
1

Introduction

In this chapter, electrophilic agents 
include direct-acting electrophilic 
chemicals and chemicals that are 
metabolized to reactive electro-
philes. All of the chemicals discussed 
here are IARC Group 1 agents and 
as such can be characterized as 
carcinogenic to humans. Relevant 
carcinogens discussed in this chap-
ter do not include pharmaceutical 
drugs classified in Group 1, which 
otherwise typically include alkylating 
cytotoxic agents.

Tumour sites identified in previous 
IARC evaluations of the carcinogen-
icity of several non-pharmaceutical 
organic compounds in humans and 
laboratory animals are shown in 
Table 1.1. For each of these agents, 
there was sufficient evidence of car-
cinogenicity from studies in rats and/

or mice and, except for ethylene 
oxide, sufficient evidence of carci-
nogenicity from studies of exposed  
humans. For ethylene oxide, there 
was limited evidence of carcinogen-
icity in humans, but the classification 
of this chemical was raised to carci-
nogenic to humans (Group 1) based 
on strong mechanistic evidence 
of mutagenicity and clastogenici-
ty, including the induction of sister 
chromatid exchange (SCE), chro-
mosomal aberrations (CA), and mi-
cronuclei (MN) in workers exposed 
to ethylene oxide.

Among this group of chemicals, 
there is remarkable concordance in 
tumour sites with sufficient evidence 
or limited evidence of carcinogenicity 
in humans and sufficient evidence of 
carcinogenicity in rats and/or mice, 
for example for the liver (aflatoxins, 
trichloroethylene [TCE], and vinyl 

chloride), the lung (sulfur mustard), 
the lymphohaematopoietic system 
(benzene, 1,3-butadiene, and eth-
ylene oxide), nasal tissue (formal-
dehyde), and the kidney (TCE). For 
bis(chloromethyl)ether (BCME), the 
lung and the nasal cavity were iden-
tified as target organs in humans 
and rats, respectively. In addition, 
angiosarcomas of the liver, which 
are rare tumours, were identified in 
humans, rats, and mice exposed to 
vinyl chloride.

In several instances, tumour sites 
identified in animals were not de-
tected in epidemiological studies of 
exposed workers. These apparent 
discrepancies may be due to dif-
ferences in susceptibility between 
humans and certain animal mod-
els, differences in exposure con-
ditions between studies in animals 
and in humans, or limitations in 
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epidemiological studies that reduce 
their power to detect excess cancer 
risk at particular sites. For example, 
the finding that mammary gland tu-
mours were induced in female mice 
exposed to benzene, 1,3-butadiene, 
or vinyl chloride, whereas breast can-
cer risk was not elevated in exposed 
workers may be due to the fact that 
women were not included in many 
occupational cohort or case–control 
studies of these agents, sometimes 
because there were very few or no 
women in relevant workforces, or 
because they were exposed to much 
lower concentrations. In contrast, for 
hospital-based sterilization workers 
exposed to ethylene oxide, among 
whom there is a high proportion of 
women, increases in breast cancer 
incidence were observed. Exposure 
to ethylene oxide increased the inci-
dence of mammary gland tumours 
in female mice but not in male mice. 
Thus, limitations in human cancer 
databases and sex-specific tumours 
in animal studies need to be consid-
ered in evaluations of site concor-
dance for tumour induction between 
humans and animals.

The carcinogenicity of organic 
compounds and their organ specifici-
ty in animal models and in humans 
are influenced by numerous factors. 
This chapter focuses on factors 
that affect tissue dosimetry, factors 
that contribute to the multistep car-
cinogenic process for each agent, 
and factors that might account for 
interspecies and inter-individual  
differences in susceptibility.

Chemical disposition

The role of metabolism in the forma-
tion of the putative carcinogenic inter-
mediates of the non-pharmaceutical 
organic compounds that are carcino-
genic to humans is summarized in 

Table 1.2. Common among these 10 
agents is the electrophilic nature of 
the parent chemical or a metabolite 
thereof. All of these agents either 
exist as direct-acting electrophilic 
species or can be metabolized to 
reactive electrophilic species. It is 
generally accepted that the abili-
ty of these electrophiles, whether  
alkylating agents, epoxides, or qui-
nones, to react with nucleophiles, 
such as DNA, is key to the carci-
nogenicity of this group of agents 
(Table 1.1 and Table 1.2).

Because of the diversity in the 
biochemical and physical properties 
of organic electrophilic compounds, 
it is useful to first examine, in a gen-
eral way, factors that are important 
for their absorption, distribution, 
metabolism, and elimination. These 
factors include, but are not limited 
to, (i) physiological, (ii) chemical, 
and (iii) metabolic determinants. 
Examples of physiological factors 
are alveolar ventilation rate, cardi-
ac output, blood flow to organs, or-
gan volumes, and body mass and 
composition (e.g. percentage body 
fat). Examples of chemical factors 
include the stability and reactivity 
of the parent compound and its me-
tabolites, partition coefficients that 
control the distribution of organic 
compounds between blood and air 
or blood and tissues, rates of uptake 
from the gastrointestinal tract, and 
absorption through the dermis. For 
some organic chemicals, metabol-
ic determinants such as the cellular 
capacity for metabolism and the af-
finity of metabolic enzymes for the 
compound are critical, both in acti-
vating the parent compound to the 
putative carcinogenic electrophilic 
metabolite and in transforming the 
parent compound or the electrophilic 
intermediate into a metabolite that 
can be readily eliminated. Molecular 

interactions of organic compounds, 
or their metabolites, with DNA and 
other critical macromolecules or re-
ceptors are also important, because 
these interactions can initiate the car-
cinogenic process or affect its pro-
gression. Determinants for metabol-
ism or molecular interactions are 
dependent on the exposure history  
(including the intensity, duration, 
frequency, and route or routes of 
exposure, and the life stage of the 
exposed individual) and may differ 
according to the specific genotype of 
the individual (i.e. genetic polymor-
phisms in metabolic enzymes).

Absorption

Organic compounds can be ab-
sorbed after inhalation, dermal ex-
posure, or ingestion. The sites and 
extent of absorption depend on the 
physicochemical characteristics of 
the compound. Highly reactive or-
ganic chemicals typically interact 
with tissues at the portal of entry, 
and toxicity and carcinogenicity are 
often most evident at these sites. 
Formaldehyde, for example, is a wa-
ter-soluble, reactive volatile organic 
compound. After inhalation, form-
aldehyde interacts with the highly 
aqueous nasal mucosa, the first 
respiratory tract tissue that is en-
countered upon inspiration. In rats 
chronically exposed to formaldehyde 
vapours, the anterior portion of the 
nasal cavity was the site of tumour 
induction.

Sulfur mustard (also known as 
mustard gas) is another example of 
a reactive volatile organic compound 
that can be absorbed after inhalation 
or through dermal exposure. It is a 
lipophilic substance that easily pene-
trates into the skin and mucosal sur-
faces (Drasch et al., 1987; Somani 
and Babu, 1989), resulting in a high 
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degree of bioavailability. Sulfur mus-
tard is a bifunctional alkylating agent 
(IARC, 1987). Like for formaldehyde, 
there is evidence that DNA alkylation 
by sulfur mustard leads to forma-
tion of cross-links, inhibition of DNA 
synthesis and repair, and induction 
of point mutations and chromo-
some-type and chromatid-type ab-
errations (ATSDR, 2003). Some of 
these changes are observed in nasal 
tissue, consistent with the nose be-
ing a target organ for sulfur mustard.

