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1,3-BUTADIENE
 
1,3-Butadiene was considered by previous IARC Working Groups in 1991, 1998, and 2007 
(IARC, 1992, 1999, 2008). Since that time new data have become available, which have been 
incorporated in this Monograph, and taken into consideration in the present evaluation. 

1. Exposure Data 

1.1 Identification of the agent 

Chem. Abstr. Serv. Reg. No.: 106-99-0 
Chem. Abstr. Serv. Name: 1,3-Butadiene 
IUPAC Systematic Name: 1,3-Butadiene 

H2C CH  CH  CH2 

C4H6 
Relative molecular mass: 54.09 
Description: Colourless gas 
Solubility: Sparingly soluble in water 
(1 g/L at 20 °C); slightly soluble in ethanol 
and methanol; soluble in benzene, carbon 
tetrachloride, and diethyl ether 
Conversion factor: mg/m3 = 2.21 × ppm 

From O’Neil (2006) and Lide (2008) 

1.2 Use 

Butadiene is used primarily in the produc­
tion of synthetic rubbers and polymers, which 
are used in a wide variety of industrial and 
consumer products (e.g. automobiles, construc­
tion materials, appliance parts, computers 
and telecommunication equipment, protective 
clothing, packaging and household articles). The 

advantages of butadiene-based polymers include 
improved functionality, performance and safety, 
and lower costs. Synthetic rubbers that are 
produced from butadiene include styrene-buta­
diene rubber, poly-butadiene rubber, styrene­
butadiene latex, chloroprene rubber and nitrile 
rubber. Important plastics that contain butadiene 
as a monomeric component are shock-resistant 
polystyrene, a two-phase system that consists of 
polystyrene and poly-butadiene; polymers that 
consist of acrylonitrile, butadiene and styrene; 
and a co-polymer of methyl methacrylate, buta­
diene and styrene, which is used as a modifier for 
polyvinyl chloride. Butadiene is also used as an 
intermediate in the production of chloroprene, 
adiponitrile and other basic petrochemicals 
(White, 2007). 

1.3 Human exposure 

1.3.1 Occupational exposure 

The highest exposures to butadiene occur in 
occupational settings. The potential for expo­
sure exists in several industrial activities, such 
as petroleum refining and related operations 
(production of C4 fractions containing buta­
diene, and production and distribution of gaso­
line), production of purified butadiene monomer, 
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Table 1.1 Estimated numbers of workers exposed to 1,3-butadiene in the European Union (top 10 
industries) 

Industry, occupational activity 

Manufacture of rubber products   7100 
Manufacture of plastic products not elsewhere classified   7000 
Petroleum refineries   2200 
Construction   1600 
Manufacture of other chemical products   1300 
Education services     700 
Manufacture of transport equipment     700 
Wholesale and retail trade and restaurants and hotels     600 
Manufacture of machinery except electrical     500 
TOTAL 31600 
From CAREX (1999) 

production of various butadiene-based rubber to 20 mg/m3 to less than 2 mg/m3 between the 
and plastic polymers and other derivatives, and late 1970s and the early 2000s (IARC, 2008). In 
manufacture of rubber and plastic products, such styrene-butadiene polymer production, the esti­
as tyres, hoses and a variety of moulded objects mated median levels of exposure to butadiene in 
(IARC, 1999). earlier decades varied in the range 8–20 mg/m3, 

Estimates of the number of workers poten­ while current exposure measurements in modern 
tially exposed to 1,3-butadiene have been devel­ facilities in North America and western 
oped by CAREX (CARcinogen EXposure) in Europe generally show values below 2 mg/m3. 
Europe. CAREX is an international information Concentrations of butadiene-in-air reported 
system that provides selected exposure data and from the People’s Republic of China are some-
documented estimates of the number of exposed what higher (~4 mg/m3) (IARC, 2008). Butadiene 
workers by country, carcinogen, and industry is not usually found in detectable concentra­
(Kauppinen et al., 2000). Based on occupational tions in workplace air during the manufacture 
exposure to known and suspected carcinogens of finished rubber and plastic products (IARC, 
collected from 1990 to 1993, the CAREX data­ 1999). Regardless of the type of factory, produc­
base estimates that 31 600 workers were exposed tion process, or country, some tasks are still char-
to 1,3-butadiene in the European Union (EU). acterized by very high exposures (~200 mg/m3), 
Table 1.1 presents the number of exposed workers which are typically short in duration (IARC, 
for 1,3-butadiene (top 10 industries) in the EU by 2008). For a detailed description of studies on 
industry (CAREX, 1999). occupational exposure to butadiene and Tables 

From the US National Occupational with data summarizing the results, the reader is 
Exposure Survey (1981–1983) it was estimated referred to IARC Monographs Volumes 71 and 97 
that approximately 52  000 workers (including (IARC, 1999, 2008). 
approximately 1400 women) were potentially The utility of haemoglobin adducts as 
exposed to 1,3-butadiene (NIOSH, 1990). biomarkers of human exposure to butadiene has 

No measurements of exposure in butadiene­ been investigated in several molecular epidemio­
monomer production before the 1970s are avail- logical studies that often included the measure-
able, but exposure levels have decreased from up ment of urinary metabolites and personal-air 

Manufacture of industrial chemicals   8300 
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1,3-Butadiene 

monitoring of butadiene, as well as genotoxicity 
end-points and metabolic phenotypes (IARC, 
2008). 

1.3.2 Non-occupational exposure 

Butadiene has been widely detected in 
ambient air but at much lower levels (µg/m3) 
than reported in some occupational settings 
(mg/m3). Elevated concentrations may occur in 
the vicinity of point sources, such as municipal 
structural fires, wood and brush fires; cigarette 
smoking; vehicle emissions and gasoline vola­
tilization (IARC, 2008). Studies on non-occu­
pational exposures to 1,3-butadiene have been 
reviewed in previous IARC Monographs (IARC, 
1999, 2008). 

In a study conducted between 1990 and 1994, 
concentrations of butadiene were determined in 
1611 samples of outdoor air from 25 sites within 
14 cities, towns or rural locations in Ontario, 
Canada. The mean concentration in all samples 
was 0.1 μg/m3 (maximum, 1.7 μg/m3) (Health 
Canada, 2000). 

Dollard et al. (2007) measured butadiene 
concentrations at rural, urban background (UB), 
urban industry-influenced (UI) and ‘busy-road­
traffic’ (BR) locations in the United Kingdom 
from 1993 to 2004. Mean rural levels dropped 
from 0.39 to 0.02 µg/m3 between 1995 and 2004; 
mean UB levels decreased from 0.64 to 0.15 µg/m3 

in 1993–2004; mean UI levels came down from 
0.85 to 0.35 µg/m3 in 1995–2000; and mean BR 
levels went from 3.3 to 0.57 µg/m3 in the period 
1997–2004. 

2. Cancer in Humans 

In IARC Monograph Volume 97 (IARC, 
2008) three cohort studies of workers in the 
butadiene-monomer industry were reviewed 
(Ward et al., 1995; Divine & Hartman, 2001; 
Tsai et al., 2001), along with two cohort studies 

of workers in the styrene–butadiene rubber 
(SBR) industry (McMichael et al., 1974, 1976; 
Meinhardt et al., 1982; Matanoski & Schwartz, 
1987; Matanoski et al., 1990, 1993; see Table 2.1, 
available at http://monographs.iarc.fr/ENG/ 
Monographs/vol100F/100F-21-Table2.1.pdf). The 
excess of mortality from leukaemia in one of the 
butadiene-monomer industry cohorts, which did 
not increase with duration of exposure or with 
cumulative exposure, was more pronounced 
among workers who had been exposed during the 
Second World War, when exposures to butadiene 
had probably been higher (Divine & Hartman, 
2001). These cohorts were subsequently combined, 
although data from one styrene-butadiene plant 
were excluded because the information was 
incomplete (Delzell et al., 1996; Macaluso et al., 
2004; Graff et al., 2005; Sathiakumar et al., 2005; 
Delzell et al., 2006; Cheng et al., 2007). A series 
of overlapping analyses examined the mortality 
of approximately 17  000 male workers from 
eight SBR-manufacturing facilities in the USA 
and Canada (see Table  2.1 online). A limiting 
factor was that diagnosis and classification of 
lymphatic and haematopoietic malignancies are 
extremely complex, and that these underwent 
several changes over the course of time. Although 
mortality from leukaemia was only slightly 
elevated in the most recent updates (Sathiakumar 
et al., 2005; Delzell et al., 2006; Cheng et al., 2007), 
large excesses of mortality from leukaemia were 
seen in workers in the most highly exposed areas 
of the plants and among hourly-paid workers, 
especially those who had been hired in the early 
years and had been employed for more than ten 
years. These excesses were attributable to both 
chronic lymphocytic and chronic myelogenous 
leukaemia, with significant exposure–response 
relationships between cumulative exposure to 
butadiene and mortality from both leukaemia 
types. The most recent analyses showed that the 
exposure–response for butadiene and leukaemia 
was independent of exposures to benzene, 
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styrene and dimethyl-dithiocarbamate (Delzell 
et al., 2006; Cheng et al., 2007). 

The strongest evidence of an associa­
tion between exposure to butadiene and non-
Hodgkin lymphoma comes from studies in 
the butadiene-monomer industry (Ward et al., 
1995, 1996; Divine & Hartman, 2001). Although 
this association did not become stronger with 
duration of exposure, it was more pronounced 
among workers who had been exposed during 
the Second World War, when exposures had 
presumably been higher. 

