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4.1 Introduction

Nearly all epidemiological studies of 
carcinogenic	hazards	suffer	to	some	
degree from error due to the methods 
used to measure exposures and out- 
comes; this error is commonly referred 
to as measurement error or misclassi-
fication	(described	in	this	chapter;	see	
also the Preface). Measurement error 
can occur both in studies that use 
continuous measures of exposure 
and in studies that use categorical 
measures. Any bias resulting from 
such error is generally referred to as 
information	bias	(Lash et al., 2021).

Exposure assessments based 
on questionnaires are often prone 
to several sources of measurement 
error. Of particular concern is the 
validity of exposure information from 
interviews of the next of kin rather than 
the study participants themselves. 

In occupational studies, exposure 
assessments are commonly based 
on the development of a job-expo-
sure	 matrix	 (JEM),	 which	 assigns	
exposures to individuals on the basis 
of their job, department, industry, or 
time	period	(or	a	combination	of	these)	
(Stewart et al., 1996). This often intro-
duces errors, because not everyone 
assigned to an exposure group is 
likely to have the same exposure.

Even in the rare instance that 
objective physical measurements are 
available to estimate individual expo-
sures, there is still a potential for expo-
sure measurement error due to the 
instrumentation used. For example, 
personal measurements of radiation 
exposure using radiation dosime-
ters have been used in numerous 
epidemiological studies. Exposure 
estimates used in these studies will 
be subject to measurement errors, 

which	 could	 vary	 with	 the	 different	
radiation dosimeters used over time 
(Daniels and Schubauer-Berigan, 
2005; Stayner et al., 2007; Thierry-
Chef et al., 2007, 2015).

Epidemiologists frequently use 
qualitative categories of potential 
exposure	(e.g.	high,	medium,	or	low)	
when quantitative data on exposures 
are lacking, or to create catego-
ries from what is truly a continuous 
measure of exposure, using cut-points 
that	 may	 reflect	 the	 distribution	 of	
exposures in the study population 
(e.g.	percentiles).	Exposure	misclas-
sification	 occurs	 when	 study	 partic-
ipants are incorrectly categorized 
with respect to their true exposure. 
Categorization can result in infor-
mation bias due to mismeasurement 
of the individual exposures. In other 
words, an individual may have been 
placed in a high exposure group 
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who should have been placed in a 
lower exposure group, or vice versa. 
Misclassification	 may	 also	 occur	 in	
circumstances where the exposure is 
naturally categorical. For example, in 
some studies participants are classi-
fied	as	having	ever	been	exposed	or	
never been exposed. If this categori-
zation is based on questionnaire data 
or inadequate work history informa-
tion,	 then	exposure	misclassification	
may occur.

Measurement error and misclas-
sification	 can	 be	 either	 differential	
or	 non-differential.	 Errors	 in	 expo-
sure	 measurement	 or	 classification	
are	 differential	 when	 they	 vary	 by	
disease	status.	For	example,	differen-
tial	misclassification	of	exposure	may	
occur in a case–control study that 
uses questionnaire data collected 
after the outcome was observed. 
Case participants may be more likely 
than control participants to recall past 
exposures, because case participants 
may be searching for an explanation 
for their disease. This could result in 
case participants recalling their expo-
sure more accurately than control 
participants, because they may have 
spent more time thinking about the 
possible causes of their disease. 
However, this could also mean that 
reporting of exposures by case 
participants is less accurate than that 
by	control	participants	(e.g.	if	there	is	
social stigma around the exposure 
and/or the outcome). This type of bias 
is	 called	 recall	 bias.	Non-differential	
exposure measurement errors occur 
when	 the	 rate	 of	 misclassification	
is equal between participants in the 
case and control groups or, in other 
words, when the measurement error 
is independent of the disease status. 
For	 example,	 differential	 misclassifi-
cation of exposure would be unlikely 

in a prospective cohort study, in which 
exposures are measured before 
follow-up, when the investigators 
had no information on future disease 
status.

The	potential	 for	misclassification	
or mismeasurement of exposure 
is particularly applicable to cancer 
studies, because the etiologically 
relevant exposures for most carcino-
gens are, in general, longer than the 
preceding 5–10 years, for leukae-
mias	 (Finkelstein, 2000; Schubauer-
Berigan et al., 2007a, b), or the 
preceding 10–20 years, for solid 
tumours. Often, records of expo-
sure measurements during the early 
years of a study do not exist or can 
only be estimated with a large degree 
of uncertainty. In many situations, 
historical measurements of exposure 
have been collected for regulatory 
compliance purposes and may be 
focused on documenting that the 
highest exposures are below occu-
pational or environmental standards. 
Thus, historical measurements may 
not be representative of past expo-
sures, and this could lead to substan-
tial measurement error.

Misclassification	of	disease	status	
can	 also	 be	 differential	 or	 non-dif-
ferential with respect to exposure 
status.	 Non-differential	 misclassifi-
cation occurs when there is overas-
certainment or underascertainment 
of disease, and the probability of 
disease	misclassification	is	the	same	
for exposed and unexposed study 
participants.	 Differential	 misclassifi-
cation	 occurs	 when	 case	 identifica-
tion is more accurate or less accurate 
in exposed participants than in unex-
posed participants. For example, 
women who work night shifts may be 
less likely to undergo breast cancer 
screening, and this may result in 

underdiagnosis	 (or	 late	 diagnosis)	
of breast cancer. In epidemiological 
studies	 of	 cancer	 risk,	 misclassifi-
cation of disease is perhaps a less 
common	 issue	 than	 misclassifica-
tion of exposure. However, there are 
exceptions, such as when studies of 
cancers with a low fatality rate are 
based	on	death	certificate	diagnosis	
rather than incident cases from tumour 
registries, or when data on outcomes 
are	poorly	recorded	(e.g.	in	lower-in-
come countries) or may simply be 
unavailable or of poor quality. Such 
misclassification	 would	 typically	 be	
non-differential	with	respect	to	expo-
sure status.

In the past, epidemiologists and 
statisticians have perhaps paid insuf-
ficient	 attention	 to	 evaluating	 the	
potential for biases resulting from 
measurement error and misclas-
sification	 of	 exposure	 or	 disease	
(Shaw et al., 2018).	 Non-differential	
exposure error typically creates a 
bias	 towards	 the	 null	 (i.e.	 towards	
observing	 no	 effect),	 but	 this	 is	 not	
always the situation, as discussed 
in Section 4.2.1. There has been an 
increasing trend in the development 
and use of new methods to assess the 
direction and magnitude of bias and 
to	bias-adjust	the	effect	measures	to	
correct	 for	 measurement	 error	 (e.g.	
Cole et al., 2006; Lash et al., 2014; 
Corbin et al., 2017; Keogh et al., 2020; 
Shaw et al., 2020). In this chapter, 
we discuss these approaches with 
particular emphasis on methods that 
can be used with published studies 
to	 assess	 misclassification	 and	
measurement error in exposure and 
outcome, because IARC Monographs 
reviewers and other expert review 
groups would seldom have access 
to the raw data from epidemiolog-
ical studies. We start by discussing 
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qualitative approaches for evaluating 
the direction of bias due to errors in 
exposure,	 considering	 first	 contin-
uous and then categorical exposures.

4.2 Qualitative evaluation of 
the direction of bias due to 
errors in exposures

4.2.1 Non-differential errors  
in exposure

(a) Measurement errors of 
continuous variables

The direction of the bias associated 
with measurement errors of contin-
uous exposures depends on which 
error	models	apply	(see	Side Box 4.1 
for	the	definitions).

Classical	 non-differential	 mea- 
surement errors are expected to 
lead, on average, to underestima-
tion of the association between the 
exposure and the disease. Thus, 
although the measurement method 
is itself unbiased, in the sense that 
the average measured exposure is 
equal to the true exposure, the esti-
mated exposure–cancer association 
arising from such measurements 
tends to be biased towards the null 
value,	on	average	(Spearman, 1904; 
Armstrong, 1998).

Under a linear model in which the 
measurements are not, on average, 
equal	to	the	true	value	(i.e.	are	biased)	
and the measurement errors are 
non-differential,	 the	 bias	 can,	 theo-
retically, lead to either overestimation 
or underestimation of associations 
between an exposure and a health 
outcome. However, when a linear 
model is applied to self-reported 
dietary and physical activity data, 
the random errors are often so large 
that they dominate and, as with the 
classical model, lead, on average, to 

underestimation of exposure–cancer 
associations	(Freedman et al., 2011).

In the event that Berkson errors 
are correlated with covariates in the 
outcome model, appreciable distor-
tion of the exposure–response rela-
tion can result, and the association 
may be biased towards underestima-
tion or overestimation in an unpredict-
able	manner	(see	Keogh et al., 2020).

(b) Misclassification of 
categorical variables

The direction and magnitude of bias 
associated	with	 non-differential	mis- 
classification	of	categorical	exposure 
variables will depend on how many 
categories have been used, how 
accurate the assessment of the 
exposure is, and the prevalence of 
the exposure.

In a situation where a single expo-
sure is declared present or absent, 
non-differential	 misclassification	 oc- 
curs	 when	 the	 sensitivity	 (the	 prob-
ability	 of	 having	 been	 identified	 as	
exposed when the individual is truly 
exposed)	 and	 the	 specificity	 (the	
probability	 of	 having	 been	 identified	
as unexposed when the individual 
is truly unexposed) of the errors are 

the same for cases and non-cases of 
disease.

One should realize that any given 
study could still show a bias away 
from the null due to random variabil - 
ity, given that any study is simply a 
single realization of a measurement 
process and may deviate from the 
expectation	(Jurek	et al., 2005; Loken 
and Gelman, 2017). However, the 
larger the sample size, the smaller 
this	chance	(Wacholder, 1995; Yland 
et al., 2022).

Misclassification	 might	 even	
change the direction of the slope 
across	 exposure	 categories	 (Dose- 
meci et al., 1990), unless the true 
exposure–response relation is posi-
tive	and	monotonic	(Weinberg et al., 
1994).

Berkson errors are special and 
are	different	from	classical	errors	
in that they are not expected to 
appreciably distort the exposure–
response relation, for example 
when the assigned exposures 
are the means of the true dose in 
the	groups	(Gilbert, 2009).

However, as in the classical 
error model, Berkson errors 
do reduce the precision of the 
estimated exposure–response re- 
lation.

Key message
Non-differential	 misclassification 
of	 a	 dichotomous	 exposure	 (ex-
posed or unexposed) will, on 
average, result in attenuation of 
effect	 estimates	 towards	 the	 null 
(Wacholder, 1995; Armstrong, 1998), 
as seen in Example 4.3.

Key message

The extent of the expected atten-
uation	from	non-differential	expo-
sure	misclassification	will	depend	
on the prevalence of the exposure 
and	the	specificity	and	sensitivity	
of the exposure assessment and 
assignment.

When there are several cate- 
gories	 (e.g.	unexposed,	 low,	me-
dium,	 or	 high),	 non-differential	
misclassification	can	result	 in	the	
overestimation of risk in an inter-
mediate exposure category and 
the underestimation of risk in the 
highest category.

Key message
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Side Box 4.1. Three common models describing measurement error in epidemiological studies

Besides	the	issue	of	whether	the	exposure	measurement	error	is	differential	or	non-differential,	another	aspect	
that	influences	the	effect	of	the	error	on	the	results	is	the	relation	of	the	erroneous	measurement	to	its	underlying	
true value. This relation is usually described in terms of a statistical model. Any type of model is possible, but for 
continuous	exposure	variables	(e.g.	the	time	spent	using	a	mobile	phone	over	a	specified	period,	or	the	mass	of	red	
meat	consumed	on	a	typical	day),	three	models	(described	here)	are	most	commonly	found	in	the	epidemiological	
literature.	Because	the	impact	(or	non-impact)	of	the	error	on	the	estimated	associations	depends	on	the	type	of	
error, it is important for those reviewing the literature to know about them. These models all postulate additive 
random error. Multiplicative error can sometimes be handled by these models through transformation of the 
variables to a logarithmic scale. More-complex models involving random error that is “shared” between individuals 
have	been	postulated	recently	for	occupational	cohort	studies	(Stram and Kopecky, 2003; Hoffmann	et al., 2018) 
but are not covered here.

(a) Classical model

This is the simplest model to describe measurement errors. If X denotes the true underlying exposure value and 
X * denotes the measured value, then the relation between them is described by the model as

X * = X + U	 (E4.1)

where U is a random error that has a mean of zero and is independent of the true value X. Thus, the model 
describes an erroneous measurement method that gives the correct value on average but yields a somewhat 
different	 value	each	 time	 it	 is	 applied,	 sometimes	 larger	 than	and	 sometimes	 smaller	 than	 the	 true	exposure.	
Because the average error is zero, such a measurement method is called unbiased. Such measurements are 
commonly	encountered	in	laboratory	work,	for	example	with	assessments	of	serum	levels	of	cholesterol	(Glasziou 
et al., 2008)	or	C-reactive	protein	 (Koenig et al., 2003). This model is also used when one is interested in an 
individual’s	average	value	of	the	measure	over	a	specified	period	(the	true	value)	but	the	measure	is	determined	
only	once	(or	a	few	times)	within	the	study	period.