BCME and chloromethyl methyl 
ether (CMME) are highly reactive or-
ganic compounds that belong to the 
group of chloroalkyl ethers, which 
are flammable, volatile, colourless 
liquids with highly irritating odours. 
In water and aqueous biological 
fluids, these substances are rapid-
ly hydrolysed to form hydrochloric 
acid, methanol, and formaldehyde 
(Nichols and Merritt, 1973; National 
Toxicology Program, 2004). The car-
cinogenic effects of BCME are re-
stricted to the epithelial tissue where 
exposure occurs, namely the lung 
for humans and respiratory tract tis-
sues for laboratory animals exposed 
to BCME by inhalation. This por-
tal-of-entry effect is consistent with 
the short half-life of BCME in aque-
ous media (ATSDR, 1989). BCME is 

among the most potent animal and 
human carcinogens known. The fact 
that BCME and CMME are powerful 
alkylating agents provides moderate 
to strong evidence that they oper-
ate by a genotoxic mechanism. This 
mechanism is likely to be similar to 
that of other strong alkylating agents, 
involving modification of DNA and 
resultant mutations. BCME can 
also be absorbed through the skin, 
and studies in which mice were ex-
posed to BCME by dermal applica-
tion demonstrated that this agent is 
a potent complete skin carcinogen, 
producing both papillomas and squa-
mous cell carcinomas (Van Duuren 
et al., 1969).

Ethylene oxide is a water-soluble 
volatile organic compound that is rel-
atively stable in aqueous solutions at 
neutral pH (half-life, approximately 
72 hours). Because it is completely 
miscible with water, inhaled ethylene 
oxide will dissolve in the aqueous lin-
ing of the respiratory tract and diffuse 
into the blood. Thus, uptake of this 
organic compound will be substantial 
throughout the respiratory tract.

Volatile organic compounds that 
are not reactive or water-soluble are 
generally absorbed into the blood, 
primarily in the pulmonary region of 
the respiratory tract because of the 

large blood–tissue interface of the 
alveoli in that region. The blood–air 
partition coefficient is a key factor in 
determining the maximum levels of 
the organic compound that can be 
attained in the blood at any given 
concentration of the compound in air. 
For example, the blood–air partition 
coefficients for the carcinogens vinyl 
chloride, 1,3-butadiene, benzene, 
and TCE are 1.2, 1.5, 7.8, and 10 
respectively. At equivalent air con-
centrations, higher levels of benzene 
and TCE will be present in the blood 
at steady state, compared with vinyl 
chloride and 1,3-butadiene.

The organic compounds dis-
cussed here can also be absorbed 
after oral exposure. Ingestion and 
subsequent oral absorption repre-
sent the greatest potential route of 
exposure to non-volatile organic 
compounds. Organic chemicals may 
enter the body via food or in liquids. 
Aflatoxin is a compound for which 
ingestion is considered the most 
important route of exposure. For ex-
ample, human uptake of aflatoxins 
in quantities of nanograms to micro-
grams per day occurs mainly through 
consumption of contaminated maize 
and peanuts, which are dietary sta-
ples in some tropical countries. 
Uptake of aflatoxin M1 in quantities 

Table 1.2. Mechanisms for formation of electrophilic species

Agent Mechanism Electrophilic species

Bis(chloromethyl)ether (BCME) Direct-acting Chloroalkyl ether
Chloromethyl methyl ether (CMME) Direct-acting Chloroalkyl ether
Ethylene oxide Direct-acting Epoxide
Formaldehyde Direct-acting Aldehyde
Sulfur mustard Direct-acting Sulfonium ion
Aflatoxins Metabolic activation Epoxide
Benzene Metabolic activation Quinone, epoxide, aldehyde
1,3-Butadiene Metabolic activation Epoxides
Trichloroethylene (TCE) Metabolic activation Epoxide, thioketene
Vinyl chloride Metabolic activation Epoxide
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of nanograms per day occurs main-
ly via consumption of aflatoxin-con-
taminated milk, including breast milk 
(IARC, 2002). Once absorbed from 
the gastrointestinal tract, aflatoxins 
are transported via the hepatic por-
tal blood to the liver, where they are 
metabolized. As discussed below, 
metabolism is key to understanding 
the carcinogenicity of aflatoxins.

Metabolic activation or 
detoxification and elimination

Metabolism plays a key role in both 
the activation and the detoxification 
of many organic compounds. The 
first step, generally called phase I 
metabolism, is oxidation to a meta-
bolic intermediate. This intermediate 
becomes the substrate for the sec-
ond step, phase II, in which it is en-
zymatically hydrolysed or conjugated 
with one of a variety of biological sub-
strates, such as sulfate, glucuronic 
acid, or glutathione (GSH). Phase II 
reactions increase the water solubil-
ity of the chemical, which facilitates 
its excretion in urine, or increase the 
molecular weight, so that the agent 
is more readily eliminated in bile. 
Phase I metabolism of organic com-
pounds can also result in formation 
of reactive intermediates that can 
spontaneously interact with critical 
macromolecules. For many organic 
chemicals, this is the first key step in 
the carcinogenic process.

Cytochrome P450 (CYP450) is 
the collective name of the family of 
enzymes responsible for the initial 
phase I metabolism of many organ-
ic compounds. Metabolic activation 
by various CYP450 isozymes is 
a key first step in the carcinogen-
ic process for aflatoxin, benzene, 
1,3-butadiene, TCE, and vinyl chlo-
ride. For example, in the mechanism 
of carcinogenicity of aflatoxins, the 
key steps involve: metabolism to a 

reactive exo-epoxide; binding of the 
exo-epoxide to DNA, resulting in 
the formation of DNA adducts; and 
miscoding during DNA replication, 
which leads to development of mu-
tations, with eventual progression to 
tumours. Aflatoxin B1, the most com-
mon and potent of the aflatoxins, is 
metabolized predominantly in the 
liver. In humans, CYP1A2, CYP2B6, 
CYP3A4, CYP3A5, and CYP3A7, 
as well as the phase II enzyme glu-
tathione-S-transferase M1 (GSTM1; 
see below) are hepatic enzymes 
that mediate aflatoxin metabolism. 
In humans, the relative contribution 
of these enzymes in vivo depends 
not only on their affinity but also 
on their expression level in the liv-
er, where CYP3A4 is predominant, 
mediating the formation of the afla-
toxin B1 exo-epoxide and aflatoxin 
Q1. In humans, as in other species, 
the DNA binding and carcinogenicity 
of aflatoxin B1 result from its con-
version to the exo-8,9-epoxide by 
CYP3A4 (Essigmann et al., 1982). 
This epoxide is highly reactive and 
is the main mediator of cellular injury 
(McLean and Dutton, 1995). In con-
trast, CYP1A2 can generate some 
exo-epoxide but also a high propor-
tion of endo-epoxide and aflatoxin 
M1. Aflatoxins M1 and Q1, produced 
from aflatoxin B1 by CYP1A2 and 
CYP3A4, respectively, are present 
in the urine of individuals exposed 
to aflatoxins (Ross et al., 1992; Qian 
et al., 1994).

Benzene is also a substrate for 
CYP450 enzymes. In common with 
other compounds discussed in this 
section, benzene must be metabo-
lized to become carcinogenic (Ross, 
2000; Snyder, 2004). The initial 
metabolic step involves CYP450-
dependent oxidation to benzene ox-
ide, which exists in equilibrium with 
its tautomer oxepin. It has been re-
ported that benzene is most likely 

to be metabolized via two CYP450 
enzymes, rather than just one, 
and that the putative, high-affinity 
enzyme is active primarily at ben-
zene concentrations below 1 ppm 
(Rappaport et al., 2009). Whereas 
CYP2E1 is the primary enzyme re-
sponsible for mammalian metabol-
ism of benzene at higher levels of 
exposure (Valentine et al., 1996; 
Nedelcheva et al., 1999), CYP2F1 
and CYP2A13 have been proposed 
as enzymes that metabolize ben-
zene at environmental levels of expo-
sure, i.e. below 1 ppm (Powley and 
Carlson, 2000; Sheets et al., 2004; 
Rappaport et al., 2009).

