 levels. Climate 
change will also influence surface UV radiation 
through changes induced mainly to clouds and 
the ability of the Earth’s surface to reflect light. 
Aerosols and air pollutants are also expected to 
change in the future. These factors may result 
in either increases or decreases of surface UV 
irradiance, through absorption or scattering. As 
ozone depletion becomes smaller, these factors 
are likely to dominate future UV radiation levels 
(World Meteorological Organization, 2007).

The amount of solar UVR measured at the 
Earth’s surface depends upon several factors as 
follows:

•	 Time of day: In summer, about 20–30% of 
the total daily amount of UVR is received 
between 11:00 and 13:00, and 75% between 
9:00 and 15:00 (sun time not local time; 
Diffey, 1991).

•	 Season: Seasonal variation in terrestrial 
UV irradiance, especially UVB, at the 
Earth’s surface is significant in temperate 

regions but much less nearer the equator 
(Diffey, 1991).

•	 Geographic latitude: Annual UVR expo-
sure dose decreases with increasing dis-
tance from the equator (Diffey, 1991).

•	 Altitude: In general, each 300 metre 
increase in altitude increases the sun-
burning effectiveness of sunlight by about 
4% (Diffey, 1990).

•	 Clouds: Clouds influence UV ground 
irradiance, through reflection, refrac-
tion, absorption and scattering, and 
may increase or, more usually, decrease 
UV ground irradiance. Complete light 
cloud cover prevents about 50% of UVR 
energy from reaching the surface of the 
Earth (Diffey, 1991). Very heavy cloud 
cover absorbs and can virtually eliminate 
UVR even in summer. Even with heavy 
cloud cover, however, the scattered UVR 
component of sunlight (as opposed to that 
coming directly from the sun) is seldom 
less than 10% of that under clear sky. 
While most clouds block some UV radia-
tion, the degree of protection depends 
on the type and amount of clouds; some 
clouds can actually increase the UV 
intensity on the ground by reflecting, 
refracting and scattering the sun’s rays. 
For example, under some circumstances 
(haze, cirrus skies, solar zenith angles 
ranging from 40–63°), the solar irradi-
ance at Toowoomba, Australia (27.6°S, 
151.9°E), was found to be 8% greater than 
that of an equivalent clear sky (Sabburg & 
Wong, 2000; Sabburg et al., 2001).

•	 Surface reflection: The contribution of 
reflected UVR to a person’s total UVR 
exposure varies in importance with sev-
eral factors. A grass lawn scatters 2–5% 
of incident UVB radiation. Sand reflects 
about 10–15%, so that sitting under an 
umbrella on the beach can lead to sun-
burn both from scattered UVB from the 
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sky and reflected UVB from the sand. 
Fresh snow may reflect up to 85–90% of 
incident UVB radiation while water, in 
particular white foam in the sea, may 
reflect up to 30%. Ground reflectance 
is important, because parts of the body 
that are normally shaded are exposed to 
reflected radiation (Diffey, 1990).

•	 Air pollution: Tropospheric ozone and 
other pollutants can decrease UVR.

(a) Measurements of terrestrial solar 
radiation

Because UVR wavelengths between about 
295–320  nm (UVB radiation) in the terrestrial 
solar spectrum are thought to be those mainly 
responsible for adverse health effects, several 
studies have focused on this spectral region. 
Accurate measurements of UVR in this spectral 
band are difficult to obtain, however, because 
the spectral curve of terrestrial solar irradiance 
increases by a factor of more than five between 
290–320  nm. Nevertheless, extensive measure-
ments of ambient UVR in this spectral band have 
been made worldwide. Measurements of terres-
trial solar UVA are less subject to error than 
measurements of UVB, because the spectrum 
does not vary widely with zenith angle and the 
spectral irradiance curve is relatively flat (IARC, 
1992).

The total solar radiation that arrives at the 
Earth’s surface is termed ‘global radiation’. Global 
radiation is made up of two components, referred 
to as ‘direct’ and ‘diffuse’. Approximately 70% of 
the UVR at 300 nm is in the diffuse component 
rather than in the direct rays of the sun. The ratio 
of diffuse to direct radiation increases steadily 
from less than 1.0 at 340  nm to at least 2.0 at 
300  nm. UVR reflected from the ground (the 
albedo) may also be important (IARC, 1992).

Solar UV levels reaching the Earth’s surface 
can now be measured by satellites using hyper-
spectral imaging to observe solar backscatter 

radiation in the visible and ultraviolet ranges. 
NASA’s Total Ozone Mapping Spectrometer 
(TOMS) device was installed on several space-
craft, including the Earth Probe spacecraft for 
collecting data during 1996–2005. TOMS is no 
longer available but the continuity of satellite-
derived global UV data is maintained via the 
new Ozone Monitoring Instrument (OMI), on 
board the Aura satellite (http://aura.gsfc.nasa.
gov/index.html). The presence of aerosols, clouds 
and snow or ice cover can lead to significant 
biases, and new algorithms have been developed 
to improve the satellite-derived measurement of 
surface UV irradiance using Advanced Very High 
Resolution Radiometer (AVHRR) and Meteosat 
images. Currently the European Solar Data Base 
(SoDa) is capable to perform on-the-fly fast inter-
polation with a non-regular grid and to provide 
data for any geographic site with a limitation to 
a 5-km grid cell. The SoDa contains information 
going back to the year 1985, available at http://
www.soda-is.com/eng/services/services_radia-
tion_free_eng.php.

Satellite data have been used to draw maps of 
UV exposure, and are available for use for epide-
miological and other purposes. For example, data 
sets of UV irradiance derived from TOMS data 
for the period 1979 to 2000 are available by date, 
latitude and longitude for UVB and UVA. Data 
from satellites and ground-level measurements 
show that UV irradiation does not vary steadily 
with latitude but that local conditions may 
greatly influence actual UV irradiation levels (a 
good example of this situation may be found in 
the extremely elevated UV levels recorded in the 
summer 2003 during the heat wave that killed 
thousands of people in France and Northern 
Italy).

(b) Personal exposures

Individual sun exposure can be estimated 
through questionnaires, which are at best 
semi-quantitative, and do not give any detailed 
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information on the wavelength of UV exposure. 
Individual UV dosimeters have been used in 
epidemiological studies, but cannot be used for 
the large-scale monitoring of UV exposure of 
populations.

Exposure data for different anatomical 
sites is of value in developing biological dose–
response relationships. The exposure of different 
anatomical sites to solar UVR depends not only 
on ambient UVR and the orientation of sites 
with respect to the sun, but also on cultural 
and social behaviour, type of clothing, and use 
of sunscreen. The most exposed skin surfaces, 
such as the nose, tops of the ears and forehead, 
have levels of UVB exposure that range up to one 
order of magnitude relative to that of the lesser 
exposed areas, such as underneath the chin. 
Ground reflectance plays a major role in expo-
sure to UVB of all exposed body parts, including 
the eye and shaded skin surfaces, particularly 
with highly reflective surfaces such as snow. The 
solar exposure of the different anatomical sites 
of outdoor workers has recently been calculated 
(Milon et al., 2007) [Computerised models that 
integrate direct, diffuse and reflected radiation 
are currently being developed].

Sunscreens can be applied to control the dose 
of UVR to exposed skin. While undoubtedly 
useful when sun exposure is unavoidable (IARC, 
2001), their use may lead to a longer duration of 
sun exposure when sun exposure is intentional 
(Autier et al., 2007).

The cumulative annual exposure dose of 
solar UVR varies widely among individuals in a 
given population, depending to a large extent on 
the occupation and extent of outdoor activities. 
For example, it has been estimated that indoor 
workers in mid-latitudes (40–60°N) receive an 
annual exposure dose of solar UVR to the face 
of about 40–160 times the MED, depending 
on their level of outdoor activities, whereas the 
annual solar exposure dose for outdoor workers 
is typically around 250 times the MED. Because 
few actual measurements of personal exposures 

have been reported, these estimates should be 
considered to be very approximate. They are 
also subject to differences in cultural and social 
behaviour, clothing, occupation, and outdoor 
activities.

1.3.2 Artificial sources of UVR

Cumulative annual outdoor exposure may be 
increased by exposure to artificial sources of UVR. 
Indoor tanning is a widespread practice in most 
developed countries, particularly in northern 
Europe and the United States of America, and 
is gaining popularity even in sunny countries 
like Australia. The prevalence of indoor tanning 
varies greatly among different countries, and has 
increased during the last decades (IARC, 2006a). 
The majority of users are young women, and a 
recent survey indicated that in the USA, up to 
11% of adolescents aged 11–years had ever used an 
indoor tanning device (Cokkinides et al., 2009). 
The median annual exposure dose from artifi-
cial tanning is probably 20–30 times the MED. 
Prior to the 1980s, tanning lamps emitted high 
proportions of UVB and even UVC. Currently 
used appliances emit primarily UVA; and in 
countries where tanning appliances are regu-
lated (e.g. Sweden and France), there is a 1.5% 
upper limit UVB. However, commercially avail-
able “natural” UV-tanning lamps may emit up 
to 4% UVB. UV emission of a modern tanning 
appliance corresponds to an UV index of 12, i.e. 
equivalent to midday tropical sun (IARC, 2006a).

Other sources of exposures to UVR include 
medical and dental applications. UVR has been 
used for several decades to treat skin diseases, 
notably psoriasis. A variety of sources of UVR 
are used, emitting either broad-band UVA or 
narrow-band UVB. A typical dose in a single 
course of UVB phototherapy can be in the range 
of 200–300 times the MED (IARC, 2006a).

UVR is also used in many different indus-
tries, yet there is a paucity of data concerning 
human exposure from these applications, 
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probably because in normal practice, sources are 
well contained and exposure doses are expected 
to be low. In some settings, workers may be 
exposed to radiation by reflection or scattering 
from adjacent surfaces. Staff in hospitals who 
work with unenclosed phototherapy equipment 
are at potential risk of overexposure unless 
protective measures are taken. Indoor tanning 
facilities may comprise 20 or more UVA tanning 
appliances, thus potentially exposing operators 
to high levels (> 20W/m2) of UVA (IARC, 2006a). 

Acute overexposures to the eyes are common 
among electric arc welders. Individuals exposed 
to lighting from fluorescent lamps may typi-
cally receive annual exposure doses of UVR in 
the range of 0–30 times the MED, depending on 
illuminance levels and whether or not the lamps 
are housed behind plastic diffusers. It is also 
worth noting that tungsten–halogen lamps used 
for general lighting may emit broad-band UVR 
(including UVC) when not housed behind a glass 
filter.

2. Cancer in Humans

2.1 Natural sunlight

2.1.1 Basal cell carcinoma and cutaneous 
squamous cell carcinoma

In the previous IARC Monograph (IARC, 
1992), the evaluation of the causal association 
of basal cell carcinoma and squamous cell carci-
noma with solar radiation was based on descrip-
tive data in Caucasian populations, which showed 
positive associations with birth and/or residence 
at low latitudes and rare occurrence at non-sun-
exposed anatomical sites. The evaluation was 
also based on case–control and cohort studies 
whose main measures were participants’ retro-
spectively recalled sun exposure. The majority 
of analyticalal studies published since have also 
used recalled amount of sun exposure, though 

some more recent studies have made objective 
measures of ambient UV and used clinical signs 
of cumulative UV damage to the skin such as 
solar lentigines and actinic keratoses (Table 2.1 
available at http://monographs.iarc.fr/ENG/
Monographs/vol100D/100D-01-Table2.1.pdf, 
Table  2.2 available at http://monographs.
iarc.fr/ENG/Monographs/vol100D/100D-
01-Table2.2.pdf, and Table  2.3 available at 
http://monographs.iarc.fr/ENG/Monographs/
vol100D/100D-01-Table2.3.pdf).

With regard to basal cell carcinoma, all 
studies except one (Corona et al., 2001) showed 
significant positive associations with sunburns at 
some stage of life or overall. Of the studies that 
collected information on the presence of actinic 
keratoses (Green et al., 1996; Corona et al., 
2001; Walther et al., 2004; Pelucchi et al., 2007), 
all showed this also to be a strong risk factor 
(Tables 2.1 and 2.3 on-line). It was proposed that 
the association of basal cell carcinoma with sun 
exposure may vary by histological subtype and 
anatomical site (Bastiaens et al., 1998). Although 
a case–control study showed this variation for 
recalled sun exposure (Pelucchi et al., 2007), a 
cohort study did not (Neale et al., 2007).

For squamous cell carcinoma, while case–
control studies tended to demonstrate little asso-
ciation with sunburns (Table 2.2 on-line), cohort 
studies uniformly showed significant positive 
associations (Table  2.3 on-line). The presence 
of actinic keratoses, a proportion of which are 
squamous cell carcinoma precursors, was the 
strongest risk factor identified (Table 2.3 on-line;  
Green et al., 1996).

2.1.2 Cutaneous malignant melanoma

Cutaneous malignant melanoma occurs in 
the pigment cells of the skin. Until 10–15 years 
ago, with the exception of two histological 
subgroups, melanoma was usually regarded as a 
single entity in analytical studies assessing the 
association with sunlight. The two subgroups, 

40

http://monographs.iarc.fr/ENG/Monographs/vol100D/100D-01-Table2.1.pdf
http://monographs.iarc.fr/ENG/Monographs/vol100D/100D-01-Table2.1.pdf
http://monographs.iarc.fr/ENG/Monographs/vol100D/100D-01-Table2.2.pdf
http://monographs.iarc.fr/ENG/Monographs/vol100D/100D-01-Table2.2.pdf
http://monographs.iarc.fr/ENG/Monographs/vol100D/100D-01-Table2.2.pdf
http://monographs.iarc.fr/ENG/Monographs/vol100D/100D-01-Table2.3.pdf
http://monographs.iarc.fr/ENG/Monographs/vol100D/100D-01-Table2.3.pdf


Solar and UV radiation

lentigo maligna melanoma and acral lentiginous 
melanoma, were usually excluded from studies, 
the former paradoxically because of its known 
causal link with cumulative sun exposure, the 
latter for the opposite reason because it typically 
occurs on the soles of the feet.

In the previous IARC Monograph (IARC, 
1992), the evaluation of the causal association 
between solar radiation and melanoma was 
based on descriptive data and on data from 
case–control studies. The main measures of 
exposure were participants’ recalled sun expo-
sure. ‘Intermittent’ sun exposure, which loosely 
equated with certain sun-intensive activities, 
such as sunbathing, outdoor recreations, and 
holidays in sunny climates, generally showed 
moderate-to-strong positive associations with 
melanoma. However, ‘chronic’ or ‘more contin-
uous’ exposure, which generally equated with 
‘occupational’ exposure, and total sun expo-
sure (sum of ‘intermittent’+‘chronic’), generally 
showed weak, null or negative associations.

These results were collectively interpreted 
under the ‘intermittent sun exposure’ hypothesis 
(Fears et al., 1977) as showing that melanoma 
occurs as a result of a pattern of intermittent 
intense sun exposure rather than of more contin-
uous sun exposure. Studies that had also assessed 
objective cutaneous signs of skin damage that 
were generally assumed to be due to accumulated 
sun exposure, e.g. presence or history of actinic 
keratoses, or signs of other sun-related skin 
damage, showed, almost uniformly, strong posi-
tive associations with melanoma. This inconsist-
ency of evidence with the apparently negative 
associations of reported ‘chronic’ sun exposure 
with melanoma was noted but not satisfactorily 
explained.