(b) Linear model

A somewhat more complex model is required for measurements that are not, on average, equal to the correct 
value. One way of describing such measurements, which is often used for self-reported dietary intake and physical 
activity data, is to postulate a linear relation between the measurement and its true value, as

X * = α0 + α XX + U	 (E4.2)

where α0 and αX are the intercept and the slope, respectively, of the linear relation, and U, as before, is a random 
error that has a mean of zero and is independent of the true value X	(see	Keogh et al., 2020). The intercept α0, 
known as the location bias, shifts the measurements up or down on average, while the slope αX, known as the 
scale bias, governs how much the mismeasurement depends on the true value of the exposure. Although this 
model	 includes	 the	classical	model	as	a	special	case	(when	α0 = 0 and αX = 1), in its general form the model 
describes an erroneous measurement method that, on average, gives not the correct value X but an incorrect 
value α0 + α XX. Because of this property, such a measurement method is called biased. Such measurements are 
commonly	encountered	in	self-reported	behaviours	(e.g.	dietary	intake).	It	is	often	found	that	α0 is greater than 0 
and αX is positive but less than 1. Such values describe a pattern when underreporting becomes more severe as 
the	true	exposure	increases	(Example 4.1).

Note that, as in this example, the exposure is often measured on a logarithmic scale, and the additive random 
error becomes multiplicative on a linear scale. 



92

Side Box 4.1. Three	common	models	describing	measurement	error	in	epidemiological	studies	(continued)

Example 4.1. Linear models for measurement error of protein intake from food frequency questionnaires

Kipnis et al.	(2003)	used	data	from	the	Observing	Protein	and	Energy	Nutrition	(OPEN)	study	and	reported	
that for natural log-transformed self-reported total protein intake using a food frequency questionnaire, the 
value of αX	for	men	was	0.67.	From	the	reported	geometric	mean	intakes	of	protein	in	that	study	(Table	2	of	
Subar et al., 2003), one can calculate that α0 was 1.18. These values imply that for a low total protein intake of 
68.3	g/day	(2.5th	percentile),	the	average	reported	intake	was	exp[1.18	+	0.67ln(68.3)]	=	55.1	g/day,	with	an	
underestimation	of	19%,	whereas	for	a	high	total	protein	intake	of	158.3	g/day	(97.5th	percentile),	the	average	
reported	intake	was	exp[1.18	+	0.67ln(158.3)]	=	96.9	g/day,	with	a	much	larger	degree	of	underestimation	
(39%).

(c) Berkson model

Another	type	of	error,	called	Berkson	error	(Berkson, 1950),	is	only	subtly	different	from	the	classical	model	but	
is	important,	both	because	it	arises	in	many	epidemiological	settings	and	because	its	effects	on	results	are	very	
different	from	those	of	classical	error.	The	relation	between	the	measured	value	and	the	true	value	is	described	
by this model as

X = X * + U	 (E4.3)

where U is a random error that has a mean of zero and is independent of the measured value X * but is not 
independent of the true value X. Berkson error commonly occurs in occupational health studies, when individual 
workers in the same job group are assigned the average measured exposure of their group or an exposure based 
on	a	JEM.	In	these	cases,	the	true	exposure	of	an	individual	equals	the	mean	exposure	in	the	job	group	to	which	
the individual is assigned plus some independent random error. Berkson errors may also occur in studies of 
environmental	exposures	(Example 4.2).	(text continues on page 90)

Example 4.2. Berkson error in an example from blood lead and intelligence quotient testing

In a study (Armstrong,	1998), the intelligence quotient measured at age 10 years of children living in the 
vicinity of a lead smelter was studied in relation to the children’s exposure to lead. Blood lead levels were 
measured	in	a	random	sample	of	the	study	group;	the	full	study	group	was	then	classified	into	subgroups	
according to the distances of their homes from the smelter, and the average blood lead level in each subgroup 
was assigned as the exposure level for all the children in that subgroup. Such an exposure measure can be 
assumed	to	have	Berkson	error,	in	the	same	way	as	for	exposure	assessments	based	on	a	JEM.

For	the	different	impacts	of	classical	errors,	linear	measurement	errors,	and	Berkson	errors,	see	Section	4.2.1(a).
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The expected magnitude of the 
bias in the intermediate categories 
will depend on how much the risk 
of	 disease	 differs	 across	 exposure	
groups and the actual shape of the 
exposure–response	 relation	 (Yland 
et al., 2022).

4.2.2 Exposure measurement 
errors that could be non-
differential or differential: 
interviewer error or bias

In studies that involve an expert-
based approach to assess exposures 
(e.g.	having	an	expert	panel	of	indus-
trial hygienists assess exposures on 
the basis of work histories obtained 

by interview), the interviewer can 
play a critical role in obtaining the 
description of the tasks, agents, 
or protective measures that will be 
used to infer exposures. There is 
evidence that interview quality can 
lead	 to	 non-differential	 exposure	
misclassification	 and	 bias	 towards	
the	null	(Edwards et al., 1994), as in 
Example 4.5. Some interviewers can 
be more knowledgeable than others 
and	 elicit	 more	 clues;	 this	 will	 influ-
ence the reliability of the information 
(Example 4.6). Interviewer bias is also 
possible when additional information 
on	 exposure	 (e.g.	 asbestos	 expo-
sure) is elicited by an interviewer who 

believes that asbestos is associated 
with the disease of the interviewee 
(e.g.	 lung	 cancer,	 mesothelioma),	
or the interviewer may not question 
control participants as deeply as 
case participants. These problems 
can, to some extent, be overcome 
by better interviewer training or by 
blinding interviewers to case–control 
status, although such blinding is 
rarely possible in cancer case–
control	studies	(Edwards et al., 1994). 
These issues are addressed further 
in Section	4.2.4(b), in the context of 
negative control exposures.

4.2.3 Differential errors in 
exposure

Bias	 from	differential	errors	 in	expo-
sure can occur in both cohort and 
case–control studies. However, it is 
perhaps more common in case– 
control studies in which informa-
tion on exposure is collected using 

Misclassification	of	exposure	may	also	occur	when	a	continuous	error- 
prone	 exposure	 variable	 (e.g.	 cumulative	 exposure)	 is	 categorized	
(Example 4.4). Categorization of a continuous exposure variable with 
error	can	actually	result	in	differential	misclassification	if	the	probability	
of disease is a function of the continuous exposure rather than of the 
exposure	categories	(Flegal et al., 1986).

Key message

Example 4.4.	Misclassification	 from	categorizing	a	continuous	exposure	variable	 in	workers	exposed	to	crystalline	
silica

A	pooled	case–control	study	of	respirable	crystalline	silica	exposure	and	lung	cancer	(Ge et al., 2020) showed 
a	 largely	flat	exposure–response	 relation,	particularly	 in	 the	middle	exposure	categories	 (odds	 ratios	 [ORs]	of	
1.15,	1.33,	1.29,	and	1.45	for	cumulative	exposure	quintiles	of	>	0–0.39,	0.40–1.09,	1.10–2.39,	and	≥	2.40	mg/
(m3·years), respectively), whereas the analysis with continuous cumulative exposure showed a monotonic linear 
increase	in	risk	for	both	untransformed	and	log-transformed	exposure.	(text continues above)

 Example 4.3. Non-differential	exposure	misclassification	when	exposure	is	rare	versus	when	exposure	is	common

In	a	general	population	case–control	study	with	a	low	prevalence	(<	10%)	of	occupationally	exposed	individuals,	low	
specificity	will	result	in	a	large	number	of	false-positives	for	the	exposure	and	consequently	result	in	considerable	
attenuation	towards	the	null	(Flegal et al., 1986).	For	this	reason,	when	JEMs	aim	to	assess	occupational	exposure	
in	the	general	population	where	exposure	is	rare	(e.g.	population-based	case–control	studies),	specificity	should	
be	 favoured	 over	 sensitivity	 (Kromhout and Vermeulen, 2001). In contrast, in studies with a high prevalence 
of	exposure	 (e.g.	 industrial	 cohort	 studies),	 low	sensitivity	will	 result	 in	attenuation	 towards	 the	null;	 therefore,	
sensitivity	should	be	favoured	over	specificity.	(text continues on page 90)
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questionnaires administered retro-

spectively, after the disease under 

study has been diagnosed in the case 

participants.

When exposure assessment is 

based on objective measures, a case– 

control study is no more prone to infor-

mation bias than the corresponding 

cohort study that uses the same 

exposure history records. However, 
many case–control studies do involve 
retrospective collection of exposure 
information; therefore, in this section, 
several	 types	of	 differential	 informa-
tion bias are considered that are of 
particular concern in case–control 
studies of this type.

(a) Recall and information bias

Case–control studies are often por- 

trayed as being more prone to infor-

mation bias when they involve the 

use of exposure questionnaires. This 

is not unique to case–control studies. 

Many cohort studies involve exposure 

questionnaires	 (on	 opium	use,	meat	

consumption, night shift work, etc.) at 
baseline and at follow-up. However, a 
potential additional problem in case–
control studies is that exposure ques-
tionnaires are usually administered 
after the case or control status is 
known by the participants, and often 
also by the interviewers.

To	understand	 the	differential	 na- 
ture	of	this	misclassification,	consider	
that someone who has developed 
cancer is likely to have thought a 
great deal about the possible causes 
of their condition and may have 
sought	 further	 information	 (e.g.	 from	
the Internet). The same will usually 
not apply to control participants 

Recall	bias	is	not	an	inherent	fea-
ture of case–control studies; for 
example, exposure estimation 
may be based on historical rec-
ords	(e.g.	work	history	records)	or	
biospecimens banked in the past.

Key message

Example 4.5. Assessing for varying quality of the interviewee response in assessing tobacco smoking

Villanueva et al.	 (2009) conducted a multicentre hospital-based study of 1219 patients with incident bladder 
cancer and 1271 control participants, recruited in Spain in 1998–2001. Study information was obtained by trained 
interviewers, who administered structured computer-assisted personal interviews. The information was categorized 
into	 five	 sections	 (sociodemographic,	 smoking,	 occupational,	 residential,	 and	 medical	 history).	 At	 the	 end	 of	
each interview, the interviewer recorded the perceived quality of the interview for each section as unsatisfactory, 
questionable, reliable, or of high quality. It was found that 10% of the interviews were of unsatisfactory quality with 
regard to smoking history. It was also found that the strength of the association between cigarette smoking and 
bladder	cancer	increased	with	increasing	interview	quality,	from	an	odds	ratio	of	3.20	(95%	confidence	interval	[CI],	
1.13–9.04)	for	interviews	scored	as	unsatisfactory	or	questionable	overall	(taking	into	account	all	of	the	variables	
considered	 in	 the	 interviews)	 to	an	odds	 ratio	of	7.70	 (95%	CI,	3.64–16.30)	 for	high-quality	 interviews.	Lower-
quality interview scores were found with increasing age, poorer self-perception of health, and low socioeconomic 
status.	However,	differences	were	not	found	in	the	quality	of	interviews	according	to	case	or	control	status:	9%	of	
patients	had	unsatisfactory	or	questionable	interviews,	compared	with	7%	of	control	participants	(P	=	0.109).	(text 
continues on page 93)

Example 4.6. Assessing for varying quality of interviewer in assessing job histories

In	a	validity	study,	reports	of	job	histories	were	compared	with	employers’	records	(Baumgarten et al., 1983). There 
was no evidence that the quality of job history information obtained from control participants was systematically 
different	from	that	obtained	from	patients	with	cancer,	although	there	was	some	evidence	that	different	interviewers	
obtained	job	histories	of	varying	quality,	irrespective	of	case–control	status.	(text continues on page 93)
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drawn from the general population. 
For example, it has been suggested 
that patients with cancer may recall 
minor	 exposures	 to	 pesticides	 (e.g.	
spray drift from a neighbouring farm), 
whereas control participants from the 
general population may not recall 
such	minor	 exposures	 (Smith et al., 
1988).	 In	 this	 situation,	 differential	
recall could occur, and the propor-
tion of case participants reporting 
past exposure to pesticides may be 

greater than the proportion of control 
participants, even if the pesticides 
actually do not cause the type of 
cancer under study. It is important to 
emphasize that such recall bias does 
not necessarily involve biased recall 
by the case participants; in fact, it may 
involve a lack of recall by the control 
participants. Examples 4.7 and 
4.8 illustrate some of these impor-
tant concepts surrounding recall 
bias with respect to two key topics.

(b) Differential information when 
provided by proxies

Proxies are sometimes recruited in 
studies of cancers with poor prog-
noses or of aggressive types of 
cancer, to better cover the base popu-
lation of case participants. However, 
proxy respondents can sometimes 
provide information of a poorer quality 
than self-respondents; this can bias 
findings	 if	 the	 quality	 of	 exposure	
information	 differs	 by	 case	 status	
(Example 4.9).