Whitworth et al. (2008) conducted an ecolo­
gical study in South-eastern Texas that assessed 
whether census tracts with the highest ambient-
air concentrations of benzene or 1,3-butadiene 
have a higher incidence of lymphohaemato­
poietic cancer in children. The analysis included 
977 cases of childhood lymphohaematopoietic 
cancer diagnosed from 1995–2004. Estimates 
of airborne concentrations of benzene and 
1,3-butadiene were obtained for 886 census tracts 
by use of the models proposed in 1999 by the 
US Environmental Protection Agency. Poisson-
regression models were used to explore the asso­
ciations between pollutant levels and census-tract 
cancer rates. Adjustments were made for age, sex, 
race/ethnicity, and socioeconomic status at the 
community level. Census tracts with the highest 
1,3-butadiene concentrations had rate ratios of 
1.4 (95%CI: 1.1–1.8), 1.7 (95%CI: 0.8–3.4), and 1.3 
(95%CI: 1.0–1.8) for all leukaemia, acute myeloid 
leukaemia and acute lymphocytic leukaemia, 
respectively. A statistically significant dose– 
response trend was noted for all leukaemia. No 
association was found between 1,3-butadiene 
concentrations and lymphoma incidence. An 
excess of leukaemia was also found in associa­
tion with environmental exposure to benzene, 
but analyses that examined both exposures 
simultaneously indicated that the effects were 
independent. [The Working Group noted that 
environmental levels of butadiene are consider­
ably lower than in industrial settings but children 

may be a more sensitive group. However, poten­
tial confounding factors have not been fully 
addressed and the findings need to be confirmed 
in future studies.] 

The mortality of women in the styrene­
butadiene cohort has also been evaluated 
(Sathiakumar & Delzell, 2007, 2009; see Table 2.1 
online). No increased risks were found for 
leukaemia or lymphoma. Statistically signifi­
cant positive SMRs were seen for cancers of the 
lung and bladder. [Unlike in the male cohorts, 
the female cases were not confirmed pathologi­
cally, the exposure level was low, most women 
were short-term workers (median duration of 
employment was approximately 1.7  years; 70% 
had worked during less than four years), and 
only 30% of women were exposed to butadiene 
and styrene.] 

In a further analysis of this SBR cohort, the 
lung-cancer risk among men and women was 
evaluated. Among men there was no indica­
tion of an increased risk for lung cancer and no 
evidence for an internal dose–response. Among 
women there was evidence of an increased risk 
for lung cancer, although there was no evidence 
for an internal dose–response in the exposed 
group (Sathiakumar & Delzell, 2009). 

Overall, the epidemiological evidence 
from the styrene-butadiene and the butadiene­
monomer industries clearly indicates an increased 
risk for haematolymphatic malignancies. Studies 
from the styrene-butadiene industry show an 
excess of leukaemia, and a dose–response rela­
tionship with cumulative exposure to butadiene, 
while studies from the monomer industry show 
an excess of haematolymphatic malignan­
cies in general, attributable both to leukaemia 
and malignant lymphoma. The evidence for an 
association between exposure to butadiene and 
cancer of the haematolymphatic organs has 
gained some support by findings of an associa­
tion between environmental levels of butadiene 
and risk for leukaemia in children. 
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1,3-Butadiene 

The epidemiological evidence for an associa­
tion with specific subtypes of haematolymphatic 
malignancies is weaker, mainly since numbers are 
lower, giving imprecise risk estimates. However, 
when malignant lymphomas and leukaemias 
are distinguished, the evidence is strongest for 
leukaemia. 

3. Cancer in Experimental Animals 

3.1 1,3-Butadiene 

Studies on the carcinogenesis of 1,3-butadiene 
in rats and mice have been reviewed in previous 
IARC Monographs (IARC, 1999, 2008) and by 
Grosse et al. (2007). The results of adequately 
conducted carcinogenicity studies are summa­
rized in Table 3.1. There were no additional 
studies reported in the published literature since 
IARC Monograph Volume 97 (IARC, 2008). 

1,3-Butadiene was tested for carcinogenicity 
by inhalation exposure in one study in rats and 
four studies in mice. 

Inhalation of 1,3-butadiene induced tumours 
in rats at exposure concentrations ranging 
from 1000 to 8000 ppm [2200–17650 mg/m3], 
and in multiple organs in mice at exposure 
concentrations ranging from 6.25 to 1250 ppm 
[13.8–2760 mg/m3]. In rats, 1,3-butadiene caused 
a significantly increased incidence of carcinomas 
of the Zymbal gland, sarcomas of the uterus, 
adenomas and carcinomas (combined) of the 
mammary gland, and follicular cell adenomas of 
the thyroid gland in females. In males, it caused 
malignant gliomas and adenomas of the pancreas 
and testes in males (Owen et al., 1987; Owen 
& Glaister, 1990; Melnick et al., 1993; Melnick 
& Huff, 1993). In mice of both sexes, 1,3-buta­
diene caused a significantly increased incidence 
of Harderian gland adenomas and carcinomas, 
heart haemangiosarcomas, lymphoid tissue 
neoplasms (lymphoma, histiocytic sarcoma), 
lung adenomas and carcinomas, hepatocellular 

adenomas and carcinomas, and fore-stomach 
papillomas and carcinomas. It caused mammary 
gland cancers, benign tumours and carcinomas 
of the ovary, and skin sarcomas in females. It also 
caused preputial gland carcinomas and kidney 
tubule adenomas in males (NTP, 1984, 1993; 
Huff et al., 1985; Miller et al., 1989; Melnick 
et al., 1990a, b, 1993; Melnick & Huff, 1993; 
Hong et al., 2000; Melnick & Sills, 2001; Kim 
et al., 2005). No increased incidence of tumours 
was observed in one study in mice exposed once 
to 1,3-butadiene at concentrations up to 10 000 
ppm [22000 mg/m3] (Bucher et al., 1993). 

3.2 Diepoxybutane 

Diepoxybutane, a metabolite of 1,3-buta­
diene, was tested for carcinogenicity by inhala­
tion in one study in rats and one study in mice, 
by four skin-application studies in mice, by one 
subcutaneous injection study in rats and two such 
studies in mice, and by one gavage and one intra-
peritoneal injection study in mice (Tables 3.1, 3.2, 
3.3, 3.4). 

Diepoxybutane increased the incidence of 
adenomas of the Harderian gland in female mice, 
and of squamous cell carcinoma of the nose in 
female rats after inhalation exposure (Henderson 
et al., 1999, 2000). Subcutaneous injection 
resulted in an increased incidence of fibrosar­
comas in female rats and female mice. The gavage 
study in mice did not produce any tumours (Van 
Duuren et al., 1966). Intra-peritoneal injection 
led to an increased incidence of lung tumours 
in strain A/J mice (Shimkin et al., 1966). Two 
skin-application studies in mice resulted in an 
increased incidence of dermoid carcinomas (Van 
Duuren et al., 1963, 1965). 
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Table 3.1 Carcinogenicity studies in experimental animals exposed to 1,3-butadiene and diepoxybutane by inhalation 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

IA
RC M

O
N

O
G

RA
PH

S – 100F
 

1,3-Butadiene 
Rat, Sprague-Dawley 0, 1 000, 8 000 ppm, 6 
(M, F) h/d, 5 d/wk 
killed at 52 wk, remainder 110/group 
killed when survival was 
approximately 20% (105 
wk for F, 111 wk for M) 
Owen & Glaister (1990), 
Melnick et al. (1993), 
Melnick & Huff (1993) 

Pancreas (exocrine adenomas): P ≤ 0.001 (high-dose M) 99.2% pure 
3/100, 1/100, 10/100 (M); 2/100, P ≤ 0.001 (trend M) 16 deaths occurred during the first 
0/100, 0/100 (F) yr. During the second yr mortality 
Uterus (sarcomas): 1/100, 4/100, 
5/100 (F) 
Zymbal gland (adenomas): 1/100, 
1/100, 1/100(M); 0/100, 0/100, 0/100 
(F) 
Zymbal gland (carcinomas): 0/100, 
0/100, 1/100 (M); 0/100, 0/100, 4/100 
(F) 
Mammary gland (benign): 0/100, 

P ≤ 0.005 (trend F) 

Carcinoma: P ≤ 0.05 (trend 
F) 

NS 

increased with increasing dosage. 
Increased mortality in females was 
due to mammary tumours and in 
males due to renal lesions. 
The incidence of uterine sarcomas 
and Zymbal-gland tumours were 
similar to the historical laboratory 
control. Zymbal-gland tumours were 
noted between 76 and 90 wk. 