Several systematic reviews and meta-anal-
yses of analytical studies of the association of 
melanoma with sun exposure have been published 
since (Table 2.4 available at http://monographs.
iarc.fr/ENG/Monographs/vol100D/100D-01-
Table2.4.pdf). The summary melanoma relative 

risk (RR) estimates of one of the largest meta-
analyses, based on 57 studies published up to 
September 2002 (Gandini et al.,, 2005a, b) were: 
sunburn (ever/never), 2.0 (95%CI: 1.7–2.4); inter-
mittent sun exposure (high/low), 1.6 (95%CI: 
1.3–2.0); chronic sun exposure (high/low), 1.0 
(95%CI: 0.9–1.0); total sun exposure (high/low), 
1.3 (95%CI: 1.0–1.8); actinic tumours (present, 
past/none), 4.3 (95%CI: 2.8–6.6).

Case–control studies and the cohort study 
(Veierød et al., 2003) that have been published 
since September 2002 have shown results that 
are generally consistent with the meta-anal-
ysis, and have not been included in this review 
(Table  2.5 available at http://monographs.
iarc.fr/ENG/Monographs/vol100D/100D-01-
Table2.5.pdf and Table  2.6 available at http://
monog r aphs . ia rc . f r/ ENG/Monog r aphs/
vol100D/100D-01-Table2.6.pdf).

(a) Anatomical site of melanoma

Melanoma–sun-exposure associations 
according to the anatomical site of the melanoma 
have recently gained greater consideration. 
Several studies reported differences in age-
specific incidence rates by site of melanoma 
(Holman et al., 1980; Houghton et al., 1980; 
Elwood & Gallagher, 1998; Bulliard & Cox, 2000). 
The numerous analytical studies of risk factors 
by site of melanoma (Weinstock et al., 1989; Urso 
et al., 1991; Green, 1992; Krüger et al., 1992; Rieger 
et al., 1995; Whiteman et al., 1998; Carli et al., 
1999; Håkansson et al., 2001; Winnepenninckx 
& van den Oord, 2004; Cho et al., 2005; Purdue 
et al., 2005; Nikolaou et al., 2008) collectively 
show that melanomas of the head and neck are 
strongly associated with actinic keratoses, and 
melanomas on the trunk are strongly associ-
ated with naevi. Similar findings have been 
reported from recent detailed case–case studies 
(Whiteman et al., 2003, 2006; Siskind et al., 2005; 
Lee et al., 2006).
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(b) Skin pigmentation

Two observations from epidemiological 
studies may help explain the paradox of the 
lack of association of melanoma with chronic 
sun exposure. First, outdoor workers are not 
at a substantially increased risk of melanoma 
(IARC, 1992; Armstrong & Kricker, 2001); 
second, outdoor workers tend to have a higher-
than-average ability to develop a tan (Green 
et al., 1996; Chang et al., 2009). Outdoor workers 
tend to be constitutionally protected from solar 
skin damage and at a lower risk of skin cancer 
than workers in other occupations because 
of self-selection based on skin pigmentation. 
Indeed, such self-selection has been observed 
in a non-Hispanic white study population from 
Philadelphia and San Francisco, USA, whereby 
the average number of hours outdoors in general 
increases with an increasing ability to tan (Fears 
et al., 2002). The role of baseline sun sensitivity 
in influencing sun exposure in the etiology of 
melanoma has long been recognized (Holman 
et al., 1986; Nelemans et al., 1995).

(c) Latitude

The assessment and reporting of sun expo-
sure may vary among studies at different lati-
tudes, due to latitude differences in sun exposure 
opportunity and behaviour (Elwood & Diffey, 
1993; Gandini et al., 2005a, b). One approach to 
avoid the problems of quantifying individual sun 
exposure at different latitudes has been to use 
ambient UV flux (Fears et al., 2002; Kricker et al., 
2007) for individuals through life, calculated 
from their residential histories, to accurately 
quantify at least potential solar UV exposure.

Two case–control studies, both done at 
comparatively high latitudes (Connecticut, USA; 
Chen et al., 1996) and (Italy; Naldi et al., 2005), 
and one pooled analysis stratified by latitude 
(Chang et al., 2009), have presented site-specific 
melanoma risk estimates in relation to latitude 
(see Table  2.5 on-line). Recalls of sunburns 

throughout life were generally predictive of 
melanomas at all sites in both case–control 
studies and in the pooled analysis (RR, 1.0–2.0). 
Those who had objective signs of cumulative 
sun damage were at increased risk of melanoma 
at specific sites: the presence of solar lentigines 
increased the risk of melanoma on the lower 
limbs (Naldi et al., 2005; RR, 1.5; 95%CI: 1.0–2.1, 
with reference to absence of solar lentigines), 
while actinic keratoses increased the risk of 
melanoma on the head and neck (Chang et al., 
2009; RR, 3.1; 95%CI: 1.4–6.7; based on three 
studies from high to low latitudes in which solar 
keratoses were measured). [The Working Group 
noted that the omission from many studies of 
the lentigo maligna melanoma subgroup, which 
is known to be associated with cumulative sun 
exposure, potentially results in an underestima-
tion of the association with melanomas on the 
head and limbs.]

2.1.3 Cancer of the lip

Cancer of the lip has been associated with 
outdoor occupations in several descriptive 
studies (IARC, 1992). Three early case–control 
studies reported increases in risk for cancer of 
the lip with outdoor work, but use of tobacco 
could not be ruled out as an explanation for this 
association in any study (Keller, 1970; Spitzer 
et al., 1975; Dardanoni et al., 1984).

Two case–control studies have been published 
since that include information on tobacco 
smoking. The first (Pogoda & Preston-Martin, 
1996), which included women only, found 
increased risks of cancer of the lip with average 
annual residential UV flux, recalled average 
annual hours spent in outdoor activities, and 
having played high-school or college sports; risk 
estimates were adjusted for complexion, history 
of skin cancer and average number of cigarettes 
smoked per day. Risk was not increased in women 
whose last occupation was outdoors (odds ratio 
(OR)), 1.2; 95%CI: 0.5–2.8). The dose–response 
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relationship with recalled average annual hours 
spent in outdoor activities was inconsistent: with 
<  30 hours as the reference category, the odds 
ratios were 2.6 (95%CI: 1.0–6.5) for 30–99 hours; 
1.8 (95%CI: 0.7–4.6) for 100–299 hours; and, 4.7 
(95%CI: 1.9–12.1) for >  300 hours. The second, 
which included men only (Perea-Milla López 
et al., 2003), found no evidence of an increased 
risk for cancer of the lip with estimates of 
cumulative sun exposure during leisure time or 
holiday. Risk was increased with cumulative sun 
exposure in outdoor work during the summer 
months, but without any dose–response (OR, 
11.7–12.7; with wide confidence intervals). The 
odds ratios were adjusted for cumulative alcohol 
and tobacco intake and “leaving the cigarette on 
the lip,” among other things. In a meta-analysis 
of cancer in farmers (Acquavella et al., 1998), the 
pooled relative risk for cancer of the lip from 14 
studies was 1.95 (95%CI: 1.82–2.09) (P for heter-
ogeneity among studies, 0.22). [The Working 
Group noted that given the relative risks for 
oesophageal cancer and lung cancer were 0.77 
and 0.65, respectively, confounding by smoking 
was unlikely, but confounding with other farm-
related exposures could not be excluded.]

See Table 2.7 available at http://monographs.
iarc.fr/ENG/Monographs/vol100D/100D-01-
Table2.7.pdf and Table  2.8 available at http://
monog r aphs . ia rc . f r/ ENG/Monog r aphs/
vol100D/100D-01-Table2.8.pdf.

2.1.4 Cancer of the eye

(a) Squamous cell carcinoma of the conjunctiva

(i) Descriptive studies
Incidence of squamous cell carcinoma of the 

eye was inversely correlated with latitude across a 
wide range of countries (Newton et al., 1996), and 
directly associated with measured ambient UVB 
irradiance across the original nine Surveillance 
Epidemiology and End Results (SEER) cancer 
registry areas of the USA (Sun et al., 1997).

(ii) Case–control studies
Three small case–control studies included 

only or mainly cases with conjunctival intraepi-
thelial neoplasia (Table  2.9 available at http://
monog r aphs . ia rc . f r/ ENG/Monog r aphs/
vol100D/100D-01-Table2.9.pdf). Napora et al. 
(1990) compared 19 patients with biopsy-proven 
conjunctival intraepithelial neoplasia (including 
one with invasive squamous cell carcinoma) 
with 19 age- and sex-matched controls. The 
odds ratio for “office work” was 0.21 [95%CI: 
0.04–0.99; Fisher Exact 95%CIs calculated from 
numbers in authors’ table]. Lee et al. (1994) 
included 60 [probably prevalent] cases of ocular 
surface epithelial dysplasia (13 were conjunctival 
squamous cell carcinoma) diagnosed over 19 
years (40% participation), and 60 age- and sex-
matched hospital-based controls. Among others, 
positive associations were observed between 
ocular surface epithelial dysplasia and history 
of solar keratoses [OR, for history at <  50 and 
≥ 50 years of age combined, 9.4 (95%CI: 2.8–31)] 
and duration of residence at ≤ 30° south latitude 
for 31–49 years (OR, 2.2; 95%CI: 0.6–8.3), and 
for 50 years or more (OR, 3.9; 95%CI: 1.0–14.8) 
relative to ≤  30 years. Cumulative years of life 
in which > 50% of daytime was spent outdoors 
were similarly but more weakly associated with 
ocular surface epithelial dysplasia. Tulvatana et 
al. (2003) studied 30 cases of conjunctival squa-
mous cell neoplasia (intraepithelial or invasive) 
and 30 age- and sex-matched control patients 
having extracapsular cataract extraction from 
whom diseased conjunctiva was taken [site of 
biopsy not specified]. Solar elastosis [repre-
senting pathologically proven solar damage] was 
observed in the conjunctiva of 53% of cases and 
3% of controls, resulting in an odds ratio of 16.0 
(95%CI: 2.49–671). [The Working Group noted 
that while pathologists were said to be “masked,” 
it was not stated that tissue sections from cases 
were free of neoplastic tissue.]
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In the only case–control study of exclusively 
conjunctival squamous cell carcinoma, Newton 
et al. (2002) studied 60 Ugandan patients with 
a clinical diagnosis of conjunctival squamous 
cell carcinoma and 1214 controls diagnosed with 
other cancers not known to be associated with 
solar UV exposure or infection with HIV, HPV 
or Kaposi Sarcoma herpesvirus. The risk for 
conjunctival squamous cell carcinoma increased 
with “time spent cultivating”: with reference to 
0–9  hours a week, the odds ratios were 1.9 for 
10–19 hours and 2.4 for ≥ 20 hours (P = 0.05), 
adjusted for age, sex, region of residence, HIV-1 
status, and low personal income. Both HIV-1 
status and personal income were strong predic-
tors of risk.

(b) Ocular melanoma

(i) Descriptive studies
No increase in the incidence of ocular 

melanoma was recorded by the US SEER 
programme during 1974–98, which is in contrast 
with the increasing incidence of cutaneous 
melanoma over the same period (Inskip et al., 
2003).

Three studies have reported on the distri-
bution of choroidal melanomas within the 
eye in relation to the presumed distribution of 
choroidal sun exposures across the choroid. 
The first of these (Horn et al., 1994), which 
analysed 414 choroidal, 20 ciliary body and 18 
iris melanomas, concluded that choroidal and 
iris melanomas were located most frequently in 
“the areas that are presumably exposed to the 
most sunlight.” Specifically, melanomas in the 
posterior choroid were observed to preferentially 
involve the central area. The second (Schwartz 
et al., 1997), which analysed 92 choroidal mela-
nomas, concluded that there was no preferential 
location for tumours on the choroid, having 
rigorously estimated “the average dose distribu-
tion on the retina received in outdoor daylight.” 
A third study (Li et al., 2000), which analysed 420 

choroidal and ciliary body melanomas, mapped 
incident melanomas on the retina and observed 
that rates of occurrence were concentrated in 
the macula area, and decreased progressively 
with increasing distance from the macula to the 
ciliary body. It was concluded that this pattern 
was consistent with the dose distribution of light 
on the retinal sphere as estimated by Schwartz et 
al. (1997).

(ii) Case–control and cohort studies
Nine case–control studies and one cohort 

study reported on associations of sun exposure 
with ocular melanoma (Gallagher et al., 1985; 
Tucker et al., 1985; Holly et al., 1990; Seddon 
et al., 1990; van Hees et al., 1994; Pane & Hirst, 
2000; Håkansson et al., 2001; Vajdic et al., 2002; 
Lutz et al., 2005 (incorporating also data from 
Guénel et al., 2001); and Schmidt-Pokrzywniak 
et al., 2009). In addition, one previously reported 
case–control study reported new analyses of 
occupation and ocular melanoma (Holly et al., 
1996; Tables 2.8 and 2.9 on-line).

Four studies (Gallagher et al., 1985; Holly 
et al., 1990; Seddon et al., 1990; Tucker et al., 1985) 
found an increased risk for ocular melanoma in 
people with light skin, light eye colour or light 
hair colour. Outdoor activities were associated 
with ocular melanoma in one study (Tucker 
et al., 1985).

Four studies (Tucker et al., 1985; Seddon 
et al., 1990; Håkansson et al., 2001; Vajdic et al., 
2001, 2002) reported statistically significant asso-
ciations between a measure of sun exposure and 
ocular melanoma. Tucker et al. (1985) observed 
an increased risk of ocular melanoma in people 
born in the south of the USA (south of 40°N) rela-
tive to those born in the north (OR, 2.7; 95%CI: 
1.3–5.9), which appeared to be independent of 
duration of residence in the south. Seddon et al. 
(1990) reported on two separate series of cases 
and controls. In the first series, increased risks 
of uveal melanoma with residence in the south of 
the USA were observed (OR, 2.4; 95%CI: 1.4–4.3 
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for up to 5  years; and OR, 2.8; 95%CI: 1.1–6.9 
for more than 5 years). In the second series, the 
risk increased with increasing years of “intense 
sun exposure” (OR, 1.5; 95%CI: 1.0–2.2 for 1–40 
years; and, OR, 2.1; 95%CI: 1.4–3.2 for >  40 
years); this association was only weakly present 
in the first series; the odds ratio for uveal mela-
noma with birthplace in the south of the USA 
was 0.2 (95%CI: 0.0–0.7), which was statistically 
independent of the positive association between 
duration of residence in the south and uveal 
melanoma risk. Vajdic et al. (2001, 2002) found 
that the risk of choroid and ciliary body mela-
noma was increased in the highest categories 
of total sun exposure (OR, 1.6; 95%CI: 1.0–2.6), 
weekdays sun exposure (OR, 1.8; 95%CI: 1.1–2.8), 
and occupational sun exposure (OR, 1.7; 95%CI: 
1.1–2.8); the underlying trends across quarters 
of exposure were reasonably consistent and 
statistically significant. These associations were 
largely due to stronger associations confined to 
men. Finally, the one cohort study (Håkansson 
et al., 2001), based in the Swedish construction 
industry’s health service, observed an increasing 
risk of ocular melanoma with increasing occupa-
tional sun exposure based on recorded job tasks 
(RR, 1.4; 95%CI: 0.7–3.0, for medium sun expo-
sure; and, RR, 3.4; 95%CI: 1.1–10.5, for high sun 
exposure).

Five of the case–control studies limited 
their study to uveal melanoma (melanoma in 
the choroid, ciliary body, and iris), and one of 
these excluded iris melanoma because of small 
numbers. Two studies reported results for iris 
melanoma (Tucker et al., 1985; Vajdic et al., 
2002). One study observed odds ratios of 3–5 for 
iris melanoma with the use of an eye shade when 
outdoors occasionally, rarely or never, relative 
to almost always (Tucker et al., 1985), and the 
other observed an increased risk of iris mela-
noma in farmers (OR, 3.5; 95%CI: 1.2–8.9; Vajdic 
et al., 2002). One study also reported results for 
conjunctival melanoma, but found no positive 

associations with measures of sun exposure 
(Vajdic et al., 2002).

