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DIBROMOACETONITRILE
 
Dibromoacetonitrile was considered by previous IARC Working Groups in June 1990 and 
February 1998 (IARC, 1991, 1999). Since that time, new data have become available and 
have been incorporated into this Monograph, and taken into consideration in the present 
evaluation. 

1. Exposure Data 

1.1 Chemical and physical data 

1.1.1 Nomenclature 

Chem. Abstr. Serv. Reg. No.: 3252-43-5 
EC Number: 221-843-2 
Chem. Abstr. Name: Acetonitrile, 
2,2-dibromo-
IUPAC Systematic Name: 
2,2-Dibromoacetonitrile 
Synonyms: Acetonitrile, dibromo-; 
dibromocyanomethane 

1.1.2 Structural and molecular formulae and 
relative molecular mass 

Br  

N 

Br  

C2HBr2N
 
Relative molecular mass: 198.84
 

1.1.3 Chemical and physical properties of the 
pure substance 

Description: Colourless to pale-yellow
 
liquid with an organohalide odour (NTP,
 
2010)
 
Boiling-point: bp760 169 °C; bp24 68 °C (Lide,
 
2005)
 
Density: 2.369 at 20 °C (Lide, 2005)
 
Spectroscopy data: Infrared and magnetic
 
resonance spectra (proton and C-13) have
 
been reported (IARC, 1991; NTP, 2010).
 
Solubility: Slightly soluble in water
 
Vapour pressure: 0.3 mm Hg at 25 °C
 
(HSDB, 2010)
 
Octanol/water partition coefficient (P): log
 
P, 0.420 (IARC, 1991)
 
Conversion factor: mg/m3 = 8.13 × ppm,
 
calculated from: mg/m3 = (relative molec­
ular mass/24.45) ppm, assuming a temper­
ature of 25 °C and a pressure of 101 kPa
 

1.1.4 Technical products and impurities 

No information on technical products and 
impurities was available to the Working Group. 
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1.1.5 Analysis 

Dibromoacetonitrile can be determined in 
drinking-water by gas chromatography with 
electron capture detection following liquid-
liquid extraction, with a limit of detection of 
0.034 μg/L (EPA, 1990). 

1.2 Production and use 

1.2.1 Production 

Dibromoacetonitrile can be produced 
by treatment of cyanoacetic acid with 
N-bromosuccinimide (Wilt, 1956). 

Information available in 2010 indicated that 
dibromoacetonitrile was manufactured by eight 
companies in the USA, two companies in the 
United Kingdom and one company in Germany 
(Chemical Sources International, 2010). 

1.2.2 Use 

Dibromoacetonitrile has been used as an anti­
microbial component (≤ 3%) of a metalworking 
fluid (DOW, 2006). 

1.3 Occurrence and exposure 

1.3.1 Natural occurrence 

Dibromoacetonitrile is not known to occur 
naturally. 

1.3.2 Occurrence and exposure in drinking-
water 

(a)	 Formation of halogenated acetonitriles 
disinfection by-products 

Halogenated acetonitriles are formed during 
water disinfection as a result of the reaction of 
chlorinated oxidizing compounds (e.g. chlorine 
gas, hypochlorous acid and hypochlorite) with 
natural organic matter, such as algae, humic 
substances and proteinaceous material, present 

in water (IARC, 1991), and particularly nitrogen-
containing organic compounds in water that 
contains bromide; it is also a by-product of disin­
fection by ozonation (Huang et al., 2003, 2004). 

Halogenated acetonitriles form rapidly, but 
then decay in the distribution system as a result 
of hydrolysis (IPCS, 2000); they have not been 
detected in raw (untreated) water sources (Trehy 
& Bieber, 1981). 

Plants that used chloramines (with or without 
chlorination) had the highest levels of halogen­
ated acetonitriles in their finished drinking-
water. Higher levels were also observed in 
distribution-system waters treated by chlorami­
nation compared with free chlorine. However, 
the increased levels following chloramination 
may be the result of the higher levels of total 
organic carbon in the source waters (McGuire 
et al., 2002). 

Factors that affect the formation of halogen­
ated acetonitriles in drinking-water supplies 
include water temperature, pH, the dose and 
type of disinfectant and contact time (IPCS, 
2000; Huang et al., 2003; Liang & Singer, 2003; 
Huang et al., 2004; WHO, 2004). 

(b)	 Concentrations in drinking-water 

Haloacetonitriles have been measured in 
several studies of occurrence (Richardson et al., 
2007). 

Chloro-, bromochloro-, dibromo- and 
trichloroacetonitrile are the most commonly 
measured halogenated acetonitrile species and 
have been included in a survey of 35 water utili­
ties in the USA conducted in 1988–89 with a 
broad range of source water qualities and treat­
ment processes (Krasner et al., 1989; IPCS 2000). 
Median concentrations of total halogenated 
acetonitrile over the four seasons ranged from 2.5 
to 4 µg/L, with median concentrations of dibro­
moacetonitrile ranging from 0.46 to 0.54 µg/L. 
At a drinking-water utility with high levels of 
bromide, clearwell effluent contained concen­
trations of dibromoacetonitrile ranging from 
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Dibromoacetonitrile 

5.9 µg/L to 6.7 µg/L according to the season. At a 
utility with seasonally variable levels of bromide, 
concentrations of dibromoacetonitrile ranged 
from 4.6 µg/L to 11 µg/L. 

