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INDOOR EMISSIONS FROM HOUSEHOLD 
COMBUSTION OF COAL 

Indoor combustion of coal was considered by a previous IARC Working Group in 2006 
(IARC, 2010a). Since that time, new data have become available, these have been incorpo­
rated into the Monograph, and taken into consideration in the present evaluation. 

1. Exposure Data 

1.1 Constituents of coal emissions 
from household use of coal 

1.1.1 Types and forms of coal 

Coal is a highly variable fuel, which ranges 
from high heating-value anthracite through 
various forms of bituminous coal to intermedi­
ates in coal formation, viz. lignite and peat. Each 
of these types of fuel can contain different levels 
of moisture, non-combustible inorganic material 
(ash), sulfur, and sometimes significant levels of 
other impurities, e.g. arsenic, fluorine, lead and 
mercury. 

Raw coal may be used in many forms, from 
lumps and briquettes to fine powders. Processing 
of coal may be as simple as forming coal balls 
or cakes by hand followed by sun-drying, or it 
may be a sophisticated procedure, blending coal 
into a uniform mixture with binders to reduce 
sulfur and particulate emissions and formed 
into briquettes designed to burn efficiently and 
cleanly in special stoves. 

1.1.2 Constituents of coal emissions 

When using small and simple combustion 
devices such as household cooking and heating 
stoves, coals are difficult to burn without substan­
tial emission of pollutants principally due to the 
difficulty of completely pre-mixing the fuel and 
air during burning. Consequently, a substantial 
fraction of the fuel carbon is converted to prod­
ucts of incomplete combustion. For example, 
typical household coal stoves in China and India 
divert between more than 10% and up to ~30% 
of their fuel carbon into products of incomplete 
combustion (Smith et al., 2000; Zhang et al., 
2000a). 

The products that are formed can be present 
in the gas phase, the particle phase, or both, 
depending on their volatility. Hence, they repre­
sent a complex mixture of particulate and gaseous 
chemical species, including carbon monoxide, 
nitrogen dioxide and particulate matter (PM). 
Products of incomplete combustion include 
polycyclic aromatic hydrocarbons (PAHs) and a 
large number of compounds that are precursor 
components of photochemical smog, such as 
aldehydes (Chuang et al., 1992a; Tsai et al., 2003). 
In addition, many types of coal contain intrinsic 
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contaminants from their mineral deposits, such 
as sulfur, arsenic, silica, fluorine, lead or mercury. 
During combustion, these contaminants are 
released into the air in their original or oxidized 
form. In households that use sulfur-rich coals, 
for example, sulfur dioxide is present at elevated 
levels. The high temperature of coal combustion 
leads to emission of large amounts of nitrogen 
oxides (Zhang et al., 2000a). 

The chemical constituents of coal emis­
sions have been reported as individual chemical 
compounds (e.g. carbon monoxide, benzene, 
formaldehyde, PAHs), groups of compounds 
(e.g. total non-methane hydrocarbon, total 
organic carbon), elements (e.g. carbon, arsenic), 
or ions (e.g. fluoride, sulfate) (IARC, 2010a). The 
constituents identified to date are summarized 
in Table 1.1 by compound class, element and ion, 
respectively. Selected chemicals that are associ­
ated with carcinogenicity are discussed below. 

(a) Particles and particle components 

Particles emitted from coal combustion are 
fine and ultra-fine in size (well below 1  µm in 
diameter) (Kleeman et al., 1999; Hays et al., 2002). 
Fresh coal emissions contain a large number of 
ultra-fine particles that condense rapidly as they 
cool and age. The emissions may include larger 
particles resulting from suspension of ash and 
solid fuel debris. Combustion-generated particles 
and ash/debris particles have different chemical 
composition and particle size. For this reason, 
there has been a switch in recent studies from 
measuring total suspended particles (TSP) to 
measuring inhalable particles (< 10 µm, referred 
to as PM10) or respirable particles (<  2.5 µm, 
referred to as PM2.5). 

A large number of chemical species are 
found in combustion-generated particles and 
many of these are not stable (Rogge et al., 1998). 
Elemental carbon has a characteristic core onto 
which many metals and organic compounds can 
be readily adsorbed or absorbed. 

Earlier studies also focused on different 
solvent extracts of particles (soot) emitted from 
coal combustion. For example, in Xuanwei 
County, China, particles released from smoky-
coal combustion contained the highest amount 
of organic compounds extractable with dichlo­
romethane, followed by particles released 
from anthracite (smokeless) coal combustion 
(Mumford et al., 1987). Some particles carry 
stabilized free radicals (Tian, 2005). 

Analytical techniques such as ion chroma­
tography can measure chemicals in the extracts 
of combustion particles in their dissociated form 
(ions). The most abundant commonly identified 
ions in coal emissions are shown in Table 1.1. 

(b) PAHs and substituted PAHs 

Polycyclic aromatic hydrocarbons are formed 
during incomplete combustion of all carbon-
based fuels and organic materials, including 
coal. At typical ambient temperature, lower 
molecular-weight PAHs (with 2–4 aromatic 
rings) are present predominantly in the gas phase 
while higher molecular-weight PAHs are present 
predominantly in the particle phase. Because 
PAHs of higher cancer potency are predomi­
nantly present in the particle phase (IARC, 
2010a), combustion particles have often been 
subject to compositional analysis for PAHs and 
PAH derivatives. A detailed analysis of PAHs 
in dichloromethane extracts of soot deposits 
from coal-burning stoves in several homes of 
Hunan Province, China, has identified 32 indi­
vidual PAHs ranging in size from three to eight 
fused aromatic rings. The PAHs found in the 
soot deposits included 20 benzenoid PAHs, six 
fluoranthene benzologues, one cyclopenta-fused 
PAH, one indene benzologue, three oxygen­
ated PAHs and one ring-sulfur-containing 
aromatic compound (Table 1.1; Wornat et al., 
2001). Carcinogenic PAHs, methylated PAHs 
and nitrogen-containing heterocyclic aromatics 
were detected in the particles emitted from 
smoky coal combustion, as typically found 
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Indoor combustion of coal 

Table 1.1 Constituents of coal emissions, by chemical class 

Compound Species 

Inorganic compounds CO, SO2, NOx 

Hydrocarbons 
Alkanes 
Alkenes 
Aromatics 
PAHs and substituted PAHs 

Aldehydes and ketones 

Carbon 
Metals 

Non-metals 
Anions 
Cations 

C1–C10 

C2–C10 (including 1,3-butadiene) 
Benzene, Xylene, Toluene, Styrene 
Acenaphthene 
Acenaphthylene 
Acephenanthrylene 
Anthracene 
Benz[a]anthracene 
Benzanthrone 
Benzo[b]chrysene 
Benzo[a]coronene 
Benzo[b]fluoranthene 
Benzo[k]fluoranthene 
Benzo[b+j+k]fluorene 
Benzo[a]fluorine 
Benzo[b]naphtha[2,l-d]thiophene 
Benzo[pqr]naphtha[8,1,2-bcd]perylene 
Benzo[ghi]perylene 
Benzo[a]pyrene 
Benzo[e]pyrene 
Chrysene 
Coronene 
Cyclopenta[def]chrysene-4-one 
Cyclopent[hi]acephenanthrylene 
Cyclopenta[cd]benzo[ghi]perylene 
Acetaldehyde 
Acetone 
Acrolein 
Benzaldehyde 
Butyraldehyde 
Crotonaldehyde 
Formaldehyde 
Hexaldehyde 
Elemental and organic 