A large proportion of benzene 
oxide spontaneously rearranges to 
phenol, which is either eliminated via 
phase II conjugation or further metab-
olized to hydroquinone and 1,4-ben-
zoquinone. The remaining benzene 
oxide is either hydrolysed to produce 
benzene-1,2-dihydrodiol (catechol), 
which is further oxidized to 1,2-ben-
zoquinone, or conjugated with GSH 
to produce S-phenylmercapturic 
acid. Metabolism of the oxepin tau-
tomer of benzene oxide is thought to 
open the aromatic ring; this yields the 
reactive muconaldehydes and mu-
conic acid. Benzene oxide, the ben-
zoquinones, the muconaldehydes, 
and the benzene dihydrodiol epox-
ides (formed from CYP450-mediated 
oxidation of benzene dihydrodiol) 
are electrophiles that react readily 
with peptides, proteins, and DNA 
(Bechtold et al., 1992; McDonald 
et al., 1993; Bodell et al., 1996; 
Gaskell et al., 2005; Henderson et al., 
2005; Waidyanatha and Rappaport, 
2005), thereby interfering with cellu-
lar function (Smith, 1996). The role of 
these different metabolites in the car-
cinogenicity of benzene remains un-
clear, but formation of benzoquinone 
from hydroquinone via myeloperoxi-
dase in the bone marrow has been 
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suggested to be a key step (Smith, 
1996). Indeed, there is consider-
able evidence for an important role 
of the metabolic pathway that leads 
to formation of benzoquinone, be-
cause the benzoquinone-detoxifying 
enzyme NAD(P)H:quinone oxidore-
ductase 1 (NQO1) protects mice 
against benzene-induced myelodys-
plasia (Long et al., 2002; Iskander 
and Jaiswal, 2005) and protects 
humans against the haematotoxicity 
of benzene (Rothman et al., 1997). 
However, this does not rule out ad-
verse effects from other metabolites.

Similarly to the metabolism of 
benzene, the first step in 1,3-buta-
diene metabolism involves CYP450-
mediated oxidation to epoxybutene 
(Himmelstein et al., 1997). At low 
concentrations of 1,3-butadiene, 
metabolism via the CYP2E1 isozyme 
predominates (IARC, 1999, 2008). 
Epoxybutene may be metabolized 
by conjugation with GSH mediated 
by glutathione S-transferase (GST) 
or by hydrolysis catalysed by epox-
ide hydrolase (EH) (Csanády et al., 
1992; Himmelstein et al., 1997). It 
may also be oxidized to multiple 
diastereomers of diepoxybutane 
(Seaton et al., 1995; Krause and 
Elfarra, 1997), and dihydroxybutene 
formed by hydrolysis of epoxybutene 
may be oxidized to epoxybutanediol. 
Diepoxybutane and epoxybutane-
diol are also detoxified by GST or 
EH (Boogaard et al., 1996). Partial 
hydrolysis of diepoxybutane also 
produces epoxybutanediol. Bone 
marrow myeloperoxidase can also 
epoxidize 1,3-butadiene. Each of 
the epoxide intermediates may con-
tribute to the mutagenicity and car-
cinogenicity of 1,3-butadiene. The 
formation of epoxybutanediol or di-
epoxybutane requires a second oxi-
dation of butenediol or epoxybutene, 
respectively. At increasing exposure 
concentrations of 1,3-butadiene, 

competition between 1,3-butadiene 
and butenediol or epoxybutene for 
CYP450-mediated metabolism may 
limit the extent to which the second 
oxidation reaction may occur.

Vinyl chloride is another volatile 
organic compound that is primarily 
and rapidly metabolized in the liv-
er (Reynolds et al., 1975; Ivanetich 
et al., 1977; Barbin and Bartsch, 
1989; Lilly et al., 1998; Bolt, 2005) by 
CYP2E1 (WHO, 1999). The prima-
ry metabolites of vinyl chloride are 
the highly reactive chloroethylene 
oxide, which is formed in a dose-de-
pendent process and has a half-life 
of 1.6 minutes in aqueous solution 
at neutral pH (Barbin et al., 1975; 
Dogliotti, 2006), and its rearrange-
ment product chloroacetaldehyde 
(Bonse et al., 1975). Both can bind 
to proteins, RNA, and DNA and form 
etheno adducts in RNA and DNA. 
Chloroethylene oxide is more reac-
tive with nucleotides than is chlo-
roacetaldehyde (Guengerich and 
Watanabe, 1979).

Conjugation of chloroethylene 
oxide and chloroacetaldehyde with 
GSH eventually leads to the major 
urinary metabolites N-acetyl-S-(2-
hydroxyethyl)cysteine and thiodigly-
colic acid (Plugge and Safe, 1977). 
Chloroethylene oxide can also be de-
toxified to glycolaldehyde by microso-
mal EH, and chloroacetaldehyde can 
be converted to chloroacetic acid by 
aldehyde dehydrogenase 2 (ALDH2) 
(Guengerich and Watanabe, 1979; 
ATSDR, 2006; IARC, 2008).

Two metabolic pathways of TCE 
have been characterized in both 
humans and laboratory animals: 
oxidation and GSH conjugation 
(IARC, 2014). The major pathway 
is CYP450-mediated oxidation, re-
sulting in the formation of a variety 
of short- and long-lived metabolites. 
Subsequent processing of oxida-
tive metabolites involves reduction 

by alcohol dehydrogenase (ADH) 
and ALDH, and glucuronidation. 
The initial step in TCE oxidation in 
both humans and laboratory ani-
mals is catalysed by one of several 
CYP450 enzymes and results in 
the formation of an enzyme-bound 
intermediate (an oxygenated TCE-
CYP450 transition state, TCE-O-
CYP), which is chemically unstable. 
This intermediate can be converted 
to (i) the electrophile TCE epoxide, 
(ii) N-hydroxy-acetyl-aminoethanol, 
or (iii) chloral, which is in equilibrium 
with chloral hydrate. The majority of 
the conversion is directed towards 
chloral/chloral hydrate. TCE epoxide 
spontaneously generates dichloro-
acetyl chloride, another chemically 
unstable and reactive species, or 
oxalic acid, which is readily excreted 
in urine. Dichloroacetyl chloride un-
dergoes spontaneous dechlorination 
to produce dichloroacetate. Chloral/
chloral hydrate undergoes either re-
duction by ALDH or CYP450 to gen-
erate trichloroethanol, or oxidation 
by ALDH to form trichloroacetate. 
Trichloroacetate is typically the major 
urinary metabolite of TCE that is re-
covered, although trichloroethanol is 
also an important metabolite in urine. 
Trichloroethanol can be oxidized by 
CYP450 enzymes to yield trichloro-
acetate, or can undergo glucuronida-
tion by uridine 5′-diphosphate (UDP)-
glucuronosyltransferases to produce 
trichloroethanol glucuronide. In all 
species investigated, trichloroace-
tate and trichloroethanol/trichloro-
ethanol glucuronide are formed in 
much larger quantities than other 
oxidative metabolites. There are 
quantitative differences in the extent 
of oxidative TCE metabolism among 
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species at higher exposures, but at 
lower exposures oxidation is limited 
by the hepatic blood flow.

Conjugation with GSH is another 
important metabolic pathway for TCE, 
resulting in the formation of short-
lived and reactive metabolites. The 
initial conjugation reaction occurs 
primarily in the liver to form (1,2-di-
chlorovinyl)glutathione (DCVG). 
Subsequent processing of DCVG 
occurs primarily in the kidney, which 
is a tumour target site in rats and hu-
mans. In the kidney, DCVG can be 
hydrolysed by γ-glutamyltransferase 
and cysteinylglycine dipeptidase to 
1,2-dichlorovinyl-cysteine (DCVC), 
which may be N-acetylated to form 
a mercapturate or converted by 
β-lyase to generate a reactive thi-
olate that rearranges to form either 
chlorothioketene or chlorothioacetyl 
chloride (Dekant et al., 1988; Völkel 
and Dekant, 1998). Chlorothioketene 
and chlorothioacetyl chloride are 
highly reactive and chemically un-
stable, and are thought to be the 
molecular forms responsible for ad-
duct formation with nucleic acids in 
the kidney (Müller et al., 1998a, b). 
For both humans and rodents, the 
information on urinary excretion of 
stable end-products is much more 
extensive for the oxidative pathway 
than for the GSH conjugation path-
way. However, this is not an accurate 
indication of the overall flux through 
each pathway, because it does not 
account for the formation of reactive 
and chemically unstable metabolites 
via the GSH conjugation pathway.