Water collected from 53 Canadian drinking-
water treatment facilities in the winter of 1993 
was found to contain dibromoacetonitrile 
(Williams et al., 1997). When bromide concen­
trations were very low (< 0.01 mg/L), the water 
contained < 0.1 µg/L dibromoacetonitrile; when 
they were low (0.06 mg/L), the water contained 
0.6 µg/L dibromoacetonitrile; and when they 
were moderate (0.5 mg/L), the water contained 
1.2 µg/L dibromoacetonitrile. 

A nationwide study of the occurrence of 
disinfection by-products in diverse geograph­
ical regions of the USA was conducted between 
October 2000 and April 2002 (Weinberg et al., 
2002). Twelve water-treatment plants that had 
different source water quality and levels of 
bromide and used the major disinfectants chlo­
rine, chloramines, ozone and chlorine dioxide 
were sampled. Concentrations of dibromo­
acetonitrile in the finished water ranged from 
0.6 to 2.0 µg/L. 

Dibromoacetonitrile was identified in stored, 
chlorinated Rhine water in the Netherlands. The 
concentration of dibromoacetonitrile was less 
than 0.1 µg/L before chlorination and 1  µg/L 
after chlorination (Zoeteman et al., 1982). 

Treatment plant samples collected in 1984 
and 1985 from 29 community water systems 
in the USA (that used free chlorine disinfec­
tion) contained dibromoacetonitrile at levels 
of <  0.2–11 µg/L (14 of 29 sites). Samples from 
the distribution system contained dibromoac­
etonitrile at < 0.2–2.5 µg/L (11/26 sites) (Reding 
et al., 1989). 

Water samples were collected in 1985 from 
10 utilities in the USA that used free chlorine 
disinfection (one of which also added ammonia 
before distribution). Dibromoacetonitrile was 
detected at concentrations of < 10 µg/L at three of 

the seven sites and was not detected in the others 
(Stevens et al., 1989). 

Groundwater samples were collected from 
utilities in Taiwan, China, which are subject to 
saltwater intrusion and, therefore, have high 
levels of bromide (up to 1.5 mg/L) (Huang et al., 
2003). Concentrations of dibromoacetonitrile 
resulting from ozonation of such groundwater — 
when detected — ranged from 3.1 to 18.1 µg/L 
(eight of 28 samples). 

Seasonal variation in concentrations of 
haloacetonitriles was investigated in tap-water 
samples collected from five sampling points (one 
groundwater and four surface water sources) in 
İzmir, Turkey, between July 2006 and April 2007 
(Baytak et al., 2008). Dibromoacetonitrile was 
detected in 95% of samples (n = 217) with a mean 
concentration of 4.23 µg/L (median, 2.77 µg/L; 
range, not detected–16.4 µg/L; 90th percen­
tile, 9.72 µg/L; 95th percentile, 11.4 µg/L). The 
limit of detection for dibromoacetonitrile was 
0.073 µg/L. The highest concentrations of total 
haloacetonitriles were detected in spring and the 
lowest in summer and autumn at all locations. 
The highest levels of dibromoacetonitrile were 
detected at the groundwater sampling point, 
most probably due to bromide ion intrusion from 
seawater. 

In a national survey in Canada, concentrations 
of dibromoacetonitrile ranged from <  0.1  μg/L 
(minimum quantifiable limit) to 1.2 μg/L in 
groundwater and surface water distribution 
systems (Health Canada, 1995). Samples were 
collected in 1993 during the winter (February– 
March) and summer (August–September), when 
levels of disinfection by-products were expected 
to be lowest and highest, respectively. 

Dibromoacetonitrile was measured in water 
samples taken from a water-treatment plant in 
Barcelona between November 1997 and March 
1998 (Cancho et al., 1999). Dibromoacetonitrile 
was detected in pre-chlorinated water (mean, 
2.5 μg/L; range, 0.6–7.6 µg/L), sand-filtered water 
(mean, 4.6 μg/L; range, 4.6–8.7 µg/L), ozonated 
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water (mean, 7 μg/L; range, 5.5–9.9 µg/L) and 
post-chlorinated water (mean, 1.5  μg/L; range, 
0.6–3.1 µg/L). 

(c) Dietary exposure from drinking-water 

To assess exposure to disinfection by-prod­
ucts through drinking-water, WHO uses a 
default consumption value of 2 L drinking-water 
per capita per day and a typical body weight (bw) 
of 60 kg (WHO, 2008). The underlying assump­
tion is that of a total water consumption of 3 L 
per capita per day, including water contained in 
food, which usually represents a conservative 
value (WHO, 2003). 

The mean concentrations and ranges of dibro­
moacetonitrile concentrations from all available 
references were used by the Working Group to 
assess dietary exposure in adults and infants (60 
and 5 kg bw, respectively) assuming a consump­
tion of 2 and 0.75 L drinking-water, respectively, 
i.e. 33 mL/kg bw and 150 mL/kg bw, respectively 
(Table 1.1). The infant scenario (expressed in mL/ 
kg bw) would correspond to the consumption of 
9 L drinking-water per day in a 60-kg adult and 
therefore cover any possible scenario of physi­
cally active persons and increased temperature. 