(c) Meta-analyses

Shah et al. (2005) and Weis et al. (2006) 
reported the results of meta-analyses of risk of 
ocular melanoma in relation to sun sensitivity 
characteristics and sun exposure, including 
both case–control and cohort studies (Table 2.10 
available at http://monographs.iarc.fr/ENG/
Monographs/vol100D/100D-01-Table2.10.pdf). 
A fixed-effects model was used except when 
statistically significant heterogeneity was found 
between the effects of individual studies and 
a random-effects model was used instead. A 
summary relative risk was reported only when 
four or more studies were included in the anal-
ysis. In the analysis by Shah et al. (2005), neither 
latitude of birth nor outside leisure was appre-
ciably associated with ocular melanoma. There 
was weak evidence that occupational exposure to 
the sun increased ocular melanoma risk (RR for 
highest exposed category, 1.37; 95%CI: 0.96–1.96). 
[The Working group noted that this analysis did 
not include results of Lutz et al. (2005) or Schmidt-
Pokrzywniak et al. (2009), but included those of 
Guénel et al. (2001), which are a component of 
Lutz et al. (2005). When the results of Lutz et al. 
(2005) are substituted for those of Guénel et al. 
(2001) and those of Schmidt-Pokrzywniak et al. 
(2009) added to the fixed effects meta-analysis, 
the meta-RR is 1.25 (95%CI: 1.02–1.54).]

The meta-analysis of Weis et al. (2006) 
provides strong evidence that having blue or grey 
eyes, fair skin and/or burning easily rather than 
tanning when exposed to the sun are associated 
with an increased risk of ocular melanoma. Hair 
colour was not associated with this cancer.

2.1.5 Other sites

Prompted at least in part by the hypotheses 
arising from ecological studies, case–control 
and cohort studies have been conducted in 
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which measures of personal exposure to solar 
radiation (loosely referred to here as sun or 
sunlight exposure) have been related to cancers 
in internal tissues (Table  2.11 available at 
http://monographs.iarc.fr/ENG/Monographs/
vol100D/100D-01-Table2.11.pdf and Table  2.12 
available at http://monographs.iarc.fr/ENG/
Monographs/vol100D/100D-01-Table2.12.pdf). 
Studies that infer high sun exposure from a past 
history of skin cancer (basal cell carcinoma, 
squamous cell carcinoma or melanoma) were 
excluded (see for example, Tuohimaa et al., 2007). 
It has been argued in respect of these studies that 
“the incidence of second cancers in individuals is 
elevated by several known and unknown mech-
anisms, including common etiological factors 
and predispositions, and influenced by possible 
biases in the ascertainment of second cancers 
[…] The net direction of these influences will 
mostly be in the direction of elevated occurrence 
of second cancers, against which a possible effect 
of sunlight and vitamin D […] could be difficult 
to detect.” (IARC, 2008). Thus, such studies are 
unlikely to be a reliable source of evidence for 
determining whether sun exposure causes or 
prevents any other cancers.

(a) Cancer of the colorectum

Two case–control studies have related esti-
mates of individual sun exposure to risk of cancer 
of the colorectum. Based solely on death certifi-
cates, Freedman et al. (2002) observed a some-
what reduced risk (OR, 0.73; 95%CI: 0.71–0.74) 
with high ambient sunlight in the state of resi-
dence at the time of death, adjusted for age, sex, 
race, occupational sun exposure (inferred from 
usual occupation), physical activity, and socio-
economic status. In a large population-based 
study in which participants were interviewed, 
no appreciable association was found between 
cancer of the colon and sun exposure recalled 
for each season for the 2 years before case diag-
nosis. With the exception of the second quintile 
of exposure in women (OR, 1.3), the odds ratios 

for each quintile of exposure in each sex varied 
from 0.9–1.1, and were not significantly increased 
(Kampman et al., 2000).

(b) Cancer of the breast

Three case–control and two cohort studies 
have examined the association between meas-
ures of sun exposure and breast cancer. In 
three studies reporting results for sun expo-
sure assessed from location of residence, one 
found slightly higher risks in women residing 
in California (using ‘south’ as a reference; Laden 
et al., 1997); the other two studies found reduced 
relative risks (0.73 and 0.74) with residence in 
areas of high mean daily solar radiation (John 
et al., 1999; Freedman et al., 2002), significantly 
so in one of these studies (Freedman et al., 2002). 
Sun-related behaviour was recorded in three 
studies (John et al., 1999; Freedman et al., 2002; 
Knight et al., 2007) and was inversely associated 
with risk for breast cancer for some measures. 
For example, the relative risks for breast cancer 
with frequent recreational and occupational 
sun exposure relative to rare or no exposure 
were 0.66 (95%CI: 0.44–0.99) and 0.64 (95%CI: 
0.41, 0.98), respectively, in 5009 women from 
the NHANES Epidemiologic Follow-up Study 
(John et al., 1999). For the highest category of 
estimated lifetime number of outdoor activity 
episodes at 10–19 years of age, the odds ratio 
was 0.65 (95%CI: 0.50–0.85) in a large Canadian 
case–control study (Knight et al., 2007). In each 
study, these effect measures were adjusted for a 
measure of socioeconomic status and some other 
variables associated with breast cancer.

(c) Cancer of the ovary

In a case–control study, based on death 
certificates, the relative risk of cancer of the ovary 
was reduced in those residing in areas with high 
mean daily solar radiation (OR, 0.84; 95%CI: 
0.81–0.88), but not in those with high occupa-
tional sun exposure (Freedman et al., 2002).
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(d) Cancer of the prostate

Four case–control studies (two hospital-
based) and one cohort study (John et al., 2004, 
2007) examined the association between meas-
ures of sun exposure and risk for cancer of the 
prostate. In one case–control study conducted 
in two consecutive periods and with patients 
with benign prostatic hypertrophy as controls, 
the odds ratio for prostate cancer with highest 
lifetime sun exposure was [0.32 (95%CI: 0.20–
0.51); combined odds ratio calculated from two 
reported odds ratios]. Odds ratios were similarly 
low with indirect measures of sun exposure, such 
as regular foreign holidays or childhood sunburn 
(Luscombe et al., 2001; Bodiwala et al., 2003). 
Two other studies showed weaker evidence of an 
inverse association of residence in a high solar 
radiation environment with cancer of the pros-
tate (Freedman et al., 2002; John et al., 2004, 
2007). Outdoor occupation, self-reported recrea-
tional sun exposure, physician-assessed sun 
exposure or actinic skin damage had no effect on 
prostate cancer risk in these studies. In a case–
control study that included only cases of primary 
advanced cancer of the prostate (John et al., 2005), 
a reduced risk for cancer of the prostate was 
reported with high values of sun exposure index 
(based on comparison of the measured reflect-
ance of usually exposed and usually unexposed 
skin; OR, 0.51; 95%CI: 0.33–0.80), but with little 
evidence of similar associations with residential 
ambient solar radiation or total or occupational 
lifetime outdoor hours.

(e) Non-Hodgkin lymphoma and other 
lymphomas

While some early, mainly ecological studies, 
suggested that sun exposure might increase risk 
for non-Hodgkin lymphoma, studies of indi-
vidual sun exposure suggest that recreational 
sun exposure may decrease its risk.

Two earlier studies in individuals assessed 
sunlight exposure based on place of residence, 

occupational title and, in one study, industry 
(Freedman et al., 1997; Adami et al., 1999). The 
results for residential exposure were conflicting: 
one study, in the USA, found a reduced relative risk 
with residence at lower latitudes (Freedman et al., 
1997); and the other, in Sweden, an increased risk 
(Adami et al., 1999). They concurred, however, in 
finding reduced relative risks in people with high 
occupational sun exposure with values of 0.88 
(95%CI: 0.81–0.96) in the USA and 0.92 (95%CI: 
0.88–0.97; combined result for men and women) in 
Sweden. Subsequent studies focusing specifically 
on occupational sun exposure have not observed 
a reduced risk of non-Hodgkin lymphoma with 
higher exposure (van Wijngaarden & Savitz, 
2001; Tavani et al., 2006; Karipidis et al., 2007). 
A study of non-Hodgkin lymphoma in children 
reported a reduced risk in those who had spent 
15 or more days annually at seaside resorts, with 
an odds ratio of 0.60 (95%CI: 0.43–0.83; Petridou 
et al., 2007).

All other studies (Hughes et al., 2004; 
Smedby et al., 2005; Hartge et al., 2006; Soni 
et al., 2007; Weihkopf et al., 2007; Zhang et al., 
2007; Boffetta et al., 2008; Kricker et al., 2008) 
were included in a pooled analysis of original 
data from 8243 cases of non-Hodgkin lymphoma 
and 9697 controls in ten member studies of the 
InterLymph Consortium (Kricker et al., 2008; 
Table 2.13 available at http://monographs.iarc.fr/
ENG/Monographs/vol100D/100D-01-Table2.13.
pdf). [The Working Group noted that results on 
sun exposure and non-Hodgkin lymphoma in 
three of these studies have not yet been published 
separately.] In eight studies in which a composite 
measure of total sun exposure (recreational plus 
non-recreational exposure) could be defined, the 
pooled odds ratio fell weakly with increasing sun 
exposure to 0.87 (95%CI: 0.71–1.05) in the fourth 
quarter of exposure. There was a steeper down-
trend for recreational exposure to an odds ratio 
of 0.76 (95%CI: 0.63–0.91; P for trend, 0.005), and 
no appreciable downtrend for non-recreational 
exposure. Physical activity and obesity, which 
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might be confounding, were not controlled for 
in the analysis of any of the pooled studies.

Four case–control studies have reported on the 
association between sun exposure and Hodgkin 
lymphoma (Table  2.11 on-line); there was no 
consistent pattern of decreasing or increasing risk 
with different sun exposure measures (Smedby 
et al., 2005; Petridou et al., 2007; Weihkopf et al., 
2007; Grandin et al., 2008). The same was true for 
multiple myeloma in two case–control studies 
(Boffetta et al., 2008; Grandin et al., 2008). One 
study found weak evidence of an increased risk 
of mycosis fungoides [a cutaneous lymphoma] 
in people with high occupational sun exposure 
[OR: 1.3 (95%CI: 1.0–1.9; combined result for 
men and women] (Morales-Suárez-Varela et al., 
2006).

2.2 Artificial UV radiation

2.2.1 Use of artificial tanning devices 
(sunlamps, sunbeds, solaria)

(a) Cutaneous melanoma, squamous cell 
carcinoma, and basal cell carcinoma

Two meta-analyses of skin cancer in rela-
tion to sunbed use have been undertaken over 
the past few years (Table 2.14). The first (IARC, 
2006a, 2007a) was based on 19 informative 
published studies (18 case–control, of which 
nine population-based, and one cohort, all in 
light-skinned populations) that investigated the 
association between indoor tanning and skin 
cancers, and included some 7355 melanoma 
cases (Table  2.14). The characterization of the 
exposure was very varied across reports. The 
meta-relative risk for ever versus never use of 
indoor tanning facilities from the 19 studies was 
1.15 (95%CI: 1.00–1.31); results were essentially 
unchanged when the analysis was restricted to 
the nine population-based case–control studies 
and the cohort study. A dose–response model 
was not considered because of the heterogeneity 
among the categories of duration and frequency 

of exposure used in the different studies. All 
studies that examined age at first exposure found 
an increased risk for melanoma when exposure 
started before approximately 30 years of age, with 
a summary relative risk estimate of 1.75 (95%CI: 
1.35–2.26) (Table 2.14). The second meta-analysis 
(Hirst et al., 2009) included an additional nested 
case–control study of melanoma (Han et al., 
2006), bringing the total number of melanoma 
cases to 7855, and the summary relative risk for 
melanoma in relation to ever versus never use of 
sunbeds was reported as 1.22 (95%CI: 1.07–1.39).

Regarding basal cell carcinoma and squa-
mous cell carcinoma, a meta-analysis of the three 
studies on ever use of indoor tanning facilities 
versus never use showed an increased risk for 
squamous cell carcinoma of 2.25 (95%CI: 1.08–
4.70) after adjustment for sun exposure or sun 
sensitivity (IARC, 2006a, 2007a). One study had 
information on age at first exposure of indoor 
tanning facilities and suggested that the risk 
increased by 20% (OR, 1.2; 95%CI: 0.9–1.6) with 
each decade younger at first use. The four studies 
on basal cell carcinoma did not support an asso-
ciation with the use of indoor tanning facilities 
(IARC, 2006a, 2007a).

(b) Ocular melanoma

Four case–control studies have reported 
explicitly on the association of artificial tanning 
devices and ocular melanoma (Tucker et al., 1985; 
Seddon et al., 1990; Vajdic et al., 2004; Schmidt-
Pokrzywniak et al., 2009; Table 2.15). Odds ratios 
for the highest exposure categories in each were: 
2.1 (95%CI: 0.3–17.9) (Tucker et al., 1985); 3.4 
(95%CI: 1.1–10.3) and 2.3 (95%CI: 1.2–4.3) for 
the population-based comparison and case–
sibling comparison, respectively (Seddon et al., 
1990); 1.9 (95%CI: 0.8–4.3) (Vajdic et al., 2004); 
and 1.3 to 2.1 depending on the control category 
(Schmidt-Pokrzywniak et al., 2009). The only 
study to analyse dose–response found evidence 
of increasing risk with increasing duration 
of use (P  =  0.04) and, less strongly, estimated 
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cumulative time of exposure (P = 0.06) (Vajdic 
et al., 2004). The two most recent studies (Vajdic 
et al., 2004; Schmidt-Pokrzywniak et al., 2009) 
calculated odds ratios for exposure that started 
at or before 20 years of age and after this age; 
in both, the odds ratio was greater for exposure 
starting at the younger age. The results of Seddon 
et al. (1990) and Vajdic et al. (2004) were adjusted 
for sun sensitivity and personal sun exposure. 
[The Working Group noted that Schmidt-
Pokrzywniak et al. (2009) found little evidence of 
associations between measures of personal sun 
exposure and ocular melanoma.]

(c) Internal cancers

Five case–control studies (Table 2.16) have 
reported on the association of the use of artifi-
cial tanning devices and cancer of the breast (one 
study), non-Hodgkin lymphoma (four studies), 
Hodgkin lymphoma (three studies), multiple 
myeloma (two studies), and lymphoprolifera-
tive syndrome (one study) (Smedby et al., 2005; 
Hartge et al., 2006; Knight et al., 2007; Boffetta 
et al., 2008; Grandin et al., 2008). In all the 
studies of non-Hodgkin lymphoma, the risk was 
lower in people who had used artificial tanning 
devices than in those who had not; in two there 
was also a dose–response relationship across 
exposure categories with a P value for trend of 
≤ 0.01 (Smedby et al., 2005; Boffetta et al., 2008). 
Odds ratios were also below unity for cancer of 
the breast (Knight et al., 2007) and for Hodgkin 
lymphoma (Smedby et al., 2005; Boffetta et al., 
2008), with a significant dose–response relation-
ship (P value for trend  =  0.004) in one study 
of Hodgkin lymphoma (Smedby et al., 2005). 
Confounding with exposure to natural sunlight 
cannot be ruled out as an explanation for these 
inverse relationships because none of the studies 
adjusted the results for sun exposure.