As noted above, CYP450 en-
zymes are not the only enzymes 
involved in the metabolism of organ-
ic compounds. Formaldehyde, an 
important intermediate in one-car-
bon metabolism, is a substrate for 
several enzymes, including cyto-
solic ADH, mitochondrial ALDH, 
cytosolic GSH-dependent formal-

dehyde dehydrogenase, and cat-
alase, as well as CYP2E1. One-
carbon metabolism not mediated by 
CYP450 is central to many biologi-
cal processes. In aqueous solution, 
formaldehyde is rapidly converted 
to its dihydroxy form, methanediol 
(CH2(OH)2, also known as formalde-
hyde hydrate or methylene glycol), 
which is in dynamic equilibrium with 
formaldehyde.

Direct-acting compounds

Some organic compounds discussed 
here are sufficiently reactive that they 
do not require metabolic activation 
as the first step in the carcinogenic 
process. Formaldehyde reacts read-
ily and reversibly with amino groups 
to form Schiff bases, and with sulf-
hydryl groups resulting in the forma-
tion of S-hydroxymethylglutathione, 
which is oxidized by ADH3 to 
S-formylglutathione. S-formylglu-
tathione is further metabolized by 
S-formylglutathione hydrolase to 
generate formate and GSH. Formate 
can also be formed non-enzymati-
cally (Hedberg et al., 2002). Because 
formaldehyde reacts non-enzymat-
ically with critical macromolecules 
(DNA and others), many of these en-
zymatic processes can be viewed as 
detoxification steps, especially those 
that lead to incorporation of the com-
pound into the one-carbon pool.

Ethylene oxide is another di-
rect-acting alkylating agent that re-
acts with nucleophiles without the 
need for metabolic transformation. 
The direct reaction of ethylene ox-
ide with DNA is thought to initiate 
the cascade of genetic and related 
events that lead to cancer (Swenberg 
et al., 1990). The pathways of ethyl-
ene oxide metabolism can thus be 
considered detoxification pathways 
that increase the elimination of the 
parent chemical. Ethylene oxide 

is converted (i) by enzymatic and 
non-enzymatic hydrolysis to ethyl-
ene glycol, which is partly excreted 
as such and partly metabolized fur-
ther via glycolaldehyde, glycolic acid, 
and glyoxylic acid to oxalic acid, for-
mic acid, and carbon dioxide; and 
(ii) by conjugation with GSH.

Sulfur mustard, BCME, and 
CMME can also react spontaneous-
ly with biological molecules without 
the need for metabolic activation. 
For example, the reactivity of sulfur 
mustard with a wide variety of cel-
lular macromolecules is well docu-
mented (IARC, 1975, 1987; ATSDR, 
2003). The presence of two chlorine 
atoms makes it a strong bifunctional 
alkylating agent with a high chemi-
cal reactivity (Dacre and Goldman, 
1996). The chlorine atom is typically 
released under formation of a car-
bonium ion, which then undergoes 
intramolecular cyclization to create a 
highly reactive compound. Formation 
of the carbonium ion is facilitated 
in aqueous solutions (Somani and 
Babu, 1989); this explains the sensi-
tivity of mucosal tissues, such as the 
eye, to its effect (Solberg et al., 1997). 
Elevated concentrations of thiodigly-
col, the major hydrolysis product of 
mustard gas, were detected in hu-
man urine after exposure to mustard 
gas vapour and aerosol (Jakubowski 
et al., 2000). BCME and CMME are 
rapidly hydrolysed in water and in 
aqueous biological fluids to form hy-
drochloric acid, methanol, and form-
aldehyde (Nichols and Merritt, 1973; 
National Toxicology Program, 2004).

Molecular interactions (DNA 
adducts, genetic alterations, 
etc.)

A common feature of the above-men-
tioned agents is that they either are 
direct-acting electrophiles or are 
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metabolized to electrophiles. The 
carcinogenicity of these chemicals is 
considered to be initiated by reaction 
of the electrophile with nucleophilic 
sites in DNA, leading to the induction 
of mutations, DNA strand breaks, 
and/or CA. However, additional pro-
cesses may also be involved, for ex-
ample free-radical-mediated oxida-
tive stress, inhibition of DNA repair, 
inhibition of topoisomerase II, and 
immunosuppression. In addition to 
time-dependent variation in tissue 
concentrations of DNA-reactive me-
tabolites of the chemicals described 
above, the likelihood that these 
compounds or their metabolites will 
bind to DNA and induce site-spe-
cific genetic alterations that lead to 
tumour development is a function 
of the physicochemical properties 
of the reactive agent (e.g. binding 
affinity for DNA or protein), sever-
al cellular features (including tissue 
concentrations of alternative binding 
biomolecules such as GSH, rates of 
cell division and cell death, and the 
activities and effectiveness of repair 
enzymes for DNA adducts), other 
physiological characteristics (e.g. 
age, sex, health status, and immu-
nocompetence), and lifestyle factors 
(e.g. other exposures). Thus, multiple 
factors and mechanistic processes 
affect the tissue and species speci-
ficity for tumour development asso-
ciated with exposures to each of the 
carcinogenic chemicals discussed in 
this chapter.

Table 1.3 presents 10 key char-
acteristics of carcinogens (see 
Chapter 10, by Smith) that have been 
identified in in vivo and/or in vitro 
studies on the electrophilic agents 
reviewed in this chapter. What is 
most evident from Table 1.3 is that 
all these compounds produce DNA 
adducts in humans and animals, and 

cause mutations and cytogenetic 
alterations. Entries with weak ev-
idence may reflect the availability 
of few or no published studies for 
certain characteristics of particular 
agents in animal or human tissues, 
rather than negative responses 
(Table 1.3).

BCME and CMME

The chloroalkyl ethers BCME and 
CMME are often referred to as pow-
erful alkylating agents. However, 
because these compounds are 
short-lived in aqueous solution and 
undergo rapid hydrolysis, genotoxic-
ity studies of BCME and CMME are 
sparse and have produced mixed re-
sults (IARC, 1987). Both compounds 
were mutagenic in bacteria (Mukai 
and Hawryluk, 1973; Anderson 
and Styles, 1978) and caused an 
increase in the frequency of CA in 
peripheral lymphocytes of exposed 
workers (Srám et al., 1983). BCME 
binds to guanine and adenine res-
idues of calf thymus DNA in vitro 
(Goldschmidt et al., 1975). Both com-
pounds induced unscheduled DNA 
synthesis in cultured human cells 
(Agrelo and Severn, 1981; Perocco 
et al., 1983) and cell transforma-
tion in Syrian hamster embryo cells 
(Casto, 1983) and cultured human 
fibroblasts (Kurian et al., 1990). The 
carcinogenicity of BCME is widely 
thought to involve mutagenesis re-
sulting from alkylation of DNA bases 
(Bernucci et al., 1997). BCME and 
CMME may act synergistically with 
formaldehyde, one of their hydrolysis 
products. The likelihood of BCME–
DNA adducts leading to mutations 
depends on the cellular content and 
activity of DNA repair enzymes such 
as methylguanine methyltransferase, 

and enzymes involved in mismatch 
repair and excision repair (Bernucci 
et al., 1997).