Based on concentrations of dibromoace­
tonitrile reported in the literature, average dietary 
exposure through drinking-water in a standard 
60-kg adult ranges from 0.02 to 0.14 µg/kg bw per 
day; high observed concentration values would 
lead to a dietary exposure of 0.02–0.60 µg/kg 
bw per day. Similarly, average dietary exposure 
through drinking-water in a 5-kg infant ranges 
from 0.09 to 0.63 µg/kg bw per day; and high 
observed concentration values would lead to a 
dietary exposure of 0.08–2.71 µg/kg bw per day 
(Table 1.1). 

An estimate of dietary exposure to dibromo­
acetonitrile arising from the measured 
consumption of drinking-water was performed 
by the Joint FAO/WHO expert meeting for 
Europe, the USA and Australia (FAO/WHO, 
2009). The estimate for Europe was based on 

the mean consumption of ‘tap-water’ observed 
in adults in the 15 countries for which these 
data were available in the Concise European 
Food Consumption Database developed by the 
European Food Safety Authority (EFSA, 2008). 
The highest observed mean consumption of 
tap-water was 11 mL/kg bw per day (average 
consumption of 0.84 and 0.886 L per day for an 
average body weight of 74 and 77 kg, respectively, 
in Denmark and Finland). Estimated mean 
dietary exposure to dibromoacetonitrile was 
therefore up to 0.007 μg/kg bw per day in Europe. 
For the USA and Australia, mean dietary expo­
sure to dibromoacetonitrile was estimated to be 
0.009 µg/kg bw per day (assuming a mean body 
weight of 65 and 68 kg and a mean consumption 
of drinking-water of 0.926 and 0.969 L per day, 
respectively, in the USA and Australia). 

(d) Other dietary sources 

No data on the levels of dibromoacetonitrile in 
foods (other than drinking-water) could be iden­
tified. Extrapolations from values in drinking-
water to values in food are difficult to achieve 
because the conditions of the chemical interac­
tions, dosages, temperatures, contact times and 
especially the precursors differ considerably 
(FAO/WHO, 2009). 

1.3.3 Exposure through inhalation or dermal 
contact 

Dibromoacetonitrile occurs in water used 
for showering and bathing due to its presence in 
household water distribution systems (see Section 
1.3.2). Dibromoacetonitrile was also detected in 
the water of two large public swimming pools 
disinfected with either chlorine or bromine in 
Barcelona, Spain (Richardson et al., 2010). 

No data were available to the Working Group 
in relation to dermal absorption of or inhalation 
exposure to dibromoacetonitrile. 
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Table 1.1 Dietary exposure to dibromoacetonitrile in drinking-water 

Reference (country) Concentration (μg/L) Estimated exposure in adults Estimated exposure in children 
Source (µg/kg bw per day) (µg/kg bw per day) 

Mean Min. Max. Mean Min. Max. Mean Min. Max. 

Weinberg et al. (2002) (USA) 0.60 2.0 0.02 0.07 0.09 0.30 
Krasner et al. (1989); IPCS (2000) (USA) 
Distribution systems 0.46 0.54 0.01 0.02 0.07 0.08 
Clearwell effluent with high bromide levels 5.90 6.70 0.20 0.22 0.89 1.00 
Utility with seasonally-varying bromide levels 4.60 11 0.15 0.37 0.69 1.65 
Baytak et al. (2008) (Turkey) 
Groundwater and surface water 4.23 NDb 16.4 0.14 - 0.55 0.63 - 2.46 
Health Canada (1995) (Canada) 
Groundwater and surface water < 0.1c 1.2 - 0.04 - 0.18 
Cancho et al. (1999) (Spain) 
Post-chlorinated water (considered as finished water)d 1.5 0.6 3.1 0.05 0.02 0.10 0.23 0.09 0.47 
Williams et al. (1997) (Canada) 
Very low bromide concentrations (< 0.01 mg/L) < 0.1c - -
Low bromide concentrations (0.06 mg/L) 0.6 0.02 0.09 
Moderate bromide concentrations (0.5 mg/L) 1.2 0.04 0.18 
Zoeteman et al. (1982) (Netherlands) 
Before chlorination < 0.1 - -
After chlorination 1 0.03 0.15 
Reding et al. (1989) (USA) 
Distribution system < 0.2 2.5 < 0.01 0.08 0.03 0.37 
Stevens et al. (1989) (USA) < 10 < 0.33 < 1.5 
Huang et al. (2003) (Taiwan, China) 
Groundwater after ozonation (high bromide levels: 1.5 3.1 18.1 0.10 0.60 0.47 2.71 
mg/L) 

a Calculated by the Working Group assuming a daily intake and a body weight of 2 L and 60 kg for adults, and 0.75 L and 5 kg for children, respectively. 
b Detection limit, 0.073 μg/L 

Minimum quantifiable limit, 0.1 μg/L 
d The study reported the levels of dibromoacetonitrile according to different water treatments (e.g. chlorinated water, sand-filtered water, ozonated water, granulated activated carbon-
filtered water). For dietary exposure assessment, the chlorinated water values were considered as finished water. 
ND, not detected 
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1.3.4 Environmental occurrence 

Halogenated acetonitriles have been identi­
fied in the environment only as by-products of 
the disinfection of ground- and surface waters 
for drinking-water supplies. Therefore, the only 
known route of their environmental release is as 
a constituent of potable water supplies. 