2/100, 0/100 (M); 32/100, 64/100, 
55/100 (F) 
Mammary gland (malignant): 1/100, NS 
0/100, 0/100 (M); 18/100, 15/100, 
26/100 (F) 
Mammary gland (total combined P ≤ 0.001 (trend F) 
benign and malignant mammary 
tumours): 1/100, 2/100, 0/100 (M); 
50/100, 79/100, 81/100 (F) 
Thyroid (follicular cell adenomas): P ≤ 0.01 (trend F) 
3/100, 5/100, 1/100 (M); 0/100, 2/100, 
10/100 (F) 
Thyroid (carcinomas): 1/100, 0/100, NS 
0/100 (M); 0/100, 2/100, 1/100 (F) 
Testis (leydig cell tumours): 0/100, P ≤ 0.001 (trend M) 
3/100, 8/100 (M) 
Brain (glial cell tumours P ≤ 0.05 (trend M) 
(malignant)): 1/100, 4/100, 5/100 (M) 
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Table 3.1 (continued) 

Species, strain (sex) 
Duration 
Reference 

Dosing regimen, 
Animals/group at start 

Incidence of tumours Significance Comments 

Mouse, B6C3F1 (M, F) 
60–61 wk 
NTP (1984), Huff et 
al. (1985), Miller et al. 
(1989), Melnick et al. 
(1993), Melnick & Huff 
(1993), Hong et al. (2000), 
Melnick & Sills (2001), 
Kim et al. (2005) 

0, 625, 1 250 ppm 
6 h/d, 5 d/wk. 
50/group 

Lung: (alveolar/bronchiolar 
adenomas): 2/50, 12/49, 11/49 (M); 
3/49, 9/48, 20/49 (F) 

P < 0.001 (trend), P < 0.001, 
P < 0.001 (M); P < 0.001, 
P < 0.001, 
P < 0.001 (F) 

> 99% pure 
The survival of both dose-groups of 
mice of each sex was significantly 
less than that of the corresponding 
controls. The study was planned 
for 103 wk, but was terminated 
after 60 wk for males and 61 wk for 
females, because of poor survival 
(P < 0.01) in all exposed groups due 
to malignant tumours in multiple 
organs. Malignant lymphomas and 
haemangiosarcomas were considered 
the major cause of early death in 
these studies. 

Lung (alveolar/bronchiolar 
carcinomas): 0/50, 2/49, 5/49 (M); 
0/49, 6/48, 8/49 (F) 

Lung (alveolar/bronchiolar 
adenomas or carcinomas): 2/50, 
14/49, 15/49 (M); 3/49, 12/48, 23/49 
(F) 
Lymphoma (all lymphomas): 0/50, 
23/50, 29/50 (M); 1/50, 10/49, 10/49 
(F) 
Heart (haemangiosarcomas): 0/50, 
16/49, 7/49 (M); 0/50, 11/48, 18/49 
(F) 
Fore-stomach (all papillomas): 0/49, 
5/40, 0/44; (M) 0/49, 4/42, 10/49 (F) 

Fore-stomach (squamous cell 
carcinomas): 0/49, 2/40, 1/44 (M); 
0/49, 1/42, 1/49 (F) 
Fore-stomach (all papillomas or 
carcinomas): 0/49, 7/40, 1/44 (M); 
0/49, 5/42, 10/49 (F) 
Liver (hepatocellular adenomas): 
0/50, 1/47, 4/49 (F) 

P < 0.001, P = 0.018, 
P < 0.001 (M); P = 0.001, 
P < 0.001, P < 0.001 (F) 

P < 0.001, P < 0.001, 
P < 0.001 (M); P < 0.001, 
P < 0.001, P < 0.001 (F) 

P < 0.001, P < 0.001, 
P < 0.001 (M); P = 0.006, 
P < 0.001, P = 0.003 (F) 
P < 0.001, P < 0.001, 
P < 0.001 (M); P < 0.001, 
P < 0.001, P < 0.001 (F) 
P = 0.036, P < 0.001, – 
(M); P < 0.001, P = 0.001, 
P < 0.001 (F) 
NS 

P = 0.006, P < 0.001, 
P = 0.248 (M); P < 0.001, 
P < 0.001, P < 0.001 (F) 
P = 0.015, P = 0.278, 
P = 0.030 (F) 

1,3-Butadiene 
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IA
RC M

O
N

O
G

RA
PH

S – 100F 

Mouse, B6C3F1 (M, F) 
60–61 wk 
NTP (1984), Huff et 
al. (1985), Miller et al. 
(1989), Melnick et al. 
(1993), Melnick & Huff 
(1993), Hong et al. (2000), 
Melnick & Sills (2001), 
Kim et al. (2005) 
Contd. 

Liver (hepatocellular carcinomas): 
0/50, 1/47, 1/49 (F) 

NS 

Mouse, B6C3F1 (M, F) 
2 yr stop study 
Bucher et al. (1993) 

Table 3.1 (continued) 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

Liver (hepatocellular adenomas or 
carcinomas): 0/50, 2/47, 5/49 (F) 
Mammary gland (acinar cell 
carcinomas): 0/50, 2/49, 6/49 (F) 
Mammary gland (adenosquamous 
carcinomas): 0/50, 4/49, 0/49 (F) 
Ovary (benign granulosa cell 
tumours): 0/49, 6/45, 12/48 (F) 
Preputial gland (carcinomas): 0/50, 
3/50, 2/50 (M) 
Brain (gliomas): 0/50, 2/50, 1/50 (M) 
Zymbal gland (carcinomas): 0/50, 
0/50, 2/50 (M); 0/50, 0/49, 1/49 (F) 

P = 0.009, P = 0.048,
 
P = 0.015 (F)
 
P = 0.004, P = 0.048,
 
P = 0.007 (F)
 
P = 0.575, P = 0.030, – (F)
 

P < 0.001, P < 0.001,
 
P < 0.001 (F)
 
NS
 

NS
 
NS
 

60/group Forestomach (squamous neoplasms): 
0/59, 1/58, 1/58, 3/58 (M); 0/57, 1/56, 
0/57, 0/58 (F) 

NS 

Mammary gland (acinar cell 
neoplasms): 0/59, 0/58, 0/58, 1/58 
(M); 2/57, 1/56, 3/57, 4/58 (F) 

NS 

0, 1 000, 5 000, 10 000 
ppm for 2 h, then held 
for 2 yr 

Malignant lymphomas: 7/59, 8/58, NS Purity NR
 
8/58, 10/58 (M); 13/57, 19/56, 18/57,
 
13/58 (F)
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Table 3.1 (continued) 

Species, strain (sex) 
Duration 
Reference 

Dosing regimen, 
Animals/group at start 

Incidence of tumours Significance Comments 

Mouse, B6C3F1 (M, F) 
2 yr 
Miller et al. (1989), 
Melnick et al. (1990a, b, 
1993), Melnick & Huff 
(1993), NTP (1993), 
Melnick & Sills (2001), 
Kim et al. (2005) 

0, 6.25, 20, 62.5, 200, 
625 ppm, 6 h/d, 5 d/wk 
for 103 wk 
70/group for dosages 
0–200 ppm, 90/group 
for 625 ppm 

Lymphoma (all lymphomas): 4/50, 
2/50, 4/50, 6/50, 2/50, 51/73 (M); 
6/50, 12/50, 11/50, 7/50, 9/50, 32/80 
(F) 

P < 0.001 (trend), 
P = 0.302N, P = 0.528, 
P = 0.238, P = 0.627, 
P < 0.001 (M); P < 0.001, 
P = 0.068, P = 0.029, 
P = 0.055, P < 0.001, 
P < 0.001(F) 

> 99% pure 
Two-yr survival was decreased for 
M and F exposed to ≥ 20 ppm due 
to chemical-related tumours. No 
F exposed to 200 or 625 ppm or M 
exposed to 625 ppm survived till the 
end of the experiments. 

Lymphocytic lymphomas: 2/50, 
0/50, 2/50, 4/50, 2/50, 49/73 (M); 
1/50, 3/50, 6/50, 3/50, 8/50, 31/80 (F) 

Histiocytic sarcomas: 0/50, 0/50, 
4/50, 5/50, 7/50, 4/73 (M); 3/50, 2/50, 
7/50, 4/50, 7/50, 4/80 (F) 

Heart (haemangiosarcomas): 0/50, 
0/49, 1/50, 5/48, 20/48, 4/73 (M); 
0/50, 0/50, 0/50, 1/49, 21/50, 23/80 
(F) 

Lung (alveolar/bronchiolar 
adenomas): 18/50, 20/50, 10/50, 
25/49, 21/50, 3/73 (M); 4/50, 11/50, 
12/50, 17/50, 14/50, 17/78 (F) 

P < 0.001, P = 0.227N, 
P = 0.671, P = 0.253, 
P = 0.529, P < 0.001 (M); 
P < 0.001, P = 0.278, 
P = 0.026, P = 0.160, 
P < 0.001, P < 0.001 (F) 

P < 0.001, –, P = 0.051, 
P = 0.021, P < 0.001, 
P = 0.043 (M); P < 0.001, 
P = 0.518N, P = 0.077, 
P = 0.195, P = 0.002, 
P = 0.038 (F) 
P < 0.001, –, P = 0.451, 
P = 0.011, P < 0.001, 
P < 0.001 (M); P < 0.001, 
–, –, P = 0.392, P < 0.001, 
P < 0.001 (F) 
P < 0.001, P = 0.579N, 
P = 0.269N, P = 0.004, 
P < 0.001, P < 0.001 (M); 
P < 0.001, P = 0.031, 
P = 0.003, P < 0.001, 
P < 0.001, P < 0.001 (F) 

1,3-Butadiene 
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Table 3.1 (continued) 

Species, strain (sex) 
Duration 
Reference 

Dosing regimen, 
Animals/group at start 

Incidence of tumours Significance Comments 

Lung (combined alveolar/ 
bronchiolar adenomas, 
adenocarcinomas, or carcinomas): 
21/50, 23/50, 19/50, 31/49, 35/50, 
3/73 (M); 4/50, 15/50, 19/50, 24/50, 
25/50, 22/78 (F) 

P < 0.001, P = 0.552N, 
P = 0.276, P < 0.001, 
P < 0.001, P < 0.001 (M); 
P < 0.001, P = 0.004, 
P < 0.001, P < 0.001, 
P < 0.001, P < 0.001 (F) 

Fore-stomach (squamous cell 
papillomas): 1/50, 0/50, 0/50, 1/50, 
7/50, 2/73 (M); 0/50, 0/50, 2/50, 1/50, 
3/50, 16/80 (F) 