2.2.2 Welding

Six separate case–control studies (seven 
reports) and one meta-analysis have reported on 
associations between welding and risk of ocular 
melanoma (Table 2.17). All studies reported an 
odds ratio for ocular melanoma above unity in 
most categories of exposure to welding. Seddon 
et al. (1990) reported on two sets of cases and 
controls and found an increased risk in only one 
of them. Lutz et al. (2005) found an increased 
risk with a “history of at least 6 months’ employ-
ment in welding or sheet metal work,” but not for 
“working with welding”; the increase observed 
was restricted to the French component of the 
study, which Guénel et al. (2001) had previously 
reported. The strongest associations of welding 
with ocular melanoma (although based on small 
numbers) were reported in those studies that 
restricted the exposure definition to “work as a 
welder,” i.e. not including being in proximity to 
welding (Tucker et al., 1985; Siemiatycki, 1991; 
Guénel et al., 2001; Lutz et al., 2005). Several 
studies showed evidence of dose–response rela-
tionships (Holly et al., 1996; Guénel et al., 2001; 
Vajdic et al., 2004) with duration of employment 
or of use.

The meta-analysis (Shah et al., 2005) estimated 
a meta-relative risk of 2.05 (95%CI: 1.20–3.51) 
for welding, using a random-effects model. [The 
Working Group noted that this study included 
results from Ajani et al. (1992), which overlap 
with those from case–control Series 1 of Seddon 
et al. (1990), and did not include those from the 
case–control Series 2 of Seddon et al. (1990). It 
also did not include results from Siemiatycki 
(1991).]

2.3 UVA, UVB, and UVC

Epidemiology has little capacity to distinguish 
between the carcinogenic effects of UVA, UVB, 
and UVC. UVC is not present in natural sunlight 
at the surface of the earth and is therefore not 
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relevant; in almost all circumstances humans are 
exposed simultaneously to UVB and UVA, and 
UVB and UVA exposures vary more or less in 
parallel (see Section 1). Several epidemiological 
approaches have been used in an attempt to 
distinguish the effects of UVA and UVB on skin 
cancer risk. Their major focus has been to assess 
whether solar UVA exposure contributes to the 
increased risk of cutaneous melanoma, for which 
there is some conflicting evidence in experimental 
studies (see Section 4). These include studies on 
exposure to UVA for artificial tanning, effect of 
sunscreens on melanoma risk, and UVB photo-
therapy without associated exposure to PUVA 
(psoralen-UVA photochemotherapy).

PUVA is the combination of psoralen with 
UVA radiation, and is used in the treatment of 
psoriasis. PUVA has been reviewed previously by 
two IARC Working Groups and there is sufficient 
evidence that PUVA therapy is carcinogenic to 
humans (Group 1), causing cutaneous squamous 
cell carcinoma (IARC, 1986, 2012), and these 
studies will not be reviewed here.

2.3.1 Descriptive studies

Garland et al. (1993) noted that “rising 
trends in the incidence of and mortality from 
melanoma have continued since the 1970s and 
1980s, when sunscreens with high sun protec-
tion factors became widely used.” They related 
this observation to the fact that commonly used 
chemical sunscreens had blocked UVB but not 
UVA; and the possibility that by preventing 
erythema, sunscreens would permit extended 
sun exposure and thus substantially increase 
exposure to UVA. However, nearly half of the 
melanoma mortality increase between 1950–54 
and 1990–94 in the USA in white men and more 
than half of that in white women had occurred 
by 1970–74, with only a minor upward pertur-
bation in the trend after 1970–74. Thus, there 
probably was not a close association between 

increasing use of sunscreens blocking UVB and 
the increasing risk of melanoma.

Moan et al. (1999) plotted the relationships of 
UVB and UVA irradiances and incidence rates 
of cutaneous basal cell carcinoma, squamous 
cell carcinoma and melanoma using data from 
Australia, Canada, the Czech Republic, Denmark, 
Finland, Iceland, Norway, New Zealand, Sweden, 
Scotland, USA, and the United Kingdom. As 
expected, all were inversely related to latitude 
but the slope of the fitted linear relationship was 
numerically smaller for UVA than for UVB, and 
for melanoma than for basal cell carcinoma and 
squamous cell carcinoma. Estimates of biological 
amplification factors (relative increase in risk per 
unit increase in exposure) based on these slopes 
for UVB were, in men and women respectively, 
2.8 and 2.8 for basal cell carcinoma, 3.1 and 2.9 
for squamous cell carcinoma, and 1.3 and 1.0 for 
melanoma. Those for UVA and melanoma were 
3.8 and 2.9, respectively, suggesting that UVA 
may play a significant role in the induction of 
melanomas.

2.3.2 Exposure to artificial UVA for tanning 
purposes

Early artificial tanning devices emitted both 
UVB and UVA. UVB emissions were subse-
quently reduced relative to UVA, presumably to 
reduce skin cancer risk, but have been increased 
again recently to mimick the sun and to produce 
longer lasting tans (see Section 1). In principle 
these periods of different relative exposures to 
UVA and UVB during artificial tanning could 
be used to evaluate the relative effects of UVA 
and UVB on skin cancer risk. Veierød et al. 
(2003, 2004) attempted this analysis in a cohort 
study of Norwegian and Swedish women who 
had reported their use of a sunbed or sunlamp 
(solarium) in different age periods on entry to 
the cohort. They defined three subgroups of 
women: those who had used solaria in the period 
1963–83 (mainly before they became mainly 
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UVA-emitting), the period 1979–91 (mainly 
after solaria were designed to emit mainly UVA) 
or the period 1975–87 (covering both catego-
ries of solarium) when they were 20–29 years 
of age. The odds ratios for solarium use in these 
subgroups were 3.75 (95%CI: 1.73–8.13) for use 
in 1963–83, 3.19 (95%CI: 1.22–8.32) for use in 
1979–91, and 1.28 (95%CI: 0.46–3.60) for use 
in 1975–87. These results show little difference 
between those exposed in the earlier and later 
periods of solarium use. [The Working Group 
noted that only seven cases of melanoma were 
observed in each of these periods, and there was 
little statistical power to see a difference.] A recent 
meta-analysis of use of artificial tanning devices 
and skin cancer (IARC, 2007b) reported that the 
relative risks of melanoma associated with ever 
use of a sunbed or sunlamp did not vary with 
year of publication of a study or the first year of 
a study period, where available. [The Working 
Group noted that the most relevant time metric 
would be year of first reported use of a sunbed or 
sunlamp, rather than the year of publication or 
first year of study period.]

2.3.3 Use of sunscreens and risk for 
melanoma

Initially, sunscreens contained only UVB 
absorbers; more recently they have covered a 
broader spectrum with the addition of UVA 
reflectors or absorbers, although many are still 
less effective against the higher wavelengths of 
UVA than they are against UVB (see Section 
1). Recent meta-analyses of published observa-
tional studies of sunscreen and melanoma, each 
including slightly different subsets of studies, 
have found meta-relative risks close to unity with 
highly significant heterogeneity among studies: 
1.11 (95%CI: 0.37–3.32) with a P value for hetero-
geneity < 0.001 (Huncharek & Kupelnick, 2002); 
1.0 (95%CI: 0.8–1.2) with a P value for hetero-
geneity <  0.001 (Dennis et al., 2003); and 1.2 
(95%CI: 0.9–1.6) with a P value for heterogeneity 

<  0.0001 (Gorham et al., 2007). [The Working 
Group noted that although these observations 
might be explained by a lack of effectiveness of 
early sunscreens against higher wavelengths of 
UVA, there are other possible, and probably more 
plausible, explanations. First, there is undoubted 
positive confounding between sunscreen use and 
sun exposure, and probably also sun sensitivity. 
Although this confounding can, in principle, be 
dealt with by adjustment for sun exposure and 
sun sensitivity in multiple variable models of the 
association of sunscreen use with melanoma risk, 
inaccurate measurement of these confounders 
limits the ability of modelling to control their 
confounding. Thus, residual confounding could 
easily explain the lack of protective effect of 
sunscreens seen in observational studies of 
melanoma (IARC, 2001). Second, there is clear 
evidence of adaptation to the use of sunscreens 
such that people who apply sunscreens before 
outdoor recreation may increase their dura-
tion of exposure to the sun (Autier et al., 2007) 
so that their dose of erythemal UV radiation 
may not change. Thus, observed associations of 
sunscreens with risk of melanoma (or other skin 
cancers) in observational studies do not provide 
useful information regarding the relative effects 
of UVB and UVA on cancer risk.]

2.3.4 UVB phototherapy

UVB phototherapy is used to treat a variety 
of skin conditions. Lee et al. (2005) reviewed 
the literature and concluded that there was no 
evidence of an increased risk of skin cancer in 
those who had received UVB phototherapy 
as their only form of UV phototherapy. [The 
Working Group noted that only three cases of 
melanoma were identified among about 1000 
who had received this therapy.]

Lim & Stern (2005) extended follow-up of 
1380 patients with severe psoriasis who had been 
treated with variations of PUVA, methotrexate, 
UVB, topical tar, and ionizing radiation. In 
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patients who had less than 100 PUVA treatments, 
the incidence rate ratio for cutaneous squamous 
cell carcinoma with ≥ 300 UVB treatments was 
0.81 (95%CI: 0.34–1.93) for chronically sun-
exposed sites, and 2.75 (95%CI: 1.11–6.84) for 
rarely to intermittently sun-exposed sites. The 
corresponding values for basal cell carcinoma 
were 1.38 (95%CI: 0.80–2.39) for chronically sun-
exposed sites and 3.00 (95%CI: 1.30–6.91) for 
intermittently sun-exposed sites. [The Working 
Group noted that the possibility that the observed 
effect required interaction with PUVA or another 
treatment for psoriasis cannot be ruled out in this 
study.] Hearn et al. (2008) described the results 
of follow-up of 3867 patients who had received 
narrow-band UVB phototherapy, a quarter of 
whom had also received PUVA. In comparison 
with data from the Scottish Cancer Registry, 
there were near 2-fold increases in the risk of first 
squamous cell carcinoma [two observed cases] 
and of first basal cell carcinoma [14 observed 
cases] for treatment with narrow-band UVB 
only, but their 95% confidence intervals included 
unity. For melanoma, the relative risk was just 
below 1. For those who had more than 100 UVB 
therapy treatments, the risks, relative to those 
who received 25 or less such treatments, were 1.22 
(95%CI: 0.28–4.25) for basal cell carcinoma, 2.04 
(95%CI: 0.17–17.8) for squamous cell carcinoma, 
and 1.02 (95%CI: 0.02–12.7) for melanoma. Two 
previous small studies of narrow-band UVB, 
of 126 (Weischer et al., 2004) and 484 patients 
(Black & Gavin, 2006), observed only one skin 
cancer between them, an in-situ melanoma, in 
less than 10 years of follow-up.

Given the few cases of skin cancer so far 
reported in patients given UVB phototherapy as 
their only form of phototherapy, the statistical 
power of currently available studies to detect 
other than a large increase in relative risk of any 
type of skin cancer with this therapy, and, there-
fore, of UVB specifically is weak.

2.4 Synthesis

2.4.1 Solar radiation

In Caucasian populations, both basal cell 
carcinoma and squamous cell carcinoma are 
strongly associated with solar radiation, as meas-
ured by indicators of accumulated solar skin 
damage (e.g. increasing age, especially for squa-
mous cell carcinoma; and presence of actinic 
keratoses), and secondarily by recalled episodes 
of acute solar skin damage (multiple sunburns).

The causal association of cutaneous mela-
noma and solar exposure is established, this 
link has become clearer in the last decade or 
so through the observation of the site-specific 
heterogeneity of melanoma, the lower-than-
average phenotypic risk for skin carcinogenesis 
among outdoor workers, and the recognition 
that the different associations of melanoma with 
sun exposure observed among Caucasian people 
at different latitudes around the world correlate 
with marked variations in sun exposure oppor-
tunity and behaviour.

Five case–control studies of cancer of the 
lip have been published. The three earliest 
studies found apparent increases in risk with 
outdoor work, but use of tobacco could not be 
ruled out as an explanation for these associa-
tions. The two later studies both took account of 
possible confounding of outdoor exposure with 
tobacco smoke. One of them, in women, showed 
increased risks for cancer of the lip with several 
measures of exposure, together with strong and 
moderately consistent dose–response relation-
ships. The other, in men, found no increase in 
risk with leisure time or holiday sun exposure 
but a substantial increase in risk with cumula-
tive exposure during outdoor work during the 
summer months, without any indication of 
dose–response across four categories. This lack 
of dose–response suggests bias rather than a 
causal effect.
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Four case–control studies reported at least 
one result each suggesting that sun exposure 
is associated with conjunctival intraepithelial 
neoplasia or squamous cell carcinoma of the 
eye. Only one study was exclusively of conjunc-
tival squamous cell carcinoma; in this study 
and another, the relevant exposure variables 
(office work and cultivating the fields) were only 
indirect measures of sun exposure. A very large 
difference between cases and controls in preva-
lence of conjunctival solar elastosis in another 
study raised concerns about possible bias. The 
remaining study reported a strong association 
of ocular surface dysplasia with solar keratoses 
and increasing risk with increasing duration of 
residence at ≤ 30° south latitude. However, only 
22% of its cases had conjunctival squamous cell 
carcinoma.

Two out of three studies that examined the 
distribution of choroidal melanomas found 
them to be concentrated in the central area or 
the macula area of the choroid, which coincides 
with the estimated distribution of light in the 
retinal sphere. Of ten case–control studies of 
ocular melanoma published from 1985 to 2009, 
four reported statistically significant associa-
tions of one or more measures of sun exposure 
with ocular melanoma. In two studies, these 
associations were with the latitude of birth or of 
residence in early life, with some inconsistency 
between them. In the other two, which were more 
recent and had better measures of exposure than 
many previous studies, one study related only to 
occupational sun exposure and showed a strong 
association with a dose–response relationship, 
and the strongest association seen in the other 
was with occupational sun exposure and showed 
evidence of a dose–response relationship. These 
results relate principally to choroid and ciliary 
body melanomas (the dominant types). Two 
studies reported results consistent with a posi-
tive association of small numbers of iris mela-
nomas with sun exposure. One study with a 

small number of conjunctival melanomas found 
no such association.

The associations of sun exposure with several 
internal cancers have been investigated in case–
control and cohort studies, generally with the 
hypothesis that sun exposure might be protective 
against such cancers. The cancers investigated 
included cancer of the colorectum (two studies), 
of the breast (five studies), of the ovary (one 
study), of the prostate (four studies), and several 
cancers of the lymphatic tissue, principally non-
Hodgkin lymphoma and Hodgkin disease (15 
studies). Exposure metrics used in these studies 
included residential or occupational ambient 
solar radiation, recreational or non-recreational 
sun exposure, recent and lifetime sun exposure, 
and sun-related behaviour. The results were 
mostly inconsistent.

2.4.2 Artificial sources of UV

(a) Tanning appliances

Two meta-analyses investigated the associa-
tion between indoor tanning and skin cancers.

The summary relative risk for ever versus 
never use of indoor tanning facilities was 
significantly increased for melanoma, with no 
consistent evidence for a dose–response relation-
ship. All studies that examined age at first expo-
sure found an increased risk for melanoma when 
exposure started before approximately 30 years 
of age, with a summary relative risk estimate of 
1.75.

For squamous cell carcinoma, the three 
available studies found some evidence for an 
increased risk, especially when age at first use 
was below 20 years. Studies on basal cell carci-
noma did not support an association with use of 
indoor tanning facilities.