Halogenated acetonitriles such as dibro­
moacetonitrile undergo hydrolysis in water, 
which occurs at a faster rate in alkaline waters and 
in the presence of chlorine. Approximately 5 and 
20% of dibromoacetonitrile are lost via hydro­
lysis within 10 days at pH 6 and 8, respectively. 
Volatilization losses are expected to be minimal, 
and adsorption to sediment and bioconcentra­
tion in aquatic organisms are not expected. In 
the atmosphere, dibromoacetonitrile reacts 
extremely slowly with photochemically produced 
hydroxyl radicals, with a resulting half-life of 
696 days (WHO, 2004; HSDB, 2010). 

1.3.5 Occupational exposure 

No data were available to the Working Group. 

1.4 Regulations and guidelines 

WHO (2004) has established a tolerable daily 
intake of 11 μg/kg bw per day for dibromoac­
etonitrile. A guideline value of 70 μg/L (rounded 
figure) was calculated by allocating 20% of the 
tolerable daily intake to drinking-water and 
assuming a body weight of 60 kg and a daily 
drinking-water intake of 2 litres (WHO, 2004; 
2008). 

The Dow Chemical Company has established 
an industrial Hygiene Guide value of 0.1  ppm 
(0.8 mg/m3) (time-weighted average, skin) for 
dibromoacetonitrile, and has set this value as 
an occupational exposure ceiling value based on 
their assessment of its toxicology in the absence 
of an industry-accepted value or a government-
regulated level. 

2. Cancer in Humans 

See the Introduction to the Monographs on 
Bromochloroacetic Acid, Dibromoacetic Acid 
and Dibromoacetonitrile. 

3. Cancer in Experimental Animals 

Studies on the carcinogenicity of dibromoac­
etonitrile after oral administration and skin 
application in mice were reviewed by a previous 
IARC Working Group (IARC, 1991). The only 
additional carcinogenicity studies since that 
time are those conducted by the NTP (2010). 
Significant results are summarized in Table 3.1. 

3.1 Oral administration 

3.1.1 Mouse 

Groups of 40 female A/J mice were adminis­
tered dibromoacetonitrile by gavage at a dose of 
0 (controls) or 10 mg/kg bw three times a week 
for 8 weeks and were then held until they reached 
9 months of age. No treatment-related increases 
in lung adenoma incidence or multiplicity were 
observed (Bull & Robinson, 1985). 

In a 2-year study, groups of 50 male and 50 
female B6C3F1 mice were administered dibro­
moacetonitrile in the drinking-water at doses of 0 
(controls), 50, 100 or 200 mg/L (corresponding to 
average daily doses of approximately 0, 4, 7 or 13 
and 0, 3, 6 or 11 mg/kg bw in males and females, 
respectively). Dibromoacetonitrile significantly 
increased the incidence of forestomach squa­
mous-cell papilloma or carcinoma (combined) in 
males and forestomach squamous-cell papilloma 
in females (NTP, 2010). [Squamous-cell tumours 
of the forestomach are rare spontaneous tumours 
in experimental animals.] 
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Table 3.1 Carcinogenicity studies of exposure to dibromoacetonitrile in experimental animals 

Species, strain Route Incidence of tumours Significance Comments 
(sex) Dosing regimen 
Duration Animals/group at start 
Reference 

Mouse, B6C3F1 
(M) 
105–106 wk 
NTP (2010) 

Drinking-water 
0 (control), 50, 100, 200 mg/L (daily dose of ~0, 4, 
7, 13 mg/kg bw) 
50/group 

Forestomach (squamous-cell 
papilloma): 0/50, 1/50, 0/50, 
3/50 

P = 0.042 
(trend) 

98.6% pure 

Mouse, B6C3F1 
(F) 
105–106 wk 

Drinking-water 
0 (control), 50, 100, 200 mg/L (daily dose of ~0, 3, 
6, 11 mg/kg bw) 

P < 0.001 (high 
dose), P < 0.001 
(trend) 

NTP (2010) 
Mouse, Sencar 
(F)
 
1 yr
 
Bull (1985); Bull 

et al. (1985); 

IARC (1991)
 

50/group 
Skin application (initiation–promotion) 
0, 200, 400, 800 mg/kg bw (in 0.2 mL acetone), 3 
times/wk for 2 wk followed 2 wk later by 1.0 µg 
12-O-tetradecanoylphorbol 13-acetate (in 0.2 mL 
acetone) 3 times/wk for 20 wk and observed for 
1 yr 

Forestomach (squamous-cell 
carcinoma): 0/50, 0/50, 0/50, 
2/50 
Forestomach (squamous-cell 
papilloma or carcinoma, 
combined)a: 0/50, 1/50, 0/50, 
5/50 
Forestomach (squamous-cell 
papilloma)b: 1/50, 0/50, 5/50, 
14/50 

Skin (squamous-cell 
papilloma or carcinoma, 
combined): 9/105, 8/36, 
33/70, 10/74 
Skin (squamous-cell 
papilloma): 4/105, 6/36, 
16/70, 6/74) 
Skin (squamous-cell 
carcinoma): 5/105, 2/36, 
17/70, 4/74 

96% pure (4% tribromoacetonitrile); 
survival: 105/120, 36/40, 70/80, 
74/80; data compiled from 3 separate 
experiments; limited reporting of the 
study 

NS 

P = 0.031 (high 
dose), P = 0.003 
(trend) 