Sulfur mustard

The elimination of a chloride ion from 
sulfur mustard creates a highly re-
active cyclic sulfonium ion that can 
alkylate cellular macromolecules 
including DNA, RNA, and proteins. 
Because of the presence of two chlo-
rine atoms, sulfur mustard can act as 
a bifunctional alkylating agent, pro-
ducing DNA interstrand or intrastrand 
cross-links, for example by binding to 
guanines on opposite strands or to 
neighbouring guanines on the same 
strand (Roberts et al., 1971; Walker, 
1971; Shahin et al., 2001; Saladi 
et al., 2006). Such cross-links can in-
hibit DNA synthesis and cell division. 
Sulfur mustard-specific 2-hydroxy-
ethylthioethyl–DNA adducts have 
been detected in in vitro systems 
and in multiple tissues of exposed 
animals (Somani and Babu, 1989; 
Fidder et al., 1994; van der Schans 
et al., 1994; Niu et al., 1996). Similar 
to the binding pattern for other alkyl-
ating agents, sulfur mustard-derived 
DNA adducts have been identified 
at N7 of guanine, N3 of adenine, 
and O6 of guanine (Fidder et al., 
1994). O6-alkylguanine DNA alkyl-
transferase is ineffective in repairing 
O6-ethylthioethylguanine adducts 
(Ludlum et al., 1986). Thus, sulfur 
mustard can inhibit cell division by 
cross-linking of DNA strands and 
can produce mutations by inducing 
errors in DNA replication or repair.

Sulfur mustard induced mutations 
and CA in exposed animals and in 
a variety of in vitro systems (IARC, 
1987). Further, TP53 mutations (pre-
dominantly G → A transitions) were 
detected in DNA extracted from 
lung tumours of individuals exposed 
to sulfur mustard (Hosseini-khalili 
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et al., 2009). The base excision re-
pair and nucleotide excision repair 
pathways were activated in human 
lymphoblastoid cell lines exposed to 
the sulfur mustard analogue 2-chlo-
roethyl-ethylsulphide (Jowsey et al., 
2009).

Ethylene oxide

Ethylene oxide is a direct-acting al-
kylating agent that reacts with nu-
cleophiles, resulting in the formation 
of a variety of adducts in DNA, RNA, 
and protein. Numerous studies have 
demonstrated that ethylene oxide 
induces gene mutations and chro-
mosomal changes in in vitro systems 
and in prokaryotic and eukaryotic 
organisms. 2-Hydroxyethyl–DNA 
adducts formed upon exposure to 
ethylene oxide have been observed 
in vivo at N7 of guanine, N3 of ad-
enine, and O6 of guanine (Walker 
et al., 1992) and in vitro at N1 and 
N6 of adenine and at the N3 posi-
tion of cytosine, uracil, and thymine 
(Tates et al., 1999). Genotoxicity re-
sulting from ethylene oxide-induced 
DNA adducts may involve mispairing 
of altered bases, formation of aba-
sic sites upon depurination of the 
adducts at N7 of guanine followed 
by insertion of a different base dur-
ing DNA synthesis, or DNA strand 
breaks and subsequent chromo-
some breakage (Tates et al., 1999; 
Houle et al., 2006). In mice, ethylene 
oxide induced large deletion muta-
tions, base-pair substitutions, and 
frameshift mutations (Walker and 
Skopek, 1993; Walker et al., 1997a, 
b). In tumours obtained from mice 
exposed to ethylene oxide, increas-
es in K-Ras mutations with frequent 
G → T transversions at codon 12 
and G → C transversions at codon 
13 were reported (Houle et al., 2006; 

Hong et al., 2007). Evidence was 
also provided for the involvement of 
mutations in p53.

The carcinogenicity of ethylene 
oxide is thought to be due to the 
induction of gene mutations and/
or chromosomal changes resulting 
from the formation of ethylene ox-
ide-derived DNA adducts. Although 
evidence for the carcinogenicity of 
ethylene oxide was sufficient in ex-
perimental animals and limited in 
humans, the observed increases in 
the frequencies of CA, SCE, and MN 
in lymphocytes of exposed workers 
served as the basis for raising the 
classification of this alkylating agent 
to carcinogenic to humans (Group 1) 
(IARC, 1994, 2008).

Formaldehyde

Formaldehyde can react directly with 
cellular macromolecules including 
proteins and nucleic acids. The for-
maldehyde-specific DNA adduct N6-
hydroxymethyl-deoxyadenosine has 
been identified in lymphocytes of 
smokers (Wang et al., 2009). The ge-
notoxicity of formaldehyde is well es-
tablished: it induces mutations (point 
mutations, deletions, and insertions), 
CA, SCE, MN, DNA strand breaks, 
and DNA–protein cross-links in sev-
eral in vitro and in vivo systems, in-
cluding CA, SCE, and MN in nasal 
mucosal cells and/or lymphocytes of 
exposed humans (IARC, 2006). In 
animals exposed to formaldehyde, 
genotoxic effects were more con-
sistently found in nasal tissues than 
in blood lymphocytes. In addition, 
formaldehyde produces irritation of 
the nose and pharynx in humans and 
laboratory animals. Genotoxicity and 
increased cell proliferation appear to 

be the major determinants of the na-
sal carcinogenicity of formaldehyde 
in humans and laboratory animals.

A mechanism for formalde-
hyde-induced myeloid leukae-
mogenesis might involve pancytope-
nia caused by genotoxicity leading 
to damage of primitive progenitor 
cells in the bone marrow; mutation 
of myeloid progenitor cells by form-
aldehyde and subsequent growth of 
a mutant phenotype may then lead 
to myeloid leukaemia. Evidence of a 
mild pancytopenic effect of formal-
dehyde or changes in ratios of lym-
phocyte subsets has been reported 
in exposed workers (Kuo et al., 1997; 
Ye et al., 2005; Tang et al., 2009; 
Zhang et al., 2010). In addition, col-
ony formation by cultured progenitor 
cells that give rise to myeloid cells 
is inhibited by low concentrations of 
formaldehyde (Zhang et al., 2010). 
The observation of increased mon-
osomy (loss) of chromosome 7 and 
trisomy (gain) of chromosome 8 in 
cultured myeloid progenitor cells 
obtained from the blood of workers 
exposed to formaldehyde may be rel-
evant to the potential involvement of 
formaldehyde in leukaemogenesis, 
because these types of cytogenetic 
changes are frequently seen in my-
eloid leukaemia and myelodysplastic 
syndromes (Zhang et al., 2010).

1,3-Butadiene

1,3-Butadiene can be metabolized to 
three different DNA-reactive epoxide 
intermediates, which are direct-act-
ing mutagens (IARC, 2008). The ma-
jor DNA adducts formed from these 
epoxide intermediates in rats and 
mice exposed to 1,3-butadiene are 
at the N7 position of guanine. These 
N7-guanine adducts can undergo 
spontaneous or glycosylase-medi-
ated depurination, which leaves an 
apurinic site in the DNA. Epoxide 
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metabolites of 1,3-butadiene can 
also react at sites involved in base 
pairing and form adducts at the N3 
position of cytosine, at N1 and N6 of 
adenine, and at N1 and N2 of guanine 
(Selzer and Elfarra, 1996a, b, 1997; 
Zhao et al., 1998; Zhang and Elfarra, 
2004). An increase in the number of 
N1-trihydroxybutyladenine adducts 
was detected in lymphocytes of work-
ers exposed to 1,3-butadiene (Zhao 
et al., 2000). Alkylation of N1-adenine 
by epoxybutene followed by hydro-
lytic deamination forms the highly 
mutagenic deoxyinosine (Rodriguez 
et al., 2001), which codes for incor-
poration of cytosine during DNA rep-
lication, leading to the generation of 
A → G mutations. Diepoxybutane is 
a bifunctional alkylating agent that 
can form monoadducts in DNA simi-
lar to those formed by epoxybutane-
diol, or DNA–DNA cross-links by 
binding at the N7 position of guanine 
of one DNA strand and at another 
site elsewhere in the DNA, such as 
the N7 of another guanine or the N1 
of an adenine (Goggin et al., 2009). 
Depurination of these interstrand 
or intrastrand lesions can induce 
point mutations and large deletions. 
However, if diepoxybutane alkylates 
an adenine at N6 in DNA, an exocy-
clic adenine adduct is formed pref-
erentially to DNA–DNA cross-linked 
products (Antsypovich et al., 2007).