Example 4.7. Recall	bias	and	knowledge	of	carcinogenicity

Most studies of shift work are based on self-reported information about current and previous jobs. Information on 
job	history	and	periods	of	work	has	been	repeatedly	shown	to	be	accurately	recalled.	Recall	of	shift	work	details	
of	previous	jobs	is	more	complex	and	may	be	prone	to	exposure	misclassification.	For	example,	in	a	case–control	
study	 in	Spain	(MCC-Spain),	 the	frequency	of	shift	work	(nights	per	month)	was	more	difficult	 to	recall	 than	 its	
duration,	and	this	led	to	a	higher	proportion	of	missing	data	(Papantoniou et al., 2016).	It	is	unlikely	that	differential	
recall has been important in case–control studies of shift work and cancer. The potential carcinogenicity of night 
shift work was not well known in the wider population in the past 10–20 years, when most existing studies were 
conducted.	However,	recall	bias	is	not	necessarily	avoided	for	this	reason	if	night	shift	workers	report	differentially	
on factors that could be intermediate factors associated with disease, such as sleep. There do not seem to be any 
published	studies	examining	this	type	of	differential	recall	in	detail.	(text continues above)

 Example 4.8. Estimation of the extent of recall bias

In	 the	 Interphone	 study	 (Vrijheid et al., 2009), validation studies were conducted to assess the potential for 
differential	misclassification	of	self-reported	mobile	phone	use.	The	investigators	collected	mobile	phone	records	
of case and control participants from network operators in three countries over an average of 2 years and 
compared them with self-reported mobile phone use. The ratio of reported to recorded phone use was estimated. 
Mean	ratios	were	very	similar	for	case	and	control	participants;	both	underestimated	the	number	of	calls	(mean	
ratio,	0.81)	and	overestimated	call	duration	(mean	ratio,	1.4).	For	case	participants,	but	not	control	participants,	the	
ratios were further away from 1.0 for time periods further before the interview. In addition, the ratios were greater 
for	higher	levels	of	use.	These	findings	are	very	provisional,	because	they	were	based	on	records	obtained	for	only	
a few participants with the relevant data. Nevertheless, based on the available data, there was little evidence for 
differential	recall	errors	overall	or	in	recent	time	periods.	In	contrast,	there	appeared	to	be	overestimation	of	use	
by case participants in more distant time periods; this could cause positive bias in estimates of the odds ratios for 
mobile	phone	use.	(text continues above)



96

4.2.4 Tools for assessing 
differential exposure 
information bias

When a published paper is consid-
ered, it is important to assess the 
potential for information bias, as 
well as its probable magnitude and 
direction. A key issue is whether 
any	misclassification	of	 (categorical)	
exposure or disease is likely to be 
non-differential	 or	 differential.	 This	
section is particularly focused on 
the situation where information bias 
is	 likely	 to	 be	 differential,	 although	
many of the methods can also be 
used	to	assess	non-differential	infor-
mation bias. We particularly consider 
assessment using substantive knowl- 

edge	 (external	 to	 the	 published	
paper) and the use of directed acyclic 
graphs	(DAGs;	see	Chapter 2). As in 
Chapter 3, some tools are outlined 
that expert review groups can use to 
examine	 the	 influence	 of	 exposure	
measurement error.

(a) Tool E-1: use of substantive 
knowledge and DAGs for 
misclassification

Assessing	 the	 potential	 for	 differen-
tial information bias requires expert 
knowledge, usually from previously 
published studies, and mechanistic 
knowledge. The key feature of 
differential	 information	 bias	 is	 that	
the	 misclassification	 of	 exposure	
depends on disease status, or vice 

versa	(the	misclassification	of	disease	
status depends on exposure). For 
differential	misclassification	of	 (cate-
gorical) exposure status, this means 
that	 the	 sensitivity	 or	 specificity	 (or	
both) of the exposure measurement 
instrument	 is	different	 for	 those	with	
or without disease.

Misclassification	 can	 be	 summa-
rized	using	a	DAG	(Hernán and Cole, 
2009); these are covered in detail in 
Chapter 2	and	are	only	briefly	consid-
ered here. A DAG can help to clarify 
whether disease or exposure misclas-
sification	 is	 differential	 or	 non-differ-
ential, for example when people with 
cancer	(case	participants)	are	likely	to	
have	different	recall	of	past	exposures	

 Example 4.9. Proxy respondents and recall bias in a study of pesticide exposure

Brown et al.	 (1991) conducted a methodological study to compare information on pesticide use from farmers 
and their surrogates. The study included 95 farmers and their spouses or other close family members. Both 
the farmers and the proxies were asked about the farmers’ pesticide use. Although there was good agreement 
between the farmer and the proxy about whether seven common pesticides had ever been used, there was much 
more	variable	agreement	between	the	two	regarding	the	frequency	of	use,	with	correlation	coefficients	ranging	
from 0.23 to 0.80 for number of days of use.

Later, the same researchers recruited proxy respondents in a series of case–control studies focused on 
pesticides and non-Hodgkin lymphoma. In a publication focused on the risk of non-Hodgkin lymphoma and use 
of the insecticide lindane, Blair et al.	 (1998)	 evaluated	 the	 effect	 of	 information	 provided	 by	 next-of-kin	 proxy	
respondents on risk estimates. Both living and deceased people were included, and control participants for 
deceased	people	in	the	case	group	were	identified	from	death	records	and	matched	on	age	and	year	of	death.	
For these deceased people, interviews were conducted with their next of kin, and living participants provided 
information	 directly.	 Study	 participants	 who	 could	 not	 recall	 whether	 they	 (or	 their	 proxies)	 had	 used	 lindane	
were excluded from analysis. The percentage of living case participants who could not recall whether they had 
used lindane was 6.0%, while that for proxy respondents of deceased people was 8.2%; 9.6% of living control 
participants and 11.1% of proxy respondents of deceased control participants could not recall whether lindane 
had	been	used.	In	addition,	results	were	stratified	by	whether	information	on	lindane	was	provided	directly	by	the	
case	or	control	participant	or	by	a	proxy.	The	odds	ratio	for	whether	lindane	had	ever	been	used	was	1.3	(95%	
CI,	0.9–1.8)	for	direct	respondents	and	2.1	(95%	CI,	1.0–4.4)	when	information	was	provided	by	a	proxy.	Similar	
differences	 in	 risk	were	seen	 for	 the	number	of	days	of	use	of	 lindane	and	whether	or	not	personal	protective	
equipment was used during application, with higher associations among those with information provided by a 
proxy.	Although	other	factors	could	explain	these	results,	differential	misclassification	of	exposure	could	not	be	
ruled	out.	(text continues below)
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compared with healthy control partic-
ipants. A similar bias can occur when 
there	is	a	factor	(e.g.	ethnicity,	socio-
economic status) that is a risk factor 
for	disease	(e.g.	the	disease	is	more	
common	among	less-affluent	people)	
and	affects	the	accuracy	of	exposure	
recall	 (e.g.	 less-affluent	 people	 are	
less	aware	of,	or	have	different	recall	
of,	past	exposures).	Researchers	can	
use DAGs to help determine whether 
differential	misclassification,	 through	
a variety of mechanisms, is plausible.

The DAG will not identify whether 
such a bias is likely to occur or its 
probable magnitude and direction, 
but it does provide a framework for 
considering whether such a bias is 
possible and assessing any strate-
gies that the investigators may have 

adopted to minimize, to control for, or 
to	assess	it	(Example 4.10).

The use of DAGs can help study 
reviewers	to	identify	whether	differen-
tial	or	non-differential	bias	is	possible	
in a given study. When several 
different	 studies	 are	 conducted	 for	
the same exposure–outcome rela-
tion, it is important to note that the 
DAG	could	be	different	for	each	study;	
some studies may be more or less 
prone	 to	 differential	 or	 non-differen-
tial	 misclassification,	 depending	 on	
the study design.

(b) Tool E-2: negative control 
exposures and positive control 
outcomes

A negative control exposure approach 
involves assessing the association 
with another exposure that is not 

associated with the outcome under 
study but is likely to be subject to 
a	 similar	 information	 bias	 (Lipsitch 
et al., 2010; Arnold et al., 2016; Lawlor 
et al., 2016). 

Although this approach can also 
be used to assess other types of 
bias	 (e.g.	 confounding),	 the	 focus	 in	
this section is on recall bias in case–
control studies, as in Example 4.11.

A key assumption of the use of 
negative control exposures is that 
any tendency for reduced or ex-
aggerated recall of exposure is 
likely to be similar for the main 
study exposure and the negative 
control exposure. 

Key message

Example 4.10. Using DAGs to identify recall bias

In	the	Interphone	case–control	study	of	mobile	phone	use	and	brain	tumours	(Cardis et al., 2007), researchers 
conducted a validation study on a subsample of the participants by comparing the self-reported mobile phone 
use	with	data	 from	network	operators	 (Vrijheid et al., 2009). The number of calls was underestimated, but the 
underestimation	 was	 similar	 among	 case	 and	 control	 participants,	 suggesting	 that	 there	 was	 non-differential	
misclassification	for	this	exposure	variable.	In	a	DAG,	this	would	translate	into	a	lack	of	an	arrow	from	the	case	
status to the reported mobile phone use, as shown in Fig. 4.1,	even	 if	 there	were	still	 factors	 that	affected	 the	
reported	exposure	status	other	than	the	actual	exposure.	(text continues above)

Fig. 4.1. Directed	acyclic	graph	of	a	study	with	underreporting	of	the	prevalence	of	mobile	phone	use	(exposure)	
but	non-differential	misclassification	by	brain	tumour	(outcome)	status.

Fig. 4.1

Unknown factors 
influencing reporting

True mobile
phone use

Brain tumour

Reported mobile
phone use
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A related approach is the exami-
nation of positive control outcomes 
to assess the validity and quality 
of the exposure metric for an agent 
that has been found to be associated 
with other outcomes besides the one 
being	investigated	(Example 4.12).

(c) Tool E-3: examination of 
exposure information from 
different sources

In some instances, exposure infor-
mation	 (e.g.	 from	 questionnaires)	
can be combined with more objective  
exposure measures. For example, de- 
termining whether participants have 
worked as a farmer would be a rela-
tively poor measure of exposure to 
pesticides, but this can be ascertained 
reasonably accurately, through either 
questionnaires or examination of 
work history records. If, for example, 
there were recall bias with regard to 
exposure to pesticides, with case 
participants more likely than control 
participants to recall and report past 
exposures, one might expect this to 
be	 apparent	 in	 artificially	 high	 odds	

ratios when using exposure ques-
tionnaires, but one would not expect 
this bias to occur when “whether the 
participant has ever worked as a 
farmer” was the exposure metric; in 
this situation, taking the participant’s 
being a farmer as the exposure might 
be expected to involve some non- 
differential	 information	 bias	 (which	
would usually be towards the null 
because the exposure is dichot-
omous) but would probably avoid 
or	 minimize	 differential	 recall	 bias.	
Similar considerations would apply 
when examining analyses restricted 
to exposures involving major events 
(e.g.	 work	 as	 a	 pesticide	 sprayer)	
rather	 than	minor	 events	 (e.g.	 spray	
drift from a neighbouring farm).

(d) Tool E-4: comparisons with 
external data

Another approach for assessing in- 
formation bias involves comparing 
the study data with external data on 
the prevalence of the exposure in the 
source	 population	 (Examples 4.13 

and 4.14). This can involve infor-
mation either on the exposure itself 
(e.g.	 smoking	 rates	 in	 the	 general	
population) or on a surrogate of the 
exposure. For example, if the expo-
sure under study is the use of a 
pharmaceutical	 drug	 (prescribed	 or	
non-prescribed) and it is believed 
that	control	participants	(but	not	case	
participants) may be underreporting, 
or not recalling, previous exposures, 
then one might compare the exposure 
prevalence in the control participants 
with that expected on the basis of 
general population rates of use.

(e) Tool E-5: consideration of 
analysis stratified by index versus 
proxy interviews

In studies involving proxy interviews, 
sensitivity	analyses	stratified	on	index	
interviews versus proxy interviews 
(i.e.	 interviews	 with	 the	 relevant	
case or control participant versus 
interviews with a proxy) can provide 
indirect evidence about whether the 
use of proxy interviews introduced 

 Example 4.11. Negative control exposures to assess recall bias in a study of pesticide exposure

In	 a	 case–control	 study	 of	 a	 particular	 pesticide	 (pesticide	A)	 and	 cancer,	 any	 influences	 on	 the	 reporting	 of	
exposures	 (e.g.	case	participants	being	more	 likely	 than	control	participants	 to	 recall	pesticide	exposures)	are	
likely to apply to pesticides in general, rather than only to pesticide A. If it is well established that another pesticide 
(pesticide	B)	 is	 not	 associated	with	 the	 cancer	 under	 study	 (e.g.	 if	 there	 had	been	a	 cohort	 study	of	workers	
predominantly exposed to this other pesticide), then pesticide B could serve as a negative control exposure. Thus, 
if a strong association was found between pesticide B and the outcome in the case–control study, this would 
provide	evidence	of	information	bias,	as	well	as	its	likely	magnitude	and	direction.	(text continues below)

 Example 4.12.	Positive	control	outcomes	to	assess	exposure	misclassification	in	a	study	of	benzene	exposure

In an evaluation of whether benzene is a cause of lung cancer, IARC Monographs reviewers considered whether a 
cohort	study	demonstrated	the	expected	association	between	benzene	and	leukaemia.	A	finding	that	the	benzene	
exposure metric did not show this anticipated association for leukaemia led to scepticism of the adequacy of the 
exposure	assessment	(IARC,	2018).	(text continues above)
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information bias; however, such ana- 
lyses entail strong assumptions. 
Typically, investigators report the full 
results and the results of the analysis 
restricted to the interviews with the 
index	 participants	 (because	 proxy	
interviews are used mainly or exclu-
sively with case participants). If data 
from index participants are perfect 
(i.e.	no	exposure	measurement	error)	
or very nearly so, then conducting 
stratified	 analyses	 and	 estimating	
the exposure–outcome association 
among the index case participants can 
reduce bias. As shown by Greenland 
and	Robins	(1985), this approach has 
very important limitations. First, if 
the	sensitivity	and	specificity	are	not	
perfect among the index case partic-
ipants, there is no guarantee that this 
approach will yield less bias than an 

analysis that ignores the distinction 
between index and proxy responses. 
Second,	such	stratified	analyses	can	
increase the variance of study esti-
mates; researchers need to weigh the 
benefits	of	a	reduction	in	bias	against	
a corresponding increase in variance. 
If such analyses are to be undertaken, 
it would be good practice to estimate 
the magnitude of bias under plausible 
sensitivity	and	specificity	parameters	
for proxy and index case participants, 
as	 exemplified	 in	 Greenland and 
Robins	(1985).