Four case–control studies reported on asso-
ciations between artificial tanning devices and 
ocular melanoma. Each observed an increase in 
risk of ocular melanoma in the highest category 
of exposure to these devices, and there were 
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indications of a dose–response relationship in 
three of the studies. In two studies, the risk was 
higher in people who began exposure before 20 
years of age than those who began after this age. 
Possible confounding with natural sun exposure 
was explicitly addressed in two of the studies.

Five studies reported on the association 
of use of indoor tanning devices with internal 
cancers, specifically breast cancer, non-Hodgkin 
lymphoma, Hodgkin lymphoma, and multiple 
myeloma. Most studies found little evidence of 
an association. Two studies observed inverse 
associations between the use of internal tanning 
devices and non-Hodgkin lymphoma, and 
one study with Hodgkin lymphoma. Possible 
confounding with exposure to natural sunlight 
cannot be ruled out in any of these studies.

(b) Welding

Six case–control studies reported on the asso-
ciation between welding and ocular melanoma. 
All found evidence of a positive association, 
which was strong in three studies, each of which 
related specifically to working as a welder or sheet 
metal worker (other studies included working in 
proximity to welding in the definition of expo-
sure). In each of three studies in which it was 
examined, there was evidence of a dose–response 
relationship.

2.4.3 UVA, UVB, UVC

Several sources of evidence were examined 
to see if the carcinogenic effects of UVA and 
UVB could be distinguished: descriptive studies 
of skin cancer have shown that the slope of lati-
tude variation in incidence of melanoma is less 
than that in incidence of squamous cell carci-
noma and basal cell carcinoma, suggesting that 
melanoma incidence is more influenced by UVA 
irradiance than are squamous cell carcinoma and 
basal cell carcinoma. Present data on the risk for 
melanoma associated with the of UV-emitting 
tanning devices show little evidence that it varies 

with the relative contributions of UVB and UVA 
emitted from the devices. There is little or no 
evidence to suggest that the use of sunscreens 
that block mainly UVB radiation increased the 
risk for melanoma. Studies of patients exposed 
exclusively to UVB phototherapy show weak 
evidence of an increase in risk of squamous cell 
carcinoma and basal cell carcinoma, based on a 
few cases.

3. Cancer in Experimental Animals

The previous IARC Monograph on solar and 
ultraviolet radiation concluded that there was 
sufficient evidence for the carcinogenicity of solar 
radiation, broad-spectrum ultraviolet radiation, 
ultraviolet A, ultraviolet B and ultraviolet C 
radiation in experimental animals (IARC, 1992).

The experimental induction of skin cancers in 
mice following exposure to a mercury-arc lamp 
was first reported by Findlay (1928). Initially, 
haired albino mice were used, but hairless Skh-1 
(albino) and Skh-2 (pigmented) immunocompe-
tent mice and eventually immunodeficient nude 
mice or transgenic mice are now used.

Hundreds of studies have clearly established 
the carcinogenic activity of UVR in mice. The 
action spectrum for ultraviolet-induced skin 
carcinogenesis in albino hairless mice has been 
determined and shows a peak in the UVB range 
(280–315 nm) and a steep decrease in the UVA 
range (315–400 nm). However, while the induc-
tion of non-melanoma skin cancer is regularly 
obtained in mice, the induction of melanoma 
was exceptional.

Solar radiation was tested for carcinogenicity 
in a series of studies in mice and rats. Large 
numbers of animals were studied (600 rats and 
2000 rats and mice), and incidences of squamous-
cell carcinoma of the skin and of the conjunctiva 
were clearly increased in most of the surviving 
mice and rats (Roffo, 1934, 1939; IARC, 1992).
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Broad-spectrum UVR (solar-simulated radi-
ation and ultraviolet lamps emitting in the entire 
UV wavelength range) was tested for carcino-
genicity in two large studies in mice (Grady et al., 
1943; Blum, 1959; IARC, 1992), several studies in 
rats, and one study in hamsters and guinea-pigs 
(Freeman & Knox, 1964; IARC, 1992). Incidences 
of squamous-cell carcinoma of the skin and of 
the cornea/conjunctiva were clearly increased in 
rats and mice. Hamsters developed malignant 
tumours of the cornea. No eye tumours were 
observed in guinea-pigs.

In several studies in mice exposed to sources 
emitting mainly UVA radiation, squamous-cell 
carcinomas of the skin were clearly induced. 
Both short-wavelength UVA (UVA2, 315–340 
nm) and long-wavelength UVA (UVA1, 340–400 
nm) were effective (IARC, 1992).

In several studies in mice exposed to sources 
emitting mainly UVB radiation, the predomi-
nant tumour type was squamous-cell carcinoma 
of the skin. Skin papillomas were observed in one 
study in rats and one study in hamsters. Invasive 
melanomas were induced in two experiments 
in platyfish-swordtail hybrid fish. In two out of 
three studies in opossums (Monodelphis domes-
tica), squamous-cell carcinomas were shown to 
develop; in one of these three studies, malig-
nant tumours of the cornea were observed and 
melanocytic neoplasms of the skin were reported 
in another one (IARC, 1992).

In some studies in mice exposed to sources 
emitting mainly UVC radiation, squamous-cell 
carcinomas of the skin were clearly induced. 
In one study in rats, keratoacanthomas of the 
skin were observed. In none of the experi-
ments involving UVC was it possible to exclude 
completely a contribution of UVB, but the size of 
the effects observed indicate that they cannot be 
due to UVB alone (IARC, 1992).

UVR has been studied in protocols involving 
two-stage chemical carcinogenesis. UVR has 
been reported to exert many effects on the carci-
nogenic process, including initiation, promotion, 

cocarcinogenicity and even tumour inhibition. 
Chemical immunosuppressive agents have been 
shown to enhance the probability of developing 
UVR-induced tumours in mice (IARC, 1992).

Studies released since the previous Monograph 
are summarized below.

3.1 Non-melanoma skin cancer 

See Table 3.1

3.1.1 Mouse

Most of the recent studies were not designed 
to test whether or not the radiation used was 
carcinogenic per se but to investigate the process 
of UV carcinogenesis, or to test enhancement 
or inhibition of photocarcinogenicity by drugs 
and chemical agents. Methods for testing photo-
carcinogenicity have been standardized to meet 
the requirements of regulatory agencies (Forbes 
et al., 2003; Sambuco et al., 2003).

Recent studies have mainly focused on the 
mechanisms of UV-induced carcinogenesis 
and have used specific strains of mice. Sencar 
mice were derived by selective breeding for 
susceptibility to chemical carcinogens. They 
are more sensitive th an other mouse strains to 
a variety of chemical initiators and promoters 
(e.g. 7,12-dimethylbenz(a)anthracene (DMBA) 
and 12-o-tetradecanoylphorbol-13-acetate 
(TPA)) as well as to UV radiation. Sencar mice 
have been widely used to study multistage skin 
carcinogenesis. Using these mice, squamous cell 
carcinomas (SCCs) and malignant spindle cell 
tumours (SCTs) appeared within 16-18 weeks 
and 30 weeks of irradiation respectively (Tong 
et al., 1997, 1998). Tong et al. (1997, 1998) have 
also shown that alterations in the Tp53 gene are 
frequent events in SCCs induced by chronic UV 
exposure in Sencar mouse skin, and that over-
expression of H-Ras-p21 in conjunction with 
aberrant expression of keratine K13 is a frequent 
event in UVR-induced SCCs in Sencar mouse 
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skin. Using the v-Ha-ras transgenic Tg.AC 
mouse line, sensitive to tumour promoters, 
Trempus et al. (1998) have shown that SCCs and 
SCTs developed within 18-30 weeks following 
the initial UVR exposure and that in contrast 
to other mouse stains used in photocarcinogen-
esis studies, few Tp53 mutations were found in 
Tg.AC UV-induced skin tumours, although all 
Tg.AC tumours express the v-Ha-ras transgene. 
Other strains of transgenic mice, FVN/B strains 
215 and 224, which overexpress protein kinase C 
epsilon (PKCε) and are highly susceptible to the 
induction of skin tumours by chemical carcino-
gens, also show increased susceptibility to the 
induction of skin tumours by UVR. PKCε trans-
genic mice were observed to be highly sensitive 
to the development of papilloma-independent 
metastatic squamous cell carcinomas elicited by 
repeated exposure to UVR (Wheeler et al., 2004, 
2005). In studies using Skh-1 mice, exposure to 
UVR induced a statistically significant increase 
in the number of malignant skin tumours per 
mouse, mainly SCCs when compared to controls 
(Rossman et al., 2002; Burns et al., 2004; Davidson 
et al., 2004; Uddin et al., 2005, 2007). Dietary 
polyunsaturated fat enhances the development 
of UVR-induced tumours in Skh-1 mice, this 
enhancement being mediated by a modulation of 
the immunosuppression caused by chronic UV 
irradiation (Reeve et al., 1996).

3.1.2 Opossum (Monodelphis domestica)

Unlike laboratory rodents, a small marsu-
pial, the South American opossum Monodelphis 
domestica possesses the ability to remove 
cyclobutane-pyrimidine dimers by photoreacti-
vation, a light-dependent process of enzymatic 
monomerization. M. domestica is sensitive to 
UVR, and, when photoreactivation is prevented, 
develops primary tumours of the skin and eye 
in response to chronic exposure to low doses 
of UVR. Virtually all M. domestica chronically 
exposed to low doses of UVR develop primary 

corneal tumours; post-UVR exposure to photo-
reactivating light delays the onset of eye tumours 
and reduces overall tumour incidence (Sabourin 
et al., 1993, Kusewitt et al., 2000).

3.2 Melanoma

3.2.1 Transgenic mice exposed to ultraviolet 
radiation 

See Table 3.2
In the mouse, wild-type animals are resistant 

to malignant melanoma (MM) development even 
when exposed to repeated treatments with ultra-
violet radiation. Chronic UVR treatment regi-
mens, however, have increased MM penetrance 
by up to 26% in mice carrying various transgenes 
capable of inducing spontaneous MM develop-
ment, or melanocytic hyperplasia.

Inbred lines of transgenic Tyr-SV40E 
mice, having an integrated recombinant gene 
comprised of the tyrosinase promoter, expressed 
in pigment cells, and the simian virus 40 early-
region transforming sequences spontaneously 
develop ocular and cutaneous melanomas (Bradl 
et al., 1991). UVB irradiation of 2–4-day old 
Tyr-SV40E transgenic mice of either moderate 
or low susceptibility lines induce skin melanoma 
(Klein-Szanto et al., 1994; Kelsall & Mintz, 1998).

The pigment-producing cells in TPras trans-
genic mice express a mutated human T-24 Ha-ras 
driven by a 2.5 kb promoter region from the 
mouse tyrosinase gene. The ras transgenic mice 
exhibit an altered phenotype, including melano-
cytic hyperplasia and a muted agouti coat, indic-
ative of hyperproliferative melanocytes. Topical 
7,12-dimethylbenz[a]anthracene (DMBA) treat-
ment of TPras mice resulted in a high incidence 
of melanomas. UV light exposures induced 
papillomas in TPras-negative littermate and 
melanomas in some albino TPras mice (Broome 
Powell et al., 1999). When Hacker et al. (2005) 
treated brown mice (mixed C3H/Sv129 strain 
background) carrying a melanocyte-specific 
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mutant Hras (G12V) transgene (TPras), with a 
single neonatal UVR dose of (8.15 kJ m2), 57% of 
the UV irradiated mice developed in situ cuta-
neous MM by 12 months, whereas none of the 
untreated controls developed tumours. In another 
study by the same author, UVR treatment greatly 
increased the penetrance and decreased the age 
of onset of melanoma development in Cdk4R24C/

R24C/TPras animals compared with TPras alone 
(Hacker et al., 2006).

However, murine melanocytic tumours are 
dermal in origin and lack the epidermal compo-
nent that characterizes human melanoma. 
However, the skin of transgenic mice in which a 
metallothionein-gene promoter forces the over-
expression of hepatocyte growth factor/scatter 
factor (HGF/SF) has melanocytes in the dermis, 
epidermis and dermal–epidermal junction, and 
is thus more akin to human skin. Untreated 
HGF/SF-transgenic mice are already genetically 
predisposed to late-onset melanoma. Using these 
transgenic mice, Noonan et al. (2001) showed that 
a single UV irradiation of neonates is sufficient 
to induce early onset melanoma in the majority 
of animals, while UV irradiation of 6-week-old 
mice is insufficient. Using the same model, it was 
further shown that UVB and not UVA is effec-
tive at initiating melanoma (De Fabo et al., 2004).

Xeroderma pigmentosum group A gene-defi-
cient (XPA–/–), stem cell factor-transgenic (SCF-
Tg) mice are defective in the repair of damaged 
DNA and do have epidermal melanocytes. 
Following chronic UVB irradiation, these mice 
develop lentigo maligna and nodular melanomas 
(Yamazaki et al., 2005).

3.2.2 Human melanocytes grafted to 
immunodeficient mice exposed to 
ultraviolet radiation

See Table 3.3
Atilasoy et al., have developed an experi-

mental model in which full-thickness human 
skin is grafted to immunodeficient recombinase 

activating gene-1 (RAG-1) knockout mice 
(Atillasoy et al., 1998). Chronic UVB irradiation 
with or without an initiating carcinogen can 
induce human melanocytic lesions, including 
melanoma. It was further shown that overex-
pression of basic fibroblast growth factor (bFGF) 
via adenoviral gene transfer in human skin xeno-
grafted to severe combined immunodeficiency 
mice led to black pigmented macules within 3 
weeks of treatment, and to melanoma when bFGF 
was combined with UVB (Berking et al., 2001).

In contrast with experiments using neonatal 
foreskin, no melanocytic lesions were induced 
when adult skin was used (Berking et al., 2002). 
In normal human skin grafted onto severe 
combined immunodeficient mice (SCID), an 
increased expression of a combination of three 
growth factors, bFGF, stem cell factor, and 
endothelin-3, along with exposure to UVB can 
transform normal melanocytes into a melanoma 
phenotype within 4 weeks. Invasion of mela-
noma lesions was found in skin from newborn 
donors, whereas melanomas in adult skin were 
of a non-invasive in situ type only. This suggests 
that susceptibility of skin to exogenous tumour 
promoters is dependent on age (Berking et al., 
2004).

3.2.3 Opossums 

See Table 3.4
Chronic UVB irradiation of suckling young 

opossums (M. domestica) induces nevi and 
melanoma that progress to metastasis (Robinson 
et al., 1994, 1998) suggesting that in this species, 
UVB can act as a complete carcinogen, inducing 
precursor lesions and driving progression to 
metastatic melanoma.

3.2.4 Fish 

See Table 3.5
Interspecies hybrids and backcrosses of plat-

yfish (Xiphophorus maculatus) and swordtails 
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(Xiphophorus helleri) eventually develop geneti-
cally determined spontaneous melanoma (the 
Gordon-Kosswig melanoma). Setlow et al. (1989) 
have developed two strains of these fishes that are 
susceptible to invasive melanoma induction by 
exposure to filtered radiation from sunlamps in 
the wavelength ranges λ > 290 nm and λ > 304 nm. 
Irradiation of these fishes and of X. maculatus/X. 
couchianus hybrids with narrow wavelength 
bands show that the action spectrum for mela-
noma induction shows appreciable sensitivity at 
365, 405, and probably 436 nm, suggesting that 
wavelengths not absorbed directly in DNA are 
effective in induction (Setlow et al., 1993).

3.3 Synthesis

Recent studies have mainly focused on the 
mechanisms of UV-induced carcinogenesis and 
have used specific strains of mice (sencar mice). 
Several studies conducted examining the tumo-
rigenic effects of solar radiation, broad-spectrum 
ultraviolet radiation, UVA, UVB and UVC in 
experimental animals, since 1992, support and 
confirm the conclusions of the previous IARC 
Monograph.

