# IARC MONOGRAPHS

# 1,1,1-TRICHLOROETHANE AND FOUR OTHER INDUSTRIAL CHEMICALS

VOLUME 130

This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 7–22 October 2021

LYON, FRANCE - 2022

IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS

International Agency for Research on Cancer



1

### Table S1.6 Relationships between 1,1,1-trichloroethane and other substances assessed for exposure

| Study                     | Subject characterization                                      | Ncases/Ncontrols                            | Correlation with 1,1,1-trichloroethane: only those with correlation > 0.30 identified                                                                                                                                       | Definition of the metric evaluated if available and other correlations ev                                                                                                                                                                         |
|---------------------------|---------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Callahan et<br>al. (2018) | Controls with exposure<br>probability > 0% for any<br>solvent | 0/570                                       | Methylene chloride (0.67), carbon tetrachloride (0.35)                                                                                                                                                                      | Methylene chloride, carbon tetrachloride, trichloroethylene, perchloroethyl                                                                                                                                                                       |
| LeCornet et al. (2017)    | Maternal                                                      | 1,1,1-trichloroethane:<br>81/266            | Methylene chloride $(0.53)$ , perchloroethylene $(0.55)$ , trichloroethylene $(0.73)$                                                                                                                                       | Yes/no to benzene, toluene, methylene chloride, trichloroethylene, perchlor                                                                                                                                                                       |
| LeCornet et al. (2017)    | Paternal                                                      | 1,1,1-trichloroethane:<br>838/2559          | Benzene (0.60), toluene (0.65), methylene chloride (0.73), trichloroethylene (0.56)                                                                                                                                         | Yes/no to benzene, toluene, methylene chloride, trichloroethylene, perchlor                                                                                                                                                                       |
| Videnros et<br>al. (2020) | [all subjects]                                                | 1,1,1-trichloroethane:<br>10/24             | "The correlation was low between the main chemical groups organic solvents, fumes, pesticides, and oil mist ( $r = 0.01-0.38$ )"; the only reported relationship with 1,1,1-trichloroethylene was methylene chloride (0.87) | Benzene, benzo[ <i>a</i> ]pyrene, bitumen, perchloroethylene, toluene, and trichlo<br>oil mist. Groups: aliphatic and alicyclic hydrocarbon solvents, aromatic hydroganic solvents (including alcohols, ketones, esters, glycol ethers, etc.), fu |
| Gold et al.<br>(2011)     | 1,1,1-trichloroethane exposed controls                        | 1,1,1-tricholorethane:<br>36/65             | 11% were exposed to 1,1,1-trichloroethane and 1,1,1-trichloroethane                                                                                                                                                         | 17% were exposed to trichloroethylene but not 1,1,1-trichloroethane; 2.1% 2.5% were exposed to 1,1,1-trichloroethane but not methylene chloride; 7.9 trichloroethane.                                                                             |
|                           |                                                               |                                             | 11% were exposed to methylene chloride and 1,1,1-trichloroethane                                                                                                                                                            |                                                                                                                                                                                                                                                   |
|                           |                                                               |                                             | 6.7% were exposed to carbon tetrachloride and 1,1,1-trichloroethane                                                                                                                                                         | 12% were exposed to carbon tetrachloride but not 1,1,1-trichloroethane; 6.9 tetrachloride).                                                                                                                                                       |
| Purdue et al. (2017)      | Controls with exposure<br>probability > 0% for any<br>solvent | 0/753                                       | Methylene chloride (0.61), carbon tetrachloride (0.43), perchloroethylene (0.38), chloroform (0.33)                                                                                                                         | Methylene chloride, carbon tetrachloride, trichloroethylene, perchloroethyle                                                                                                                                                                      |
| Dosemeci et<br>al. (1999) | All subjects                                                  | 438/687                                     | NA                                                                                                                                                                                                                          | Proportion exposed case/control 1,1,1-tricholorethane: 0.15/0.17; methylen trichloroethylene: 0.13/0.10; carbon tetrachloride: 0.12/0.14; chloroform: 0 0.09/0.07; methyl chloride: 0.06/0.07.                                                    |
| Pedersen et al. (2020)    | All subjects                                                  | 256/1302 exposed to 1,1,1-trichloroethane   | Benzene (0.31), toluene (0.36)                                                                                                                                                                                              | Benzene, trichloroethylene, toluene.                                                                                                                                                                                                              |
| Talibov et al. (2019)     | Assume all subjects but<br>unclear: "exposure agents"         | 181/904 exposed to<br>1,1,1-trichloroethane | Benzo[ <i>a</i> ]pyrene (0.49), chromium (0.59), trichloroethylene (0.62), iron (0.64), nickel (0.62), lead (0.53), welding fumes (0.61), extremely low frequency magnetic fields (0.31)                                    | Benzene; asbestos; benzo[ <i>a</i> ]pyrene; chromium; formaldehyde; trichloroeth<br>chloride; nickel; lead; perchloroethylene; silica dust; sulfur dioxide; toluene<br>work; physical workload; extremely low-frequency magnetic fields.          |
| NA not available          |                                                               |                                             |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                   |