(f) Tool E-6: triangulation using 
comparisons across studies

Information	 bias	 from	 differential 
errors in exposure can also be as- 
sessed using triangulation approaches, 
introduced in Chapter 3, by making 

comparisons across studies. This 
applies particularly when similar 
studies have been conducted in the 
same	population	(e.g.	cohort	studies	
involving the same industry or the 
same group of workers, or case–
control studies conducted in the same 
populations). However, comparisons 
can also be made between studies in 
different	populations	where	 it	 is	 rea- 
sonable to assume that the strength 
of the main exposure–outcome 
association is likely to be similar. For 
example, one might compare the 
findings	 from	 studies	 in	 which	 inter-
views were used to obtain exposure 
information with those from studies in 
which more objective methods, such 
as the analysis of personnel records 
on	work	history	 (e.g.	Example 4.15), 
were used. Such comparisons across 
studies are discussed in Chapter 6.

  Example 4.13. Using national statistics to assess recall bias

The	European	Union	(EU)	Labour	Force	Survey	(Eurostat, 2022) reports statistics for the number of people working 
at	night	as	a	percentage	of	the	total	number	of	employed	people	in	Europe,	stratified	by	geopolitical	entity,	sex,	age	
class, and calendar year. Similar data are available in other areas of the world. This information can be compared 
with the prevalences obtained for control participants in case–control studies on night shift work and cancer risk. 
Note	 that	 this	 is	a	 rough	comparison,	because	data	would	not	be	specific	 for	 the	exact	age	distribution,	study	
area, or study period. Nevertheless, these statistics can be used to identify the presence of major information bias 
problems.	However,	it	should	also	be	recognized	that	if	such	problems	exist,	they	could	reflect	either	information	
bias	or	selection	bias	(see	Chapter 5).	(text continues on page 98)

Example 4.14. Recruiting	different	types	of	control	groups	to	assess	recall	bias

In IARC Monographs	Volume	126,	on	opium	use	(IARC,	2021), the Working Group evaluated two case–control 
studies	of	oesophageal	cancer	 (carried	out	by	a	single	 research	 team),	 in	which	different	control	groups	were	
recruited:	one	hospital-based	and	one	neighbourhood-based	(Shakeri et al., 2012). The Working Group concluded 
that the neighbourhood-based control group probably provided a less biased estimate, because the prevalence 
of opium use reported by the neighbourhood-based control participants was similar to that reported from other 
sources	for	the	general	population	of	the	region.	(text continues on page 98)
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4.3 Tools for quantifying bias 
due to errors in exposure

4.3.1 Tool E-7: simple bias 
analysis for exposure 
misclassification

Bias analyses of exposure misclas-

sification	 for	 a	 binary	 (i.e.	 yes	 or	

no) exposure can be performed if 

one has information on the sensi-

tivity	and	specificity	of	 the	exposure	

measurement method. These data 

may be available from an internal 

validation study or from external 

sources, such as previous validation 

studies published in the literature. 

Alternatively, expert opinion can be 

used to inform sensitivity and spec-

ificity	 parameters	 (Goldsmith et al., 

2023). However, the quality of the 

bias analysis will be determined by 

the quality of the sensitivity and spec-

ificity	parameters,	so	these	assump-

tions should not be made lightly.

The formulae in Table 4.1 enable 

us to predict which data would be 

observed if the counts of correctly 

classified	data	and	the	accompanying	

sensitivities	 and	 specificities	 were	

known. In practice, only the observed 

cell counts are known, with perhaps 

estimates of sensitivities and spec-

ificities.	Solving	the	four	equations	in	

Table 4.1	 for	 the	 correctly	 classified	

cell counts results in the following 

simple	formulae:

Chapter 4 equations

Equation (4.1):

𝐴𝐴𝐴𝐴 =
𝑎𝑎𝑎𝑎 − 𝑁𝑁𝑁𝑁1(1 − sp1)

se1 + sp1 − 1

Equation (4.3):

𝐶𝐶𝐶𝐶 =
𝑐𝑐𝑐𝑐 − 𝑁𝑁𝑁𝑁0(1 − sp0)

se0 + sp0 − 1

Equation (E4.4):

variance (ln(OR)) =
𝑁𝑁𝑁𝑁1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(se1 + sp1 − 1)2

(𝑁𝑁𝑁𝑁1se1 − 𝑎𝑎𝑎𝑎)2(𝑁𝑁𝑁𝑁1sp1 − 𝑎𝑎𝑎𝑎)2 +
𝑁𝑁𝑁𝑁0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(se0 + sp0 − 1)2

(𝑁𝑁𝑁𝑁0se0 − 𝑐𝑐𝑐𝑐)2(𝑁𝑁𝑁𝑁0sp0 − 𝑐𝑐𝑐𝑐)2

Equation (4.5):
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Equation (E4.8):

𝜫𝜫𝜫𝜫 = � specificity 1 − sensitivity
1 − specificity sensitivity �

Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

 

(4.1)

B = N1	−	A	 (4.2)
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Equation (4.3):

𝐶𝐶𝐶𝐶 =
𝑐𝑐𝑐𝑐 − 𝑁𝑁𝑁𝑁0(1 − sp0)

se0 + sp0 − 1

Equation (E4.4):

variance (ln(OR)) =
𝑁𝑁𝑁𝑁1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(se1 + sp1 − 1)2

(𝑁𝑁𝑁𝑁1se1 − 𝑎𝑎𝑎𝑎)2(𝑁𝑁𝑁𝑁1sp1 − 𝑎𝑎𝑎𝑎)2 +
𝑁𝑁𝑁𝑁0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(se0 + sp0 − 1)2

(𝑁𝑁𝑁𝑁0se0 − 𝑐𝑐𝑐𝑐)2(𝑁𝑁𝑁𝑁0sp0 − 𝑐𝑐𝑐𝑐)2

Equation (4.5):

𝐿𝐿𝐿𝐿1
𝜆𝜆𝜆𝜆
− �

1.96
𝜆𝜆𝜆𝜆
���𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 +

𝛽𝛽𝛽𝛽12𝑠𝑠𝑠𝑠2

�̈�𝑠𝑠𝑠2
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

Equation (4.6):

𝐿𝐿𝐿𝐿2
𝜆𝜆𝜆𝜆

+ �
1.96
𝜆𝜆𝜆𝜆
���𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 +

𝛽𝛽𝛽𝛽12𝑠𝑠𝑠𝑠2

�̈�𝑠𝑠𝑠2
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

Equation (E4.8):

𝜫𝜫𝜫𝜫 = � specificity 1 − sensitivity
1 − specificity sensitivity �

Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

 

(4.3)

D = N0	−	C	 (4.4)

These formulae enable prediction 

of the data that would have been 

seen	 (correctly	 classified)	 given	 the	

observed cell counts and posited 

sensitivities	and	specificities.

This methodology is used in a 

spreadsheet for exposure misclas-

sification	 (Chapter 6) that accom-

panies the textbook by Fox et al. 

(2021)	 (https://sites.google.com/site/

biasanalysis/Home; the spreadsheet 

is provided in Annex 2, online only, 

available	 from:	 https://publications.

iarc.who.int/634#supmat), as demon-

strated in Examples 4.16 and 4.17.

4.3.2 Tool E-8: multidimen- 
sional analysis

A multidimensional sensitivity analy- 

sis can also be performed, in which 

various	 combinations	 of	 specificities	

or sensitivities in case and control 

participants are used to develop a 

range	of	bias-adjusted	estimates	(Fox 

et al., 2005; Johnson	et al., 2014; Fox 

et al., 2023; Example 4.18).

  Example 4.15. Using triangulation to assess recall bias

Two exposure assessment approaches were used in population-based case–control studies included in IARC 
Monographs	Volume	124,	on	night	shift	work	(IARC,	2020).	The	first	approach	typically	used	subjective	methods	
(questionnaires	and	 interviews)	 to	assess	 the	exposure	 to	night	shift	work,	 to	ascertain	precise	 information	on	
jobs	held,	as	well	as	start	and	end	times	for	each	job	(e.g.	Papantoniou et al., 2016). The second approach used 
general	 population-based	 JEMs	 exclusively	 when	 characterizing	 exposure	 (e.g.	Hansen, 2001). The Working 
Group	considered	the	second	approach	to	be	prone	to	a	large	degree	of	exposure	misclassification	in	assessing	
night	shift	work,	because	it	would	provide	a	highly	imprecise	measure	of	the	exposure	(i.e.	with	non-differential	
information bias, usually towards the null). Therefore, they excluded such studies from further consideration. 
In	contrast,	 the	second	approach	would	avoid	or	minimize	differential	recall	bias.	Questionnaires	provide	more	
precise	assessments	of	the	individual	exposure,	but	the	reporting	might	be	affected	by	knowledge	of	the	outcome	
status,	 resulting	 in	 (differential)	 recall	bias	(most	probably	away	 from	the	null).	The	Working	Group	could	have	
compared	the	findings	of	studies	using	these	two	methods	to	assess	their	respective	possible	biases	(which	might	
be	expected	to	operate	in	different	directions).	(text continues on page 99)

https://sites.google.com/site/biasanalysis/Home
https://sites.google.com/site/biasanalysis/Home
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
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Table 4.1. Relation	between	correctly	classified	(uppercase)	and	observed	(lowercase)	data	in	a	case–control	study	
with	misclassification	of	exposure

Correctly classified Total Observed data

Exposed Unexposed Exposed Unexposed

Case participants A B N1 a = se1A	+	(1	−	sp1)B b	=	(1	−	se1)A + sp1B
Control participants C D N0 c = se0C	+	(1	−	sp0)D d	=	(1	−	se0)C + sp0D

se0, sensitivity for control participants; se1, sensitivity for case participants; sp0,	specificity	for	control	participants;	sp1,	specificity	for	case	participants.

  Example 4.16.	Analysis	of	bias	from	non-differential	exposure	misclassification

Fritschi et al.	 (2013) conducted a population-based case–control study in Western Australia that examined the 
association between shift work and breast cancer risk. The study involved 1202 case participants who had incident 
breast	cancer	and	1785	frequency	age-matched	control	participants	who	were	identified	between	2009	and	2011.	
A self-administered questionnaire was used to collect information on demographic, reproductive, and lifestyle 
factors and lifetime occupational history, and a telephone interview was used to obtain further details about shift 
work and lifestyle risk factors. Weak evidence of an increase in the risk of breast cancer was observed among 
women	who	worked	night	shifts	(OR,	1.16;	95%	CI,	0.97–1.39).

The	investigators	did	not	report	estimates	of	the	sensitivity	or	specificity	of	their	exposure	measure,	but	 it	 is	
likely	that	there	was	some	degree	of	misclassification,	given	that	the	exposures	were	based	on	questionnaire	data.	
For this exercise, it is assumed that some individuals failed to understand the questions or may not have correctly 
answered	the	questions	for	other	reasons.	It	is	also	assumed	that	these	errors	were	non-differential	with	respect	
to disease.

A simple bias analysis can be performed using the methodology described in this section, assuming that the 
misclassification	errors	in	the	study	were	non-differential	with	respect	to	the	disease	and	that	there	was	a	modest	
amount	of	error	 (sensitivity,	80%;	specificity,	90%).	The	crude	(i.e.	unadjusted	 for	measurement	errors)	 results	
from	 the	 study	 and	 the	 results	 adjusted	 for	misclassification	 bias	 are	 presented	 in	Table 4.2.	 The	 crude	 (i.e.	
unadjusted)	odds	ratio	is	1.16	(95%	CI,	0.98–1.38),	which	is	almost	identical	to	the	results	adjusted	for	measured	
confounders	 (OR,	1.16;	 95%	CI,	 0.97–1.39)	 presented	 in	 the	paper.	However,	 the	odds	 ratio	 derived	 from	 the	
bias-adjusted	data	 (OR,	1.29)	was	somewhat	greater	 than	 the	 results	without	adjustment	 for	misclassification,	
suggesting	that	misclassification	of	exposure	may	have	biased	the	results	towards	the	null.	Confidence	intervals	
for	the	misclassification-adjusted	estimate	are	available	from	either	Greenland	(1988) or Chu et al.	(2006). 