Solar radiation causes squamous-cell carci-
noma of the skin and of the conjunctiva in mice 
and rats.

Broad-spectrum UVR causes squamous-cell 
carcinoma of the skin and of the cornea/conjunc-
tiva in mice and rats.

UVA causes squamous-cell carcinoma of the 
skin in mice.

UVB causes squamous-cell carcinoma of 
the skin in mice and opossum and invasive skin 
melanomas in platyfish-swordtail hybrid fish 
and opossum.

UVB causes skin melanomas in transgenic 
mice and skin melanomas in genetically engi-
neered immunocompromised mice grafted with 
human melanocytes.

UVC causes squamous-cell carcinoma of the 
skin in mice.

4. Other Relevant Data

4.1 Transmission and absorption in 
biological tissues

UVR may be transmitted, reflected, scattered 
or absorbed by chromophores in any layer of 
tissue, such as the skin and the eye. Absorption 
is strongly related to wavelength, as it depends on 
the properties of the responsible chromophore(s) 
(IARC, 1992).

UVC (200–280  nm) has the highest energy 
and thus is potentially the most damaging to 
biological tissues. However, because of its absorp-
tion by the ozone layer, its impact on human 
health is largely theoretical except for occasional 
artificial UV sources. UVB (280–315 nm) makes 
up only 5–10% of the UVR that penetrates the 
ozone layer but because of its ability to directly 
damage DNA-forming modified bases, under-
standing molecular and cellular links between 
UVB exposure and carcinogenesis has continued 
to be a major focus since the previous IARC 
Monograph (IARC, 1992). The role of non-DNA 
chromophores in UV carcinogenesis has been 
extensively studied over the past 15 years in 
particular in relation to UVA (315–400 nm) expo-
sure. UVA, in addition to inducing a variety of 
DNA damage, also penetrates the dermis where 
it interacts with proteins and lipids resulting in 
skin ageing (for a review, see Ridley et al., 2009).

4.1.1 Eye

The eye is a complex multilayered organ. 
The retina at the back of the eye receives visible 
radiation and the intermediate layers attenuate 
UVR to different degrees, thereby protecting 
the retina from photodamage. The outermost 
cornea absorbs UVC (from artificial sources) and 
a substantial amount of UVB, which is further 
attenuated by the lens and the vitreous humour 
in front of the retina. UVA is less attenuated by 
the cornea than by the internal structures, and 
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does not reach the retina (for a review, see Young, 
2006). Age-related changes in lens crystallins 
affect their structure and function causing the 
lens to increasingly scatter light on the retina, 
and causing the lens to become opaque (for a 
review, see Sharma & Santhoshkumar, 2009)

4.1.2 Skin

The skin comprises two main layers (for a 
review, see Young, 2006): 

1) the outer acellular and cellular 
epidermis, and 
2) the inner largely extracellular dermis. 

Keratinocytes are the main epidermal cell 
type, which differentiate to create the outermost, 
non-living, terminally differentiated, cornified 
and protective stratum corneum. The dividing 
cell population is located in the innermost 
basal layer of the epidermis. Dendritic pigment-
producing melanocytes and immunocompe-
tent dendritic Langerhans cells are also present 
in the epidermis. The dermal connective tissue 
is mostly collagen synthesized by fibroblasts. 
The dermis contains the skin’s vascular supply. 
Significant differences have been found in the 
UVA and UVB absorption properties of different 
skin types (Antoniou et al., 2009).

4.2 Genetic and related effects: 
consequences of UVR exposure

4.2.1 Photoproduct formation

(a) DNA photoproducts: direct and indirect 
formation

A multitude of photoproducts, the ratio of 
which depends markedly on wavelength, are 
formed in cellular DNA by solar UVR (IARC, 
1992). The question of which types of DNA 
damage are formed by UVA, UVB and UVC 
has been extensively studied. Unlike UVB, UVA 
is weakly absorbed by DNA and the primary 
method of DNA-damage induction by UVA 

occurs indirectly via photosensitizers, which 
include endogenous melanins or proteins 
containing porphyrin, haem or flavin groups. 
They can also be exogenous, e.g. antibacterial 
agents such as naladixic acid and fluoroqui-
nolones or the immunosuppresive drug azathio-
prine (for a review, see Ridley et al., 2009), and 
8-methoxypsoralen (methoxsalen) in combina-
tion with UVA (PUVA) used for photochemo-
therapy. These exogenous chemicals absorb in the 
UVA range and release reactive oxygen species 
(IARC, 2012), and thus mediate UVA-induced 
DNA damage. The excited sensitizers may react 
with DNA directly by one-electron transfer 
(Type I mechanism) and/or via the generation of 
singlet oxygen (1O2) by energy transfer to molec-
ular oxygen (major Type II mechanism), giving 
rise to guanine modifications including 8-oxog-
uanine. The excited sensitizer can also transfer 
an electron to oxygen resulting in the formation 
of superoxide anion radical (O2

-) (minor Type II 
mechanism). Disproportionation of O2

- can give 
rise to hydrogen peroxide (H2O2), and reactive 
species formed through the interaction of H2O2 
with metal ions may induce DNA damage (for 
reviews, see Ridley et al., 2009 and Hiraku et al., 
2007).

In addition to the generation of reactive 
oxygen species, reactive nitrogen species such 
as nitric acid and peroxynitrite are formed after 
UVA exposure. UVA irradiation can also lead to 
the long-term cellular generation of both reac-
tive nitrogen species and reactive oxygen species 
(Didier et al., 1999; Valencia et al., 2006), indi-
cating the possibility of a prolonged effect of a 
single UVA exposure (see Section 4.2.3).

Several studies in vitro have shown a predom-
inance of oxidized purines after UVA-induced 
oxidative damage with relatively few strand breaks 
or oxidized pyrimidines (Kielbassa et al., 1997; 
Pouget et al., 2000). However, thymidine-derived 
cyclobutane–pyrimidine dimer lesions have 
been detected after UVA exposure in several cell 
models (e.g. Chinese hamster ovary cells) (Douki 
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et al., 2003), and in human skin (Courdavault 
et al., 2004; Mouret et al., 2006), recently reviewed 
by Ridley et al. (2009). Moreover, in human skin 
after exposure to UVA, cyclobutane–pyrimidine 
dimer lesions rather than oxidative lesions were 
the main type of DNA damage induced (Mouret 
et al., 2006). It has been suggested that UVA may 
generate cyclobutane–pyrimidine dimer lesions 
via a photosensitized triplet energy transfer in 
contrast to formation via direct excitation of 
DNA by UVB (Douki et al., 2003; Rochette et al., 
2003).

(b) Other chromophores

In addition to DNA, many other cellular 
components absorb and/or are damaged by solar 
UVR (IARC, 1992). Non-DNA chromophores 
and targets are particularly relevant at longer 
wavelengths. For instance trans-urocanic acid, a 
deamination product of histidine, is an impor-
tant chromophore found in high concentrations 
in the stratum corneum. Trans-urocanic acid 
undergoes a photoisomerization to cis-urocanic 
acid in the presence of UVR, which has immu-
noregulatory properties (Norval, 2006).

4.2.2 Mutagenicity

Numerous reports show that sunlight or solar-
simulated radiation induces mutations in bacteria, 
plants, mammalian cells, Chinese hamster ovary 
and lung (V79) cells, mouse lymphoma cells, 
and human skin fibroblasts. Studies in bacteria 
exposed to radiation throughout the solar 
UV spectrum demonstrate mutagenic activity 
unambiguously. UVA (320–400  nm) is muta-
genic to yeast and cultured mammalian cells; 
UVB (290–320  nm) to bacteria and cultured 
mammalian cells; and, UVC (200–290  nm) to 
bacteria, fungi, plants, cultured mammalian 
cells, including Chinese hamster ovary and V79 
cells, and human lymphoblasts, lymphocytes 
and fibroblasts. Because wavelengths in the UVC 
range do not reach the surface of the Earth, they 

are of no significance as a source of damage in 
natural sunlight (IARC, 1992).

DeMarini et al. (1995) evaluated the muta-
genicity and mutation spectra of a commercial 
tanning salon bed, white fluorescent light and 
natural sunlight in four DNA-repair backgrounds 
of Salmonella. Approximately 80% of the radia-
tion emitted by the tanning bed was within the 
UV range (250–400  nm), whereas only ~10% 
of the sunlight and 1% of the fluorescent light 
were in the UV range. The tanning bed emitted 
similar amounts of UVA (315–400 nm) and UVB 
(280–315 nm), whereas sunlight and fluorescent 
light emitted, respectively, 50–60 times and 5–10 
times more UVA relative to UVB. Based on total 
dose (UV + visible, 400–800 nm), the mutagenic 
potencies (revertants × 10−3/J/m2) of the expo-
sures in strain TA100 were 3.5 for sunlight, 24.9 
for fluorescent light, and 100.6 for the tanning 
bed. Thus, the tanning bed was 29 times more 
mutagenic than sunlight. The mutagenic potency 
of the tanning bed was similar to that produced 
by pure 254-nm UV (DeMarini et al., 1995).

DNA-sequence analysis of the revertants of 
strain TA100, which is a base-substitution strain, 
was performed at the doses that produced 10-fold 
increases in the mutant yields (revertants/plate) 
compared to the control plates for sunlight 
and fluorescent light, and a 16-fold increase for 
the tanning bed. Thus, more than 90% of the 
mutants analysed were induced by the expo-
sures as opposed to being spontaneous in origin. 
More than 80% of mutations induced by all three 
exposures were G:C→A:T transitions, and 3–5% 
were presumptive or identified multiple muta-
tions. The frequencies of the multiple mutations 
were increased 38–82-fold in TA100 by the expo-
sures, with 83% (19/23) of these multiple muta-
tions induced by the tanning bed being CC→TT 
tandem mutations. Thus, DeMarini et al. (1995) 
also showed that a tanning bed produced a 
mutation spectrum similar to that found in the 
TP53 gene in sunlight-associated skin tumours 
(Dumaz et al., 1994).

80



Solar and UV radiation

4.2.3 Mutation profiles and target genes

The study of the mutation profiles in skin 
tumours and in particular those from individuals 
with either a defect in the repair processes that 
remove UV-induced DNA damage (e.g. xero-
derma pigmentosum (XP) patients or other rare 
syndromes associated with increased skin cancer 
risk) has allowed the assessment of the relative 
contribution of bipyrimidine photoproducts 
and oxidative damage to the mutagenic effects 
of UVR, and has provided invaluable models to 
delineate the genes affecting crucial pathways 
involved in skin carcinogenesis.

Point mutations found in the TP53 gene in skin 
tumours from normal individuals and repair-
deficient XP patients are mainly G:C→A:T tran-
sitions in skin tumours (74% in non-XP, 87% in 
XP), and also to a lesser extent in internal tumours 
(47%) where, however, they are mainly located at 
5′CG-3′ dinucleotide (CpG; 63%) sequences—
probably due to the deamination of the unstable 
5-methylcytosine (Dumaz et al., 1994). In XP skin 
tumours, 100% of the mutations are targeted at 
pyrimidine–pyrimidine (py–py) sequences and 
55% of these are tandem CC→TT transitions. In 
skin tumours from normal individuals, 14% of 
the TP53 mutations are double mutations and, 
as in XP skin tumours, all these are CC→TT 
transitions. In contrast, internal tumours rarely 
contain tandem mutations (0.8%) and, of these, 
only 2/14 were CC→TT transitions. A similar 
mutation profile of C→T or tandem CC→TT UV 
signature transitions, occurring at bipyrimi-
dine sequences, has been found in several other 
genes including PTEN (phosphatase and tensin 
homologue deleted on chromosome 10; Ming & 
He, 2009; Wang et al., 2009). Ras, Ink4a-Arf as 
well as alterations of the different partners of the 
mitogenic sonic hedgehog signalling pathway 
(patched, smoothed, and sonic hedgehog) have 
also been found in XP tumours and sporadic skin 
cancers. The majority of mutations are at C→T or 

tandem CC→TT transitions (Daya-Grosjean & 
Sarasin, 2005).

Based on the reactivity of different wave-
lengths of UVR with DNA, these G:C→A:T 
transition mutations induced at dipyrimidine 
sites were considered for many years as specifi-
cally resulting from UVB-induced cyclobu-
tane–pyrimidine dimers or pyrimidine (6–4) 
pyrimidone photoproducts, and termed the 
“UV-signature” or “UV-fingerprint mutations” 
(Wikonkal & Brash, 1999), and A:T→C:G trans-
versions were considered as UVA “fingerprint 
mutations” (Drobetsky et al., 1995; Robert et al., 
1996). However, the wavelength specificity of 
these mutations has been challenged based on 
recent findings in rodent cell models, mouse 
models, and human skin. The UVA-induced 
mutation profile in exon 2 of adenine phospho-
ribosyltransferase (Aprt) gene in rodent cells 
showed a high proportion of mutations recov-
ered opposite thymine–thymine–dipyrimidine 
damage sites supporting the notion that cyclob-
utane–pyrimidine dimers are a premutagenic 
lesion in UVA-induced mutagenesis (Rochette 
et al., 2003). C→T transition mutations in the lacZ 
transgene have been detected in the epidermis 
and dermis of UVA-treated mice, corresponding 
to the formation of cyclobutane–pyrimidine 
dimers (Ikehata et al., 2008), in the Tp53 gene of 
UVA- or UVB-induced skin tumours in hairless 
mice (van Kranen et al., 1997), in the TP53 gene 
of benign solar keratoses and malignant skin 
squamous cell carcinomas, in humans (Agar 
et al., 2004), and in UVA-irradiated human skin 
cells under certain experimental conditions 
(Courdavault et al., 2004; Rünger & Kappes, 
2008).

Another characteristic of mutations in 
epithelial skin cancers is the preference of their 
occurrence for a CpG sequence, which is the 
consensus target motif for epigenetic DNA meth-
ylation in vertebrates. Mutation hotspots in such 
a sequence context within the Tp53 gene have 
been identified, and it has been suggested that 
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their presence could be used as a marker of solar 
UV exposure (Ikehata & Ono, 2007; Rochette 
et al., 2009). However, the specificity of dinucle-
otide mutability in skin cancer is complex. Lewis 
et al. (2008) compared the base-substitution 
signatures obtained in several mutation assay 
model systems after exposure to UVB, UVC 
or simulated sunlight and cancer-specific base 
substitutions collated in the IARC TP53 database 
(IARC, 2006b), for exons 5, 7 and 8 of the TP53 
gene. The UVB, UVC and skin cancer profiles 
for exon 5 and 8 all showed relatively high levels 
of G:C→A:T mutations primarily at TC and CC 
sites, and to a lesser extent at CT sites. However 
the exon 7 profiles did not group with the skin 
cancer profiles which showed a relatively high 
level of G:C→A:T mutations at CpG sites.

Based on these findings, the back-extrapola-
tion from a mutation to an exposure to a single 
wavelength region of the UVR spectrum is not 
possible.