Cyclopenta[bc]coronene 
Cyclopenta[cd]fluoranthrene 
Cyclopenta[cd]pyrene 
Dibenz[a,c]anthracene 
Dibenz[a,h]anthracene 
Dibenz[a,j]anthracene 
Dibenzo[a,e]pyrene 
Dibenzo[e,l]pyrene 
Dibenzo[b,k]fluoranthene 
Dicyclopenta[cd,mn]pyrene 
Dicyclopenta[cd,jk]pyrene 
Fluoranthene 
Fluorene 
Indeno[123-cd]pyrene 
Naphtho[1,2-b]fluoranthene 
Naphtho[2,1-a]pyrene 
Phenanthrene 
Picene 
Pyrene 
Triphenylene 
Tribenzo[e,ghi,k]perylene 
4-Oxa-benzo[cd]pyrene-3,5-dione 
Isobutyraldehyde 
Isovaleraldehyde 
meta,para-Tolualdehyde 
ortho-Tolualdehyde 
Propionaldehyde 
Valeraldehyde 
2-Butanone 
2,4-Dimethylbenzaldehyde 

Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Yt, Zr, Mo, Pd, Ag, 
In, Sn, Sb, Ba, La, Au, Hg, Tl, Pb 
S, P, Si, Cl, Br 

-SO4
2-, Cl-, NO3 

NH4
+, K+ 

From Kauppinen & Pakkanen (1990), Chuang et al. (1992a), Miller et al. (1994), Zhang & Smith (1999), Watson et al. (2001), Wornat et al. (2001), 
Ross et al. (2002), Yan et al. (2002), Tsai et al. (2003), Chen et al. (2004, 2005), Ge et al. (2004), Lee et al. (2005) 
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in numerous households in Xuanwei County, 
Yunnan Province, China (Mumford et al., 1987; 
Chuang et al., 1992a). In the aromatic fraction, 
coal combustion particles appeared to contain 
high concentrations and many species of meth­
ylated PAHs (Chuang et al., 1992a). However, 
profiles of specific PAHs and their abundance 
vary largely, depending on the fuel types and 
combustion conditions (Tian, 2005). 

(c)	 Hydrocarbons and partially oxidized organic 
compounds 

Hydrocarbons identified in coal emissions 
include alkanes with 1–10 carbons, alkenes with 
2–10 carbons (including 1,3-butadiene) and 
aromatic compounds (e.g. benzene, xylenes, 
toluene, styrene) (Table 1.1). Partially oxidized 
organic compounds identified in coal emis­
sions include alkanols, aldehydes and ketones 
(carbonyls), carboxylic acids, alkyl esters and 
methoxylated phenolic compounds (Rogge et al., 
1998). 

(d)	 Metals 

Some carcinogenic substances were found to 
be released during the combustion of lignites used 
in Shenyang City in northern China and smoky 
coals used in Xuanwei County, China. Lignites 
from a local Shenyang coal field had very high 
concentrations of nickel (75 ppm) and chromium 
(79 ppm) (Ren et al., 1999, 2004) when compared 
with the levels reported elsewhere in the world 
(0.5–50 ppm for nickel and 0.5–60 ppm for chro­
mium) (Swaine, 1990). Microfibrous quartz has 
been found in some smoky coals from Xuanwei 
County and the resulting coal emissions (Tian, 
2005). In Guizhou Province of China and other 
areas, particles emitted from burning coal have 
been reported to contain high levels of chemi­
cals like fluorine, arsenic and mercury (Gu et al., 
1990; Yan, 1990; Shraim et al., 2003). 

1.1.3 Emission factors of some carcinogens 

The emission factor of a particular chemical 
species can be measured as the mass of the 
species emitted per unit mass of fuel combusted 
or the mass of the species emitted per unit energy 
produced or delivered through combustion. Few 
studies conducted to date have quantified emis­
sion factors of common pollutants from house­
hold stoves used in developing countries. 

The available data for several known human 
carcinogens (benzene, 1,3-butadiene, formal­
dehyde and benzo[a]pyrene) are summarized 
in Table 1.2. The sum of PAHs, when ≥14 indi­
vidual PAHs were measured, is also shown. 
The cited studies measured the PAHs that are 
most commonly reported in the literature: 
acenaphthene, acenaphthylene, anthracene, 
benz[a]anthracene, benzo[b]fluoranthene, 
benzo[a]pyrene, benzo[ghi]perylene, benzo[k] 
fluoranthene, chrysene, dibenz[a,h]anthracene, 
fluoranthene, fluorene, indeno[1,2,3-cd]pyrene, 
naphthalene, phenanthrene and pyrene. 

Burning four types of household coal 
fuel (honeycomb coal briquette, coal briquette, 
coal powder and water-washed coal powder) in 
three different coal stoves generated a very wide 
range of benzene (2.71–1050  mg/kg fuel) (Tsai 
et al., 2003) and 1,3-butadiene emission factors 
(Table 1.2). The range of emission factors for 
formaldehyde was smaller. 

These patterns of emission factors measured 
under experimental conditions are, in general, 
consistent with indoor air concentration profiles 
measured in households using coal stoves. 

1.2 Prevalence of use and exposure 

1.2.1 China 

(a)	 Use and determinants of use of coal 

In China, coal accounts for 70–75% of energy 
consumption (Millman et al., 2008). 
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Indoor combustion of coal 

Table 1.2 Emission factors of carcinogenic compounds from household stoves 

Compound Fuel type Fuel Emission Emission factora, b Reference 
source factora (mg/MJ) 

(mg/kg fuel) 

Benzene Coal (4 types) China 2.71–1050 0.9–390 Tsai et al. (2003) 
1,3-Butadiene Coal (4 types) China 
Styrene Coal (4 types) China 
Formaldehyde Coal (3 types) China 
Acetaldehyde Coal (3 types) China 
Naphthalene Coal briquettes Viet Nam 
Benzo[a]pyrene Coal briquettes Viet Nam 
Benz[a]anthracene Coal briquettes Viet Nam 
Dibenz[a,h]anthracene Coal briquettes Viet Nam 
Sum of PAHs (≥14 individual Coal briquettes Viet Nam 
PAHs) 

a The values are ranges of the means reported in individual studies.
 
b Denotes milligrams per megajoule of energy delivered to the pot
 
ND, not detected (below method detection limit)
 

Although in-home coal use is banned in all 
Chinese cities, about 10% of urban households 
still use coal as their primary source of fuel. In 
2004, this corresponded to 27 million tonnes of 
coal. The use of coal is associated with access to 
local fuel sources and household income; a greater 
percentage of households in rural areas tend to 
use coal than in urban areas. In rural regions with 
ample and inexpensive coal supplies, virtually all 
households depend upon coal as their domestic 
fuel. In aggregate, about 40% of all households in 
rural China rely on coal for heating or cooking 
(National Bureau of Statistics, 2005). 