P < 0.001, P = 0.481N, 
P = 0.545N, P = 0.679, 
P < 0.001, P < 0.001 (M); 
P < 0.001, –, P = 0.149, 
P = 0.260, P = 0.004, 
P < 0.001 (F) 

Fore-stomach (squamous cell 
carcinomas): 0/50, 0/50, 0/50, 0/50, 
1/50, 2/73 (M); 0/50, 0/50, 1/50, 1/50, 
1/50, 6/80 (F) 

P < 0.001, –, –, –, P = 0.325, 
P = 0.018 (M); 
P < 0.001, –, P = 0.414, 
P = 0.277, P = 0.374, 
P < 0.001 (F) 

Fore-stomach (squamous cell 
papillomas or squamous cell 
carcinomas): 1/50, 0/50, 0/50, 1/50, 
8/50, 4/73 (M); 0/50, 0/50, 3/50, 2/50, 
4/50, 22/80 (F) 

P < 0.001, P = 0.481N, 
P = 0.545N, P = 0.679, 
P < 0.001, P < 0.001 (M); 
P < 0.001,–, P = 0.056, 
P = 0.044, P = 0.001, 
P < 0.001 (F) 

Liver (hepatocellular adenomas): 
13/50, 13/50, 19/50, 16/48, 24/48, 
5/72 (M); 11/49, 10/49, 9/50, 14/50, 
12/50, 1/80 

P < 0.001, P = 0.480, 
P = 0.036, P = 0.056, 
P < 0.001, P < 0.001 (M); 
P < 0.001, P = 0.590, 
P = 0.419, P < 0.001, 
P < 0.001, P < 0.001 (F) 

IA
RC M

O
N

O
G

RA
PH

S – 100F 

Mouse, B6C3F1 (M, F) 
2 yr 
Miller et al. (1989), 
Melnick et al. (1990a, b, 
1993), Melnick & Huff 
(1993), NTP (1993), 
Melnick & Sills (2001), 
Kim et al. (2005) 
Contd. 

Lung (alveolar/bronchiolar 
adenocarcinomas or carcinomas): 
5/50, 6/50, 11,50, 12/49, 22/50, 3/73 
(M);0/50, 5/50, 11/50, 9/50, 19/50, 
8/78 (F) 

P < 0.001, P = 0.577, 
P = 0.017, P = 0.006, 
P < 0.001, P < 0.001 (M), 
P < 0.001, P = 0.029, 
P < 0.001, P < 0.001, 
P < 0.001, P < 0.001 (F) 
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Table 3.1 (continued) 

Species, strain (sex) 
Duration 
Reference 

Dosing regimen, 
Animals/group at start 

Incidence of tumours Significance Comments 

1,3-Butadiene 

319 

Mouse, B6C3F1 (M, F) 
2 yr 
Miller et al. (1989), 
Melnick et al. (1990a, b, 
1993), Melnick & Huff 
(1993), NTP (1993), 
Melnick & Sills (2001), 
Kim et al. (2005) 
Contd. 

Liver (hepatocellular carcinomas): 
11/50, 16/50, 16/50, 17/48, 26/48, 
1/72 (M); 4/49, 6/49, 8/50, 9/50, 8/50, 
1/80 (F) 

P < 0.001, P = 0.289, 
P = 0.071, P = 0.020, 
P < 0.001, P = 0.009 (M); 
P < 0.001, P = 0.330, 
P = 0.064, P = 0.003, 
P < 0.001, P = 0.150 (F) 

Liver (hepatocellular adenomas or 
carcinomas): 21/50, 23/50, 30/50, 
25/48, 33/48, 5/72 (M); 15/49, 14/49, 
15/50, 19/50, 16/50, 2/80 (F) 

Harderian gland (adenomas): 6/50, 
7/50, 8/50, 19/50, 30/50, 6/73 (M); 
8/50, 10/50, 6/50, 15/50, 20/50, 9/80 
(F) 

Harderian gland (carcinomas): 0/50, 
1/50, 1/50, 3/50, 2/50, 0/73 (M); 0/50, 
1/50, 1/50, 0/50,1/50, 0/80 (F) 

Harderian gland (adenomas or 
carcinomas): 6/50, 7/50, 9/50, 20/50, 
31/50, 6/73 (M); 8/50, 10/50, 7/50, 
15/50, 20/50, 9/80 (F) 

Preputial gland (carcinomas): 0/50, 
0/50, 0/50, 0/50, 5/50, 0/73 (M) 
Ovary (benign granulosa cell 
tumours): 1/49, 0/49, 1/48, 6/50, 
6/50,6/79 
Ovary (malignant granulosa cell 
tumours): 0/49, 0/49, 0/48, 3/50, 
2/50, 0/79 (F) 

P < 0.001, P = 0.562N, 
P = 0.011, P = 0.022, 
P < 0.001, P < 0.001 (M); 
P < 0.001, P = 0.555, 
P = 0.162, P < 0.001, 
P < 0.001, P < 0.001 (F) 
P < 0.001, P = 0.575, 
P = 0.218, P < 0.001, 
P < 0.001, P < 0.001 (M); 
P < 0.001, P = 0.304, 
P = 0.544, P < 0.001, 
P < 0.001, P < 0.001 (F) 
P = 0.080, P = 0.522, 
P = 0.425, P = 0.067, 
P = 0.166, – (M); logistic 
regression test P = 0.873N, 
P = 0.493, P = 0.631, –, 
P = 0.085, – (F) 
P < 0.001, P = 0.575, 
P = 0.141, P < 0.001, 
P < 0.001, P < 0.001 (M); 
P < 0.001, P = 0.304, 
P = 0.426, P < 0.001, 
P < 0.001, P < 0.001 (F) 
P < 0.001, –, –, –, P < 0.001, 
– (M)
 
P < 0.001, P = 0.517N,
 
P = 0.680, P = 0.003, 
P < 0.001, P < 0.001 (F) 
P < 0.001, –, –, P = 0.018, 
P = 0.003, –, (F) 



 
 

 

 
 

 
 

  

 

 
 

 
  

  
  

 
  

  
 

 
 

 
 
  

 
 

 

 
 

 
 

 

 

  
  

Table 3.1 (continued) 

Species, strain (sex) 
Duration 
Reference 

Dosing regimen, 
Animals/group at start 

Incidence of tumours Significance Comments 

Mammary gland 
(adenoacanthomas): 0/50, 1/50, 2/50, 
6/50, 4/50, 0/80 (F) 
Mammary gland (carcinomas): 0/50, 
2/50, 2/50, 6/50, 11/50,12/80 (F) 

P = 0.025, P = 0.489, 
P = 0.152, P < 0.001, 
P = 0.021, P = – (F) 
P < 0.001, P = 0.221, 
P = 0.192, P = 0.008, 
P < 0.001, P < 0.001 (F) 

Mammary gland (malignant mixed 
tumours): 0/50,0/50, 0/50,0/50,0/50, 
4/80 (F) 

P =  < 0.001, –, –, –, –, 
P = 0.003 (F) 

Mammary gland (adenoacanthomas, 
carcinomas, or malignant mixed 
tumours): 0/50, 2/50, 4/50, 12/50, 
15/50, 16/80 (F) 

Logistic regression test: 
P = 0.026, P = 0.228, 
P = 0.056, P < 0.001, 
P = 0.004, P < 0.001 (F) 

Kidney (renal tubule adenomas): 
0/50, 1/50, 0/50, 3/48, 1/49, 0/73 (M); 
0/49, 0/49, 0/48, 0/50, 2/50, 0/80 (F) 

Logistic regression test: 
P = 0.630, P = 0.522, –, 
P = 0.053, P = 0.580, – (M); 
P = 0.816, –, –, –, P = 0.276, 
– (F) 

Small intestine (adenomas or 
carcinomas): 0/50, 1/50, 1/50, 1/50, 
2/50, 0/73 (M); 0/50, 3/50, 0/50, 1/50, 
0/50, 0/80 (F) 

P = 1.000, P = 0.101, –, 
P = 0.375, –, – (F) 

Skin, subcutaneous tissue P < 0.001, P = 0.476, 
(neurofibrosarcomas or sarcomas): 
1/50, 2/50, 3/50, 5/50, 3/50, 3/80 (F) 

P = 0.238, P = 0.017, 
P = 0.002, P = 0.013 (F) 

Zymbal gland (adenomas): 0/50, 
0/50, 0/50, 0/50, 0/50, 1/80 (F) 

NS 

Zymbal gland: carcinoma: 0/50, 
0/50, 0/50, 0/50, 0/50, 1/80 (F) 

NS 

Zymbal gland (adenomas or 
carcinomas): 0/50, 0/50, 0/50, 0/50, 
2/80 

NS 

IA
RC M

O
N

O
G

RA
PH

S – 100F 

Mouse, B6C3F1 (M, F) 
2 yr 
Miller et al. (1989), 
Melnick et al. (1990a, b, 
1993), Melnick & Huff 
(1993), NTP (1993), 
Melnick & Sills (2001), 
Kim et al. (2005) 
Contd. 