98.6% pure; survival: 36/50, 36/50, 
43/50*, 47/50* 

D
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Table 3.1 (continued) 

Species, strain Route Incidence of tumours Significance Comments 
(sex) Dosing regimen 
Duration Animals/group at start 
Reference 

Oral cavity (oral mucosa P = 0.021
 
or tongue) (squamous-cell (trend)
 
carcinoma)d: 0/50, 0/50, 1/50,
 
3/50
 

Glandular stomach P = 0.046
 
(adenoma)e: 0/50, 0/50, 0/50, (trend)
 
2/50
 

Rat, F344 (M) 
105–106 wk 

Drinking-water 

50/group combined)c: 0/50, 0/50, 2/50, 
5/50 

NTP (2010) 
0 (control), 50, 100, 200 mg/L (daily dose of ~0, 2, 
4, 7 mg/kg bw) 

Oral cavity (oral mucosa 
or tongue) (squamous-cell 
papilloma or carcinoma, 

P = 0.035 (high 
dose), P = 0.003 
(trend) 

98.6% pure; glandular stomach (gland 
hyperplasia): 0/50, 0/50, 2/50, 2/50 

* P ≤ 0.05 
a Historical incidence for 2-year drinking-water studies (mean ± standard deviation): 3/249 (1.2% ± 1.8%); range, 0–4% 
b Historical incidence for 2-year drinking-water studies (mean ± standard deviation): 3/300 (1.0% ± 1.1%); range, 0–2% 

Historical incidence for 2-year drinking-water studies (mean ± standard deviation): 1/300 (0.3% ± 0.8%); range, 0–2% 
d Historical incidence for 2-year drinking-water studies: 0/300 
e Historical incidence for 2-year drinking-water studies: 0/300 
bw, body weight; F, female; M, male; NS, not significant; wk, week or weeks; yr, year or years 
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Dibromoacetonitrile 

3.1.2 Rat 

In a 2-year study, groups of 50 male and 50 
female F344/N rats were administered dibro­
moacetonitrile in the drinking-water at doses of 
0 (controls), 50, 100 or 200 mg/L (corresponding 
to average daily doses of approximately 0, 2, 4 or 
7 and 0, 2, 4 or 8 mg/kg bw in males and females, 
respectively). A significant increase in the inci­
dence of squamous-cell papilloma or carcinoma 
(combined) and squamous-cell carcinoma of the 
oral cavity (oral mucosa or tongue) was observed 
in males, as well as an increased incidence of 
adenoma of the glandular stomach (NTP, 2010). 
[Squamous-cell carcinomas of the oral cavity 
are rare spontaneous tumours in experimental 
animals.] 

3.2 Skin application 

Groups of 40 female Sencar mice received 
skin applications of 0 (controls) or 400 mg/kg 
bw dibromoacetonitrile in 0.2 mL acetone three 
times a week for 24 weeks [total duration of the 
study not reported]. Dibromoacetonitrile did 
not induce skin tumours (Bull et al., 1985). [The 
Working Group noted the limited reporting of 
the study.] 

3.3 Co-exposure with modifying 
agents 

In a series of three initiation–promotion 
studies, female Sencar mice received skin appli­
cations of 0 (controls), 200, 400 or 800 mg/kg 
bw dibromoacetonitrile three times a week for 
2 weeks. Two weeks after the final dose, 1.0 μg 
12-O-tetradecanoylphorbol 13-acetate was 
applied three times a week for 20 weeks and the 
animals were then observed for 1 year. Treatment 
with 200 and 400 mg/kg bw dibromoacetonitrile 
plus 12-O-tetradecanoylphorbol 13-acetate 
increased the incidence of squamous-cell papil­
loma or carcinoma (combined), but not that with 

800 mg/kg (Bull, 1985; Bull & Robinson, 1985; 
Bull et al., 1985). [The Working Group noted the 
limited reporting of the study and that these data 
were compiled from three separate, independent 
studies.] 

4. Other Relevant Data 

4.1 Absorption, distribution, 
metabolism and excretion 

4.1.1 Humans 

No data were available to the Working Group. 

4.1.2 Experimental systems 

(a) Absorption, distribution and excretion 

Disposition studies in F344/N rats and 
B6C3F1 mice were conducted after oral (0.2, 2.0 
or 20 mg/kg bw) and intravenous (2.0 mg/kg bw) 
administration of [2-14C]-dibromoacetonitrile. 
The compound was well absorbed in both 
species. Approximately 60% of the oral radiola­
belled dose was excreted in the urine (none as 
the parent compound) within 24 hours in rats 
and 72 hours in mice; 8–17% was excreted in 
the faeces and 10–13% was exhaled as carbon 
dioxide (14CO2). At 72 hours after oral adminis­
tration, 5–6% was recovered in the tissues of rats 
and approximately 2–3% in the tissues of mice. 
Most of the radiolabel remained in the stomach 
and liver and was not extractable with organic 
solvents, suggesting covalent binding in these 
tissues. At 72 hours after intravenous adminis­
tration, 3% was recovered in the faeces of rats, 
and retention in the tissues was three to four 
times greater (19% in rats and 10% in mice) than 
that after oral administration in both species. 
The parent compound accounted for less than 
6% of circulating radiolabel in rats and was not 
detected in mouse blood; at 24 hours, 50–80% 
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was not extractable into acetone (Mathews et al., 
2010; NTP, 2010). 

