ACROLEIN, CROTONALDEHYDE, AND ARECOLINE **VOLUME 128** This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 29 October–13 November 2020 LYON, FRANCE - 2021 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS Table S1.4 Exposure assessment review and critique for epidemiological studies of cancer in humans exposed to acrolein | Reference and outcome | What was the study design? | What methods were used for the exposure assessment? | What was the definition of external exposure? | Was
endogenous
exposure
defined? | Was the exposure defined well? | What route of exposure was assessed? | How was the intensity of exposure assessed? | How was the duration of exposure assessed? | Was
cumulative
exposure
assessed? | Was exposure assessed before outcome being ascertained? | What was the timing of exposure relative to the outcome? | Was there known exposure to any other carcinogens? | |---|---|---|---|---|---|--|---|--|--|---|---|---| | Bittersohl (1975) Cancer (various sites) | Cohort study (n = 220) | Employment records | Being currently
employed in
aldehyde factory | No | No There were traces of acrolein in the generated product, but no evidence was provided of acrolein in air | Not specified, but
presumed to be
inhalation | There was no exposure gradient | Employment records.
150 people were said
to be employed
> 20 years; but there
was no discussion if
their exposure (or
outcome) was
different than the 70
who were < 20 years | No, except as
noted for
"Duration of
exposure" | No, they were reported concomitantly | Exposure preceded outcome | Yes, co-exposure
occurred by a
mixture of
aldehydes including
acetaldehyde and
crotonaldehyde | | Ott et al. (1989) Lymphohaematopoietic cancer | Nested case—control | Potential exposure was assumed based on records describing assignment of employees to production units and history of use of chemical substance at production units | Use of chemical in production unit | No | No, exposure was assumed based on analyses of company records. Ever exposed means that the employee worked for 1 day or more with the chemical | None defined | Intensity of
exposure was not
assessed Exposure
was dichotomous | Duration of exposure
was not used for
acrolein, due to
limited number of
cases | No | No | Exposure preceded outcome | Yes, 21 "suspect" chemicals were identified based on evidence of carcinogenicity or mutagenicity. Individual workers exposed to one chemical agent were also likely exposed to other agents. However, no specific information of co-exposures with acrolein | | Yuan et al. (2012) Lung cancer | Nested case-
control study of
lung cancer in
smokers | Measurement of urinary
metabolites for acrolein
(HPMA) | Not clear definition
of external
exposure. All cases
and controls were
smokers at the time
of recruitment | No | Exposure of interest
was urinary HPMA,
Presumably the main
source of external
exposure was smoking | Not specified | Information on
smoking intensity
and duration was
collected.
Intensity of
internal exposure
was assessed
using a one-off
urine sample | Information on
duration of smoking
was available | No cumulative information on acrolein exposure was available Cumulative smoking data were available, but smoking was not the main exposure of interest | Yes, although the analyses were done after identification of cases and controls, the urine samples were collected at baseline of the cohort | Exposure
preceded
outcome | Yes, tobacco smoke
toxicants; exposure
to PAH was
assessed too | | Yuan et al. (2014) Lung cancer | Nested
case—control
studies of never
smokers with
lung cancer,
within
prospective
cohort study | Measurement of urinary
metabolites for acrolein
(HPMA) | External exposure was not defined | No | Exposure of interest
was urinary HPMA, but
it was not clear what the
source of external
exposure was | Not specified It was also not clear what the source of exposure was | Intensity of
internal exposure
was assessed
using a one-off
urine sample
(cross sectional
analysis) | No external exposure
was considered, hence
no duration of
exposure | No | Yes, although the analyses were done after identification of cases and controls, the urine samples were collected at baseline of the cohort | Exposure preceded outcome | Not relevant as
industry was not
assessed. Study was
of never smokers,
but other exposures
are possible.
Metabolites of PAH
were also monitored | | Tsou et al. (2019) Oral cancer | Case-control
study of oral
squamous cell
carcinoma | Interview on smoking and BQ chewing history. Measurement of acrolein–DNA adducts in buccal cells. Urinary 3-HPMA measurements | External exposure was defined as having a smoking and/or betel-quid chewing history. Not entirely clear if this also included former smokers/BQ chewers | No | No, exposure appeared
to be defined by
acrolein–DNA adduct
in buccal cells;
however, results for
urinary 3-HPMA were
also presented | Inhalation and ingestion | No information on intensity of smoking and BQ chewing. Smoking years and chewing days was used. No difference in acrolein-DNA | Duration of smoking
in years and history of
BQ chewing was
available (latter
expressed as chewing
days) | As noted for "Duration of exposure" | No | Information on
smoking and
BQ chewing
history was
collected.