According to the National Bureau of Statistics 
(2005, 2006), household energy use from coal (raw 
coal, washed coal and briquettes) in China repre­
sented 21% of total energy use in urban areas, 
and 12.8% in rural areas. An earlier publication 
by the Ministry of Agriculture (EBCREY, 1999), 
by contrast, reported a corresponding value of 
34% in rural households. 

Occasionally, use of coal for heating does not 
equate with use of coal for cooking. For example, 
some households that use coal for heating may 
use wood for cooking. A recent survey evalu­
ated the specific types of fuels used for cooking 

ND–21.3 ND–7.9 Tsai et al. (2003) 
ND ND Tsai et al. (2003) 
2–51 0.9–12 Zhang & Smith (1999) 
0.8–81 0.3–20 Zhang & Smith (1999) 
44.5 Kim Oanh et al. (1999) 
0.30 Kim Oanh et al. (1999) 
0.11 Kim Oanh et al. (1999) 
ND Kim Oanh et al. (1999) 
102 4.4 Kim Oanh et al. (1999) 

throughout rural China. Overall, about 30% of 
rural households cook with coal. This distribu­
tion varied by geographic region, with coal being 
used for cooking in 19% of homes in Eastern 
China, 38% in Central China, 27% in Western 
China, and 7% in North-eastern China (National 
Bureau of Statistics, 2008). 

The use of coal varies largely by geographical 
conditions and socioeconomic status. Coal and 
other commercial fuels in generally associated 
with higher incomes. Where coal resources are 
highest – predominantly in the north – coal use 
is highest. In a 2003–04 winter survey of rural 
areas near Xi’an, 16% and 33% of the households, 
located in a small village, depended mainly 
on coal for heating and cooking, respectively 
(Tonooka et al., 2006). In a study in Shaanxi, 
Hubei and Zhejiang in China, most households 
(64%) in Shaanxi reported that they heated with 
coal in winter, compared to 0.2% in Zhejiang and 
28.5% in Hubei (Sinton et al., 2004). Similarly, 
70% of the households in Shaanxi used coal for 
heating, compared to 1.5% in Zhejiang and 6% in 
Hubei (Sinton et al., 2004). 
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Table 1.3 Levels of indoor air pollutants from coal emissions in Chinese homes 

Pollutant Urban (mg/m3) Rural (mg/m3) 

TSP 0.21–2.8 0.01–20 
PM10 0.16–2.7 0.12–26
 
CO 0.58–97 0.7–87
 
SO2 0.01–5.8 0.01–23
 
NO 0.01–1.8 0.01–1.7
 x 

B[a]P 0.3–190 5.3–19000 
B[a]P, benzo[a]pyrene; PM, particulate matter; TSP, total suspended particles 
From Sinton et al. (1995) 

(b) Pollutant levels and exposures 

Since the 1980s, many studies of indoor air 
quality in China have been published, meas­
uring particulate matter, benzo[a]pyrene, sulfur 
dioxide, nitrogen oxide and carbon monoxide 
(Table 1.3). The three-province survey (Sinton 
et al., 2004) found that in summer when stove 
use was dominantly for cooking, households that 
used coal experienced high particulate (PM4) 
levels, and traditional stoves emitted higher 
particulate levels than improved stoves. 

Kitchens may not be the sites with the 
highest average particulate matter levels. In the 
three-province study (Sinton et al., 2004), those 
households that used coal had higher particulate 
levels in living rooms than in kitchens; heating, 
smoking and perhaps other factors can result in 
levels over time that are higher in living rooms 
than in kitchens, despite the peaks associated 
with cooking. In another study (Jin et al., 2005), 
differences between rooms with and without 
stoves were small. 

A large number of studies monitored benzo[a] 
pyrene in households in Xuanwei County, 
Yunnan Province, others reported measure­
ments taken elsewhere (IARC, 2010a). Indoor 
levels of benzo[a]pyrene were in a range spanning 
four orders of magnitude, from 1 ng/m3 to over 
10 000 ng/m3 in some of the studies in Xuanwei 
County, in which bituminous coal led to much 
higher indoor levels than anthracite coal. In 

studies performed in other parts of the country, 
household averages rarely exceeded 40 ng/m3. 

A recent study examined winter levels of PM4 
in households in Guizhou and Shaanxi, in areas 
where coal in contaminated with fluorine, and 
found that average levels in kitchen and living 
areas were from about 200 μg/m3 to 2000 μg/m3 

(He et al., 2005). 

1.2.2 Ouside China 

There is little literature about coal use 
outside China. 

A few measurements of particulate size frac­
tions have been made in households of peri-urban 
Gujarat (in western India) that use coal (Aggarwal 
et al., 1982; Raiyani et al., 1993). During cooking, 
the proportion of total suspended particulates < 9 
μm in aerodynamic diameter was 92%, and 70% 
were particles < 2 μm in aerodynamic diameter. 
Particulate PAH size distributions measured in 
these same indoor environments showed that in 
houses that used coal, 76% of the PAH mass was 
contained in particulates <  2 μm aerodynamic 
diameter (Raiyani et al., 1993). 

In one study, conducted in winter on house­
holds in urban Santiago in Chile, levels of PM10 
were 250 μg/m3 in the kitchen, and 295 ppb SO2 
(Cáceres et al., 2001). 
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Indoor combustion of coal 

2. Cancer in Humans 

The Working Group evaluated studies that 
focused on exposure to coal emissions only 
without exposure to other solid fuels. 

2.1 Studies in China 

2.1.1 Cancer of the lung 

(a) Overview of studies 

Since the previous IARC Monograph (IARC, 
2010a), two new case–control studies (Galeone 
et al., 2008; Lan et al., 2008) and a re-analysis 
of a previously published cohort (Hosgood et al., 
2008) were published. 

A retrospective cohort study carried out 
in Xuanwei, China, evaluated the association 
between lung cancer risk and in-home coal use 
(Lan et al.,2002). Among lifetime smoky coal users, 
households that changed to stoves with chimneys 
experienced a significantly decreased risk of lung 
cancer in both men and women compared to 
individuals that used fire pits. Reduction in lung 
cancer mortality was also observed among life­
time smoky coal users that changed to portable 
stoves compared to those that used fire pits, both 
in men and women (Hosgood et al., 2008). Both 
analyses were adjusted for average tons of fuel 
used annually, years of tobacco smoking, years 
of cooking, history of spousal lung cancer, family 
history of lung cancer, as well as other potential 
confounders. 