Within 24 hours, 8% of a single oral dose 
(0.75 mmol/kg bw; 149 mg/kg bw) of dibromo­
acetonitrile administered to male Sprague-
Dawley rats was excreted in the urine as 
thiocyanate (Pereira et al., 1984). 

Mathews et al. (2010) showed that dibromo­
acetonitrile reacts rapidly with rat blood in 
vitro, and binds covalently. Absorption of oral 
radiolabelled doses was about 90%. At 72 hours 
after intravenous administration, the amount of 
radioactivity recovered in mouse and rat tissues 
was 10 and 20% of the dose, respectively, while 
that recovered after oral dosing was three to four 
times less and was mostly covalently bound in 
the stomach. Excretion was higher in the urine 
than in the faeces. Within 72 hours, 9–15% was 
exhaled as 14CO2 and 1–3% as volatile compounds. 

(b) Metabolism 

The metabolism of dibromoacetonitrile 
has been reviewed (NTP, 2010). The finding 
by Pereira et al. (1984) that 8% of a single oral 
dose in rats was excreted as thiocyanate, the 
product of a reaction of cyanide with thiosul­
fate that is catalysed by rhodanese, suggests that 
haloacetonitriles are metabolized to hydroxy­
acetonitriles by direct displacement of a halide 
ion by a hydroxyl group or by cytochrome 
P450-mediated oxidation. Moreover, subsequent 
release of cyanide or halide ion might result in 
the formation of formylhalide or cyanoformalde­
hyde. Dibromoacetonitrile is also transformed to 
cyanide by the hypoxanthine/xanthine oxidase/ 
iron system in vitro (Mohamadin & Abdel-Naim, 
2003). 

In-vitro studies have suggested some addi­
tional metabolic pathways for haloacetonitriles. 
For example, dichloroacetonitrile was oxidized 
with the release of cyanide in a system that 
generates hydroxyl free radicals (a Fenton-like 
reaction involving ferrous salts and hydrogen 
peroxide); the oxidation of dichloroacetonitrile 

was sensitive to hydrogen peroxide scavengers 
(e.g. catalase), an iron chelator (desferroxi­
amine), or free radical scavengers (e.g. mannitol) 
(Mohamadin, 2001). 

Because dibromoacetonitrile was also 
oxidized by a hydroxyl radical generated in vitro 
in a hypoxanthine/xanthine oxidase/iron system 
(Mohamadin & Abdel-Naim, 2003), oxida­
tive activation of haloacetonitriles may occur 
via a reactive oxygen-mediated mechanism 
(Mohamadin, 2001). 

The major metabolite extracted with acetone 
and methanol from rat stomach or from rat or 
mouse liver was monoglutathionyl acetonitrile. 
The profiles of rat and mouse urinary metabo­
lites were unaffected by incubation with glucuro­
nidase or sulfatase, but were altered by acylase. 
The major urinary metabolites identified were 
acetonitrile mercapturate in rats, and acetonitrile 
mercaptoacetate, acetonitrile mercapturate and 
cysteinyl acetonitrile in mice. Because one equiv­
alent of dibromoacetonitrile reacted with 2.5–2.7 
equivalents of glutathione (GSH) in vitro (Lin 
& Guion, 1989) and because bromoacetonitrile 
was detected in reaction media containing both 
dibromoacetonitrile and GSH, it was suggested 
that monoglutathionyl conjugate derivatives are 
formed via a GSH-dependent reduction of dibro­
moacetonitrile to bromoacetonitrile, followed by 
the reaction of bromoacetonitrile with another 
GSH (NTP, 2010). 

Results from in vitro studies indicate that 
dibromoacetonitrile: (1) reacts directly with 
glutathione, but not with lysine, to form an inter­
mediate that can alkylate histidine; (2) reacts 
with rat caecal contents to form polar products; 
and (3) reacts rapidly with rat blood to form polar 
metabolites and a large non-extractable fraction 
that may represent covalent protein adducts 
(NTP, 2010). 

Mathews et al. (2010) studied the metabolism 
of radiolabelled dibromoacetonitrile in male rats 
and mice after oral and intravenous adminis­
tration. It was noted that the prior depletion of 
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Dibromoacetonitrile 

Fig. 4.1 Proposed pathways for the metabolism of [14C]dibromoacetonitrile in mice and rats 
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GSH markedly diminished the loss of dibromo­
acetonitrile and that the chemical reaction with 
GSH led immediately to glutathionyl acetonitrile. 
Thus, the main pathway of dibromoacetonitrile 
metabolism is via GSH, and covalent binding 
may be due to a reaction with tissue sulfhydryls 
(Mathews et al., 2010; see Fig. 4.1). 

(c) Toxicokinetic models 

No data were available to the Working Group. 

4.2 Genetic and related effects 

4.2.1 Humans 

No data were available to the Working Group. 

4.2.2 Experimental systems 

The genetic and related effects of dibromo­
acetonitrile are summarized in Table 4.1. 

(a) DNA damage 

Dibromoacetonitrile induced sister chro­
matid exchange in cultured Chinese hamster 
ovary cells (Bull et al., 1985), DNA strand breaks 
in human lymphoblast cell lines (Daniel et al., 
1986), a dose-related increase in DNA damage 
in HeLa S3 cells (Muller-Pillet et al., 2000) and 
primary DNA damage in Escherichia coli strain 
PQ37 (Le Curieux et al., 1995). 