Ovary (benign or malignant 
granulosa cell tumours): 1/49, 0/49, 
1/48, 9/50, 8/50, 6/79 (F) 

P < 0.001, P = 0.517N, 
P = 0.680, P < 0.001, 
P < 0.001, P < 0.001 (F) 

320 



 
 

 

 
 

 

 

 
 

 
 

   
 

 
 

 

 
 

  

  

   

 
 

 

   

 

 

  

   

 
  

   

  

 
  

  

Table 3.1 (continued) 

Species, strain (sex) 
Duration 
Reference 

Dosing regimen, 
Animals/group at start 

Incidence of tumours Significance Comments 

1,3-Butadiene 

Mouse, B6C3F1 (M) 
2 yr stop study 
Melnick et al. (1993), 
Melnick & Huff (1993), 
NTP (1993), Melnick & 
Sills (2001), Kim et al. 
(2005) 

0, 200 ppm for 40 wk, 
625 ppm for 13 wk, 312 
ppm for 52 wk, or 625 
ppm for 26 wk 
50/group 

Lymphoma (all lymphomas): 4/50, 
8/50, 22/50, 8/50, 33/50 (M) 

–, P = 0.023, P < 0.001, 
P < 0.001, P < 0.001 (M) 

> 99% pure 
Survival of all stop-exposure groups 
was markedly lower than that of 
controls due to development of 
malignant tumours, particularly 
malignant lymphoma and 
haemangiosarcoma of the heart. 
Neoplasms were induced usually 
after only 13 wk of exposure. 

Lymphocytic lymphomas: 2/50, 
6/50, 17/50, 4/50, 30/50 (M) 

–, P = 0.033, P < 0.001, 
P = 0.034, P < 0.001 (M) 

Histiocytic sarcomas: 0/50, 5/50, 
2/50, 7/50, 2/50 (M) 

–, P = 0.006, P < 0.011, 
P < 0.001, P = 0.036 (M) 

Heart (haemangiosarcomas): 0/50, 
15/50, 7/50, 33/50, 13/50 (M) 

–, P < 0.001, P < 0.001, 
P < 0.001, P < 0.001 (M) 

Lung (alveolar/bronchiolar
 
adenomas): 18/50, 24/50, 17/50,
 
26/50, 12/50 (M)
 
Lung (alveolar/bronchiolar
 
adenocarcinomas or carcinomas): 

5/50, 22/50, 18/50, 16/50, 11/50 (M)
 
Lung (alveolar/bronchiolar
 
adenomas, adenocarcinomas, or 

carcinomas): 21/50, 36/50, 28/50,
 
32/50, 17/50 (M)
 
Liver (hepatocellular adenomas):
 
13/50, 27/49, 19/49, 19/50, 11/50 (M)
 
Fore-stomach (squamous cell 

carcinomas): 0/50, 0/50, 4/50, 5/50,
 
6/50 (M)
 
Harderian gland (adenomas): 6/50,
 
26/50, 20/50, 28/50, 13/50 (M)
 
Harderian gland (carcinomas): 0/50, 

2/50, 4/50, 2/50, 0/50 (M)
 
Harderian gland (adenomas or 

carcinomas): 6/50, 27/50, 23/50,
 
30/50, 13/50 (M)
 
Preputial gland (adenomas): 0/50, 

0/50, 1/50, 0/50, 0/50 (M)
 
Preputial gland (carcinomas): 0/50, 

1/50, 4/50, 4/50, 3/50 (M)
 

–, P < 0.001, P < 0.001, 
P < 0.001, P < 0.001, (M) 

–, P < 0.001, P < 0.001, 
P < 0.001, P < 0.001 (M) 

–, P < 0.001, P < 0.001, 
P < 0.001, P < 0.001 (M) 

–, P < 0.001, P < 0.001, 
P < 0.001, P < 0.001 (M) 
–, –, P < 0.001, P < 0.001, 
P < 0.001 (M) 

–, P < 0.001, P < 0.001, 
P < 0.001, P < 0.001, (M) 
–, P = 0.182, P < 0.001, 
P = 0.028, – (M) 
–, P < 0.001, P < 0.001, 
P < 0.001, P < 0.001 (M) 

NS 

–, P = 0.247, P = 0.012, 
P < 0.001, P < 0.001 (M) 
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Table 3.1 (continued) 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

Kidney: renal tubule adenoma: 0/50, –, P = 0.016, P = 0.181,
 
4/48, 1/50, 3/49, 1/50 (M) P = 0.007, P = 0.278 (M)
 
Brain (malignant gliomas): 0/50, NS
 
0/50, 2/50, 0/50, 1/50 (M)
 
Brain (neuroblastomas): 0/50, 0/50, NS
 
2/50, 0/50, 0/50 (M)
 
Zymbal gland (adenomas): 1/50, NS
 
0/50, 0/50, 0/50, 0/50 (M)
 
Zymbal gland (carcinomas): 0/50, NS
 
1/50, 2/50, 0/50, 2/50 (M)
 
Zymbal gland (adenomas or –. P = 0.531, P = 0.178,
 
carcinomas): 1/50, 1/50, 2/50, 0/50, P = 0.998, P = 0.009 (M)
 
2/50
 

IA
RC M

O
N

O
G

RA
PH

S – 100F 

Mouse, B6C3F1 (M) 
2 yr stop study 
Melnick et al. (1993), 
Melnick & Huff (1993), 
NTP (1993), Melnick & 
Sills (2001), Kim et al. 
(2005) 
Contd. 

Preputial gland (adenomas or –, P = 0.247, P = 0.003, 
carcinomas): 0/50, 1/50, 5/50, 4/50, P < 0.001, P < 0.001 (M) 
3/50 (M) 

Diepoxybutane 
Mouse, B6C3F1 (F) 
18 mo 
Henderson et al. (1999, 
2000) 
Rat, Sprague-Dawley (F)
 
18 mo
 
Henderson et al. (1999, 

2000)
 

0, 2.5, 5.0 ppm 
diepoxybutane 
6 h/d, 5 d/wk for 6 wk 
50/group 
0, 2.5, 5.0 ppm 
diepoxybutane 
6 h/d, 5 d/wk for 6 wk 
50/group 

Harderian gland (adenomas): 0/40, 
2/42, 5/36 

Nose (papillomas): 0/47, 0/48, 2/48 
(F) 
Nose (squamous cell carcinomas): 
0/47, 11/48, 21/48 (F) 
Nose (adenocarcinomas): 0/47, 0/48, 
2/48 (F)
 
Nose (sarcomas): 0/47, 2/48, 2/48 (F)
 

[NS] Purity > 99% 

–, [P < 0.001], [P < 0.001] 

[NS] 

[NS] 

P < 0.05 (high-dose F) Purity > 99% 

d, day or days; F, female; h, hour or hours; M, male; mo, month or months; NR, not reported; NS, not significant; wk, week or weeks; yr, year or years 
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Table 3.2 Carcinogenicity studies in experimental animals exposed to diepoxybutane by intra-peritoneal or subcutaneous 
injection 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

d,l-Diepoxybutane 
Rat, Eastern Sprague-Dawley (F) 
550 d 
Van Duuren et al. (1966) 

Subcutaneous injection 
Tricaprylin vehicle (0.1 ml) control, 
untreated control, or 1 mg d,l­
diepoxybutane injected into the 
axillary region once/wk 
50/group 

Fibrosarcomas at injection site: 
0/50, 0/50, 9/50 

[P < 0.01] 

Adenocarcinomas at injection site: 
1/50, 0/50/, 1/50 

[NS] 

Fibroadenomas: 0/50, 1/50, 0/50 [NS] 

Diepoxybutane 
Mouse, A/J (M, F) 
39 wk 
Shimkin et al. (1966) 

Intraperitoneal injection 
Total dose: 0, 19.4, 78.1, 314, 1 255, 
2 232 µmol/kg bw in water, 12 
injections given over a 4-wk period 
165 M and 195 F vehicle control at 
start; 30, 30, 45, 30, 30 (total M, F)/ 
group at start 

Total dose: 0, 34.8, 139, 558, 2 232 
µmol/kg bw in tricaprylin, 12 
injections given over a 4-wk period 
60 M and 60 F tricaprylin vehicle 
control at start; 30, 30, 30, 30 (total 
M, F)/group at start 

Lung tumours (M, F combined): 
107/339 (32%), 6/28 (21%), 12/30 
(40%), 17/31 (55%), 18/28 (64%), 
21/27 (78%) 

NR 

Lung tumours (M, F combined): 
37/108 (34%), 12/30 (33%), 13/30 
(43%), 12/25 (48%), 12/24 (50%) 

NR 

1,3-Butadiene 
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 Table 3.2 (continued) 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

IA
RC M

O
N

O
G

RA
PH

S – 100F 

d,l-Diepoxybutane 
Mouse, ICR/Ha Swiss (F) 
401 d 
Van Duuren et al. (1966) 

Subcutaneous injection 
Tricaprylin vehicle (0.05 ml) 
control, untreated control, or 
subcutaneous injection of 1.1 
mg d,l-diepoxy-butane into the 
axillary region once/wk 
30/group 

Fibrosarcomas at injection site 0/30, 
0/30, 5/30 

[P < 0.05] 

Adenocarcinomas at injection site: 
0/30, 0/30, 0/30 

[NS] 

d,l-Diepoxybutane Subcutaneous injection Fibrosarcomas at injection site: [NS] 
Mouse, ICR/Ha Swiss (F) Tricaprylin-vehicle (0.05 ml) 0/50, 0/50, 5/50 
589 d 
Van Duuren et al. (1966) 

control, untreated control, or 
subcutaneous injection of 0.1 
mg d,l-diepoxy-butane into the 

Adenocarcinomas at injection site: 
0/50, 0/50, 2/50 

[NS] 

axillary region once/wk 
50/group 

bw, body weight; d, day or days; F, female; M, male; NR, not reported; NS, not significant; wk, week or weeks 