1,3-Butadiene is genotoxic at 
multiple tissue sites in mice and rats, 
and its epoxide metabolites are mu-
tagenic in a variety of in vitro sys-
tems. Deletion mutations and base 
substitution mutations induced by 
these alkylating agents are consis-
tent with their DNA adduct profiles 
and include G → A transition muta-
tions, G → C transversions, A → T 
transversions, and A → G transitions  
(Lee et al., 2002). Other genotoxic 

effects of 1,3-butadiene and its me-
tabolites are induction of CA, SCE, 
and MN.

Genetic alterations in 1,3-butadi-
ene-induced tumours in mice are of 
the same type as those frequently 
involved in the development of a va-
riety of human cancers. The K-Ras, 
H-Ras, p53, p16/p15, and β-cate-
nin mutations detected in tumours 
from exposed mice are probably 
the result of the DNA reactivity and 
the genotoxic effects of 1,3-butadi-
ene-derived epoxides. Other DNA-
alkylating metabolites of 1,3-butadi-
ene (hydroxymethylvinylketone and 
crotonaldehyde) may also contribute 
to the mutagenicity and carcino-
genicity of this compound. A con-
sistent pattern of K-Ras mutations 
(G → C transversions at codon 13) 
was observed at multiple organ sites 
of 1,3-butadiene-induced cancers 
(Hong et al., 2000; Sills et al., 2001; 
Ton et al., 2007). Alterations in the 
p53 gene in brain tumours in mice 
were mostly G → A transition muta-
tions (Kim et al., 2005) that probably 
arose from miscoding at apurinic 
sites resulting from depurination of 
N7-guanine adducts. Inactivation of 
the tumour suppressor genes p16 
and p15 may also be important in the 
development of 1,3-butadiene-in-
duced lymphomas (Zhuang et al., 
2000). Mammary gland adenocarci-
nomas induced by 1,3-butadiene in 
mice frequently had mutations in the 
p53, H-Ras, and β-catenin genes 
(Zhuang et al., 2002). Overall, these 
observations point to a genotoxic 
mechanism underlying the devel-
opment of 1,3-butadiene-induced 
cancers.

Vinyl chloride

The carcinogenicity of vinyl chloride 
is probably caused by its highly re-
active metabolite chloroethylene 

oxide and/or by the rearrangement 
product chloroacetaldehyde (Bonse 
et al., 1975). Both intermediates can 
bind to proteins, RNA, and DNA 
(Guengerich and Watanabe, 1979). 
Vinyl chloride is mutagenic in bac-
teria and mammalian cells. It is also 
clastogenic in vivo and in vitro, caus-
ing increases in the frequencies of 
CA, SCE, and MN (IARC, 2008). 
The major DNA adduct formed from 
chloroethylene oxide is at the N7 po-
sition of guanine. In addition, etheno 
DNA adducts (1,N6-ethenoadenine, 
3,N4-ethenocytosine, N2,3-etheno-
guanine, and 1,N2-ethenoguanine) 
have been identified after in vitro in-
cubations with chloroethylene oxide, 
and levels of these adducts are in-
creased in multiple organs of rats ex-
posed to vinyl chloride by inhalation 
(Ciroussel et al., 1990; Guengerich, 
1992; Swenberg et al., 2000). The 
etheno adducts, which may be in-
volved in base-pair substitutions, are 
much more persistent than the N7-
guanine adduct (Fedtke et al., 1990) 
and have demonstrated miscoding 
potential in vitro and in vivo, causing 
A → G transitions, A → T transver-
sions, C → A transversions, C → T 
transitions, and G → A transitions 
(Singer et al., 1987; Cheng et al., 
1991; Mroczkowska and Kuśmierek, 
1991; Singer et al., 1991; Basu et al., 
1993). The same types of mutation 
have been observed in the TP53 
and RAS genes in vinyl chloride-in-
duced tumours. TP53 mutations 
associated with exposure to vinyl 
chloride (frequently A → T transver-
sions) were found in angiosarcomas 
in both humans and rats, and muta-
tions in K-RAS were also associated 
with vinyl chloride-induced angio-
sarcomas in humans (IARC, 2008). 
Polymorphisms in XRCC1, a gene 
that encodes an enzyme that repairs 
etheno DNA adducts, may account 
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for inter-individual differences 
among exposed workers in suscep-
tibility to genetic damage induced by 
vinyl chloride (Li et al., 2003).

Aflatoxins

Aflatoxin B1 is genotoxic in prokary-
otic and eukaryotic systems in vitro, 
including cultured human cells, and 
in vivo in humans and in a variety of 
animal species. Its metabolism to a 
reactive exo-8,9-epoxide results in 
DNA binding and formation of DNA 
adducts that lead to gene mutations, 
CA, SCE, MN, and mitotic recombi-
nation in a variety of in vivo and in 
vitro systems (IARC, 2002). Adduct 
formation in DNA at the N7 position 
of guanine represents more than 
98% of the total adducts formed by 
the exo-8,9-epoxide (Guengerich 
et al., 1998). Depurination of this gua-
nine adduct creates an apurinic site. 
Alternatively, the N7-guanine adduct 
may convert to the more stable ring-
opened aflatoxin B1–formamidopy-
rimidine adduct (Groopman et al., 
1981). Differences in the mutational 
specificity of an apurinic site-con-
taining genome (derived from depu-
rination of aflatoxin B1–N7-guanine) 
compared with that of a genome with 
the aflatoxin B1–N7-guanine adduct 
itself, where mutations also occurred 
at the base 5′-adjacent to the site of 
the adducted guanine, suggest that 
intercalation of the aflatoxin moiety 
on the 5′ side of the modified guanine 
perturbs both the modified and the 
complementary DNA strands, caus-
ing interference with 5′ base pairing 
(Gopalakrishnan et al., 1990; Bailey 
et al., 1996). Thus, mutations result-
ing from aflatoxin B1–N7-guanine 
adducts may not be due only to 
depurination.

A specific AGG → AGT transver-
sion mutation at codon 249 of the 
TP53 tumour suppressor gene in 

human hepatocellular carcinomas is 
associated with exposure to aflatoxin 
B1 (Gomaa et al., 2008). G → T trans-
version mutations are predominant 
in cell culture systems and animal 
models and are consistent with the 
formation of the major aflatoxin B1-
derived N7-guanine adduct. This is 
because adenine is most commonly 
inserted opposite the apurinic site. 
However, other types of mutation 
have also been observed with afla-
toxin B1, including G → C transver-
sions and G → A transitions in DNA 
repair-deficient xeroderma pigmen-
tosum cells (Levy et al., 1992); this 
suggests that DNA repair deficien-
cy may influence the frequency and 
distribution of mutations within a 
gene. Aflatoxin B1 may contribute to 
genomic instability in hepatocellular 
carcinomas (Kaplanski et al., 1997) 
by inducing mitotic recombination 
and loss of heterozygosity. The 
concurrent presence of hepatitis B 
virus, which causes chronic active 
hepatitis and cirrhosis, increases the 
incidence of hepatocellular carcino-
mas caused by aflatoxins in humans 
(IARC, 2002).