Updated Equation (E4.4):

Var(ln OR) =
𝑁𝑁𝑁𝑁1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(se1 + sp1 − 1)2

(𝑁𝑁𝑁𝑁1se1 − 𝑎𝑎𝑎𝑎)2(𝑁𝑁𝑁𝑁1sp1 − 𝑎𝑎𝑎𝑎)2 +
𝑁𝑁𝑁𝑁0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(se0 + sp0 − 1)2

(𝑁𝑁𝑁𝑁0se0 − 𝑐𝑐𝑐𝑐)2(𝑁𝑁𝑁𝑁0sp0 − 𝑐𝑐𝑐𝑐)2

 

	 (E4.4)

Table 4.2. Observed	and	misclassification-adjusted	 results	 from	 the	 case–control	 study	 of	 breast	 cancer	 by	
Fritschi et al.	(2013)	assuming	non-differential	errors	and	80%	sensitivity	and	90%	specificity

Observed data Total Data adjusted for misclassification

Exposed Unexposed Exposed Unexposed

Case participants a = 288 b = 914 N1 = 1202 A = 239.7 B = 962.3
Control participants c = 381 d = 1404 N0 = 1785 C = 289.3 D = 1495.7

In	this	problem,	the	resulting	variance	is	0.023,	yielding	a	95%	confidence	interval	of	(0.96,	1.73).	This	interval	
is	slightly	wider	than	the	original	interval;	this	is	generally	the	result	for	bias	analyses.	(text continues on page 100)
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Example 4.17. Analysis	of	bias	from	differential	exposure	misclassification

The same methodology as in Example 4.16	can	be	used	to	assess	exposure	misclassification	that	is	differential	
with respect to disease. For example, Mohebbi et al.	(2021)	reported	findings	from	a	case–control	study	of	head	
and	 neck	 squamous	 cell	 carcinoma	 (HNSCC)	 and	 opium	use.	 The	 study	 included	 633	 case	 participants	with	
head	and	neck	cancer,	who	had	been	identified	in	cancer	hospitals	in	10	provinces	in	the	Islamic	Republic	of	Iran.	
Control	participants	(n = 3065) were hospital visitors, frequency-matched to the case participants on age, sex, 
and location. Mohebbi et al.	(2021) assessed opium use with a standardized self-reported questionnaire. Overall, 
they reported an increased risk of HNSCC among regular opium users compared with non-users, with an adjusted 
odds	ratio	of	3.76	(95%	CI,	2.96–4.79).	Mohebbi et al.	(2021)	expressed	concern	over	possible	misclassification	
of opium use and performed preliminary sensitivity analyses in their study.

In a separate publication, Rashidian	et al.	(2017) conducted a cross-sectional hospital- and community-based 
validation study of self-reported opioid use, using a urine rapid screening test for opioid metabolites as a validation 
measure,	in	hospitals	that	were	referral	centres	for	cancer	in	4	of	the	10	provinces	in	the	Islamic	Republic	of	Iran	
that were included in the case–control study conducted by Mohebbi et al.	(2021). This study involved patients who 
were hospitalized with chronic or acute conditions not related to opioid use, who were believed to have a similar 
referral pattern to the case participants, and healthy participants, who were selected from people accompanying 
patients with a chronic condition to a hospital in a manner similar to the method of selecting control participants 
used by Mohebbi et al.	(2021). Rashidian	et al.	(2017, Figure 1) reported results that yielded a sensitivity of 79% 
and	a	specificity	of	83%	among	hospitalized	patients	and	a	sensitivity	of	68%	and	a	specificity	of	93%	among	
healthy participants for self-reported opioid use compared with urine analysis. Note that Rashidian	et al.	(2017) 
used	 a	 composite	 outcome	 (urine	 analysis	 and	 thin-layer	 chromatography)	 as	 their	 gold	 standard,	 but	 in	 this	
example only urine analysis is used, for ease of presentation.

An	 adjustment	 for	 bias	 due	 to	 the	 differential	misclassification	 of	 exposures	 in	 the	 study	 of	Mohebbi et al. 
(2021)	can	be	performed	using	the	estimates	of	sensitivity	and	specificity	given	by	Rashidian	et al.	 (2017) and 
the statistical methodology described in this section and in Fox et al.	(2021).	The	crude	(i.e.	unadjusted	for	either	
confounding	or	misclassification)	 results	 from	 the	 study	and	 the	 results	adjusted	 for	misclassification	bias	are	
presented in Table 4.3.	The	crude	(i.e.	unadjusted)	odds	ratio	from	this	study	is	5.33	(95%	CI,	4.42–6.41),	and	
the	misclassification-bias-adjusted	odds	ratio	 is	7.19	(95%	CI,	5.17–10.00).	 It	 is	noteworthy	 that	both	 the	crude	
and	misclassification-adjusted	results	are	substantially	greater	than	the	confounding-adjusted	results	presented	
by Mohebbi et al.	(2021)	(OR,	3.76;	95%	CI,	2.96–4.79).	This	suggests	that	the	confounding-adjusted	results	are	
biased	towards	the	null	due	to	exposure	misclassification,	and	also	that	the	crude	and	misclassification-adjusted	
results	appear	to	be	biased	by	confounding,	because	the	crude	result	differs	from	the	confounding-adjusted	result.	
(text continues on page 100)

Table 4.3. Observed	and	misclassification-adjusted	crude	results	from	Mohebbi et al.	(2021) using estimates of 
sensitivity	and	specificity	from	Rashidian	et al.	(2017) 

Observed data Total Data adjusted for misclassification

Exposed Unexposed Exposed Unexposed

Case participants a = 295 b = 368 N1 = 663 A = 294.0 B = 369.0
Control participants c = 401 d = 2664 N0 = 3065 C = 305.7 D = 2759.3
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 Example 4.18. Multidimensional sensitivity analysis

In the validation study by Rashidian	et al.	 (2017), 45 of 57 hospitalized people whose urine tested positive for 
opioids	also	 reported	use	of	opioids.	From	 this,	we	can	calculate	a	 sensitivity	of	79%	with	a	95%	confidence	
interval	of	66–89%.	Repeating	this	for	specificity,	we	obtain	a	specificity	of	83%	and	a	95%	confidence	interval	of	
76–90%.	Among	healthy	individuals	in	the	validation	study,	we	obtain	a	sensitivity	of	68%	(95%	CI,	50–82%)	and	
a	specificity	of	93%	(95%	CI,	87–96%).	The	sensitivity	of	the	misclassification-adjusted	odds	ratio	from	Mohebbi 
et al.	(2021)	to	the	chosen	values	of	sensitivity	and	specificity	can	be	investigated	by	repeating	this	bias	analysis	
using	the	estimated	upper	and	lower	confidence	bounds	of	sensitivity	and	specificity.	These	values	were	chosen	
because	they	represent	 the	 limits	of	 the	sensitivity	and	specificity	values	supported	by	 the	validation	data	and	
therefore the most “extreme” possibilities. The results from the multidimensional analysis are shown in Table 4.4. 
At	the	lower	limit	of	specificity	among	the	control	participants	(87%),	almost	all	control	participants	who	reported	
opioid	use	are	assumed	to	have	been	misclassified,	and	the	misclassification-adjusted	number	of	exposed	control	
participants	 is	 quite	 small,	 resulting	 in	 implausibly	 large	misclassification-adjusted	 odds	 ratios.	 The	 remaining	
permutations of the bias parameters all result in elevated odds ratios; however, four sets of values result in adjusted 
odds	ratios	that	are	nearer	to	1	than	the	crude	estimate.	This	illustrates	how	with	differential	misclassification	one	
can	have	results	that	are	biased	either	towards	or	away	from	the	null.	(text continues on page 104)

Table 4.4. Multidimensional analysis of data on opioid use and head and neck squamous cell carcinoma from 
Mohebbi et al.	(2021),	adjusted	for	misclassification	of	self-reported	opioid	use

Bias parameter Adjusted cell count ORadj

se1 sp1 se0 sp0 A B C D

1 1 1 1 295.0 368.0 401.0 2664.0 5.33
0.66 0.76 0.5 0.87 323.5 339.5 6.9 3058.1 422.87
0.89 0.76 0.5 0.87 209.0 454.0 6.9 3058.1 204.34
0.66 0.9 0.5 0.87 408.4 254.6 6.9 3058.1 711.74
0.89 0.9 0.5 0.87 289.5 373.5 6.9 3058.1 343.92
0.66 0.76 0.82 0.87 323.5 339.5 3.7 3061.3 789.43
0.89 0.76 0.82 0.87 209.0 454.0 3.7 3061.3 381.46
0.66 0.9 0.82 0.87 408.4 254.6 3.7 3061.3 1328.69
0.89 0.9 0.82 0.87 289.5 373.5 3.7 3061.3 642.03
0.66 0.76 0.5 0.96 323.5 339.5 605.2 2459.8 3.87
0.89 0.76 0.5 0.96 209.0 454.0 605.2 2459.8 1.87
0.66 0.9 0.5 0.96 408.4 254.6 605.2 2459.8 6.52
0.89 0.9 0.5 0.96 289.5 373.5 605.2 2459.8 3.15
0.66 0.76 0.82 0.96 323.5 339.5 356.9 2708.1 7.23
0.89 0.76 0.82 0.96 209.0 454.0 356.9 2708.1 3.49
0.66 0.9 0.82 0.96 408.4 254.6 356.9 2708.1 12.17
0.89 0.9 0.82 0.96 289.5 373.5 356.9 2708.1 5.88

ORadj, adjusted odds ratio; se0, sensitivity for control participants; se1, sensitivity for case participants; sp0,	specificity	for	control	participants;	 
sp1,	specificity	for	case	participants.
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4.3.3 Limitations of methods 
for analyses of exposure 
measurement errors

A major limitation of these methods 
that were used to conduct sensitivity 
analyses	 or	 adjust	 for	 misclassifi-
cation errors is that they all involve 
using	 the	 crude	 results	 (i.e.	 unad-
justed results) from the studies and 
thus ignore potential bias due to 
confounding. This is not problematic 
when the crude results are nearly 
equivalent to the results from the 
adjusted analyses, as seen in the 
study by Fritschi et al.	(2018). However, 
Mohebbi et al.	(2021) found evidence 
of	confounding:	 the	crude	odds	ratio	
(5.33;	95%	CI,	4.42–6.41)	and	the	con- 
founding-adjusted	 odds	 ratio	 (3.76; 
95% CI, 2.96–4.79) are appreciably 
different.	 A	 technically	 appropriate	
adjustment for confounding and 
exposure	 misclassification	 requires	
access to individual-level data. Such 
approaches are explained in detail in 
Fox et al.	(2021). In practice, an IARC 
Monographs Working Group may be 
interested in adjusting for confounding 
(see	Chapter 3)	and	misclassification	

but will generally only have access to 
aggregate data. In this situation, an 
approximate approach that can be 
used to adjust for confounding is to 
compute the ratio of the adjusted and 
crude odds ratios, ignoring misclas-
sification,	and	apply	 that	 ratio	 to	 the	
misclassification-adjusted	odds	ratio,	
as demonstrated in Example 4.19. 
See Chapter 6 for further discussion 
of multiple-bias analysis.

4.3.4 Tool E-9: multiple 
categorical bias analysis

A similar approach to that used for 
binary	 exposures	 (Sections 4.3.1 
and 4.3.2) could be taken for a study 
with a larger number of categories of 
exposure. To do this, one would have 
to know the percentage of individuals 
who	were	incorrectly	classified	in	each	
category, and into which category 
they	 were	 inappropriately	 classified.	
This type of information is less likely 
to be available in epidemiological 
publications and would be particularly 
difficult	 to	 obtain	 for	 studies	 with	 a	
large number of categories, or where 
categories are unique to a particular 

study. However, assuming that the 
information is available, one could 
use this method to conduct a sensi-
tivity	analysis	(Example 4.20).

The results from this sensitivity 
analysis do not suggest a monotonic 
decrease in risk with increasing dura-
tion of exposure, as was observed in 
the results reported in the study.

4.3.5 Tool E-10: probabilistic 
bias analysis

As mentioned in Sections 4.3.1 and 
4.3.2, one or more values of the 
bias	 parameters	 must	 be	 specified	
when quantifying bias. The approach 
described in this section, probabilistic 
bias analysis, is an extension of multi-
dimensional bias analysis and en- 
ables incorporation of the uncertainty 
in the bias parameters into the mea- 
sures of association. In practice, prob- 
abilis tic bias analysis involves spec-
ifying a probability distribution for 
each bias parameter that repre-
sents the uncertainty in the values. 
Samples are repeatedly drawn from 
each bias parameter distribution, and 
a simple bias analysis is repeated for 
each set of sampled bias parameters. 