Several case–control studies (Koo et al., 
1983; Xu et al., 1989; Wu-Williams et al., 1990; 
Liu et al., 1991; Huang et al., 1992; Sun, 1992; 
Ger et al., 1993; Lan et al., 1993; Liu et al., 1993; 
Dai et al., 1996; Du et al., 1996; Lei et al., 1996; 
Luo et al., 1996; Shen et al., 1996; Wang et al., 
1996; Ko et al., 1997; Shen et al., 1998; Zhong 
et al., 1999; Lan et al., 2000; Zhou et al., 2000; 
Le et al., 2001; Kleinerman et al., 2002; Galeone 
et al., 2008; Lan et al., 2008), have evaluated the 

association of lung cancer risk with in-home coal 
use in China (Table 2.1 available at http://mono-
graphs.iarc.fr/ENG/Monographs/vol100E/100E­
08-Table2.1.pdf). Four evaluated the effects by 
histology of lung cancer (Ger et al., 1993; Luo 
et al., 1996; Shen et al., 1996; Le et al., 2001). 
While these studies assessed exposure with 
different questionnaires and methodologies, in 
the aggregate, almost every study found in-home 
coal use to be associated with lung cancer risk 
in China by some measure of exposure. Notably, 
lung cancer has been associated with years of 
coal stove use (Xu et al., 1989; Wu-Williams 
et al., 1990; Dai et al., 1996), years of kang use 
(heated by coal) (Wu-Williams et al., 1990; Dai 
et al., 1996), years of cooking or heating with coal 
as the fuel source (Xu et al., 1989; Wu-Williams 
et al., 1990; He et al., 1991; Liu et al., 1991 Lan 
et al., 2002; Hosgood et al., 2008), amount of 
coal used (Lan et al., 1993; Lan et al., 2000; 
Kleinerman et al., 2002; Hosgood et al., 2008), 
and quality of ventilation in homes that use coal 
(Liu et al., 1993; Ko et al., 1997; Le et al., 2001). 
The studies were from different areas in China, 
including northern, southern, Xuanwei and the 
rest of central China, and Taiwan, China. 

(b) Exposure–response evidence 

All studies reporting an exposure–response 
association between coal use and lung cancer 
controlled for tobacco smoking. Lan et al. (1993) 
reported a significant exposure–response rela­
tionship according to the amount of smoky coal 
used per year in Xuanwei, China (P for trend 
<  0.001). Duration of cooking with coal was 
significantly and positively associated with the 
risk for lung cancer among women (Lan et al., 
2002; Hosgood et al., 2008). In Gansu, indi­
viduals who use coal as their main fuel source 
were also found to experience higher lung cancer 
risk, with a significant exposure–response 
relationship among men (P for trend  =  0.04) 
(Kleinerman et al., 2002) but not among women. 
In northern China, lung cancer risk increased in 
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an exposure–response manner according to the 
duration of use of heated kang (Xu et al., 1989). 
Galeone et al. (2008) constructed an index of 
indoor air pollution due to solid fuel use (mainly 
coal) and found a significant exposure–response 
relationship. 

(c) Type of coal 

Various smoky coal types were associated 
with a range of lung cancer risks with substantial 
heterogeneity (P < 0.001) in Xuanwei, China (Lan 
et al., 2008). The risk for lung cancer ranged from 
24.8 (95%CI: 12.4–49.6) for using smoky coal 
from the Laibin mine to 0.7 (95%CI: 0.2–3.1) from 
the Yangliu mine, compared to use of smoke­
less coal or wood. In this study, indoor benzo[a] 
pyrene concentrations were highly correlated 
with the risk for lung cancer. 

(d) Histology 

In-home coal use has been associated with 
both adenocarcinomas and squamous-cell carci­
nomas of the lung (Ger et al., 1993; Luo et al., 
1996; Shen et al., 1996; Le et al., 2001); however 
these studies are based on small sample sizes. 

(e) Population characteristics 

Most studies have focused on women, as they 
tend to spend more time at home and conse­
quently have greater exposures to coal combus­
tion products than men. Six studies enrolled 
only women (Dai et al., 1996; Wang et al., 1996; 
Ko et al., 1997; Shen et al., 1998; Zhong et al., 
1999; Zhou et al., 2000), of which three (Dai et 
al. 1996; Wang et al., 1996; Shen et al., 1998) were 
also restricted to non-smokers. [Fuel type was 
not specified in Zhou et al. (2000) but both cases 
and controls had ‘high level’ of exposure to coal 
emissions.] In-home coal was associated with 
lung cancer risk in three studies (Dai et al., 1996; 
Shen et al., 1998; Zhong et al., 1999). In study 
populations including men, the risks associated 
with in-home coal use was generally greater 

among women than among men (He et al., 1991; 
Liu et al., 1991; Liu et al., 1993). 

(f) Interactions 

The most notable genetic interaction with 
in-home coal use involves the GSTM1 null geno­
type. A meta-analysis found the GSTM1 null 
genotype to be associated with lung cancer risk 
(OR, 1.64; 95%CI: 1.25–2.14; 4 studies) among 
studies carried out in regions of China that use 
coal for heating and cooking (Hosgood et al., 
2007). 

2.2 Studies outside China 

2.2.1 Indoor exposures 

Two case–control studies that adequately 
separated the effect of coal from wood or other 
biomass products evaluated the association of 
coal use for heating or cooking and cancers of the 
lung, hypopharynx and larynx (Lissowska et al., 
2005; Sapkota et al., 2008; Table 2.2 available at 
http://monographs.iarc.fr/ENG/Monographs/ 
vol100E/100E-08-Table2.2.pdf). 

In a multicenter study conducted in seven 
European countries (Czech republic, Hungary, 
Poland, Romania, the Russian Federation, 
Slovakia and the United Kingdom), Lissowska 
et al. (2005) evaluated the association of heating 
and cooking with solids fuels with risk of lung 
cancer. The study included 2861 cases and 3118 
matched population-based controls. In an anal­
ysis that evaluated coal use specifically, ever use 
of coal (either as a cooking or heating fuel) was 
not significantly related to the risk of lung cancer, 
after adjusting for tobacco smoking and other 
factors. 

Sapkota et al. (2008) conducted a multicenter 
hospital-based case–control study in India to 
investigate lifetime fuel usage as risk factors for 
three different cancer types (1042 hypopharyn­
geal/laryngeal and 635 lung) and 718 matched 
controls. Compared with never users, among 
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those who always used coal for cooking the odds 
ratios for cancer was 1.92 (95%CI: 0.67–5.54) for 
the hypopharynx, 2.42 (95%CI: 0.94–6.25) for 
the larynx, and 3.76 (95%CI: 1.64–8.63) for the 
lung after adjusting for tobacco smoking and 
other factors. Among never smokers, the risk for 
lung cancer was 7.46 (95%CI: 2.15–25.94; based 
on 11 cases). The risk increased with years of 
coal usage for cancers of the hypopharynx (P for 
trend = 0.06), larynx (P for trend = 0.05) and lung 
(P for trend < 0.01). 

2.2.2 Ambient coal smoke exposure from 
ecological studies 

Two ecological studies evaluated the associa­
tion of coal emissions with lung cancer. A study 
conducted in Dublin (Kabir et al., 2007) evalu­
ated the impact of coal burning (black smoke 
outdoor concentration) on lung cancer mortality 
using data from 1981 to 2000. In 1990 the use 
of coal was banned in Dublin. A strong decline 
in black smoke was noted between the pre- and 
post-ban periods, from 46.4 μg/m3 in 1981–90 
(pre-ban) to 18.2 μg/m3 in 1991–2000 (post-ban). 
After adjusting for age, sex and smoking, annual 
mean black smoke concentration was not related 
to annual death rates from lung cancer. [The 
Working Group noted that the post-ban period 
was too short to see any changes in lung cancer 
mortality.] 