Trichloroethylene

Data from human studies suggest 
that exposure to TCE increases the 
frequency of CA in peripheral lym-
phocytes (Tabrez and Ahmad, 2009) 
and leads to mutations in the von 
Hippel–Lindau tumour suppressor 
gene VHL in renal cell carcinoma 
(Brüning et al., 1997; Brauch et al., 
1999), but these findings have been 
reported in only a limited number 
of studies. TCE exposure induced 
MN both in vitro (Wang et al., 2001; 
Robbiano et al., 2004; Hu et al., 
2008) and in vivo (Hrelia et al., 1994; 
Kligerman et al., 1994; Robbiano 
et al., 2004). Although TCE itself 
appears to be incapable of inducing 

gene mutations, it has shown poten-
tial to affect DNA and chromosomal 
structure. The formation of DNA ad-
ducts (Mazzullo et al., 1992; Cai and 
Guengerich, 2001) and the mutage-
nicity of TCE in vitro are dependent 
on the presence of metabolic acti-
vation systems (IARC, 2014). There 
is strong evidence that the GSH-
conjugated metabolites of TCE, par-
ticularly DCVC, are genotoxic, and 
some of the oxidative metabolites 
(TCE epoxide, dichloroacetate, and 
chloral/chloral hydrate) may also be 
genotoxic. Thus, biotransformation 
of TCE can produce genotoxic me-
tabolites, particularly in the kidney, 
where in situ metabolism occurs 
(IARC, 2014).

Both genotoxic and non-genotox-
ic mechanisms may contribute to the 
carcinogenicity and toxicity of TCE 
at other sites, including the liver, the 
lung, and the haematopoietic sys-
tem. In addition to genotoxicity, epi-
genetic alterations, oxidative stress, 
cytotoxicity, and altered rates of 
cell division or apoptosis may be in-
volved in tumour induction in the liver 
or lung. The immunotoxicity of TCE 
may be involved in the development 
of haematopoietic cancers. However, 
the data are inadequate for reliable 
conclusions to be drawn about caus-
al relationships between non-geno-
toxic mechanisms and TCE-induced 
tumours in humans or laboratory 
animals (IARC, 2014). From toxicity 
and carcinogenicity studies in hu-
mans and laboratory animals, there 
is strong evidence for the kidney as a 
target tissue for TCE-induced tumour 
formation. The database supporting 
the non-genotoxic mechanism of 
kidney carcinogenesis is moderate. 
However, the strong evidence of ge-
notoxicity of DCVC, the kidney me-
tabolite of TCE, supports the over-
all conclusion that the evidence for 
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a genotoxic mechanism of kidney 
carcinogenesis is strong. The evi-
dence for the liver as a target tissue 
for TCE, from cancer assays and tox-
icity findings in laboratory animals, is 
strong. The evidence for non-geno-
toxic and/or genotoxic mechanisms 
of liver carcinogenesis is moderate. 
The available data suggest multiple 
non-genotoxic mechanisms and the 
potential for genotoxic mechanisms 
from the TCE metabolites dichloro-
acetate and chloral hydrate.

Benzene

Benzene induced CA, SCE, and MN 
in bone marrow cells of exposed 
mice, CA in bone marrow cells of 
exposed rats, and CA and mutations 
in human cells in vitro. CA in human 
peripheral lymphocytes have long 
been associated with occupational 
exposure to benzene (Forni, 1979; 
IARC, 1982; Eastmond, 1993; Zhang 
et al., 2002; Holecková et al., 2004). 
As noted above, metabolism of ben-
zene produces several electrophilic 
agents (benzene oxide, in equilibrium 
with its tautomer oxepin, muconalde-
hyde, benzoquinone, and benzene 
dihydrodiol epoxide) that can react 
with DNA or proteins. DNA binding 
and adduct formation may not be 
the major steps in the development 
of benzene-induced leukaemias 
(Whysner et al., 2004). Although the 
mechanisms of benzene-induced 
carcinogenesis and the potential 
relative roles of each of these me-
tabolites are not fully known, there is 
strong support for the involvement of 
clastogenic and aneugenic effects, 
such as formation of CA, MN, and 
DNA strand breaks.

Exposure to benzene has been 
associated with chromosomal 
changes that are commonly ob-
served in acute myeloid leukaemia, 
including those comprising loss 

of various parts of the long arm of 
chromosome 5 or 7, or complete 
loss of these chromosomes, gain of 
the entire chromosome 8, and an 
increased frequency of transloca-
tions between chromosomes 8 and 
21 in peripheral lymphocytes of ex-
posed workers (Smith et al., 1998; 
Zhang et al., 1999, 2002). Benzene 
and its quinone metabolites are in-
hibitors of topoisomerase II, leading 
to increased frequencies of DNA 
cleavage complexes and DNA dou-
ble-strand breaks; this effect can re-
sult in the formation of chromosome 
translocations and inversions (Hutt 
and Kalf, 1996; Lindsey et al., 2004, 
2005; Deweese and Osheroff, 2009). 
Other potential pathways involved in 
benzene-induced acute myeloid leu-
kaemia include mutagenesis (pos-
sibly through generation of reactive 
oxygen species), epigenetic changes 
due to altered methylation status, de-
creased immunosurveillance (Cho, 
2008; Li et al., 2009), haematotoxicity 
and alterations in stem cell pool size 
(Rothman et al., 1997), and inhibition 
of gap-junction intercellular commu-
nication (Rivedal and Witz, 2005). 
Thus, multiple mechanisms are likely 
to be involved in benzene-induced 
leukaemogenesis. Benzene produc-
es multiple cytogenetic abnormalities 
in human lymphocytes (Tough and 
Brown, 1965; Picciano, 1979; Smith 
and Zhang, 1998; Zhang et al., 2002) 
and induces specific chromosomal 
changes associated with non-Hodg-
kin lymphoma in human lympho-
cytes (Zhang et al., 2007). Induction 
of DNA double-strand breaks and 
chromosomal rearrangements in 
lymphoid cells in combination with 
immunosuppression by benzene 
might be the cause of lymphoma.

The carcinogenicity of the group 
of electrophilic chemicals dis-
cussed above is likely to be due to  

interaction between the parent elec-
trophile or one or more electrophilic 
metabolites and nucleophilic DNA, 
leading to point mutations and induc-
tion of CA. These effects have been 
observed in humans, in animals, and 
in in vitro systems. In addition, pro-
duction of reactive oxygen species, 
inhibition of DNA synthesis or repair, 
and cytotoxicity/cell proliferation 
could complement DNA modification 
to enhance DNA damage. Tumour 
outcome can result from certain 
DNA adducts leading to mutations 
and dysregulation initially described 
with reference to proto-oncogenes 
and tumour suppressor genes. For 
benzene, chromosomal transloca-
tions, in combination with haemato-
toxicity or immunosuppression, are 
associated with increased risk of 
haematopoietic cancer in humans. 
The extent to which other process-
es (inflammation, oxidative stress, 
immunosuppression, epigenetic al-
terations, and immortalization) might 
contribute to the carcinogenicity of 
this class of chemicals in general is 
limited by the availability of few or no 
published studies that address these 
effects.

Polymorphisms and 
susceptibility

Susceptibility to the carcinogenic 
effects of organic compounds may 
derive from acquired characteristics, 
such as altered expression of certain 
enzymes, or from genetic factors, 
such as enzyme polymorphisms. 
Polymorphisms of enzymes involved 
in the metabolism of organic com-
pounds are likely to be responsible 
for individual differences in activa-
tion and detoxification reactions that 
control tissue levels of electrophilic 
intermediates. The enzymes that 
catalyse epoxide formation and elim-
ination are polymorphic in human 
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populations, and some isozymes 
may be induced by a variety of en-
vironmental and pharmaceutical 
agents. For example, factors that 
explain differences in the response 
to aflatoxin between human individ-
uals and between animal species 
and strains include the proportion 
of aflatoxin metabolized to the exo-
8,9-epoxide (mainly by CYP450 
enzymes) relative to other, much 
less toxic metabolites, and the prev-
alence of pathways that lead to the 
formation of non-toxic conjugates 
with reduced mutagenicity and cyto-
toxicity (Guengerich et al., 1998).