Example 4.19. Sensitivity	analysis	for	both	confounding	and	misclassification

For the study by Mohebbi et al.	(2021), the ratio of the confounding-adjusted odds ratio to the crude odds ratio 
is 3.76/5.33 = 0.705. This ratio is the extent to which the observed crude odds ratio is altered after adjusting 
for	 confounding,	 and	 it	 can	 be	 applied	 to	 the	misclassification-adjusted	 odds	 ratios	 calculated	 previously.	 For	
example,	when	adjusting	for	misclassification	of	opioid	use,	a	misclassification-adjusted	odds	ratio	of	7.19	was	
found.	Multiplying	this	effect	by	the	ratio	of	the	confounding-adjusted	odds	ratio	to	the	crude	odds	ratio	gives	an	
approximate	estimate	of	a	confounding-	and	misclassification-adjusted	odds	ratio	of	7.19	×	0.705	=	5.07.	Adjustment	
for	misclassification	bias	increased	the	odds	ratio,	whereas	adjustment	for	confounding	bias	decreased	the	odds	
ratio. In this example, the two sources of bias nearly cancel each other out, resulting in a bias-adjusted odds ratio 
that	is	very	similar	to	the	crude	odds	ratio.	However,	this	will	not	always	be	the	situation.	(text continues above)



Chapter 4. Information bias: misclassification and mismeasurement of exposure and outcome 105

C
H

A
P

T
E

R
 4

The uncertainty in the bias parame-
ters is thus taken into account in the 
resulting error-adjusted estimates. 
The distribution of the error-adjusted 
estimates gives the analyst a more 
complete idea of the distribution of 
plausible	effects	than	can	be	obtained	
through simple bias analysis or multi-
dimensional bias analysis, and it 
is used to derive point and interval  
estimates, such as the median or 

the	 95%	 simulation	 interval	 (i.e.	 the	
interval between the 2.5th and the 
97.5th percentiles). Probabilistic bias 
analysis relies on the assumption that 
the	specified	bias	parameter	distribu-
tions are valid. Fox et al.	(2021) provide 
more detailed information about prob-
abilistic bias analysis and extend the 
idea of probabilistic bias analysis 
outlined here by incorporating random 
error introduced by the data collection 

process in addition to systematic 

error	 arising	 from	 misclassification	

(the	accompanying	spreadsheets	as	

well	as	SAS	and	R	code	help	facilitate	

application of the method; see Fox 

et al., 2021 and https://sites.google.

com/site/biasanalysis/Home;	R	code	

is provided online only, available 

from:	 https://publications.iarc.who.

int/634#supmat); see Example 4.21.

 Example 4.20.	Sensitivity	analysis	for	categorical	exposure	misclassification

Fritschi et al.	(2013) conducted a population-based case–control study that examined the association between 
shift	work	and	breast	cancer	 risk	 (as	described	 in	Section 4.3.1). An inverse exposure–response relation was 
observed in the study for duration of work in the night shift and breast cancer risk, as summarized in Table 4.5.

Table 4.5. Association	between	duration	of	exposure	to	working	in	the	night	shift	and	breast	cancer	risk	(Fritschi 
et al., 2013)a

Duration of exposure Case participants Control participants Crude OR  
(95% CI)

Age-adjusted OR 
(95% CI)

Never 914 1404 Reference Reference
<	10	years 164 199 1.27	(1.01–1.59) 1.25	(1.00–1.56)
10	to	<	20	years 71 98 1.11	(0.80–1.54) 1.09	(0.79–1.50)
≥	20	years 53 84 0.97	(0.67–1.40) 1.02	(0.71–1.45)

CI,	confidence	interval;	OR,	odds	ratio.
a Crude odds ratios were estimated using data presented in Table 2 in Fritschi et al.	(2013).	Confidence	intervals	were	estimated	using	exact	
methods.

To check whether exposures were being underestimated in this study, a sensitivity analysis might be conducted, 
with the assumption that 20% of each category belonged in the next highest category. This would yield the adjusted 
results presented in Table 4.6.	(text continues on page 104)

Table 4.6. Sensitivity analysis, assuming that 20% of case and control participants in each category should be 
in the next highest exposure group

Duration of exposure Case participants Control participants Misclassification-adjusted  
odds ratio

Never 731.2 1123.2 Reference
<	10	years 314.0 440.0 1.10
10	to	<	20	years 89.6 118.2 1.16
≥	20	years 67.2 103.6 1.00

https://sites.google.com/site/biasanalysis/Home
https://sites.google.com/site/biasanalysis/Home
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
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4.3.6 Tool E-11: regression 
calibration for continuous  
and categorized measures  
of exposure

(a) Continuous measures of 
exposure

In Section 4.2.1 it was discussed 
how errors in exposure measurement 
might cause bias in the estimated 
associations of the exposure with 
health	 outcomes.	 Regression	 cali-
bration	(Rosner	et al., 1990; Section 5 

of Keogh et al., 2020) is a statistical 
method	to	account	for	non-differential	
measurement errors in an exposure 
that is measured on a continuous 
scale, yielding an estimate that, in the 
best circumstances, is free from such 
bias, or at least has bias that is consid-
erably	reduced	(Example 4.22a).

Regression	calibration	can	be	used	
to	 provide	 adjustment	 for	 non-differ-
ential measurement errors in epide-
miological models. Simple regression 
calibration requires the following three 

basic	steps.	(To	keep	the	description	
simple, confounder variables are not 
shown in the models.)
•	Step	(i).	Regress	the	outcome	(Y) 
on	the	measured	exposure	(X *) to 
obtain a raw estimate of the as-
sociation through a rate ratio or a 
hazard ratio. For example, the out-
come model may be a Cox regres-
sion model, h(t) = h0(t)exp(β1X *), 
where h(t) is hazard of an event 
(Y = 1) at time t and the association 
is measured as β1, the log hazard 

Example 4.21. Probabilistic	bias	analysis	for	exposure	misclassification

The example described in Sections 4.3.1 and 4.3.2	on	the	association	between	differentially	misclassified	opium	
use and HNSCC provides a good illustration of probabilistic bias analysis. To express the uncertainty in each of 
the bias parameters, a triangular distribution is used as the bias parameter distribution, with the most probable 
values from Rashidian	et al.	(2017)	as	the	mode	and	the	respective	limits	of	the	95%	confidence	intervals	as	the	
limits	of	 the	 triangular	distribution	 (Table 4.7). Probabilistic bias analysis is applied, as described in Fox et al. 
(2021), to account for random and systematic errors. We assumed no correlation between sensitivities among 
cases	and	controls	or	between	specificities	among	cases	and	controls,	although	other	assumptions	are	available.

Table 4.7. Parameters of triangular distributions used as bias parameter distributions for probabilistic bias analysis 
of data from Mohebbi et al.	(2021)	on	misclassified	opium	use	and	head	and	neck	squamous	cell	carcinoma

Bias parameter Distribution parameters of triangular distribution

Minimum (%) Mode (%) Maximum (%)

se1 66 79 89
sp1 75 83 90
se0 50 68 82
sp0 87 93 96

se0, sensitivity for control participants; se1, sensitivity for case participants; sp0,	 specificity	 for	 control	 participants;	 sp1,	 specificity	 for	 case	
participants.

Fig. 4.2 shows the distribution of the error-adjusted odds ratios from 100 000 iterations. The median error-
adjusted odds ratio is 8.66, with a 95% simulation interval of 4.13–38.9. About 89% of the error-adjusted odds 
ratios are greater than the unadjusted odds ratio of 5.33, indicating a bias towards the null in the analysis of 
Mohebbi et al.	 (2021).	 Because	 the	 95%	 simulation	 interval	 is	much	wider	 than	 the	 95%	 confidence	 interval	
of the unadjusted odds ratio, and because neglecting random error changes the error-adjusted odds ratio only 
slightly	(median	error-adjusted	OR,	8.62;	95%	simulation	 interval,	4.41–37.33,	based	on	10	000	 iterations),	 the	
potential	effect	of	systematic	error	due	to	exposure	misclassification	on	the	analysis	is	stronger	than	the	effect	of	
random	error.	This	bias	analysis	offers	some	confirmation	that	the	positive	association	in	Mohebbi et al.	(2021) is 
not	a	spurious	finding	from	exposure	misclassification,	and	it	also	highlights	the	extreme	uncertainty	around	the	
magnitude	of	effect	after	adjusting	for	misclassification.	(text continues above)
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ratio for a unit increase in the mea-
sured	exposure	(Example 4.22b).

•	Step	 (ii).	 An	 attenuation	 factor,	
usually denoted by λ, is estimat-
ed from some validation data. The 
simplest way to estimate λ is to 
obtain	a	reference	(gold	standard)	
measure	of	 the	exposure	 (X) in a 
subgroup of participants and per-
form a linear regression of X on 
X *:	X = λ0 + λX * + ε. This model 
is called the calibration model, and 
the attenuation factor is estimated 
as	the	regression	coefficient,	λ, of 
X *	 (λ0	 represents	 an	 offset	 value,	
and ε represents the error term). 
When reference measurements 
are not available, even in a sub-
group of participants, the attenua-
tion factor might be estimated from 
data that are external to the study 
(Example 4.22c).

When external data are used to 
estimate the attenuation factor, 
the study being analysed and the 
external study must be similar 
with respect to the main assess-
ment instrument used to measure 
the exposure, the distribution 
of exposure among the popula-
tion, and the covariates used for 
adjustment.

•	Step	 (iii).	 The	 association	 is	 ad-
justed for measurement error by 
dividing the estimated associa-
tion parameter β1 by the estimat-
ed attenuation factor; in mathe-
matical notation, β1-adjusted = β1/λ 
(Example 4.22d).
These three steps form the core 

of the regression calibration method 
in	 its	 simplest	 form.	 Different	 types	
of validation data can be used when 

Example 4.21. Probabilistic	bias	analysis	for	exposure	misclassification	(continued)

Fig. 4.2. Distribution	of	error-adjusted	odds	ratios	 (ORs)	 resulting	 from	probabilistic	bias	analysis	of	data	 from	
Mohebbi et al.	(2021)	on	misclassified	opium	use	and	head	and	neck	squamous	cell	carcinoma.

In most applications, as in Example 4.22,	the	attenuation	factor	(λ) in 
regression calibration is positive and less than 1, and usually ranges 
between 0.3 and 0.7, indicating, respectively, limited and adequate ac-
curacy of the observed assessments compared with the truth. There-
fore, the adjustment of dividing by λ	inflates,	or	de-attenuates,	the	esti-
mated association. Sensitivity analyses using a range of estimates for 
this	attenuation	factor	(e.g.	0.3–0.7)	can	provide	an	understanding	of	
the magnitude of the underestimation of the risk due to measurement 
error.

Key message

Density
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 Example 4.22a. Regression	calibration	for	adjustment	for	measurement	error

Within	the	Swedish	Mammography	Cohort,	a	rate	ratio	for	colorectal	cancer	incidence	of	1.20	(95%	CI,	0.99–1.45)	
was	reported	for	an	increase	of	100	g/day	of	red	meat	intake	(Larsson et al., 2005).	Red	meat	intake	was	based	
on dietary intake, self-reported in a food frequency questionnaire, which was subject to measurement errors. The 
estimated	rate	ratio	needed	to	be	adjusted	for	these	errors.	(text continues on page 106)

 Example 4.22b. Regression	calibration	for	adjustment	for	measurement	error	(continued)	

In the Swedish Mammography Cohort, β1	was	estimated	as	ln(1.20)	=	0.18.	(text continues on page 107)

 Example 4.22c.	Regression	calibration	for	adjustment	for	measurement	error	(continued)	

In the Swedish Mammography Cohort, no reference measurements were available. However, an attenuation factor 
could be estimated from data collected within the European Prospective Investigation into Cancer and Nutrition 
(EPIC),	a	large	prospective	study	with	more	than	500	000	participants	recruited	in	10	European	countries	(Riboli	
et al., 2002).	Reference	measurements	based	on	24-hour	recall	data	obtained	from	a	subset	of	36	994	participants	
were used to estimate an attenuation factor for food frequency questionnaire self-reported red meat intake of 0.51. 
(text continues on page 107)

 Example 4.22d. Regression	calibration	for	adjustment	for	measurement	error	(continued)	

In	the	Swedish	Mammography	Cohort,	the	adjusted	log	hazard	ratio	was	estimated	as	ln(1.20)/0.51	=	0.357;	from	
this	value,	the	adjusted	hazard	ratio	may	be	estimated	as	exp(0.357)	=	1.43.	(text continues on page 107)

 Example 4.22e.	Estimating	an	adjusted	confidence	interval	with	regression	calibration	

In the Swedish Mammography Cohort, the unadjusted hazard ratio for colorectal cancer per increment of 100 g/day 
of	 red	meat	 intake	was	 reported	 as	 1.20,	with	 a	 95%	 confidence	 interval	 of	 0.99–1.45.	 Thus,	 the	 confidence	
interval	for	the	log	hazard	ratio	of	0.18	was	ln(0.99)	to	ln(1.45),	that	is,	from	−0.01	to	0.37.	The	attenuation	factor,	
λ,	that	was	used	for	adjustment	was	0.51.	A	simple	approximate	way	of	estimating	the	confidence	limits	for	the	
adjusted log hazard ratio is to divide by λ,	giving	−0.02	 to	0.73.	Converting	back	 to	 the	hazard	 ratio	scale,	by	
exponentiating,	gives	a	95%	confidence	interval	of	0.98–2.07	for	the	adjusted	hazard	ratio	(recall	that	its	value	
was	1.43).	(text continues on page 109)
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estimating the attenuation factor, 
depending on the type of measure-
ment	 error	 (see	Section	 4	 of	Keogh 
et al., 2020). This description does not 
include other covariates in the expo-
sure–outcome model or in the ex- 
posure calibration model. Any other 
covariates that are included in the 
outcome model should also be 
included in the calibration model. In 
Example 4.22, and for most external 
validation data, the attenuation factor 
is derived from a calibration model 
that does not include the same covar-
iates as the outcome model. In that 
situation, the estimated attenuation 
factor must be regarded as an approx-
imation that may carry some bias.