Another study evaluated the impact of indus­
trial installations involving combustion of coal 
and other fuels on the mortality due to lung, 
laryngeal and bladder cancer in the population 
of 8073 Spanish towns in 1994–2003 (García-
Pérez et al., 2009). Mortality data were obtained 
form the National Statistics Institute and popu­
lation exposure was evaluated by the distance of 
the centroid of the town to the closest combus­
tion facility. Installations using coal only as the 
fuel source, within a vicinity of 5 km, was related 
to an increased risk for lung cancer overall (OR, 
1.10; 95%CI: 1.02–1.18) with higher risk in men 

(OR, 1.13; 95%CI: 1.05–1.22), for bladder cancer 
overall (OR, 1.18; 95%CI: 1.01–1.37) and 1.22 
(95%CI: 1.03–1.44) in men and for laryngeal 
cancer (OR, 1.46; 95%CI: 1.21–1.77 in men) after 
adjusting for smoking and sociodemographic 
variables. The authors noted that there was no 
other industry nearby that could bias the risk 
estimates. 

2.3 Synthesis 

Several case–control studies from China 
and a study from India have demonstrated an 
increased risk for lung cancer associated with 
exposure to emissions from coal burning, after 
accounting for potential confounders, including 
smoking and in analyses restricted to non­
smokers. There were higher risks in women 
than men, and exposure–response relationships 
were found. A European case–control study 
did not find a significant effect of indoor coal 
use for cooking or heating. An ecological study 
from Europe provided further evidence of an 
increased risk for lung cancer in the vicinity of 
coal plants. No major effect was observed on 
lung cancer mortality after the ban of coal use in 
Dublin, probably because there was insufficient 
latency to see a change. Other cancer sites have 
been studied (larynx, bladder, hypopharynx); 
however there is not enough evidence to evaluate 
carcinogenicity with exposure to coal emissions. 

In conclusion, there is convincing evidence 
based on multiple studies, mainly from different 
parts of China and one in India, that indoor emis­
sions from household combustion of coal (used 
for heating and cooking) are causally linked to 
lung cancer in humans. 

3. Cancer in Experimental Animals 

Soots have been evaluated previously (IARC, 
1985, 2010a). 
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Coal soot has been tested for carcinogenicity 
to mice by whole body exposure and coal emis­
sions have been tested by inhalation in both mice 
and rats. Extracts of coal soot and smoke particles 
have also been tested by intratracheal, dermal, 
and subcutaneous administration to mice. A 
veterinary case–control study has studied sinon­
asal cancer in pet dogs from households with 
indoor use of coal. 

3.1 Coal emissions and coal soot 

3.1.1 Whole-body and inhalation exposure 

In one study, whole-body exposure of Buffalo 
strain mice to coal soot mixed with bedding caused 
eight lung adenocarcinomas in 100 exposed mice 
compared to one in 50 controls [not significant] 
(Seeling & Benignus, 1936). In a second study, no 
increase in lung or skin tumours resulted from 
repeated exposure of mice to a ‘moderate’ cloud 
of soot in an inhalation chamber for a period of 
one year (Campbell, 1939). 

Inhalation exposure to coal emissions for 
periods of 15 to 24 months caused markedly 
increased incidence of lung cancer in two studies 
in mice (Liang et al., 1988; Lin et al., 1995) and 
one study in rats (Liang et al., 1988; Table 3.1). 
Squamous cell lung carcinomas occurred in 
exposed animals in one of the studies in mice 
and the study in rats (Liang et al., 1988). 

3.2 Extracts of coal soot 

3.2.1 Intratracheal administration 

Intratracheal administration of an aqueous 
detergent extract of coal soot once every 10 days 
for about 100 days increased lung adenocarci­
noma incidence (29/72 versus 7/43, P < 0.01) in 
Kumming mice compared to controls after 18 
months (Yin et al., 1984). 

3.2.2 Dermal application 

Coal-soot extracts applied repeatedly to 
mouse skin increased the incidence of skin 
tumours including squamous cell carcinomas 
in four studies (Passey, 1922; Passey & Carter-
Braine, 1925; Campbell, 1939; Mumford et al., 
1990). 

Smoky coal-soot extracts applied to 
mouse skin followed by repeated dermal 
applications of the skin tumour promoter 
12-O-tetradecanoylphorbol-13-acetate initiated 
skin tumours in mice in two studies (Liang & 
Wang, 1987; Mumford et al., 1990; Table 3.2). 

3.2.3 Subcutaneous injection 

In one study, a low incidence (17%) of 
injection-site subcutaneous tumours [histology 
not specified] developed after 55 weeks in 30 
(C57BpxCBA)F1 male mice given five subcuta­
neous injections of extracts of brown coal. No 
tumours were observed in controls (Khesina 
et al., 1977). 

In two experiments, repeated subcutaneous 
injections for 10 weeks of extracts of coal soot 
collected from Xuanwei County, China, increased 
the incidence of lung cancer (adenocarcinomas, 
adenosquamous and squamous cell carcinomas) 
in Kumming mice after 10 months (Liang et al., 
1983, 1984; Table 3.3). 

3.3 Veterinary epidemiology 

A case–control study in pet dogs found that 
indoor use of coal was a strong risk factor for 
sinonasal cancers (adjusted odds ratio, 4.24; 95% 
confidence interval: 1.30–16.52) (Bukowski et al., 
1998). 
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Table 3.1 Carcinogenicity studies of inhalation exposure to coal emissions in experimental animals 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

Smoke, 60 g coal, daily Lung cancer, 9.4% NS 
Smoke, 105 g coal, daily Lung cancer, 12.8% P < 0.05 
Smoke, 160 g coal, daily Lung cancer, 24.3% P < 0.05 

30 M + 30 F
 
Mouse, Kunming (M, F) Control air 29/171, total lung cancer (all – Age at start NR (weight, 21 g)
 
15 mo adenocarcinomas) Total suspended particles, 0.91 mg/m3
 

2 yr 
Lin et al. (1995) 

Mouse, Kunming (M, F) Control air Lung cancer, 3.6% – Purity NR; Age at start NR (weight, 13 ± 1 g) 
Amounts of coal chosen to simulate normal 
indoor air conditions for humans in Harbin 
City, China 
Exposure assumed to be daily exposure 

Liang et al. (1988) Coal smoke	 188/210, total lung cancer P < 0.001 (control air) vs 14.38 mg/m3 (coal smoke). 
(including: 119/210, B[a]P, 0.15 μg/m3 (control air), 50.5 μg/m3 

adenocarcinoma; 45/210 (coal smoke) 
adenosquamous carcinoma; Bituminous coal incompletely burned to 
24/210 squamous-cell simulate normal indoor air in Xuanwei 
carcinoma) County, China 

113 M + 58 F (control) 
160 M + 50 F 

Rat, Wistar (M, F) Control air 1/110, total lung tumours – Age at start NR (weight, 105 g) 
19 mo (1 adenocarcinoma) Total suspended particles, 0.91mg/m3 

Liang et al. (1988) Coal smoke 84/125, total lung carcinomas P < 0.001 (control air) vs 14.38 mg/m3 (coal smoke). 
(all squamous cell carcinomas) B[a]P, 0.15 μg/m3 (control air), 50.5 μg/m3 

(coal smoke) 59 M + 51 F (control) 
Bituminous coal incompletely burned to 62 M + 63 F 
simulate normal indoor air in Xuanwei 
County, China 