Two studies found that the potency to induce 
DNA damage was directly related to the number 
of halogen atoms present, and that bromine-
substituted compounds produced stronger 
responses than chlorinated compounds (Daniel 
et al., 1986; Muller-Pillet et al., 2000). 

(b) Mutations 

Dibromoacetonitrile was shown to be a 
weak mutagen in Salmonella typhimurium 
strains TA100 and TA1535 and in the presence 
of induced hamster liver metabolic activation 
enzymes; equivocal responses were observed in 

these strains in the presence of rat liver metabolic 
activation (Mortelmans et al., 1986; NTP, 2010). 
Another study showed no increase in gene muta­
tions in TA100, TA1535, TA1537, TA1538 or TA98 
exposed to dibromoacetonitrile in the presence 
and absence of metabolic activation (Bull et al., 
1985). The responses for these end-points were 
found to be weakly positive in a review of these 
studies (NTP, 2010). Mutagenic activity was 
observed in Escherichia coli strain WP2 uvrA/ 
pKM101 in the presence of metabolic activation, 
particularly hamster liver metabolic activation 
(NTP, 2010), but not in S. typhimurium TA100 
in the Ames-fluctuation assay (Le Curieux et al., 
1995; Muller-Pillet et al., 2000). No induction 
of sex-linked recessive lethal mutations was 
observed in germ cells of male Drosophila mela­
nogaster after feeding or injection of dibromo­
acetonitrile (Valencia et al., 1985). 

(c) Chromosomal effects 

Dibromoacetonitrile induced 
recombination in Saccharomyces 

mitotic 
cerevisiae 

(Zimmermann & Mohr, 1992), did not induce 
aneuploidy in the oocytes of female Drosophila 
melanogaster after inhalation (Osgood & Sterling, 
1991) and increased the frequencies of micronu­
cleated erythrocytes in newt (Pleurodeles waltl) 
larvae after 12 days of exposure in water (Le 
Curieux et al., 1995). It did not induce micronu­
clei in the bone marrow of mice (Bull et al., 1985). 

4.3 Mechanistic data 

Several studies have demonstrated that 
dibromoacetonitrile induces oxidative stress 
both in vitro and in vivo. In cultured glioma 
cells, it induced the generation of reactive oxygen 
species, lipid peroxidation and the accumulation 
of oxidized proteins (Ahmed et al., 2008). In male 
mice, dibromoacetonitrile caused GSH deple­
tion and inhibition of GSH S-transferase (GST), 
superoxide dismutase and catalase activity in 
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Table 4.1 Genetic and related effects of dibromoacetonitrile 

Test system Results 

Without 
exogenous 
metabolic 
system 

With 
exogenous 
metabolic 
system 

Dosea 

(LED or 
HID) 

Reference 

Primary DNA damage, Escherichia coli strain PQ37 (SOS chromotest) + – 10 Le Curieux et al. (1995) 
Salmonella typhimurium TA100, TA1535, TA1538, TA98 reverse mutation – – 0.58 Bull et al. (1985)
 
Salmonella typhimurium TA100, TA1535 reverse mutation – (+) 10 000 Mortelmans et al. (1986)
 
Salmonella typhimurium TA100, reverse mutation, Ames-fluctuation – – 30 Le Curieux et al. (1995)
 
Salmonella typhimurium TA100, reverse mutation, Ames-fluctuation – NT 5.00 Muller-Pillet et al. (2000)
 
Salmonella typhimurium TA100, reverse mutation (+) (+) 67 c NTP (2010)
 
Salmonella typhimurium TA1535, reverse mutation –
 200 NTP (2010) 
Salmonella typhimurium TA1535, reverse mutation (+) 67 b NTP (2010) 
Salmonella typhimurium TA1537, reverse mutation – 166 NTP (2010) 
Salmonella typhimurium TA1537, reverse mutation – 333 NTP (2010) 
Salmonella typhimurium TA98, reverse mutation – 200 NTP (2010) 
Salmonella typhimurium TA98, reverse mutation – 750 NTP (2010) 
Salmonella typhimurium TA97, reverse mutation (+) 33 NTP (2010) 
Salmonella typhimurium TA97, reverse mutation (+) 100 c NTP (2010) 
Escherichia coli WP2 uvrA/pKM101, reverse mutation NT + 100 b NTP (2010) 
Saccharomyces cerevisiae, mitotic recombination + NT 11.42 Zimmermann & Mohr (1992) 
Drosophila melanogaster, sex-linked recessive lethal mutation in vivo – 200 ppm Valencia et al. (1985) 
Drosophila melanogaster, aneuploidy in oocytes in vivo – 0.30 ppm Osgood & Sterling (1991) 
DNA strand breaks (Comet assay), HeLa S3 cells in vitro + 0.02 Muller-Pillet et al. (2000) 
Sister chromatid exchange, Chinese hamster ovary cells in vitro + + 17.33 Bull et al. (1985) 
DNA strand breaks, human lymphoblast cell line in vitro + NT 3 Daniel et al. (1986) 
Micronucleus test, CD-1 mouse erythrocytes in vivo – 50 Bull et al. (1985) 
Micronucleus test, male and female B6C3F1 mouse peripheral erythrocytes, in – 200, dw, 3 mo NTP (2010) 
vivo
 