Within the context of expert re- 
views, such as IARC Monographs 
evaluations, an important constraint 
is that the implementation of regres-
sion calibration must usually rely on 
external data, because attenuation 
factors are not reported for most 
studies. Therefore, the resulting ad- 
justed estimate of the association 
parameter should be regarded as a 
ballpark estimate. For an example 
of regression calibration carried out 
using the original study data, as rec- 
ommended wherever possible, see 
the description of a study of red meat 
consumption and colorectal cancer in 
Section 7.4.3.

Approximate upper and lower con- 
fidence	limits	for	the	adjusted	associ-
ation can also be estimated. In math-
ematical notation, if L1 and L2 are the 
upper	 and	 lower	 confidence	 limits	
for the association parameter β1	 (in	
Example 4.22, the log hazard ratio), 
then	 the	 adjusted	 confidence	 limits	
are L1/λ and L2/λ	(Example 4.22e).

As shown in Example 4.22e, the 
regression calibration adjustment 
makes	the	confidence	interval	wider,	

expressing the extra uncertainty in 
the estimated association caused 
by the measurement error. Note also 
that, using this method, if the unad-
justed	 confidence	 interval	 for	 the	
association covers the null value, the 
adjusted	 confidence	 interval	will	 still	
cover the null value. Thus, in general, 
this ballpark adjustment will not alter 
the judgement of whether the asso-
ciation	 is	statistically	significant,	but,	
importantly, it will provide a better 
understanding of the likely magnitude 
of the association.

Note that this method of adjusting 
the	confidence	 interval	 for	 the	asso-
ciation is approximate and does not 
take into account the uncertainty in 
the estimate of the attenuation factor, 
λ. Rosner	et al.	(1989) give a method 
of incorporating this uncertainty into 
the	confidence	interval,	which	makes	
the interval still wider than the one 
estimated from the simple method 
provided here. For expert reviews in 
which access to original study data 
is lacking, the method of Rosner	
et al.	 (1989) could be used, but only 
when the attenuation factor estimate 
that is available is accompanied by 
an estimate of its standard error. In 
mathematical notation, suppose that 
the standard error of λ is s and the 
standard error of the unadjusted esti-
mate of the association parameter 
β1 is se,	and	that	its	95%	confidence	
limits, as before, are denoted by L1 
and L2.	 Then	 the	 lower	 confidence	
interval of the adjusted association 
parameter is given by
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Equation (4.1):
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Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

 
(4.5)

and	 the	upper	confidence	 interval	 is	
given by
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(4.6)

When s, the standard error of λ, is 
set to zero, the formulae revert to 
the adjusted limits L1/λ and L2/λ given 
by the simpler method described 
previously.

To conclude this subsection, note 
that caution must be taken in using 
attenuation	 coefficients	 from	 sub- 
studies that use a self-report instru-
ment, albeit one that is more accu-
rate than the main study self-report 
instrument, as a reference measure. 
In the example of the EPIC study 
given here, 24-hour recall data were 
used as a reference measure for a 
food frequency questionnaire. The 
errors on two self-report instruments 
will often be correlated, introducing 
bias in the estimate of the attenua-
tion	 coefficient.	 However,	 in	 dietary	
studies there is usually no feasible 
alternative, except for a limited num- 
ber of nutrients, such as energy, 
protein, potassium, and sodium, for 
which reference biomarkers can be 
used.

(b) Categorized measure of 
exposure: mobile phone use  
and gliomas

The ballpark adjustment using the 
attenuation factor, as described in 
Section	 4.3.6(a), is applicable when 
the exposure variable used in the 
exposure–outcome association mod- 
el is continuous. However, the expo-
sure–outcome association parameter 
is often expressed in terms of catego-
rized exposure variables, for example 
when the continuous exposure is 
transformed into quintiles of its distri-
bution. In nutritional epidemiology, it 
is quite common to report the relative 
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risk of a disease in the highest quintile 
of the dietary intake compared with 
the lowest quintile.

Example 4.23 illustrates this type 
of adjustment.

4.3.7 Tool E-12: other methods 
for quantifying bias

In this section, three methods that are 
commonly used to adjust estimates 
for exposure measurement error – 
simulation	extrapolation	(SIMEX),	the 
Bayesian method, and multiple im- 
putation – are described in Side 
Boxes 4.2, 4.3, and 4.4, as other 
methods for quantifying bias due to 
exposure measurement error. How- 
ever, because these approaches gen- 
erally require individual-level data, 
they	 are	 only	 briefly	 outlined	 here	
with regard to summary-level data. 

Table 4.8 describes the process 
descriptions and situations in which 
these methods are preferable to 
those described previously.

4.4 Outcome misclassification

4.4.1 Non-differential outcome 
misclassification

In cancer epidemiology studies, out- 
come	 misclassification	 is	 not	 as	
common an issue as exposure mis- 
classification	but	may	still	occur	under	
some	circumstances	(Example 4.26).

Like mismeasurement of the expo-
sure,	misclassification	or	measurement 
error in the outcome can also bias 
results in epidemiological studies. 

The approximate adjustment is 
achieved by using, in place of 
the	 attenuation	 coefficient,	 the	
correlation	 coefficient	 between	
the continuous true and ob-
served	 exposures	 (Kipnis and 
Izmirlian, 2002), sometimes 
referred to as the validity coef-
ficient.	 In	other	words,	 for	cate-
gorized exposures, the associ-
ation parameter estimated from 
the observed exposure can be 
adjusted for measurement error 
by dividing the estimate by the 
correlation	coefficient,	instead	of	
by the attenuation factor. 

Key message

 Example 4.23. Bias	adjustment	for	misclassified	categorical	exposures

Momoli et al.	 (2017, Table 5) analysed the Canadian data of the 13-country case–control Interphone study 
(INTERPHONE	Study	Group,	2010),	reporting	an	estimated	odds	ratio	of	2.0	(95%	CI,	1.2–3.4)	for	glioma	among	
the category of participants reporting a lifetime cumulative mobile phone use of more than 558 hours, compared 
with	a	reference	category	(reporting	never	use,	irregular	use,	use	only	within	a	year	before	the	reference	date,	
or use only with a hands-free device). The odds ratio estimate was derived from a conditional logistic regression 
model, adjusting for age, sex, region, education level, and interview lag. The simple ballpark adjustment of this 
odds	ratio	estimate	for	non-differential	random	error	in	exposure	measurements	is	considered	here.

Recall	that	the	estimated	association	parameter	is	to	be	divided	by	the	correlation	coefficient	between	measured	
and true exposure. Vrijheid et al.	(2006) describe a validation study in which data from 672 Interphone participants 
who reported cumulative hours of mobile phone use were compared with records obtained from their network 
operators,	assumed	to	be	their	true	exposure.	The	study-wide	correlation	coefficient	between	reported	and	true	
use measured on the logarithmic scale was 0.69, where recall was approximately 6 months after the actual use.

To	perform	the	adjustment,	first	 the	odds	ratio	 (2.0)	and	 its	confidence	 limits	 (1.2,	3.4)	are	converted	 to	 the	
natural	log	scale,	because	they	are	originally	estimated	from	a	logistic	regression	model:

ln	OR	=	0.69;	 	 95%	CI	=	(0.18,	1.22)	 (E4.5)

These	values	are	then	divided	by	the	correlation	coefficient,	0.69:

adjusted	ln	OR	=	1.00;	 	 adjusted	95%	CI	=	(0.26,	1.77)	 (E4.6)

Finally,	these	values	are	converted	back	to	the	original	scale,	by	taking	their	exponent:

adjusted	OR	=	2.7;		 	 adjusted	95%	CI	=	(1.3,	5.9)	 (E4.7)

Thus,	after	adjusting	for	non-differential	random	measurement	error,	the	estimated	odds	ratio	is	increased	from	2.0	
to	2.7,	and	its	confidence	interval	is	considerably	wider,	especially	at	the	upper	end.	(text continues above)
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Table 4.8. Methods of adjustment for measurement error and situations in which they may be preferred

Method Process description Preferable in the following situations

Probabilistic bias 
analysis

Bias parameters are simulated. Original study data are unavailable 
Bias model is known

MC-SIMEX Increasing	misclassification	is	simulated. Exposure variable with more than two categories 
Multiple regression models

Bayesian method Bias parameters, risk parameters, and other model 
parameters are simulated.

Integration of prior knowledge about model 
parameters other than bias parameters 
Flexible	specification	of	the	model	beyond	standard	
choices

Multiple imputation The missing true exposure values are simulated. Internal validation data are available 
Flexible	specification	of	the	risk	model 
Bias model is unknown

MC-SIMEX,	simulation	extrapolation	for	misclassification.

 Side Box 4.2. Simulation	extrapolation	for	misclassification	(MC-SIMEX)	

In	 general,	 SIMEX	 (Cook and Stefanski, 1994)	 is	 a	 two-step	 approach:	 simulation	 and	 extrapolation.	 In	 the	
simulation step, the relation between the magnitude of the measurement error and the unadjusted risk estimate is 
approximated.	For	this	purpose,	the	unadjusted	regression	model	(e.g.	a	logistic	regression	model)	is	estimated	
several times using exposure data with gradually increasing measurement error. In the extrapolation step, the 
relation between the magnitude of the measurement error and the unadjusted risk estimates is extrapolated to the 
situation	with	no	measurement	error,	yielding	the	error-adjusted	risk	estimate	(see	Fig. 4.3).

Fig. 4.3. Risk	estimation	using	simulation	extrapolation	(SIMEX).	Solid	circles,	unadjusted	risk	estimates	based	
on observed and simulated data. Open circle, adjusted risk estimate. Solid line, model for the relation between the 
magnitude of the measurement error and the unadjusted risk estimates. Dashed line, extrapolation of the model 
to the situation with no measurement error.
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It is worth emphasizing that, as with 
non-differential	 exposure	 misclassi-
fication,	 bias	 towards	 the	 null	 from	
non-differential	 outcome	 misclassi-
fication	 is	 only	 an	 expectation;	 the	
results from an individual study could 
be biased away from the null due to 
random error.

In epidemiological studies of can- 
cer,	 outcome	 misclassification	 may	
arise for several reasons. In studies 
that	 rely	 on	 cancer	 or	 death	 certifi-
cate	 registries,	misclassification	 can 
result from error-prone data in the 

registries related to changes in diag- 

nostic codes, incomplete data, or data 

coding errors. For certain cancers, 

there may also be problems with 

imperfect	 sensitivity	 and	 specificity	

(Example 4.27).

Outcome	 misclassification	 can	

also result when tumour character-

istics are overlooked, for example 

histological subtype or hormone 

receptor	 status	 (e.g.	 breast	 cancer)	

or	 aggressiveness	 (e.g.	 prostate	

cancer),	which	can	have	different	risk	

factors, or from cancer misdiagnosis 

(e.g.	peritoneal	mesothelioma	misdi-

agnosed as ovarian cancer), as in 

Example 4.28. This will be problem-

atic if an exposure is exclusively or 

disproportionately associated with 

only one cancer subtype.

4.4.2 Differential outcome 
misclassification

Outcome	classification	errors	that	are	
differential	 with	 respect	 to	 exposure	
can bias results in either direction 
(Example 4.29).

4.4.3 Quantitative assessment 
of bias due to outcome 
misclassification

The methods described in Sec- 
tions 4.3.1 and 4.3.2 can also be 
used to conduct sensitivity analyses 
of	 outcome	 misclassification	 based	
on assumptions about sensitivity 
and	 specificity	 or	 using	 data	 from	
a	 validation	 study	 (Gilbert et al., 
2016). Analyses based on the cancer 
screening history of study subjects 
can also help to capture the magni-
tude of errors resulting from outcome 
misclassification	(Example 4.30).

Bias	 from	outcome	misclassifica-
tion is generally expected to be 
towards the null if the errors are 
non-differential	 with	 respect	 to	
exposure	(i.e.	there	is	no	associ-
ation between exposure and the 
misclassification	errors).	

Key message

 Side Box 4.2. Simulation	extrapolation	for	misclassification	(MC-SIMEX)	(continued)

The	SIMEX	for	misclassification	(MC-SIMEX)	method	is	based	on	the	SIMEX	concept;	the	main	differences	are	
that the error-prone variable X * is a discrete variable with k categories and that the magnitude of the measurement 
error	 is	 specified	by	 the	k	×	k	misclassification	matrix	Π	 (Küchenhoff	et al., 2006). In the situation of a single 
misclassified	binary	variable,	the	misclassification	matrix	can	be	determined	using	sensitivity	and	specificity:
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Equation (E4.8):

𝜫𝜫𝜫𝜫 = � specificity 1 − sensitivity
1 − specificity sensitivity �

Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

 
(E4.8)

The	two	steps	in	MC-SIMEX	are	simulation	and	extrapolation	(Küchenhoff	et al., 2006).
•	 Simulation:	 Simulate	 data	 with	 gradually	 increasing	misclassification	 by	 reclassifying	 the	 observed	 data.	
Estimate	the	unadjusted	regression	model	for	each	magnitude	of	misclassification.