 
 

 

 
 

 

 

 

Table 3.3 Carcinogenicity study in rats exposed intragastrically to diepoxybutane 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

d,l-Diepoxybutane 
Rat, Eastern Sprague-Dawley (F) 
363 d 
Van Duuren et al. (1966) 

Tricaprylin vehicle (0.5 ml) 
0 or 5 mg d,l-diepoxybutane once/ 
wk 
5/group 

0/5, 0/5 [NS] 

d, day or days; F, female; NS, not significant; wk, week or weeks 

1,3-Butadiene 
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Table 3.4 Carcinogenicity studies in mice exposed to diepoxybutane by skin application 

Species, strain (sex) Dosing regimen, Incidence of tumours Significance Comments 
Duration Animals/group at start 
Reference 

IA
RC M

O
N

O
G

RA
PH

S – 100F 

d,l-Diepoxybutane 
Mouse, Swiss-Millerton (M) 
78 d (median survival, treated 
group) 
Van Duuren et al. (1963) 

Acetone-vehicle control, untreated 
control, or 100 mg d,l-1,2,3,4­
diepoxybutane in acetone per 
application on the back 3 × /wk 
120 acetone-vehicle controls, 276 
untreated controls, 30/group for 
treated 

Skin papillomas: 8/120, 13/267, 1/30 [NS] 
Squamous dermoid carcinomas: 
0/120, 1/267, 1/30 

[NS] 

meso-Diepoxybutane 
Mouse, Swiss-Millerton (M) 
154 d (median survival, treated 
group) 
Van Duuren et al. (1963) 

d,l-Diepoxybutane 
Mouse, Swiss-Millerton (F) 
Lifetime 
Van Duuren et al. (1965) 

meso-Diepoxybutane 
Mouse, Swiss-Millerton (F) 
Lifetime 
Van Duuren et al. (1965) 

Acetone-vehicle control, untreated 
Control, or 100 mg meso ­
diepoxybutane in acetone per 
application on the back 3 × /wk 
120 acetone-vehicle controls, 276 
untreated controls, 30/group for 
treated 
Acetone-vehicle control, untreated 
control, 30 mg, or 100 mg d,l­
diepoxybutane painted on the back 
3 × /wk 
120 acetone-vehicle controls, 60 
untreated controls, 30/group for 
treated 
Acetone-vehicle control, untreated 
control, 30 mg, or 100 mg meso ­
diepoxybutane painted on the back 
3 × /wk 
120 acetone-vehicle controls, 60 
untreated controls, 30/group for 
treated 

Skin papillomas: 8/120, 13/267, 2/30 
Squamous dermoid carcinomas: 
0/120, 1/267, 4/30 

Skin papillomas: 0/120, 0/60, 10/30, 
1/30 

Squamous dermoid carcinomas: 
0/120, 0/60, 6/30, 0/30 

Skin papillomas: 0/120, 0/60, 1/30, 
5/30 

Squamous dermoid carcinomas: 
0/120, 0/60, 0/30, 4/30 

[NS] 
[P < 0.005] 

[P < 0.0001, 
30 mg-treated 
group] 
[P < 0.0001, 
30 mg-treated 
group] 

[P < 0.0005, 
100 mg-treated 
group] 
[P < 0.005, 100 
mg-treated 
group] 

Median survival of 
472, 441, 475 and 165 d, 
respectively 

Median survival of 
472, 441, 491 and 357 d, 
respectively 

d, day or days; F, female; M, male; NS, not significant; wk, week or weeks 
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4. Other Relevant Data 

Experimental studies on butadiene have 
been evaluated in previous IARC Monographs 
(IARC, 1999, 2008). There is an extensive body 
of data on the mechanism of butadiene-induced 
carcinogenicity, encompassing toxicokinetics, 
metabolism, biomarkers, genotoxicity, and 
molecular biology. The carcinogenicity of buta­
diene is mediated by its metabolites. This view 
is based largely on the observations that buta­
diene-induced mutagenicity requires metabolic 
activation (Jackson et al., 2000) and that the 
DNA-reactive epoxides formed during butadiene 
bio-transformation are direct-acting mutagens 
(IARC, 1999, 2008). Thus, butadiene metabo­
lism, formation of reactive epoxides, interaction 
of these epoxides with DNA, and resultant muta­
genicity are likely key steps in the mechanism of 
carcinogenicity for this agent. 

4.1 Metabolism of butadiene 

The detailed pathways in the metabolism 
of butadiene have been described previously 
(Himmelstein et al., 1997; IARC 1999, 2008) 
and are outlined in Fig.  4.1. Briefly, the first 
step in butadiene metabolism involves cyto­
chrome P450 (CYP)-mediated oxidation to 
epoxybutene (Himmelstein et al., 1997). At 
low concentrations of butadiene, metabolism 
via CYP2E1 predominates (IARC, 1999, 2008). 
Epoxybutene may be metabolized by conjugation 
with glutathione (GSH) mediated by glutathione 
S-transferase (GST), or by hydrolysis catalysed 
by epoxide hydrolase (EH) (Csanády et al., 1992; 
Himmelstein et al., 1997). Epoxybutene may 
also be oxidized to multiple diastereomers of 
diepoxybutane (Seaton et al., 1995; Krause & 
Elfarra, 1997), while dihydroxybutene formed 
by hydrolysis of epoxybutene may be oxidized 
to epoxybutanediol. The latter epoxides are also 
detoxified by GST or EH (Boogaard et al., 1996a, 

b). Partial hydrolysis of diepoxybutane also 
produces epoxybutanediol. 

Each of the epoxide intermediates may 
contribute to the mutagenicity and carcino­
genicity of butadiene. Factors that impact their 
relative contributions include concentration in 
tissues, reactivity with DNA, and repair of the 
ensuing DNA adducts. Variability in the expres­
sion of key enzymes involved in the biotrans­
formation of butadiene may have an effect on 
metabolite concentrations in tissues, and on the 
subsequent mutagenic response (IARC, 2008). 
For example, genetically modified mice that 
are deficient in microsomal epoxide hydrolase 
(mEH) activity are more susceptible than wild-
type mice to the mutagenic effects of butadiene 
and diepoxybutane, presumably because tissue 
concentrations of the epoxides are higher in the 
mEH-deficient mice (Wickliffe et al., 2003). The 
detection of metabolites derived from hydroxym­
ethylvinylketone and crotonaldehyde in the urine 
of rats or mice treated with butenediol suggests 
that these compounds may also be formed during 
the metabolism of butadiene (Sprague & Elfarra, 
2003, 2004). The potential contribution of these 
DNA-alkylating agents (hydroxymethylvinylk­
etone and crotonaldehyde) to the mutagenicity 
and carcinogenicity of butadiene is not known. 

The enzymes that catalyse epoxide forma­
tion and elimination are polymorphic in human 
populations and some may be induced by a variety 
of environmental and pharmaceutical agents. 
While some reports indicate that genetic poly­
morphisms in GST and mEH affect the in-vitro 
mutagenicity of butadiene-derived epoxides or 
the in-vivo mutagenicity of butadiene in occupa­
tionally exposed workers (Wiencke et al., 1995; 
Abdel-Rahman et al., 2003), the extent to which 
these enzyme polymorphisms influence the 
carcinogenicity of butadiene is not known. Rates 
of butadiene metabolism have been reported for 
human tissues cultured in vitro. However, the 
range of observed rates is limited by the extent 
of the inter-individual variability in CYP, EH 
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Fig. 4.1 Metabolic pathways of butadiene deduced from findings in mammalian in-vitro systems and in mammals in vivo 
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SR N-Acetyl-S-(2-carboxyethyl)- N-Acetyl-S-(3-hydroxypropyl)-
Crotonaldehyde Acrolein L-cysteine (U) L-cysteine (U) N-Acetyl-S-(1-hydroxy-
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SR 
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SR 

CHO 

GST 

EH 

GST 

3-butenyl)-L-cysteine (U) 

OH 
Monohydroxy-3-butenyl 

mercapturic acid (U) 

CYP 3-Butenal 

O OH(MHBMA or M-II) 

CYP 
SR1,3-Butadiene 

(A, B) 1,2-Epoxy-3-butene (A, B) MHBMA isomer 
(epoxybutene) (M-II regioisomer) 

C
Y

P 

OO OHH H O 
OH+ HO OH 

H H OHO O GST EH 1,3-Dihydroxypropanone (U) 
SR 

1,2,3,4-Diepoxybutane 1,2,3,4-Diepoxybutane (B, U) N-Acetyl-S-(1-hydroxymethyl­
2,3-dihydroxypropyl)-L-cysteine (U) meso-isomer racemic (r) (diepoxybutane) 

OH OH OHO EHCYPCYP OH 
OH HB (U) ADH OH OH OH 

OH 3-Butene-1,2-diol (U) O OH 
(butenediol) [Erythritol] OH 3,4-Epoxy-1,2-butanediol HMVK 

(epoxybutanediol) SR 

OH 

1,2-Dihydroxybutyl 
mercapturic acid (U) 

(DHBMA or DHB or M-I) G
ST

 

CO2 
(A) 

A, B, U, metabolites in exhaled air, blood, urine, respectively; ADH, alcohol dehydrogenase; CYP, cytochrome P450; DHB, 4-(N-acetyl-l-cystein-S-yl)-1,2-dihydroxybutane; EH, epoxide 
hydrolase; GST, glutathione-S-transferase; HB, 4-(N-acetyl-l-cystein-S-yl)-1-hydroxy-2-butanone; HMVK, hydroxymethylvinyl ketone 
Solid frame, electrophilic metabolites that can form DNA or haemoglobin adducts; dashed lines, assumed pathways 
From IARC (2008) 
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and GST activities of the tissues sampled, and by 
the fact that only small numbers of human liver 
and lung samples were analysed (Csanády, et al., 
1992; Seaton, et al., 1995; Boogaard, et al. 1996 
a, b; Bolt et al., 2003; Thier et al., 2003; Norppa, 
2004; Schlade-Bartusiak et al., 2004). Thus, the 
actual kinetic range of the metabolism of buta­
diene in the human population is unknown. 