B[a]P, Benzo[a]pyrene; F, female; M, male; mo, month or months; NR, not reported; NS, not significant; yr, year or years Indoor com
bustion of coal 
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Table 3.2 Carcinogenicity studies of dermal exposure to coal-soot extracts in mice 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

1 mg smoky coal extract, twice/ 38% carcinomasa (1.3 per NR [significant] 
wk, 52 wk	 tumour bearing mouse) at 52 

wk (88% survival), 88%a (1.1 per 
tumour bearing mouse) at 77 
wk (10% survival) 

40 animals 

IA
RC M

O
N

O
G

RA
PH

S – 100E 

Mouse, SENCAR (F) 
77 wk wk (control) (100% survival) or at 77 wk 
Mumford et al. (1990) 

0.2 ml, Acetone twice/wk, 52 No skin carcinomas at 52 wk 

(78% survival) 

– Exposure to organic extracts of 
indoor air particles from burned 
smoky coal in Xuanwei County, 
China. B[a]P content, 19.3 μg/m3 air 

Mouse, SENCAR (F) 
27 wk 
Mumford et al. (1990) 

Initiation with smoky coal Exposure to organic extracts of
 
extract, followed one wk after indoor air particles from burned
 
by promotion with TPA (2 μg/ smoky coal in Xuanwei County,
 
mouse in 0.2 ml acetone, twice/ China. B[a]P content, 19.3 μg/m3 air
 
wk, 26 wk). Tumour incidence and numbers
 
Initiation doses: estimated from graphical
 
0 mg 15% with skin papillomas – presentation of data.
 
1 mg 80% with papillomas NR [significant]
 
2 mg 90% with papillomas NR [significant]
 
5 mg > 90% with papillomas NR [significant]
 
10 mg > 90% with papillomas NR [significant]
 
20 mg 100% with papillomas NR [significant]
 
40 animals
 

Mouse, Kunming (M) Initiation with 0, 1, 5, 10, 20 mg Skin tumours: [P < 0.05], Age at start NR (weight, 28.7 g) 
26 wk smoky coal soot; promotion 10, 25, 54, 60, 40% 5–20 mg coal soot Extracts of smoky coal soot from 
Liang & Wang (1987) with TPA (repeated application Xuanwei County, China 

of 2 μg/mouse) 
40 animals 

a mainly squamous cell carcinomas 
B[a]P, benzo[a]pyrene; F, female; M, male; NR, not reported; TPA, 12-O-tetradecanoylphorbol-13-acetate; wk, week or weeks 
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Table 3.3 Carcinogenicity studies of subcutaneous injections of coal soot extracts in mice 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

Lung cancera 

500 mg soot extract (total dose) 44/57 P < 0.001 
10 mo 
Liang et al. (1983) 

0 mg (control) 
Mouse, Kunming (M) Once/wk, 10 wk: 1/38 - Age at start NR (weight, 18–26 g) 

Exposure to cyclohexane extracts 
of coal soot from Xuanwei County, 
China. 1000 mg soot extract (total dose) 36/56 P < 0.001 

38–57 animals 
Mouse, Kunming (M) Once/wk, 10 wk: 6/60, all - Age at start NR (weight, 18–22 g) 
311 d 0 mg (control) adenocarcinomas Exposure to Tween 80 – saline 
Liang et al. (1984) 119 mg soot extract (total dose) 52/58 P < 0.001 extracts of coal soot from Xuanwei 

County, China. 400 mg soot extract (total dose) 39/59 P < 0.001 
~60 animals 

a Lung cancers included squamous cell carcinomas, adenosquamous carcinomas, and adenocarcinomas. 
d, day or days; M, male; mo, month or months; NR, not reported; wk, week or weeks 

Indoor com
bustion of coal 
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3.4 Synthesis 

There is convincing evidence for the carci­
nogenicity of coal smoke and coal soot in 
experimental animals, based on the consistent 
induction of lung cancers in mice and rats 
exposed to coal emissions by inhalation, and in 
mice given subcutaneous injections of coal soot 
extract, and induction of malignant tumours of 
the skin in mice given repeated dermal applica­
tions of coal soot extract. 

4. Other Relevant Data 

4.1 Inhalable particles 

The primary mechanisms for deposition of 
airborne particles in the respiratory tract are sedi­
mentation, impaction and diffusion (see IARC 
(2010b) for a review). Deposition by sedimenta­
tion and impaction depends on the aerodynamic 
diameter of the particle, whereas deposition by 
diffusion depends on its thermodynamic diam­
eter (ICRP, 1994). Following inhalation, particles 
may either deposit in the extrathoracic, tracheo­
bronchial or pulmonary airways or remain in the 
air stream and be eliminated upon exhalation. 
The deposition of particles in the respiratory 
tract depends primarily on the size of the inhaled 
particle, the route of breathing (i.e. through the 
nose and/or mouth) and the breathing pattern 
(e.g. volume and frequency) (Bailey et al., 1985; 
Freedman & Robinson, 1988; ICRP, 1994). 

Particles are frequently aggregates or agglom­
erates of smaller primary particles. The aerody­
namic and thermodynamic properties of these 
aggregates (rather than the primary particles) 
affect their behaviour in the air and the proba­
bility of deposition in the respiratory tract. Once 
deposited, properties such as the size and surface 
area of both the aggregate and the primary 
particle can potentially affect the kinetics of 
clearance (ICRP, 1994; Oberdörster, 1996). 

The deposition and clearance of particles 
vary among individuals for several reasons, 
including age, sex, tobacco smoking status and 
health status. Pre-existing lung diseases or 
conditions such as asthma or chronic obstructive 
pulmonary disease can influence the efficiency 
and pattern of deposition within the respira­
tory tract. Deposition and retention determine 
the initial and retained dose of particles in each 
region of the respiratory tract and may, there­
fore, influence the risk for developing diseases 
specific to those regions of the respiratory tract 
(Oberdörster, 1988; ICRP, 1994). 

All animal species that are routinely used 
in particle toxicology, as well as humans, are 
susceptible to impairment of clearance of poorly 
soluble particles from the lungs. In rats, impaired 
clearance is probably one of the first steps neces­
sary to initiate a sequence of events that may 
lead to lung cancer. Different animal species 
exhibit differences in particle-induced impair­
ment of clearance, which can result in different 
lung burdens (expressed as mass or surface 
area) following exposures to the same particle 
concentration (Brown et al., 2005; IARC, 2010b). 
In cancer bioassays in rats exposed to various 
types of poorly soluble particles of fine or ultra-
fine size, the surface area of the particles may be 
a better predictor of lung tumours than particle 
mass (Oberdörster & Yu, 1990; Driscoll et al., 
1996). 

Inhaled and deposited particles are cleared 
more rapidly from the normal lungs of healthy 
rats than from those of humans. However, at 
high lung burdens, macrophage-mediated clear­
ance from the rat lung can be impaired and in 
time, clearance effectively ceases. This phenom­
enon (termed ‘overload’) is observed with poorly 
soluble particles generally considered to have 
low toxicity (Morrow, 1988). Several studies have 
shown that rats, but not mice or hamsters, develop 
excess incidence of lung cancer after chronic 
inhalation of ‘overloading’ doses of poorly soluble 
particles. Several authors have discussed this 

528 



 
 
 

 
 
 
 

 

 
 
 

 
 
 
 
 
 
 
 

 
 
 

 

      
 
 

    
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 

 
 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

Indoor combustion of coal 

phenomenon and the challenges it poses for the 
extrapolation of chronic effects in rats to humans 
(Morrow, 1994; Levy, 1995; Watson & Valberg, 
1996; ILSI, 2000; Miller, 2000; Oberdörster 2002; 
Hext et al., 2005; IARC, 2010b). 