The study of syndromes associated with 
increased skin cancer risk has been instrumental 
in the identification of genes critical for UV 
carcinogenesis. Germline mutations in PTEN 
resulting in altered PTEN function, detected in 
patients with Cowden disease and Bannayan–
Riley–Ruvalcaba syndrome (Bonneau & Longy, 
2000), are associated with an increased risk of 
basal cell carcinoma, squamous cell carcinoma, 
and melanoma (Nuss et al., 1978; Camisa et al., 
1984; Liaw et al., 1997; Trojan et al., 2001; Ming 
& He, 2009). Mice with Pten deletion and muta-
tion are highly susceptible to tumour induction 
(Suzuki et al., 1998). Conditional knockout of 
Pten in skin leads to neoplasia (Li et al., 2002; 
Suzuki et al., 2003; Backman et al., 2004). 
Pten deficiency in mice causes increases in cell 
proliferation, apoptotic resistance, stem-cell 
renewal/maintenance, centromeric instability, 
and DNA double-strand breaks (Groszer et al., 
2001; Kimura et al., 2003; Wang et al., 2006; 
He et al., 2007; Shen et al., 2007), which can 
enhance susceptibility to carcinogens and the 

occurrence of secondary genetic or epigenetic 
alterations that can lead to skin cancer develop-
ment. Patients with Gorlin syndrome (or basal 
cell nevus syndrome) suffer with multiple basal 
cell carcinoma. This syndrome is associated with 
mutations in the Patched (PTCH) gene, an essen-
tial component in Hedgehog signalling (Epstein, 
2008). Aberrant activation of sonic hedgehog 
homologue (SHH) signalling, usually because 
of mutations either in the PTCH or smoothened 
(SMOH) genes (Reifenberger et al., 2005) or 
because of hyperactivation of this pathway, is 
often found in sporadic basal cell carcinomas.

Dysfunctional p53 is likely to affect protec-
tive responses to DNA damage and oncogenic 
signalling. Experiments in both humans and 
mice have shown that clusters of epidermal cells 
with mutant p53 occur long before squamous 
cell carcinoma becomes visible (de Gruijl & 
Rebel, 2008). Although TP53 mutations cause 
genetic instability and facilitate the carcinogenic 
process, they are not enough to cause basal cell 
carcinoma or squamous cell carcinoma, and 
the activation of signalling cascades (normally 
needed for cell proliferation and homeostasis) 
is often also involved. Based on the molecular, 
pathological and functional dissection of such 
signalling cascades, evidence has accumu-
lated linking an activated receptor tyrosine 
kinase (RTK)/RAS pathway in combination 
with dysfunctional p53 to the development of 
squamous cell carcinoma; activated Hedgehog 
pathway with possibly dysfunctional p53 to the 
development of basal cell carcinoma; and in cuta-
neous melanoma, activated RTK/RAS pathway 
in combination with inactivation of the inhibitor 
of cycline-dependant kinase 4 & 6 (INK4a) locus 
(de Gruijl et al., 2001). The Notch signalling 
pathway has also been identified as a key regu-
lator of epidermal homeostasis and implicated in 
skin carcinogenesis; aberrrant Notch signalling 
leads to skin cancer including basal cell carci-
noma, squamous cell carcinoma, and melanoma 
(Okuyama et al., 2008).
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4.2.4 Genomic instability, bystander effect, 
telomere shortening

Another potential mechanism for inducing 
genomic instability in cells not directly hit by 
radiation is via the bystander effect. Bystander 
effects via both gap-junction and extracellular 
signalling have been observed in cells following 
UVB treatment (Banerjee et al., 2005, Dahle et al., 
2005), and an UVA-induced bystander effect has 
been reported that can be attenuated by the use 
of a nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase inhibitor, suggesting 
a possible role of reactive oxygen species in the 
induction of this effect (McMillan et al., 2008; 
Whiteside & McMillan, 2009). After UVA expo-
sure, such mechanisms have been extensively 
investigated partly because of the action spectra 
of UVA’s interaction with DNA. There is an 
increasing body of evidence that suggests that 
UVA-induced (and to some extent UVB-induced) 
damage cannot only remain but also be gener-
ated for prolonged periods in the irradiated cell, 
its progeny, and also in surrounding cells and 
tissues which were not themselves exposed. The 
progeny of cells which have survived irradiation 
show changes in chromosomal structure and copy 
number, the generation of micronuclei, changes 
in gene expression and cell survival (Little, 2000; 
Morgan, 2003), and are all seen as end-points 
of genomic instability. Such persistent genomic 
instability defined as the persistent induction of 
DNA and cellular damage in irradiated cells and 
their progeny (Ridley et al., 2009) can lead to a 
hypermutator phenotype where genetic altera-
tions increase generation upon generation in a 
large proportion of the progeny of the irradiated 
cells, increasing the risk of malignant transfor-
mation. Conversely, another characteristic of 
persistent genomic instability can be increased 
cell-kill of the progeny, meaning that the risk of 
cancer arising from these cells is reduced rather 
than increased (Ridley et al., 2009).

For instance, instability was observed for 
several generations in the GM10115 human–
hamster hybrid cell line after combined treatment 
of UVA with bromodeoxyuridine and Hoechst 
33258 dye (Limoli et al., 1998). Both UVA and 
UVB are able to induce delayed mutations in 
the hypoxanthine-guanine phosphoribosyl-
transferase (Hprt) gene of V79 Chinese hamster 
fibroblast cells (Dahle & Kvam, 2003), which 
could be inhibited by reactive oxygen species 
scavengers (Dahle et al., 2005). Mutations in the 
HPRT gene have shown to be increased 7 days 
after UVA irradiation in human keratinocytes 
HaCaT (Phillipson et al., 2002). In the same cell 
model, UVA treatment led to continued reduc-
tions in survival of UVA-treated HaCaT for over 
21 days following treatment, and an increase 
in the number of micronuclei per cell over the 
same period. The addition of catalase was shown 
to reverse these effects to near-control levels. A 
bystander effect was induced in human keratino-
cytes HaCaT and fibroblasts MRC5 cells treated 
with UVA radiation but not UVB radiation 
(Whiteside & McMillan, 2009). One potential 
mechanism for the generation of reactive oxygen 
species under such experimental conditions 
involves the UVA-induction of enzyme activity. 
One potential target is a NADPH oxidase 
(Valencia & Kochevar, 2008). This enzyme has 
been shown to cause increased superoxide gener-
ation in response to UVA in mouse, monkey, and 
human cell lines (Hockberger et al., 1999). The 
resulting increase in superoxide and its conver-
sion to other reactive oxygen species would 
lead to increased cellular and DNA damage. 
Prolonged generation of reactive oxygen species 
by such mechanisms in the initially exposed cells 
and their progeny therefore have the potential 
to enable persistent genomic instability (Ridley 
et al., 2009).

Another mechanism for inducing persistent 
genomic instability is via the shortening and 
loss of telomeres. The shortening of telomeres 
or the dysfunction of proteins associated with 
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the telomeres can lead to large scale transfers of 
sequences between chromosomes, which lead to 
the amplification or deletion of sequences (Bailey 
& Murnane, 2006). It has been demonstrated that 
UVA can increase the rate of telomere shortening 
(Oikawa et al., 2001; Ridley et al., 2009), therefore 
suggesting a possible link between UVA irra-
diation and increasing instability over several 
generations.

It has also been shown that irradiation 
with UVA and UVB is able to trigger increased 
microsatellite instability in radial growth phase 
melanoma cells (Hussein et al., 2005).

4.2.5 Cell killing – apoptosis and senescence

Apoptosis and premature senescence are 
protective mechanisms against the presence 
of unrepaired DNA lesions in the genome that 
could otherwise induce mutations increasing 
the risk of carcinogenesis induced after UV irra-
diation. The fact that nucleotide excision repair 
(NER)-deficient cells are very sensitive to the 
cell-killing effect of UV light is a clear indica-
tion that unrepaired photoproducts constitute 
the main apoptosis-triggering signal after UV 
irradiation (Batista et al., 2009). How these 
lesions are processed to generate a toxic signal 
is unclear. While some data suggest transcrip-
tion blockage is the main reason behind this 
apoptosis induction, other data suggest that the 
formation of DNA double-strand breaks during 
the replication of cyclobutane-pyrimidine 
dimers-containing DNA is necessary for the 
commitment to cell death (Batista et al., 2009). 
UV light (mainly UVA and UVB) is also able to 
directly activate membrane death receptors that 
trigger apoptosis independently of DNA damage. 
Mitogen-activated protein kinases (MAPKs) are 
also directly activated by UV light and whether 
this activation is DNA-damage dependent or 
independent is still unclear.

The hallmark of cellular senescence is the loss 
of proliferative capacity, with the accumulation 

of senescent cells in skin leading to skin aging. 
Once cells have entered into senescence, they 
undergo a series of morphological and metabolic 
changes, and gene-expression profiles are altered 
as has been shown in human skin fibroblasts after 
exposure to UVB (Chen et al., 2008).

4.3 Genetic susceptibility: host 
factors modulating the response 
to UV

4.3.1 DNA repair capacity and single 
nucleotide polymorphisms (SNPs) in 
DNA repair genes

Many of the directly formed UV photoprod-
ucts are repaired via the nucleotide excision 
repair (NER) pathway, and those formed indi-
rectly via the modification of DNA by reactive 
oxygen species and reactive nitrogen species 
require components of the base-excision repair 
pathway.

NER operates through two subpathways 
in the early stages of damage recognition, 
depending on whether the damage is located 
anywhere throughout the genome [global 
genome (GG) repair] or in an actively tran-
scribed gene [transcription-coupled (TC) repair]. 
GG repair begins with recognition of the damage 
by the XPC-RAD23B-centrin2 complex, aided in 
some cases by the UV damaged DNA-binding 
activity (UV-DDB) that includes the subunits 
DDB1 and DDB2/XPE. The mechanisms for TC 
repair are not completely understood; a current 
model postulates that the pathway is initiated 
by the arrest of RNA polymerase II at a lesion 
on the transcribed strand of an active gene, in 
a process that requires several factors including 
the Cockayne syndrome A (CSA), CSB, and 
XPA-binding protein-2 (XAB2) proteins (Sarasin 
& Stary, 2007; Hanawalt & Spivak, 2008). The 
recognition events in GG-NER and TC-NER are 
followed by a common pathway involving the 
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unwinding of the damaged DNA, dual incisions 
in the damaged strand, removal of the damage-
containing oligonucleotide, repair synthesis in 
the resulting gap, and ligation of the repair patch 
to the contiguous parental DNA strand. These 
steps require the coordinated action of several 
factors and complexes, including the repair/tran-
scription complex factor TFIIH, and the repair 
factors XPA, XPG, and excision repair cross-
complementing rodent deficiency, complementa-
tion group 1 (ERCC1)-XPF, in addition to those 
required for repair replication and ligation.

The mismatch repair enzyme hMSH2 has also 
been linked to the NER pathway. This enzyme is 
a TP53 target gene and induced by UVB radia-
tion, suggesting a role for mismatch repair in skin 
cancer development (Rass & Reichrath, 2008).

Defects in NER are associated with three 
major autosomal recessive disorders, xeroderma 
pigmentosum (XP), Cockayne syndrome, and 
trichothiodystrophy. At the clinical level, XP 
is characterized by a highly increased inci-
dence of tumours in sun-exposed areas of the 
skin (Stefanini & Kraemer, 2008). In contrast, 
Cockayne syndrome and trichothiodystrophy 
are cancer-free disorders characterized by 
developmental and neurological abnormalities 
and premature aging, associated in trichothi-
odystrophy with typical hair abnormalities 
(Lehmann, 2003). The two genes identified 
as responsible for the NER-defective form of 
Cockayne syndrome (CSA and CSB) are specifi-
cally involved in transcription-coupled repair 
TC-NER. Seven NER-deficient complementation 
groups have been identified in XP patients (desig-
nated XPA to XPG); these XP cases are defective 
in one of seven genes called XPA to XPG. An 
eighth complementation group, the so-called XP 
variant form (XPV) was latter identified with a 
defective gene encoding the DNA polymerase ε. 
This enzyme is required for the replication of the 
UV-damaged DNA pathway, called translesion 
DNA synthesis (Stefanini & Kraemer, 2008).

In addition, rare cases have been described 
showing a complex pathological phenotype with 
combined symptoms of XP, Cockayne syndrome 
and/or NER syndrome defects that have been 
associated with combinations of mutations in XP, 
CS, and other unidentified genes (for instance, 
Itoh et al., 1994; Lehmann, 2003; Spivak, 2005; 
Nardo et al., 2009).

The rarity of these syndromes associated 
with mutations in NER genes and compromised 
repair excludes a direct major public health 
impact on skin cancer risk, however, suboptimal 
NER capacity could also result in increased 
cancer risk. There is increasing evidence that 
more frequently found genetic variation such 
as SNPs can also impact on protein expres-
sion and function, and thus, potentially cancer 
risk. It is hypothesized that polymorphisms in 
genes implicated in the responses to the DNA 
damage and oxidative stress following exposure 
to UV constitute genetic susceptibility factors 
for skin cancers. This has been assessed in many 
molecular epidemiological studies using either 
a candidate gene approach or more recently 
genome-wide association studies (GWAS). SNPs 
in NER genes have been extensively investigated. 
For instance, for melanoma, significant associa-
tions were found for the NER genes ERCC1 and 
XPF (which act together in a rate-limiting step in 
the repair pathway) in a study population of 596 
Scottish melanoma patients and 441 population-
based controls, with the strongest associations for 
melanoma cases aged 50 years and under (ERCC1 
OR, 1.59; 95%CI: 1.11–2.27, P = 0.008; XPF OR, 
1.69; 95%CI: 1.18–2.43, P = 0.003)] (Povey et al., 
2007). Significant associations between mela-
noma and XPD SNPs have also been reported 
(e.g. Manuguerra, et al., 2006). Variants in genes 
involved in the signalling cascades activated in 
response to UVR have been investigated. For 
instance the TP53 Arg72Pro polymorphism, 
but not p73 G4C14 → A4T14 and p21 Ser31Arg, 
contribute to the risk of developing cutaneous 
melanoma (Li et al., 2008).
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Over the past few years several groups have 
assessed the DNA repair capacity in different 
populations in an attempt to identify “at-risk” 
subpopulations in the general population (Li 
et al., 2009). Several DNA-repair phenotypic 
studies have been developed using cultured 
blood lymphocytes including the mutagen 
sensitivity assay, the host-cell reactivation 
assay, RT–PCR gene expression, microarray for 
protein expression, and DNA repair capacity. 
For instance, lower DNA repair capacity meas-
ured in a UV-based host-cell reactivation assay 
has been found in individuals with basal cell 
carcinoma and cutaneous melanoma (Li et al., 
2009), and increased mutagen sensitivity meas-
ured as in vitro UVB-induced chromatid breaks 
was found in basal cell carcinoma and squamous 
cell carcinoma patients (Wang et al., 2005). The 
underlying molecular basis of this reduced repair 
capacity remains to be fully determined.

Several studies have reported an age-asso-
ciated decline in NER (Moriwaki & Takahashi, 
2008), which could result in an accumulation of 
damage, and reduced DNA-repair capacity has 
been found to be an independent risk factor for 
basal cell carcinoma and single or non-aggressive 
squamous cell carcinoma but not for multiple 
primaries, local aggressiveness, or recurrence of 
non-melanoma skin cancer (Wang et al., 2007).

Differences have also been reported between 
keratinocytes and fibroblasts in terms of the 
lethal effects of UVB and oxidative stress, which 
could in part be explained by differences in 
repair capacity and the induction of apoptosis. 
Keratinocytes have a more efficient NER global 
genome repair (GGR) subpathway and are char-
acterized by a strong anti-oxidant capacity and a 
higher susceptibility to reactive-oxygen-species-
induced apoptosis than fibroblasts (D’Errico 
et al., 2005; D’Errico et al., 2007).

Studies following the persistence of DNA 
photoproducts using high-performance liquid 
chromatography coupled with tandem mass 
spectrometry have shown that the rate of removal 

of UVA-generated cyclobutane-pyrimidine 
dimers is lower than that of dimers produced by 
UVB irradiation in human skin using an in-vitro 
model system (Mouret et al., 2006). The mecha-
nistic basis of these differences in repair capacity 
remains unknown.