Micronucleus test, Pleurodeles waltl erythrocytes in vivo + 0.12 Le Curieux et al. (1995)
 
Sperm morphology, B6C3F1 mice in vivo –
 50 Meier et al. (1985) 

a in vitro test, μg/mL; in vivo test, mg/kg bw per day 
b Active with 10% hamster liver metabolic activation, not with 10% rat liver metabolic activation 

Active with 10% hamster liver metabolic activation, usually not with 10% rat liver metabolic activation 
+, positive; (+), weakly positive; –, negative; bw, body weight; d, day or days; dw, drinking-water; HID, highest ineffective dose; LED, lowest effective dose; mo, month or months; NT, not 
tested 

D
ibrom

oacetonitrile 
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stomach tissues after a single oral dose (Abdel-
Wahab et al., 2002), and GSH depletion in the 
testis after a single intraperitoneal dose (Abdel-
Wahab, 2003). In rat primary hepatocytes, it 
inhibited aldehyde dehydrogenase and GST 
activity (Poon et al., 2003). In vivo, no significant 
change in the hepatic activity of these enzymes 
or in the level of hepatic GSH occurred after 13 
weeks of exposure to dibromoacetonitrile via 
the drinking-water, while it increased the levels 
of peroxisomal enzymes in both sexes and lipid 
peroxidation in males (Poon et al., 2003). 

4.4 Susceptibility 

No data were available to the Working Group. 

4.5 Mechanisms of carcinogenesis 

The mechanisms that lead to the carcino­
genicity of dibromoacetonitrile are not known. 

Some findings suggest that covalent binding 
occurs in tissues such as the stomach and 
liver, possibly following GSH-mediated activa­
tion. Oxidative stress associated with reduced 
GSH levels and deficiency in GST activity and/ 
or binding to protein may also be involved. 
Dibromoacetonitrile may also act via a genotoxic 
mechanism. 

5. Summary of Data Reported 

5.1 Exposure data 

Dibromoacetonitrile is formed as a by-product 
during the disinfection of water by chlorination 
in the presence of natural organic matter (e.g. 
algae) and bromide. Concentrations of dibro­
moacetonitrile up to 18 µg/L were measured in 
drinking-water. Maximum daily human expo­
sure to dibromoacetonitrile through drinking-
water, estimated from such measurements, is at 

the low microgram per kilogram of body weight 
level. 

Dibromoacetonitrile is also produced for use 
as an antimicrobial component in metalworking 
fluids. Occupational exposure may occur during 
its production or use. 

5.2 Human carcinogenicity data 

No epidemiological studies were identi­
fied that evaluated exposure specifically to 
dibromoacetonitrile. This chemical occurs in 
mixtures in disinfected water. Studies on disin­
fected water are reviewed in the Introduction 
to the Monographs on Bromochloroacetic Acid, 
Dibromoacetic Acid and Dibromoacetonitrile. 

5.3 Animal carcinogenicity data 

In one study in mice, administration of dibro­
moacetonitrile in the drinking-water increased 
the incidence of squamous-cell papilloma or 
carcinoma (combined) of the forestomach in 
males and of squamous-cell papilloma of the 
forestomach in females. In one study in rats, 
administration of dibromoacetonitrile in the 
drinking-water increased the incidence of glan­
dular stomach adenoma, and of squamous-cell 
papilloma or carcinoma (combined) and squa­
mous-cell carcinoma of the oral cavity (oral 
mucosa or tongue) in males. Squamous-cell 
tumours of the forestomach and squamous-cell 
carcinomas of the oral cavity are rare sponta­
neous neoplasms in experimental animals. 

5.4 Other relevant data 

No data were available to the Working Group 
on the toxicokinetics of dibromoacetonitrile in 
humans. Dibromoacetonitrile was well absorbed 
(almost 90%) after oral administration in mice 
and rats, and there is evidence that covalent 
binding occurs in the stomach and liver. It can 
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Dibromoacetonitrile 

be metabolized via several pathways, including 
direct displacement of bromide by a hydroxyl 
group, and cytochrome P450-mediated or -inde­
pendent oxidation. The main metabolite iden­
tified in rat stomach and rat or mouse livers 
was monoglutathionyl acetonitrile. The major 
urinary metabolites identified were acetonitrile 
mercapturate in rats and acetonitrile mercaptoa­
cetate, acetonitrile mercapturate and cysteinyl 
acetonitrile in mice. Thiocyanate was also iden­
tified in rats. 

Dibromoacetonitrile induced DNA damage 
in bacteria and in human cell lines, mutations in 
bacteria and micronuclei in newt larvae, but not 
in mice. No mutations were found in Drosophila. 

The mechanisms that lead to the carcino­
genicity of dibromoacetonitrile are not known, 
but there is weak evidence that oxidative stress 
and/or genotoxicity may lead to cancer in rodents 
exposed to dibromoacetonitrile. 

6. Evaluation 

6.1 Cancer in humans 

There is inadequate evidence in humans for 
the carcinogenicity of dibromoacetonitrile. 

6.2 Cancer in experimental animals 

There is sufficient evidence in experi­
mental animals for the carcinogenicity of 
dibromoacetonitrile. 

6.3 Overall evaluation 

Dibromoacetonitrile is possibly carcinogenic 
to humans (Group 2B) 
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