The events proposed to describe the biological 
process that starts with particle deposition on 
critical target cells (e.g. alveolar epithelial cells 
type II) or tissues within the rat lung and results 
in lung tumours include: 

- sustained inflammation, where the cell 
population (dominated by activated and prob­
ably persistent polymorphonuclear neutrophils) 
secretes a collection of pro-/anti-inflammatory 
cytokines, proteases, cytotoxins, fibrogenic and 
other growth factors; 

- production of reactive oxygen species 
by particle effects or intracellular formation, 
which may gradually deplete the antioxidant 
defences; damage DNA directly and potentially 
induce mutations, promote cell turnover and 
cell proliferation; events that may enhance the 
risk for DNA replication error and/or expand a 
mutated or transformed cell to initiate a tumour 
(Castranova, 2000; Knaapen et al., 2004). 

Some of these events have been demonstrated 
in humans exposed to poorly soluble particles, 
but it is not known to what extent they are opera­
tive in humans and whether humans are eventu­
ally susceptible to particle-induced lung cancer. 
Species differences such as breathing condi­
tions, respiratory tract structure and pulmonary 
defences must be considered when extrapolating 
toxicological findings from rodents to humans 
(Castranova, 2000; Knaapen et al., 2004; Brown 
et al., 2005). Clear differences in antioxidant 
defence mechanisms in the lungs also exist 
between humans and rats, and there is evidence 
that humans overall are relatively deficient in 
some of these mechanisms compared with rats 
(IARC, 2010b). Studies in rats have shown that, 
depending on the concentration and duration of 
exposure, the long-term retention of particles in 
humans can be greater than that predicted from 

rodent studies that used lower concentrations or 
shorter durations of exposure (Morrow, 1988, 
1992; ILSI, 2000). 

Although the degree of sustained inflamma­
tion experienced by rats at high lung burdens 
is not observed in humans, humans may expe­
rience sustained inflammation under certain 
disease conditions, including late-stage intersti­
tial pulmonary fibrosis. Patients who have inter­
stitial pulmonary fibrosis have a high incidence 
of lung tumours (Daniels & Jett, 2005). 

4.2 Polycyclic aromatic hydrocarbons 

Polycyclic aromatic hydrocarbons are impor­
tant components of coal emissions (see IARC 
(2010c) for a review). These compounds are 
absorbed through the respiratory tract – from 
where, as adsorbed particulates, they can also 
be swept back up and swallowed into the gastro­
intestinal tract and even reach the skin. Smaller 
molecules (2–3-ring) are absorbed more rapidly 
than larger ones (IARC, 2010c). 

The rate and extent of absorption by the 
respiratory tract of PAHs from particles onto 
which they are adsorbed is generally dependent 
on particle size, which determines regional 
deposition in the respiratory tract and the rate 
of release of PAHs from the particle. Highly 
lipophilic PAHs released from particles depos­
ited in the conducting and bronchial airways are 
largely retained for several hours and absorbed 
slowly by a diffusion-limited process. In contrast, 
PAHs that are released from particles in alveolar 
airways are generally absorbed within minutes 
(Gerde & Scott, 2001; IARC, 2010c). 

Once absorbed, PAHs are distributed 
widely to most organs and tissues and tend to 
accumulate in fatty tissue (WHO, 1998; IARC, 
2010c). They are metabolized rapidly to more 
soluble metabolites, e.g. phenols, dihydrodiols, 
and phenol dihydrodiols, and in some cases to 
more reactive species like epoxides, dihydrodiol 

529 



 

 
 
 
 
 

 

 

 
 
 

  
   

 
 
 
 
 
 
 
 

 
 
 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

  

  
 

 
 
 
 

 

 
 

   
 
 

 
 
 

 
     

 
  

 

  
 

 
 
 

IARC MONOGRAPHS – 100E
 

epoxides, quinones and tetrols. At least three 
main pathways of metabolism are involved: 
•	 the cytochrome P450 (CYP) pathway, 

where PAHs may be (1) metabolized to 
their bay- and fjord-region diol epoxides 
with the involvement of epoxide hydrolase 
(Xue & Warshawsky, 2005) or (2) undergo 
cyclopenta-ring oxidation (IARC, 2010c). 

•	 the cytochrome P450/peroxidase path­
way, where removal of one electron from 
the π system by CYPs or peroxidases gen­
erates a radical cation (Cavalieri & Rogan, 
1992; Xue & Warshawsky, 2005). 

•	 the cytochrome P450/aldo-keto reduc­
tase (oxidative) pathway where, following 
metabolization to dihydrodiols by CYPs 
and epoxide hydrolase, formation of 
ortho-quinones and generation of reac­
tive oxygen species is ensured by aldo­
keto reductases (Penning et al., 1999; Xue 
& Warshawsky, 2005; Penning & Drury, 
2007). 

Many of the above-mentioned metabolites 
are electrophilic and bind to DNA and proteins, 
which results in genotoxic effects — primarily 
through the formation of DNA adducts (Xue 
& Warshawsky, 2005). Beyond these phase-I 
metabolic pathways, PAH metabolites may be 
eliminated in a conjugated form with either 
glutathione, sulfate or glururonic acid via the 
phase-II metabolism (WHO, 1998; IARC, 2010c). 

Ample evidence, summarized in IARC 
(2010c), supports a role for PAHs in lung cancer 
due to exposure to indoor emissions from coal 
combustion. 

A general genotoxic mechanism has emerged 
in which PAHs such as benzo[a]pyrene are metab­
olized to electrophilic compounds (e.g. benzo[a] 
pyrene-7,8-diol-9,10-epoxide) that form adducts 
in DNA (Xue & Warshawsky, 2005; IARC, 
2010c). If these adducts are not repaired, misrep­
lication converts them primarily into G→T trans-
version mutations in the TP53 gene in the lung. 
An over-representation of G→T transversions 

has been found on the non-transcribed strand 
of DNA in the TP53 gene in lung tumours from 
smoky coal-exposed women in China, which 
is consistent with exogenous exposure and the 
lack of transcription-coupled DNA repair on 
that strand, resulting in mutations (DeMarini 
et al., 2001). A preference for G→T transversions 
in the methylated CpG dinucleotides in human 
lung tumours has been found, in agreement with 
in-vitro studies that show the same dinucleotide 
as a target of benzo[a]pyrene diol epoxide (Casale 
et al., 2001; DeMarini et al., 2001; Hainaut & 
Pfeifer, 2001; Pfeifer & Hainaut, 2003). 

A study by Sun et al. (2007) found that coal 
emission-exposed subjects carrying an exon-3 
mutation in the microsomal epoxide hydro-
lase gene had a nearly 2-fold increased risk for 
lung cancer compared to those with the wild 
type version of the gene. Thus, metabolism to 
PAH-epoxides plays an important role in lung 
cancer associated with coal emissions. 