NA, not available.

### References

Callahan CL, Stewart PA, Friesen MC, Locke S, De Roos AJ, Cerhan JR, et al. (2018). Case-control investigation of occupational exposure to chlorinated solvents and non-Hodgkin's lymphoma. Occup Environ Med. 75(6):415-20. https://doi.org/10.1136/oemed-2017-104890 PMID:29588333

Dosemeci M, Cocco P, Chow WH (1999). Gender differences in risk of renal cell carcinoma and occupational exposures to chlorinated aliphatic hydrocarbons. Am J Ind Med. 36(1):54–9. https://doi.org/10.1002/(SICI)1097-0274(199907)36:1<54::AID-AJIM8>3.0.CO;2-0 PMID:10361587

Gold LS, Stewart PA, Milliken K, Purdue M, Severson R, Seixas N, et al. (2011). The relationship between multiple myeloma and occupational exposure to six chlorinated solvents. Occup Environ Med. 68(6):391-9. https://doi.org/10.1136/oem.2009.054809 PMID:20833760

Le Cornet C, Fervers B, Pukkala E, Tynes T, Feychting M, Hansen J, et al. (2017). Parental Occupational Exposure to Organic Solvents and Testicular Germ Cell Tumors in their Offspring: NORD-TEST Study. Environ Health Perspect. 125(6):067023. https://doi.org/10.1289/EHP864 PMID:28893722

Pedersen JE, Strandberg-Larsen K, Andersson M, Hansen J (2020). Occupational exposure to specific organic solvents and risk of subtypes of breast cancer in a large population of Danish women, 1964–2016. Occup Environ Med. 78(3):192–8. https://doi.org/10.1136/oemed-2020-106865 PMID:33093237

Purdue MP, Stewart PA, Friesen MC, Colt JS, Locke SJ, Hein MJ, et al. (2017). Occupational exposure to chlorinated solvents and kidney cancer: a case-control study. Occup Environ Med. 74(4):268–74. https://doi.org/10.1136/oemed-2016-103849 PMID:27803178

Talibov M, Hansen J, Heikkinen S, Martinsen JI, Sparen P, Tryggvadottir L, et al. (2019). Occupational exposures and male breast cancer: A nested case-control study in the Nordic countries. Breast. 48:65–72. https://doi.org/10.1016/j.breast.2019.09.004 PMID:31539869

Videnros C, Selander J, Wiebert P, Albin M, Plato N, Borgquist S, et al. (2020). Investigating the risk of breast cancer among women exposed to chemicals: a nested case-control study using improved exposure estimates. Int Arch Occup Environ Health. 93(2):261–9. https://doi.org/10.1007/s00420-019-01479-4 PMID:31650237

## IARC Monographs Vol 130 – Monograph 01 – 1,1,1-Trichloroethane Annex 1. Section 1 Supplementary material, Table S1.6

### evaluated but found to be $\leq 0.30$

hylene, chloroform.

loroethylene.

loroethylene.

nloroethylene, polycyclic aromatic hydrocarbons, gasoline exhaust, hydrocarbon solvents, chlorinated hydrocarbon solvents, other fungicides, herbicides, insecticides.

1% were exposed to 1,1,1-trichloroethane but not trichloroethylene. 7.9% were exposed to methylene chloride but not 1,1,1-

6.9% were exposed to 1,1,1-trichloroethane but not carbon

hylene, chloroform.

```
lene chloride: 0.16/0.18; perchloroethylene: 0.11/0.11;
0.03/0.02; 1,1,2-trichloroethane: 0.05/0.06; 1,2-dichloromethane:
```

ethylene; bitumen fumes; diesel exhaust; iron; gasoline; methylene ene; welding fumes; wood dust; ultraviolet radiation; night-shift