The base-excision repair and single-strand 
break repair pathways are the main routes for 
oxidative DNA damage. Attenuation of the 
repair of 8-oxoguanine via downregulation 
of the base-excision repair pathway results in 
hypersensitivity to UVA in a murine cell model 
(Kim et al., 2002). In humans there is substan-
tial inter-individual variation in 8-oxoguanine 
repair (Paz-Elizur et al., 2007), and the presence 
of the Ser326Cys SNP in the human 8-oxogua-
nine DNA glycosylase (hOGG1) gene has been 
shown to impact on its constitutive activity, with 
the Cys variant protein having a lower enzy-
matic activity and a greater sensitivity to oxida-
tive stress (Bravard et al., 2009). UVA irradiation 
induces relocalization of the OGG1 to nuclear 
speckles where apurinic/apyrimidinic endonu-
clease-1 (APE1) is also found (Campalans et al., 
2007). APE1 is also known as redox factor-1 
(REF-1), a redox regulator of multiple stress-
inducible transcription factors such as nuclear 
factor–kappa B (NF-κB). Haploinsufficiency in 
mice of APE1 increases the apoptotic response 
to oxidative stress (Unnikrishnan et al., 2009).

4.3.2 SNPs in genes other than those involved 
in DNA repair

The hypothesis that polymorphisms in genes 
implicated in the responses to the DNA damage 
and oxidative stress induced following exposure 
to UV constitute genetic susceptibility factors for 
skin cancers has been assessed in many molec-
ular epidemiological studies using either a candi-
date gene approach or more recently GWAS. For 
instance, using in a GWAS of 930 Icelanders 
with basal cell carcinoma and 33117 controls, 
common variants on 1p36 and 1q42 were found 
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to be associated with cutaneous basal cell carci-
noma but not with melanoma or pigmentation 
traits (Stacey et al., 2008). SNPs in immune-
regulating components such as cytokines may 
lead to inter-individual differences in immuno-
suppression response and susceptibility to mela-
noma. For instance, in the interleukin-6 receptor 
gene (IL-6R), four SNPs (rs6684439, rs4845618, 
rs4845622, and rs8192284) in linkage disequi-
librium were associated with an increased risk 
of melanoma (Gu et al., 2008). An elevated risk 
of melanoma was observed in the heterozygous 
groups of these SNPs with odds ratios of 1.74 
(95%CI: 1.07–2.81) for rs6684439; 1.72 (95%CI: 
1.04–2.84) for rs4845618; 1.69 (95%CI: 1.03–2.75) 
for rs4845622; and 1.68 (95%CI: 1.04–2.73) for 
rs8192284. These associations were not observed 
in the homozygous variant group with odds 
ratios ranging from 0.93 to 1.03.

Associations have been found between poly-
morphisms in the promoter of the vitamin D 
receptor gene and malignant melanoma (Povey 
et al., 2007; Barroso et al., 2008; Mocellin & Nitti, 
2008) and non-melanoma skin cancer (Gandini 
et al., 2009).

There is some evidence for a contribution of 
pigmentation genetic variants, in addition to the 
melanocortin-1 receptor variants, to variation 
in human pigmentary phenotypes and possibly 
the development of skin cancer (Sturm, 2009). 
A first multistage GWAS of tanning response 
after exposure to sunlight in over 9000 men and 
women of European ancestry who live in the 
USA was recently reported (Nan et al., 2009). An 
initial analysis of 528173 SNPs genotyped on 2287 
women identified with LOC401937 (rs966321) 
on chromosome 1 as a novel locus highly asso-
ciated with tanning ability. This association was 
confirmed in 870 women controls from a skin 
cancer case–control study with a joint P value 
of 1.6 × 10−9. However this association was not 
replicated in two further studies. Several SNPs 
reaching the genome-wide significance level 
were located in or adjacent to the loci previously 

known as pigmentation genes: membrane-
associated transporter protein gene (MATP), 
interferon regulatory factor 4 (IRF4), tyrosinase 
(TYR), blue eye oculocutaneous albinism type II 
(OCA2), and melanocortin-1 receptor (MC1R). 
These are similar to the hair-colour-related loci 
detected in the GWAS of hair colour (Han et al., 
2008).

4.4 Other effects

4.4.1 Immune response and photoadaptation

The development of skin cancer appears to be 
controlled in part by the immune system. Within 
the skin all the necessary cellular requirements 
are present to induce and elicit antitumoural 
immunity (Schröder et al., 2006). Almost 30 years 
ago, Fisher and Kripke were the first to demon-
strate that UVR caused suppression of certain 
aspects of the immune system (Fisher & Kripke, 
1977). It has been well documented that patients 
with organ transplants that are maintained with 
immunotherapy are very prone to skin cancer 
(e.g. Bordea et al., 2004). Immunosuppression by 
solar-simulated UV in men has been observed at 
doses three times lower than those required for 
immunosuppression in women (Damian et al., 
2008).

The major steps of UV-induced immune 
suppression have been determined but it should 
be noted that, in many instances, these details 
were obtained following a single or a few expo-
sures of a rodent model or human subjects to 
UVR and that the dose chosen was sufficient to 
cause burning. In addition, the source used to 
emit UVR frequently contained more than 50% 
UVB (wavelength 280–315  nm), considerably 
more than natural sunlight. In experimental 
systems, there are differences between what is 
termed local and systemic immunosuppression. 
In the former, the antigen is applied directly to 
the irradiated body site soon after UV exposure. 
In the latter, following UV exposure of one part 
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of the body, the antigen is applied to a distant, 
non-irradiated body site (Applegate et al., 1989).

Following UVB exposure, convincing 
evidence has been published to indicate that 
the chromophores for immunosuppression 
include DNA, urocanic acid (UCA), and cell 
membranes. Studies by Kripke’s team were the 
first to suggest that DNA (and most likely, the 
pyrimidine dimer) may be the chromophore for 
UVB-induced immunosuppression (Applegate 
et al., 1989), and evidence linking DNA damage 
with immune modulation has come from studies 
on XP patients (Suzuki et al., 2001). Trans-UCA 
is a natural component of the strateum corneum, 
and UV induces a photoisomeric isomerization 
of trans-UCA to cis-UCA, which appears to be 
an initiator of the UV-immunosuppression, 
although its mechanism of action is still uncer-
tain (Halliday & Rana, 2008; Norval et al., 2008). 
UVA immunosuppression is likely to involve 
different chromophores than those required 
for UVB immunosuppression: molecules like 
porphyrins have been proposed (Halliday & 
Rana, 2008).

UVB irradiation triggers the production of 
various immunomodulatory mediators in the 
skin. These include cyclooxygenase-2 (COX-2), 
receptor activator of NF-κB ligand (RANKL), 
prostaglandins, platelet activating factor, hista-
mine, neuropeptides and cytokines such as 
tumour necrosis factor (TNF) that modulate 
the reactivity of the immune cells in the skin 
(Beissert & Loser, 2008; Halliday & Rana, 2008; 
Norval et al., 2008). For instance, TNF induces 
Langerhans cell activation and migration out 
of the skin into draining lymph nodes, thus 
limiting the capacity for antigen processing 
and presentation. Therefore, UVB ultimately 
suppresses the immune system by inducing 
the production of immunosuppressive media-
tors, by damaging and triggering the premature 
migration of antigen-presenting cells required 
to stimulate antigen-specific immune responses, 
by inducing the generation of suppressor cells 

and by inhibiting the activation of effector and 
memory T cells. Some of the mechanisms impli-
cated in UVA-induced immunosuppression, 
such as increased COX-2 activity, are common to 
those observed after exposure to UVB. In addi-
tion, the production of reactive oxygen species 
and reactive nitrogen species by UVA alters the 
redox equilibrium and targets proteins, lipids 
and DNA, and modulates the immune cells 
resulting in aberrant behaviour and migration 
of antigen-presenting cells, the inhibition of 
T-cell activation, and generates suppressor cells 
(Norval, 2006; Norval et al., 2008, Halliday & 
Rana, 2008).

The T helper1 (Th1) cytokine response is 
the main adaptive immune mechanism that 
offers protection from many infectious diseases. 
As UVR suppresses this preferentially, while 
promoting the Th2 cytokine response, there is 
the potential for UV exposure to increase the 
severity of infection, to alter viral oncogenicity, 
to cause reactivation from latency or to decrease 
the resistance to re-infection. Alteration of 
immune responses to microorganisms has been 
shown in rodent models following exposure to 
UVR (Norval, 2006). In humans, infections by 
herpes simplex virus (HSV) and human papil-
loma virus (HPV) are influenced by exposure 
to sunlight (see IARC, 2007b for details on UV 
and HPV). UVR is a recognized stimulus of HSV 
reactivation (Ichihashi et al., 2004) through the 
suppression of the local immune response as a 
result of the UV exposure or a direct interaction 
between the UVR and the virus through modu-
lation of the host transcription factors and the 
activation of HSV promoters, and hence reacti-
vation of the virus.

There is also some evidence that there are genetic 
and other differences in the way that individuals 
respond to vaccination depending on UVR expo-
sure (Norval, 2006). For instance, the findings 
from a meta-analysis of Bacille Calmette–Guérin 
clinical trials such as the increase of the efficacy 
of Bacille Calmette–Guérin vaccination with the 
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increasing distance from the equator suggested 
there might be an association between reduced 
vaccine efficacy and UVR (Colditz et al., 1994).

Human and rodent skins have the capacity 
to adapt as a result of repeated suberythemal 
UV exposures. This photoadaption can attenuate 
the quantity of UVR that reaches the basal and 
suprabasal cells of the epidermis, and results in 
an enhanced ability to repair UV-induced DNA 
damage and an induction of protective enzymes 
such as superoxide dismutase. Whether photoa-
daption can lead to photoprotection against the 
normal downregulation of immunity induced 
by a high UV dose remains to be established as 
there are considerable gaps in the knowledge and 
there are many variables involved, including the 
acknowledged genetic diversity in the response 
of individuals to UVR. Evidence for the devel-
opment of photoadaption is only apparent for 
epidermal DNA damage, no evidence exists 
when other parameters were considered such as 
total urocanic acid content or cis isomerization, 
Langerhans cells and dendritic cell numbers and 
function, natural killer cell numbers and func-
tion, dermal mast cell numbers or contact and 
delayed hypersensitivity responses (Norval et al., 
2008 and references therein). Thus, it is probable 
that repeatedly irradiating individuals with UVR 
is likely to continue to result in downregulation 
of immunity.

4.4.2 Modulation of gene expression

Differential gene expression in a variety of 
cell types has been demonstrated after exposure 
to different UV wavebands. For example Koch-
Paiz et al. (2004) used cDNA microarrays to 
analyse the responses in human cell line MCF-7 
cells following exposure to equitoxic doses of 
UVA, UVB, and UVC radiation. Under these 
experimental conditions, 310 of the 7684 genes 
on the array were UVB responsive, a subset of 
these to UVC and a subset of the UVB responsive 
genes also responsive to UVA.

Analysis of the UVR response genes in human 
melanocytes identified the tyrosine kinase ephrin 
receptor A2 (EPHA2) as an essential mediator of 
UVR-induced apoptosis (Zhang et al., 2008).

Chronic UVR exposure can also modulate 
gene expression. For instance, chronic UVA 
radiation of human HaCaT keratinocytes results 
in decreased PTEN expression (He et al., 2006).

MicroRNAs are very small endogenous RNA 
molecules about 22–25 nucleotides in length 
capable of post-transcriptional gene regulation. 
MicroRNAs bind to their target mRNA leading to 
cleavage or suppression of translation. MicroRNA 
profiles have been examined in melanomas (and 
melanoma cell lines) and Kaposi sarcoma (see 
Sand et al., 2009 and table therein). For instance, 
the skin specific microRNA miR-203 that 
represses p63 expression, an important factor in 
epidermal cell proliferation and differentiation, is 
downregulated in melanoma lines; miR-221 and 
miR-222 are linked to melanoma progression 
through the downregulation of cyclin-dependent 
kinase inhibitor 1b (p27Kip1/CDKN1B) and the 
tyrosine kinase c-KIT receptor.

4.5 Synthesis

In addition to what is stated in the summary 
of Volume 55 of the IARC Monographs, it is now 
known that following exposure to the individual 
components of UVR, i.e. UVA, UVB or UVC, 
there is an overlapping profile of DNA damage 
detectable, in particular for cyclobutane-pyrimi-
dine dimers. However, the proportion of different 
base-pair changes shows variation depending on 
the wavelength of radiation and cell type/species. 
The mechanisms leading to their formation may 
also be different. Recent experimental evidence in 
human cells shows that cyclobutane-pyrimidine 
dimers at cytosine-containing DNA sequences 
is formed following exposure to both UVA and 
UVB individually in human skin ex vivo.

Human cells have DNA-repair pathways 
that repair DNA photoproducts: the absence of 
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these enzymes, as seen in XP patients, leads to 
an increase risk of developing squamous cell 
carcinomas and melanomas lending support 
to a major role of DNA photoproducts in 
photocarcinogenesis.

UVR exposure gives rise to mutations in 
several genes in several human cell model 
systems, and mutations have been detected in 
several genes in human tumours, for example 
the TP53 gene in squamous cell carcinoma and 
solar keratosis, at DNA bases where known 
photoproducts could have been formed lending 
support to a major role of DNA photoproducts in 
photocarcinogenesis.

Mutations can be detected in human cells 
exposed to UVA, UVB and UVC: the base-pair 
changes involved in some of these mutations 
overlap. In particular, mutations found involving 
C→T transitions are found in cells treated with 
either UVA, UVB or UVC. The same situation is 
found when the base-pair changes, for instance 
in the TP53 gene, are analysed in human squa-
mous cell carcinoma and solar keratosis. As C→T 
transitions are not a specific “fingerprint” for 
UVA, UVB or UVC, either radiation type could 
have been at the origin of the exposure initiating 
the carcinogenic process.

Based on the above mechanistic considera-
tions, UVA, UVB and UVC are carcinogenic in 
human cells.

5. Evaluation 

There is sufficient evidence in humans for the 
carcinogenicity of solar radiation. Solar radiation 
causes cutaneous malignant melanoma, squa-
mous cell carcinoma of the skin and basal cell 
carcinoma of the skin. A positive association has 
been observed between exposure to solar radia-
tion and cancer of the lip, conjunctival squamous 
cell carcinoma and ocular melanoma, based 
primarily on results observed in the choroid and 
the ciliary body of the eye.

There is sufficient evidence in humans for 
the carcinogenicity of the use of UV-emitting 
tanning devices. UV-emitting tanning devices 
cause cutaneous malignant melanoma and 
ocular melanoma (observed in the choroid and 
the ciliary body of the eye). A positive asso-
ciation has been observed between the use of 
UV-emitting tanning devices and squamous cell 
carcinoma of the skin. 

There is sufficient evidence in humans for the 
carcinogenicity of welding. Current evidence 
establishes a causal association for ocular 
melanoma although it is not possible without a 
full review of welding to attribute the occurrence 
of ocular melanoma to UV radiation specifically.

There is sufficient evidence in experimental 
animals for the carcinogenicity of solar radia-
tion, broad-spectrum UVR, UVA radiation, 
UVB radiation, UVC radiation.

Solar radiation is carcinogenic to humans 
(Group 1).

Use of UV-emitting tanning devices is carci-
nogenic to humans (Group 1).

Ultraviolet radiation (bandwidth 100–400 
nm, encompassing UVC, UVB and UVA) is 
carcinogenic to humans (Group 1).
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