A role for the aldo-keto reductase (AKR) 
pathway in the formation of mutagenic/carcino­
genic metabolites of PAHs has also been found 
among smoky coal emission-exposed lung 
cancer patients in China. Lan et al. (2004) found 
that subjects who had the AKR1C3-Gln/Gln 
genotype had a 1.84-fold increased risk for lung 
cancer compared with those without the poly­
morphism. In subjects having the OGG1-Cys/Cys 
or the OGG1-Ser/Cys polymorphism, the risk for 
lung cancer was increased about 1.9-fold relative 
to OGG1-Ser/Ser. Indeed, AKRs convert trans­
dihydrodiols to ortho-quinones, and Park et al. 
(2008) have used a yeast system to show that the 
pattern of ortho-quinone-induced mutations in 
TP53 in this system is driven by 8-oxo-dGuo 
formation, whereas the spectrum of muta­
tions is driven by biological selection for domi­
nance. Park et al. (2009) have shown recently 
that the aryl-hydrocarbon receptor shuttles the 
AKR-generated ortho-quinones into the nucleus. 

Consistent with a role for PAHs, studies 
in smoky coal-exposed women in China have 
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shown that a polymorphism in nucleotide exci­
sion repair (ERCC2 Gln at codon 751) reduced 
lung cancer risk by 60%. A similar reduction 
was also found for subjects with a particular 
haplotype in ERCC2. A 2-fold increased risk for 
lung cancer was found for subjects having 1 or 2 
copies of the RAD23B gene with Val at codon 249 
(Shen et al., 2005). 

In addition, accumulation of mutations in 
other key genes (e.g. KRAS; Mass et al., 1993; 
DeMarini et al., 2001; Keohavong et al., 2003), 
production of reactive oxygen species (Xue & 
Warshawsky, 2005), photomutagenicity (Yan 
et al., 2004), together with interruption of 
gap-junctional intercellular communication 
(Bláha et al., 2002), cell-cycle dysregulation, 
increase in cell proliferation, tumour promotion 
(Tannheimer et al., 1998, 1999; Burdick et al., 
2003; Oguri et al., 2003; Plísková et al., 2005), 
and induction of apoptosis (Ko et al., 2004) can 
result in tumour formation. PAHs can also have 
immunosuppressive and haematological effects 
(Burchiel & Luster, 2001; Booker & White, 2005). 
Several of the above effects are partly mediated 
by activation of the aryl-hydrocarbon receptor to 
which many PAHs can bind (IARC, 2010c). 

4.3 Biomarkers and mutagenicity 

The available information on the mutagen­
icity and genotoxicity of smoky-coal emissions 
from Xuanwei County, China, includes a wide 
range of end-points that encompass mutations 
in KRAS and TP53 genes in lung tumours from 
non-smokers who were exposed to smoky-coal 
emissions (Li et al., 1997; DeMarini et al., 2001; 
Keohavong et al., 2003, 2004, 2005). In addition, 
studies show that such exposures result in the 
excretion of several PAHs and their metabolites, 
e.g. methylated- and hydroxyl-PAHs (Mumford 
et al., 1995; Siwińska et al., 1999) and that 
exposed individuals exhibit elevated levels of 
DNA adducts (Gallagher et al., 1993; Mumford 
et al., 1993; Xu et al., 1997; Casale et al., 2001) and 

accumulation of TP53 protein (Feng et al., 1999; 
Lan et al., 2001). Recently, mitochondrial DNA 
content, which is associated with production of 
reactive oxygen species through oxidative phos­
phorylation, was found to be elevated in smoky 
coal-exposed subjects (Bonner et al., 2009). 

It was also reported that exposure to coal 
emissions in Guizhou Province, China, is associ­
ated with increased levels of DNA–protein cross-
links, unscheduled DNA synthesis (Zhang et al., 
2000b), sister chromatid exchange, chromosomal 
aberrations, micronucleus formation (Zhang 
et al., 2007a) and p16 gene deletion and hyper­
methylation (Zhang et al., 2007b) in peripheral 
blood lymphocytes. Mutated P53 protein was 
also elevated in the skin (Hu et al., 2001). [Some 
of the observed cytogenetic damage were prob­
ably due to the elevated levels of arsenic present 
in this coal]. 

In many studies, extracts or condensates of 
coal emissions were found to be mutagenic in 
Salmonella with or without metabolic activation: 
in strain TA98 in the presence of S9 the potency 
for smoky-coal could reach 60000 revertants per 
cubic metre of air (Mumford et al., 1987) and 3000 
revertants per milligram of particle (Nakanishi 
et al., 1997). Bioassay-directed fractionation 
studies with Salmonella have identified that, for 
smoky-coal, most of the mutagenic activity is 
due to PAHs and alkylated PAHs (Chuang et al., 
1992a, b). Evaluation of the mutation spectrum 
produced by smoky coal extract in Salmonella 
showed a similar percentage of GC to TA muta­
tions (≈77–86%) as found in the TP53 (76%) and 
KRAS (86%) genes in lung tumours from smoky 
coal-exposed women (Granville et al., 2003). 

Several studies evaluated populations who 
are exposed to indoor air pollution from coal for 
associations between polymorphisms in genes 
that are involved in xenobiotic metabolism and 
risk for lung cancer. However, multiple compari­
sons and generally small sample sizes could 
have resulted in both false-positive and false-
negative findings. There is some evidence that 
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the GSTM1-null genotype was associated with 
increased risk for lung cancer in some studies in 
which at least part of the study population was 
definitely or probably exposed to indoor coal 
emissions, particularly where exposure to PAHs 
was suspected to be a contributing agent (Lan 
et al., 2000; Chen et al., 2006). However, results 
for polymorphisms in other genes are incon­
sistent or have been analysed in only one study. 
Therefore, no conclusion can be made regarding 
the effect of polymorphisms of genes other than 
possibly GSTM1 on risk for lung cancer in these 
populations. 

4.4 Synthesis 

Chemical analyses and bioassay-directed 
fractionation of smoky coal emissions have 
identified PAHs as an important chemical class 
that accounts for much of their mutagenicity 
and carcinogenicity. The epidemiological link 
between exposure to smoky coal emissions and 
an increased risk for lung cancer is strengthened 
mechanistically by the fact that the mutation 
spectra of the P53 tumour-suppressor gene and 
the KRAS oncogene in the lung tumours from 
non-smokers exposed to smoky coal esmissions 
reflect an exposure to PAHs and differs from the 
mutation spectra found in these genes in lung 
tumours from cigarette smokers. Thus, the muta­
tion spectra in lung tumours from non-smokers 
whose cancers are linked to smoky coal emissions 
reflect the primary DNA damage induced by the 
most prominent class of mutagens/carcinogens 
in these emissions. 

5. Evaluation 

There is sufficient evidence in humans for the 
carcinogenicity of indoor emissions from house­
hold combustion of coal. Indoor emissions from 

household combustion of coal cause cancer of 
the lung. 

There is sufficient evidence in experimental 
animals for the carcinogenicity of coal-derived 
soot extract. 

There is sufficient evidence in experimental 
animals for the carcinogenicity of emissions 
from combustion of coal. 

Indoor emissions from household combus­
tion of coal are carcinogenic to humans (Group 1). 
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