The metabolism of butadiene in mice and rats 
shows linear elimination kinetics at exposures 
of up to about 1000 ppm [2210 mg/m3] (Kreiling 
et al., 1986b). Responses that increase propor­
tionally above the levels of metabolic satura­
tion probably represent effects of the parent 
compound. In the range of linear kinetics, mice 
metabolize butadiene about twice as rapidly as 
do rats. Although epoxybutene is formed prima­
rily through CYP-mediated oxidation of buta­
diene, the formation of this alkylating agent by 
a myeloperoxidase-catalysed reaction in bone-
marrow cells (Maniglier-Poulet et al., 1995) may 
be relevant to the induction of haematopoietic 
cancers in mice and humans. 

Data on urinary metabolites indicate that 
the elimination of epoxybutene in mice occurs 
to a greater extent by conjugation with GSH than 
by hydrolysis (IARC, 1999, 2008). Although no 
studies have been reported that characterize the 
full profile of urinary metabolites of butadiene 
in humans, the high ratio of 1,2-dihydroxybutyl­
mercapturic acid (DHBMA) vs monohydroxy-3­
butenyl-mercapturic acid (MHBMA) in exposed 
workers indicates that epoxybutene is prefer­
entially metabolized by hydrolysis in humans 
(IARC, 2008). In rats, metabolic elimination of 
epoxybutene formed from butadiene occurs to 
a similar extent by hydrolysis or GSH conjuga­
tion. In molecular epidemiological studies of 
occupational exposure to butadiene, the ratio of 
MHBMA to MHBMA + DHBMA was lower in 
workers who were homozygous for GSTM1-null 
and GSTT1-null (Albertini et al., 2001, 2003). 

The formation of epoxybutanediol or 
diepoxybutane requires a second oxidation of 

either butenediol or epoxybutene, respectively. At 
increasing exposure concentrations of butadiene, 
competition between butadiene and butenediol 
or epoxybutene for CYP may limit the extent to 
which the second oxidation reaction may occur. 
Consequently, concentration of epoxybutanediol 
in blood is greater in rats exposed to 200 ppm 
[442 mg/m3] butadiene than in those exposed to 
1000 ppm [2210 mg/m3] or higher (Filser et al., 
2007). Competitive inhibition by butadiene of 
the second oxidation (Filser et al., 2001) may 
account for the greater Hprt mutation efficiency 
in rats exposed to 62.5 ppm [138 mg/m3] or mice 
exposed to 3 ppm [6.63 mg/m3] compared with 
exposure of either species to 625 or 1250 ppm 
[1381 or 2762.5 mg/m3] (Meng et al., 2007). Thus, 
high-dose studies of butadiene (>  625 ppm) in 
animals may not adequately reveal the full muta­
genic or carcinogenic potential of this substance 
at lower levels of exposure. 

4.2 Haemoglobin adducts 

While haemoglobin adducts are not causally 
related to mutagenic events, they offer an effective 
measure of exposure to reactive intermediates 
of chemicals. Haemoglobin adducts accumu­
late over the life-span of the erythrocyte, which 
is approximately 120 days in humans. Three 
adducts have been identified following reaction 
of butadiene epoxides with haemoglobin: N-(2­
hydroxy-3-butenyl)valine (MHbVal), N,N-(2,3­
dihydroxy-1,4-butadiyl) valine (PyrVal) and 
N-(2,3,4-trihydroxybutyl)valine (THbVal). 
These adducts are considered to reflect blood 
concentrations of epoxybutene, diepoxybutane 
and epoxybutanediol, respectively. Each of these 
adducts has been measured in rats and mice 
exposed to butadiene at concentrations as low 
as 3 ppm [6.63 mg/m3]. At equivalent exposures 
to butadiene, the levels of MHbVal and PyrVal 
were higher in mice than in rats, while levels of 
the major adduct, THbVal, were similar in these 
species (Boysen et al., 2004, 2007). The formation 
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of each of these adducts in mice and rats was 
more efficient at 3 ppm than at higher exposure 
concentrations of butadiene. 

MHbVal and THbVal have also been meas­
ured in workers exposed to butadiene (mean 
8-hour TWA exposures, 0.3–0.8 ppm [0.66– 
1.76 mg/m3]), while PyrVal could not be detected 
in workers exposed to mean concentrations 
of 0.37 ppm [0.82 mg/m3]. In all samples, the 
amount of the PyrVal adduct was below the limit 
of quantification for the assay (Albertini et al., 
2003, 2007). 

Species-specific differences in the amount of 
these haemoglobin adducts reflect differences 
in exposure to butadiene, blood concentrations 
of the epoxide intermediates, reactivity of the 
epoxide with the N-terminal valine and other 
reactive sites in haemoglobin, and the half-life of 
the red blood cell. When the amounts of adducts 
are normalized per gram of haemoglobin per 
ppm of butadiene, the levels of MHbVal adducts 
in workers are slightly lower than those in rats 
exposed to 3 ppm [6.63 mg/m3] butadiene, 
while the levels of THbVal adducts are higher in 
workers than in rats or mice exposed to 3 ppm 
butadiene. These data demonstrate the systemic 
availability of epoxybutene and epoxybutane­
diol in workers exposed to occupational levels of 
butadiene. In these workers, the THbVal-adduct 
levels are influenced by the combined polymor­
phisms for CYP2E1, GSTM1 and GSTT1 genes 
(Fustinoni et al., 2002). 

4.3 DNA adducts 

The major DNA adducts formed in the liver, 
lung and kidney of rats and mice exposed to 
butadiene are at the N7 position of guanine. 
These adducts are: N7-(2-hydroxy-3-butenyl) 
guanine (G1); N7-(1-(hydroxymethyl)-2-pro­
penyl)guanine (G2); N7-(1-(hydroxymethyl)­
2,3-dihydroxypropyl)guanine (G3); 
N7-(2,3,4-trihydroxybut-1-yl)guanine (G4). The 
G4 adducts are much more abundant than the G1 

and G2 adducts, which are derived from epoxy-
butene (Koc et al., 1999). The G4 adducts reach 
a plateau in rats after exposure to about 62 ppm 
[137 mg/m3] butadiene, while G1 and G2 adducts 
increase nearly linearly with exposures to buta­
diene of up to 625 ppm [1381 mg/m3]. Powley et 
al. (2005) have proposed that the similarity in the 
shape of the dose–response curves for THbVal­
adduct formation in haemoglobin, G4-adduct 
formation in DNA, and Hprt mutation induction 
in splenic T-cells from mice and rats exposed to 
butenediol, suggests that epoxybutanediol may 
play a role in the mutagenicity and carcino­
genicity of butadiene. 

N7-Guanine adducts can undergo sponta­
neous depurination, which leaves an apurinic 
site in the DNA. Epoxide metabolites of buta­
diene can also react at sites involved in base-
pairing and form adducts at N3 of cytosine, N1 
of adenine, N6 of adenine, N1 of guanine and 
N2 of guanine (Selzer & Elfarra, 1996a, b, 1997; 
Zhao et al., 1998; Zhang & Elfarra, 2004). An 
increase in N1-trihydroxybutyladenine adducts 
was detected in lymphocytes of workers exposed 
to butadiene (Zhao et al., 2000). Alkylation of 
N1-adenine by epoxybutene followed by hydro­
lytic deamination under formation of deoxy­
inosine is a highly mutagenic event (Rodriguez 
et al., 2001): deoxy-inosine forms a base-pair 
with cytosine during DNA replication, which 
leads to the generation of A→G mutations. 

Diepoxybutane is a bi-functional alkylating 
agent that can form DNA–DNA crosslinks. 
Diepoxybutane first alkylates the N7 position 
of guanine in DNA and forms N7-(2′-hydroxy­
3′,4′-epoxybut-1′-yl)-guanine mono-adducts 
(Tretyakova et al., 1997). The epoxide group 
of this adduct can then undergo hydrolysis to 
yield N7-(2′,3′,4′-trihydroxybut-1′-yl)-guanine, 
or, less frequently, react with another site in 
DNA, such as the N7 of another guanine or the 
N1 of an adenine. The latter reactions result in 
formation of 1,4-bis-(guan-7-yl)-2,3-butanediol 
and 1-(guan-7-yl)-4-(aden-1-yl)-2,3-butanediol 
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crosslinks (Goggin et al., 2009). These two 
diepoxybutane-specific DNA–DNA crosslinks 
have been identified in mice and rats exposed to 
625 ppm butadiene, with much higher amounts 
of both crosslinks occurring in mice compared 
with rats (Goggin et al., 2009). Depurination of 
these inter-strand or intra-strand lesions can 
induce point mutations and large deletion muta­
tions. When diepoxybutane alkylates DNA at 
the N6-position of adenine, an exocyclic adenine 
adduct is formed preferentially to DNA–DNA 
crosslinked products (Antsypovich et al., 2007). 
Diepoxybutane is considered to be the most 
potent genotoxic metabolite of butadiene due to 
its strong genotoxicity and mutagenicity attrib­
uted to its ability to form DNA–DNA crosslinks. 