Similarly, the expression of en-
zymes involved in aflatoxin metabol-
ism can be modulated with che-
mopreventive agents, resulting in 
inhibition of DNA adduct formation 
and hepatocarcinogenesis, as has 
been demonstrated in rats. Oltipraz 
is a chemopreventive agent that in-
creases GSH conjugation and inhib-
its the activity of some CYP450 en-
zymes (e.g. CYP1A2). Results from 
clinical trials with oltipraz in China 
are consistent with experimental 
data in showing that after dietary 
exposure to aflatoxins, modulation 
of the metabolism of aflatoxins with 
oltipraz can lead to reduced levels of 
DNA adducts (IARC, 2002; Kensler 
et al., 2005).

Increased susceptibility to the 
toxic effects of benzene has been 
linked to genetic polymorphisms that 
increase the rate of metabolism of 
benzene to active intermediates or 
decrease the rate of detoxification of 
these active intermediates (Rothman 
et al., 1997; Xu et al., 1998; Kim et al., 
2004).

Enzyme polymorphisms also af-
fect the metabolism of 1,3-butadi-
ene. Genetic polymorphisms in GST 
and microsomal EH affect the in 
vitro mutagenicity of 1,3-butadiene- 

derived epoxides or the in vivo muta-
genicity of 1,3-butadiene in occupa-
tionally exposed workers (Wiencke 
et al., 1995; Abdel-Rahman et al., 
2003). The extent to which these 
enzyme polymorphisms influence 
the carcinogenicity of 1,3-butadiene 
is not known. The genotoxic effects 
of 1,3-butadiene can be modulated 
by alterations in key determinants 
of its metabolism; this suggests that 
markers of individual susceptibility 
can be identified. For example, mice 
that lack a functional microsomal 
EH (mEH) gene were more sus-
ceptible than wild-type mice to the 
mutagenic effects of 1,3-butadiene 
or diepoxybutane (Wickliffe et al., 
2003). EH activity varies consider-
ably among humans. 1,3-Butadiene-
exposed workers with the genotype 
for low-activity EH were reported to 
be more susceptible to 1,3-butadi-
ene-induced genotoxicity (assessed 
by HPRT mutant frequency in lym-
phocytes) than individuals with the 
more common EH genotype (Abdel-
Rahman et al., 2001, 2003). No sig-
nificant effects were observed for 
induction of HPRT mutations or SCE 
in individuals with GSTM1 or GSTT1 
polymorphisms (Abdel-Rahman 
et al., 2001). MN frequencies were 
higher among 1,3-butadiene-ex-
posed workers in China with poly-
morphisms in GSTM1 and/or GSTT1 
compared with workers with the 
wild-type genes (Cheng et al., 2013). 
These differences in response are 
consistent with the known important 
roles of EH and GST in the detoxi-
fication of 1,3-butadiene epoxides in 
tissues in which these intermediates 
are produced.

Ethylene oxide is a substrate of 
the GST isozyme T1 (Hayes et al., 
2005). This detoxifying enzyme is 
polymorphic, and a relatively large 
proportion of the population (about 

20% of Caucasians and almost 50% 
of Asians) has a homozygous de-
letion (GSTT1-null genotype) (Bolt 
and Thier, 2006). As expected, these 
individuals show a significantly ele-
vated level of hydroxyethyl valine in 
their haemoglobin, due to the pres-
ence of endogenous ethylene oxide 
(Thier et al., 2001). Nevertheless, the 
influence of this genetic trait on the 
formation of this type of adduct as a 
result of exposure to exogenous eth-
ylene oxide in the workplace is less 
clear.

In the cytoplasm of erythrocytes 
obtained from 36 individuals, ethyl-
ene oxide was eliminated 3–6 times 
as fast in samples from so-called 
conjugators (defined by a standard-
ized conjugation reaction of methyl 
bromide and GSH; 75% of the popu-
lation) as in samples from individuals 
who lack this GST-specific activity 
(the remaining 25%). In whole-blood 
samples incubated with ethylene ox-
ide, an increase in the frequency of 
SCE was observed in lymphocytes 
from the non-conjugators but not in 
lymphocytes from the conjugators 
(Hallier et al., 1993).

The carcinogenicity and toxic-
ity of TCE, particularly in the liver 
and kidney, are associated with its 
metabolism. There are inter-individ-
ual differences, both in humans and 
in rodents, in the formation of TCE 
metabolites that are thought to be 
responsible for the toxic and carcino-
genic effects of TCE in the kidney and 
liver. The susceptibility to adverse 
health effects of TCE may be influ-
enced by genetics, sex, life stage, 
and other conditions that influence 
the extent and nature of the metabol-
ism of this chemical. Polymorphisms 
in metabolism genes in both ox-
idative (e.g. CYP2E1, ADH, and 
ALDH) and GSH conjugation (e.g. 
GSTs) pathways have been studied 
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in connection with susceptibility to 
TCE toxicity and carcinogenicity. 
Polymorphisms in genes for organic 
anion transporters (OAT1 and OAT3) 
in the kidney may also influence the 
rates of uptake and the extent of cellu-
lar accumulation of DCVG or DCVC. 
With respect to life-stage susceptibil-
ity, data are available to support the 
influence of differences in exposure 
(e.g. transplacental transfer or ex-
posure through breast milk in early 
life stages) or life stage-specific dif-
ferences in toxicokinetics. Lifestyle 
factors (e.g. consumption of alcohol-
ic beverages) may also affect TCE 
metabolism, and nutrition or obesity 
may affect internal concentrations of 
TCE and its metabolites.

Genes involved in DNA repair act 
to maintain the integrity of the ge-
nome by removing lesions (i.e. ad-
ducts) that – if left unrepaired – could 
result in mutations or chromosomal 
damage. Individuals with defects in 
genes that encode DNA repair en-
zymes are at elevated risk for cer-
tain cancers (Poulsen et al., 1993). 
Heterozygous carriers may also 
have increased susceptibility, be-
cause of suboptimal levels of repair.

The reactive aflatoxin B1 me-
tabolite exo-8,9-epoxide induced 
a higher mutation frequency in a 
shuttle vector plasmid transfected 
into DNA repair-deficient xeroderma 

pigmentosum cells (human fibro-
blasts) compared with repair-profi-
cient cells; the location of mutations 
was affected by repair proficiency 
(Levy et al., 1992).

Polymorphisms in genes involved 
in repair of DNA double-strand 
breaks (WRN [Werner syndrome], 
TP53, BLM [Bloom syndrome], 
RAD51, and BRCA1) can modify 
susceptibility to benzene-induced 
haematotoxicity in exposed workers 
(Shen et al., 2006; Lan et al., 2009; 
Ren et al., 2009).

Mice deficient in nucleotide exci-
sion repair were more susceptible 
than wild-type mice to the mutagenic 
effects of 1,3-butadiene or its reac-
tive metabolites epoxybutene and di-
epoxybutane (Wickliffe et al., 2007).

Chicken cells deficient in the 
Fanconi anaemia complemen-
tation groups/breast cancer A  
(FANC/BRCA) pathway are hyper-
sensitive (with reduced survival) to 
formaldehyde at levels measured in 
human plasma (Ridpath et al., 2007). 
This observation is consistent with 
an essential role for this pathway 
in the repair of DNA–protein cross-
links caused by formaldehyde, and 
suggests that patients with Fanconi 
anaemia (a genetic disorder that 
is characterized by progressive 

pancytopenia) may have increased 
susceptibility to leukaemia from 
formaldehyde.

A common polymorphism in 
the DNA repair gene XRCC1 is 
a biomarker of susceptibility to 
TP53-induced mutations in work-
ers exposed to vinyl chloride (Li 
et al., 2003). In workers exposed to 
1,3-butadiene, MN frequencies were 
higher in peripheral lymphocytes of 
individuals with polymorphisms in 
XRCC1 compared with individuals 
carrying the wild-type repair gene 
(Wang et al., 2010).

In summary, genetic polymor-
phisms and variability in expression 
of enzymes due to induction or inhi-
bition of constitutive enzyme levels 
can have considerable impact on the 
carcinogenic process. Determining 
the existence and functional role of 
genetic polymorphisms in cancer eti-
ology is an active area of research in 
molecular epidemiology.
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