However,
acrolein—DNA
adducts and
urinary HPMA | Yes, tobacco smoke toxicants | Table S1.4 Exposure assessment review and critique for epidemiological studies of cancer in humans exposed to acrolein | Reference and outcome | What was the study design? | What methods were used for the exposure assessment? | What was the definition of external exposure? | Was
endogenous
exposure
defined? | Was the exposure defined well? | What route of exposure was assessed? | How was the intensity of exposure assessed? | How was the duration of exposure assessed? | Was
cumulative
exposure
assessed? | Was exposure assessed before outcome being ascertained? | What was the timing of exposure relative to the outcome? | Was there known exposure to any other carcinogens? | |--------------------------------------|--|--|---|--|---|--|---|--|--|---|---|--| | | | | | | | | adducts between
healthy smokers
and BQ chewers.
HPMA was
increased in
healthy
smokers+BQ
chewers,
compared to BQ
or smokers only | | | | were measured in samples from cases and controls. Results suggest that urinary HPMA in healthy subjects is correlated with smoking history | | | Hong et al. (2020) Urothelial cancer | Case-control
study of
urothelial
cancer patients
with chronic
kidney disease
in Taiwan,
China (62 cases
versus 43
controls) | DNA adducts, protein
conjugates, urinary
analyses of acrolein
metabolites | No differentiation
between
endogenous and
exogenous
provided, except
that cigarette
smoking was
assessed | Differences in
DNA adducts,
protein
conjugates
and
metabolites
were assumed
due to
accumulation
of endogenous
acrolein | No, endogenous
exposure was
determined based on
DNA adducts, protein
conjugates, or urinary
HPMA | Focus was on endogenous acrolein. Information on smoking and air pollution was collected, but these potential sources of acrolein exposure were considered only as confounders in the analyses | No external
exposure
assessed. Intensity
of exposure was
assessed using
plasma levels of
acrolein-protein
conjugates and
urinary HPMA | Not assessed | No | No | Unclear. Endogenous accumulation due to kidney disease. It is not clear if the endogenous exposure is a cause or a result of the urothelial carcinomas. Adduct levels were only higher in the tumour but not the normal urothelium of the same person | Yes, ~20% of UC cases were ever smokers | BQ, betel quid; HPMA, N-acetyl-S-(3-hydroxypropyl)-L-cysteine (-hydroxypropylmercapturic acid); PAH, polycyclic aromatic hydrocarbon; UC, urothelial cancer. ## References Bittersohl G (1975). Epidemiological research on cancer risk by aldol and aliphatic aldehydes. Environ Qual Saf. 4:235–8. PMID:1193059 Hong JH, Lee PAH, Lu YC, Huang CY, Chen CH, Chiang CH, et al. (2020). Acrolein contributes to urothelial carcinomas in patients with chronic kidney disease. Urol Oncol. 38(5):465–75. https://doi.org/10.1016/j.urolonc.2020.02.017 PMID:32199754 Ott MG, Teta MJ, Greenberg HL (1989). Lymphatic and hematopoietic tissue cancer in a chemical manufacturing environment. Am J Ind Med. 16(6):631–43. https://doi.org/10.1002/ajim.4700160603 PMID:2556914 Tsou HH, Hu CH, Liu JH, Liu CJ, Lee CH, Liu TY, et al. (2019). Acrolein is involved in the synergistic potential of cigarette smoking- and betel quid chewing-related human oral cancer. Cancer Epidemiol Biomarkers Prev. 28(5):954–62. https://doi.org/10.1158/1055-9965.Epi-18-1033 PMID:30842129 Yuan JM, Butler LM, Gao YT, Murphy SE, Carmella SG, Wang R, et al. (2014). Urinary metabolites of a polycyclic aromatic hydrocarbon and volatile organic compounds in relation to lung cancer development in lifelong never smokers in the Shanghai Cohort Study. Carcinogenesis. 35(2):339–45. https://doi.org/10.1093/carcin/bgt352 PMID:24148823 Yuan JM, Gao YT, Wang R, Chen M, Carmella SG, Hecht SS (2012). Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis. 33(4):804–9. https://doi.org/10.1093/carcin/bgs026 PMID:22298640