4.4 Mutagenicity of butadiene and 
butadiene metabolites 

Butadiene and its epoxide metabolites are 
genotoxic at multiple tissue sites in mice and rats, 
and in a variety of other test systems. In-vitro 
studies demonstrate that diepoxybutane is more 
potent than epoxybutene or epoxybutanediol 
in inducing micronuclei and gene mutations in 
mammalian cells. To investigate the role of two 
1,3-butadiene (BD) metabolites, viz. 1,2-epoxy­
butene (EB) and 1,2,3,4-diepoxybutane (DEB) 
in the mutagenicity of the parent compound, 
in-vivo and in-vitro mutational spectra of BD, 
EB and DEB were analysed in lac-i-transgenic 
mice and in cultured human and rodent cells. 
A mutation that was consistently found across 
all biological systems examined was the AT→TA 
transversion, which was increased in the spleen 
and bone marrow of BD-exposed B6C3F1 lac-i­
transgenic mice, in Rat2 lac-i cells exposed to EB, 
in the lungs of EB-exposed B6C3F1 lac-i-trans­
genic mice and at the HPRT locus in human TK6 
lymphoblasts exposed to either EB or DEB (Recio 
et al., 2001). 

The mutation frequencies and mutation 
spectra induced by 3,4-epoxy-1,2-butanediol 
(EBD) and 1,2,3,4-diepoxybutane (DEB) were 
investigated at the Hprt locus in Chinese hamster 
ovary-K1 cells (CHO-K1). EBD was mutagenic 
at levels that were approximately 100 times 
higher than mutagenic concentrations of DEB. 
Among 41 EBD-induced mutants, there were 16 
exon deletions, 11 GC→AT transitions, and five 
AT→GC transitions. Among 39 DEB-induced 
mutants, 15 exon deletions, 11 GC→AT transi­
tions and five AT→TA transversions were found. 
In this study, the most common base substitu­
tion induced by both substances was the GC→AT 
transition. The sites of the single base substitu­
tions that were induced by EBD and DEB were 
guanine and adenine, which is consistent with 
the DNA-adduct profiles (Lee et al., 2002). 

Fernandes & Lloyd (2007) have shown 
that replication of DNAs containing specific 
butadiene-derived 2′-deoxyuridine adducts in 
mammalian COS-7 cells resulted in predomi­
nantly C→T transitions. They also showed that 
replicative DNA polymerases were blocked by 
these lesions in vitro. 

The genotoxic effects of butadiene can be 
modulated by alterations in key determinants of 
its metabolism, which suggests that markers of 
individual susceptibility can be identified. For 
example, mice that lack a functional mEH gene 
were more susceptible than wild-type mice to the 
mutagenic effects of butadiene or diepoxybutane 
(Wickliffe et al., 2003). Epoxide hydrolase (EH) 
activity varies considerably among humans. 
Butadiene-exposed workers with the genotype 
for low-activity EH were reported to be more 
susceptible to butadiene-induced genotoxicity 
(assessed by HPRT mutant-variant frequency in 
lymphocytes) than individuals with the more 
common EH genotype (Abdel-Rahman et al., 
2001, 2003). No significant effects were observed 
for induction of HPRT mutations or sister chro­
matid exchange (SCE) in individuals with GSTM1 
or GSTT1 polymorphisms (Abdel-Rahman et al., 
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2001). These differences in response are consistent 
with the known important role of EH in the 
detoxification of butadiene epoxides in tissues in 
which these intermediates are produced. 

In contrast, several other molecular epidemi­
ological studies report no effect of butadiene – at 
occupational exposure levels – on HPRT muta­
tion frequency or chromosomal changes, and no 
significant associations with genotype (Zhang 
et al., 2004; Albertini et al., 2001, 2007; Lovreglio 
et al., 2006; Wickliffe et al., 2009). Discrepancies 
among these studies may be related to differences 
in levels of exposure to butadiene at the work­
place, the influence of exposures to butadiene or 
other genotoxic agents from other sources (e.g. 
cigarette smoke, automobile exhaust), the group 
size and the level of enzyme activity associated 
with a particular genotype. 

The induction of SCE in human lymphocytes 
exposed in vitro to diepoxybutane was signifi­
cantly higher in cells from GSTT1-null indi­
viduals than from GSTT1-positive individuals 
(Wiencke et al., 1995), which indicates that the 
GST pathway may be important in the detoxifi­
cation of diepoxybutane released into the blood. 
Epoxybutene can induce SCE and chromosomal 
aberrations in human peripheral lymphocytes 
treated in vitro; the lack of induction of these 
effects in G0 lymphocytes appears to be due 
to effective excision repair of DNA lesions 
(Kligerman et al., 1999). Other studies also 
demonstrate the importance of DNA repair in 
the genotoxicity of butadiene-derived epoxides. 
For example, mice deficient in nucleotide exci­
sion-repair are more susceptible than wild-type 
mice to the mutagenic effects of butadiene and 
diepoxybutane (Wickliffe et al., 2007). 

The mechanistic link between animal and 
human neoplasia induced by butadiene is 
supported by the identification in mice of genetic 
alterations in butadiene-induced tumours that 
are frequently involved in the development of 
a variety of human cancers as well. The K-Ras, 
H-Ras, p53, p16/p15 and β-catenin mutations 

detected in tumours in mice probably occurred 
as a result of the DNA-reactive properties and 
the genotoxic effects of butadiene-derived epox­
ides. A consistent pattern of K-Ras mutations 
(G→C transversion at codon 13) was observed in 
butadiene-induced cardiac haemangiosarcomas, 
neoplasms of the lung and fore-stomach, and 
lymphomas (Hong et al., 2000; Sills et al., 2001; 
Ton et al., 2007). Alterations in the p53 gene in 
mouse-brain tumours were mostly G→A transi­
tion mutations (Kim et al., 2005). Inactivation of 
the tumour-suppressor genes p16 and p15 may 
also be important in the development of buta­
diene-induced lymphomas (Zhuang et al., 2000). 
Mammary gland adenocarcinomas induced by 
butadiene in mice frequently had mutations in 
the p53, H-Ras and β-catenin genes (Zhuang 
et al., 2002). These observations point to a geno­
toxic mechanism that underlies the develop­
ment of butadiene-induced cancers. Although 
genotoxicity data indicate that diepoxybutane is 
the most genotoxic of the butadiene epoxides, the 
relative contribution of these metabolic interme­
diates to the mutagenicity and carcinogenicity 
of butadiene is not known. A comparison of the 
weight of evidence on metabolism, haemoglobin­
adduct formation and genetic changes in rodents 
and humans exposed to butadiene is summa­
rized in Table 4.1. 

4.5 Synthesis 

The numerous studies that have been 
conducted on butadiene toxicokinetics, metabo­
lism, and genotoxicity provide strong evidence 
that the carcinogenicity of butadiene involves a 
genotoxic mechanism of action mediated by reac­
tive epoxide metabolites. The metabolic pathways 
for butadiene in experimental animals have also 
been demonstrated in humans. This mechanism 
of action is based on the observations that buta­
diene-induced mutagenicity requires metabolic 
activation, and that the DNA-reactive epoxides 
formed during butadiene biotransformation 
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Table 4.1 Comparison of the degree of evidence on metabolism, haemoglobin-adduct formation 
and genetic changes in rodents and humans exposed to butadiene 

Parameter Rats Mice Humans 

In-vitro metabolism of epoxybutene to diepoxybutane Strong Strong Strong 
In-vivo measure of epoxybutene in blood Strong Strong NR 
In-vivo measure of diepoxybutane in blood Strong Strong NR 
N-(2,3,4-Trihydroxybutyl)valine-haemoglobin adducts Strong Strong Strong 
N-(2-Hydroxy-3-butenyl)valine-haemoglobin adducts Strong Strong Strong 
N,N-(2,3-Dihydroxy-1,4-butadiyl)valine-haemoglobin Strong Strong Weaka 

adduct 
Urinary excretion of butadiene-derived mercapturic Strong Strong Strong 

acid metabolites 
DNA adducts Strong Strong Strong 
Mutations in reporter genes in somatic cells Strong Strong Inconsistentb 

Chromosomal aberrations or micronuclei No evidence Strong Weaka 

In-vitro metabolism of butadiene to epoxybutene Strong Strong Strong 

NR, not reported 
a Possibly due to a lack of adequate studies
 
b One positive and three negative studies
 
From IARC (2008)
 

are direct-acting mutagens (IARC, 1999, 2008). 
Thus, butadiene metabolism, formation of reac­
tive epoxides, interaction of these epoxides with 
DNA, and resultant mutagenicity are key steps 
in the mechanism that underlies the carcino­
genicity of this agent. 

5. Evaluation 

There is sufficient evidence in humans for the 
carcinogenicity of 1,3-butadiene. 1,3-Butadiene 
causes cancer of the haematolymphatic organs. 

There is sufficient evidence for the carci­
nogenicity of 1,3-butadiene in experimental 
animals. 

There is sufficient evidence for the carci­
nogenicity of diepoxybutane in experimental 
animals. 

There is strong evidence that the carcino­
genicity of 1,3-butadiene in humans operates by 
a genotoxic mechanism that involves formation 
of reactive epoxides, interaction of these direct-
acting mutagenic epoxides with DNA, and 

resultant mutagenicity. The metabolic pathways 
for 1,3-butadiene in experimental animals have 
also been demonstrated in humans. 

1,3-Butadiene is carcinogenic to humans 
(Group 1). 
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