•	 Extrapolation:	 Fit	 a	 parametric	 model	 for	 the	 unadjusted	 risk	 estimates	 depending	 on	 the	 magnitude	 of	
misclassification.	Extrapolating	this	model	to	the	situation	with	no	misclassification	yields	the	error-adjusted	
risk estimate.

Applications of this method can be found, for example, in Heid et al.	(2008), Slate	and	Bandyopadhyay	(2009), 
and Costas et al.	(2015).

In contrast to the previously mentioned methods, MC-SIMEX can be used for an exposure variable with more 
than two categories and for multiple regression models. In addition, the approach to bias analysis with MC-SIMEX 
is	very	different	 from	other	bias	analysis	methods:	all	 the	necessary	 information	about	 the	misclassification	 is	
given	in	the	misclassification	matrix,	so	there	is	no	need	to	specify	a	bias	model.	(text continues on page 110)
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 Side Box 4.3. Bayesian methods for error adjustment

A	Bayesian	approach	allows	for	a	very	flexible	consideration	of	the	uncertainty	regarding	the	bias	parameters	(e.g.	
dependencies between bias parameters). Bayesian approaches are used to estimate the distribution of the model 
parameters of interest from the prior distributions of the unobserved quantities and the data. A Bayesian model for 
quantifying	bias	consists	of	three	model	components	(Fox et al., 2021):

• the risk model, i.e. the regression model, for the observed data;
• the bias model, i.e. the model describing the relation of the parameters in the risk model for the observed data  

and the corresponding error-free parameters; and
• the prior distributions for the unobserved quantities.
The prior distributions for the bias parameters included in the third model component correspond to the 

probability	distributions	for	the	bias	parameters	in	the	probabilistic	bias	analysis	(Section 4.3.5). We chose trun- 
cated normal distributions for this example, but non-truncated normal distributions will generally be preferred. 
Application of both the Bayesian and probabilistic approaches requires a high degree of understanding and care 
(Fox et al., 2021).

The	Bayesian	model	components	 for	non-differential	exposure	misclassification	 in	a	case–control	study	are	
given in Example 4.24. The numbers of people observed to be exposed among case and control participants 
are modelled using binomial distributions, providing the odds ratio as a risk measure in the risk model. The 
relations between the proportions of the truly exposed and those observed to be exposed among case and control 
participants	are	described	using	sensitivity	and	specificity	as	bias	parameters	in	the	bias	model.	Because	the	error	
is	non-differential,	sensitivity	and	specificity	do	not	differ	between	case	and	control	participants.	Independent	beta	
distributions	are	chosen	as	prior	distributions	for	the	sensitivity	and	specificity.

This Bayesian model for quantifying bias includes both the parameters of the risk model, from which the 
carcinogenic risk estimate can be derived, and the bias parameters. In addition to prior information about the bias 
parameters,	which	 is	equivalent	 to	 the	distribution	placed	on	 the	sensitivity	and	specificity	 in	probabilistic	bias	
analysis,	Bayesian	methods	can	use	prior	distributions	of	other	parameters	 (e.g.	 the	 risk	parameter).	Because	
Bayesian methods themselves already involve iterative sampling of data and parameters, their application for 
quantifying bias comprises only a single modelling step, which accounts simultaneously for the uncertainties in the 
parameters	of	the	risk	model	and	the	bias	parameters.	More	details	on	the	difference	between	the	Bayesian	and	
probabilistic	approaches	to	quantifying	bias	due	to	exposure	misclassification	can	be	found	in	Chu et al.	(2006), 
MacLehose	and	Gustafson	(2012), and Corbin et al.	(2017).	(text continues on page 110)

Example 4.24. Bayesian	model	components	for	non-differential	exposure	misclassification	in	a	case–control	study

Observed data

a Number of people observed to be exposed among case participants N1 Number of case participants
c Number of people observed to be exposed among control participants N0 Number of control participants
(1) Risk model (2) Bias model (3) Prior distributions
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Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

Unadjusted	risk	estimate:
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Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)
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𝑁𝑁𝑁𝑁1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(se1 + sp1 − 1)2

(𝑁𝑁𝑁𝑁1se1 − 𝑎𝑎𝑎𝑎)2(𝑁𝑁𝑁𝑁1sp1 − 𝑎𝑎𝑎𝑎)2 +
𝑁𝑁𝑁𝑁0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(se0 + sp0 − 1)2

(𝑁𝑁𝑁𝑁0se0 − 𝑐𝑐𝑐𝑐)2(𝑁𝑁𝑁𝑁0sp0 − 𝑐𝑐𝑐𝑐)2

Equation (4.5):

𝐿𝐿𝐿𝐿1
𝜆𝜆𝜆𝜆
− �

1.96
𝜆𝜆𝜆𝜆
���𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 +

𝛽𝛽𝛽𝛽12𝑠𝑠𝑠𝑠2

�̈�𝑠𝑠𝑠2
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

Equation (4.6):

𝐿𝐿𝐿𝐿2
𝜆𝜆𝜆𝜆

+ �
1.96
𝜆𝜆𝜆𝜆
���𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 +

𝛽𝛽𝛽𝛽12𝑠𝑠𝑠𝑠2

�̈�𝑠𝑠𝑠2
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

Equation (E4.8):

𝜫𝜫𝜫𝜫 = � specificity 1 − sensitivity
1 − specificity sensitivity �

Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

Error-adjusted	risk	estimate:

OR =

𝑝𝑝𝑝𝑝1
1 − 𝑝𝑝𝑝𝑝1
𝑝𝑝𝑝𝑝0

1 − 𝑝𝑝𝑝𝑝0

(3) Prior distributions
𝑝𝑝𝑝𝑝1~Beta(𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1)

𝑝𝑝𝑝𝑝0~Beta(𝛼𝛼𝛼𝛼2,𝛽𝛽𝛽𝛽2)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~Beta(𝛼𝛼𝛼𝛼3,𝛽𝛽𝛽𝛽3)

𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝~Beta(𝛼𝛼𝛼𝛼4,𝛽𝛽𝛽𝛽4)

Equation (E4.9):
𝜫𝜫𝜫𝜫1 = �0.83 0.21

0.17 0.79�

Equation (E4.10):
𝜫𝜫𝜫𝜫0 = �0.93 0.32

0.07 0.68�

OR =

𝑝𝑝𝑝𝑝1
1 − 𝑝𝑝𝑝𝑝1
𝑝𝑝𝑝𝑝0

1 − 𝑝𝑝𝑝𝑝0

(3) Prior distributions
𝑝𝑝𝑝𝑝1~Beta(𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1)

𝑝𝑝𝑝𝑝0~Beta(𝛼𝛼𝛼𝛼2,𝛽𝛽𝛽𝛽2)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~Beta(𝛼𝛼𝛼𝛼3,𝛽𝛽𝛽𝛽3)

𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝~Beta(𝛼𝛼𝛼𝛼4,𝛽𝛽𝛽𝛽4)

Equation (E4.9):
𝜫𝜫𝜫𝜫1 = �0.83 0.21

0.17 0.79�

Equation (E4.10):
𝜫𝜫𝜫𝜫0 = �0.93 0.32

0.07 0.68�

Source: Adapted from Fox et al.	(2021).
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 Side Box 4.4. Multiple imputation

Exposure	measurement	errors	 can	be	considered	 to	be	a	problem	of	missing	data:	 true	exposure	 values	are	
missing. Therefore, methods of accounting for missing data, such as multiple imputation, can be used to calculate 
error-adjusted	estimates	directly	and	to	quantify	bias	due	to	exposure	measurement	error	(Greenland, 2009). A 
prerequisite for the use of multiple imputation is the availability of adequate prior information on the true exposure 
values, usually in the form of internal validation data for a subset of individuals. From this, an imputation model 
for	the	true	exposure	is	estimated	in	conjunction	with	the	other	study	data	(e.g.	outcome	and	observed	exposure).	
Random	draws	are	generated	based	on	the	imputation	model	and	serve	as	true	exposure	values	(imputation).	
These	are	then	used	to	calculate	a	risk	estimate	(estimation).	Imputation	and	estimation	are	repeated	several	times,	
and the error-adjusted risk estimate is obtained by combining the risk estimates from the individual iterations, as 
shown in Example 4.25.

Example 4.25. Opium use and HNSCC – bias analysis for categorical data

Quantifying	bias	due	to	misclassification	using	SIMEX,	the	Bayesian	method,	or	multiple	imputation	usually	
requires	the	original	study	data.	Only	a	very	few	scientific	publications	provide	sufficient	information	for	the	
application of these methods. To provide insight into the application of the Bayesian method and SIMEX, 
we again examine the example from Sections 4.3.1–4.3.3 and 4.3.5	on	differentially	misclassified	opium	
use	and	HNSCC	(Mohebbi et al., 2021). Multiple imputation cannot be used, because of a lack of internal 
validation	data;	as	a	way	of	working	around	 this	 constraint,	 artificial	 validation	data	were	generated	and	
multiple	imputation	could	then	be	applied	to	the	example	in	this	section,	using	the	artificial	validation	data	
that had been generated.

The three components of Bayesian bias analysis are the same as in the example in Side Box 4.3. To apply 
this	model,	one	must	specify	these	components.	The	risk	model	results	from	the	original	scientific	publication,	
and the bias model results from theoretical considerations. The prior distributions are selected during the 
bias analysis. Because there is no prior knowledge about the true proportions of exposed individuals among 
case	participants	(p1)	or	among	control	participants	(p0), uninformative uniform priors with parameters 0 and 
1	are	chosen;	this	is	equivalent	to	a	beta	distribution	with	both	parameters	equal	to	1	(α1 = β1 = α2 = β2 = 1). 
Truncated normal distributions are used as the prior distributions for the bias parameters, i.e. sensitivity and 
specificity	among	case	and	control	participants.	As	in	Section 4.3.5, the distribution parameters are derived 
from the validation study of Rashidian	et al.	(2017).	The	parameters	of	the	normal	distribution	are	specified	
by the parameters of the approximate normal distribution of the bias parameter estimate, and the normal 
distribution	is	truncated	at	the	limits	of	the	95%	confidence	interval	of	the	bias	parameter	estimate,	as	shown	
in Table 4.9.

Table 4.9. Distribution	of	 the	bias	parameters	 for	 sensitivity	and	specificity,	using	 the	 truncated	normal	
distribution

Bias parameter Expectation (%) Distribution parameters of the truncated normal distribution

Standard deviation Minimum (%) Maximum (%)

se1 79 0.054 00 66 89
sp1 83 0.033 77 76 90
se0 68 0.076 96 50 82
sp0 93 0.021 42 87 96

se0, sensitivity for control participants; se1, sensitivity for case participants; sp0,	specificity	for	control	participants;	sp1,	specificity	for	
case participants.
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 Side Box 4.4. Multiple	imputation	(continued)

Example 4.25.	Opium	use	and	HNSCC	–	bias	analysis	for	categorical	data	(continued)

With these choices, the error-adjusted odds ratio is 7.66. Because truncated normal distributions were 
chosen	as	the	prior	distributions,	the	result	differs	from	that	of	the	probabilistic	bias	analysis	(where	the	error-
adjusted odds ratio is 8.66), even though uninformative priors were chosen for p1 and p0.

To apply the MC-SIMEX method, one must calculate the unadjusted regression model, in this situation, a 
logistic	regression	model,	and	specify	the	misclassification	matrices	for	case	participants,

OR =

𝑝𝑝𝑝𝑝1
1 − 𝑝𝑝𝑝𝑝1
𝑝𝑝𝑝𝑝0

1 − 𝑝𝑝𝑝𝑝0

(3) Prior distributions
𝑝𝑝𝑝𝑝1~Beta(𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1)

𝑝𝑝𝑝𝑝0~Beta(𝛼𝛼𝛼𝛼2,𝛽𝛽𝛽𝛽2)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~Beta(𝛼𝛼𝛼𝛼3,𝛽𝛽𝛽𝛽3)

𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝~Beta(𝛼𝛼𝛼𝛼4,𝛽𝛽𝛽𝛽4)

Equation (E4.9):
𝜫𝜫𝜫𝜫1 = �0.83 0.21

0.17 0.79�

Equation (E4.10):
𝜫𝜫𝜫𝜫0 = �0.93 0.32

0.07 0.68�

 

(E4.9)

and control participants,

OR =

𝑝𝑝𝑝𝑝1
1 − 𝑝𝑝𝑝𝑝1
𝑝𝑝𝑝𝑝0

1 − 𝑝𝑝𝑝𝑝0

(3) Prior distributions
𝑝𝑝𝑝𝑝1~Beta(𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1)

𝑝𝑝𝑝𝑝0~Beta(𝛼𝛼𝛼𝛼2,𝛽𝛽𝛽𝛽2)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~Beta(𝛼𝛼𝛼𝛼3,𝛽𝛽𝛽𝛽3)

𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝~Beta(𝛼𝛼𝛼𝛼4,𝛽𝛽𝛽𝛽4)

Equation (E4.9):
𝜫𝜫𝜫𝜫1 = �0.83 0.21

0.17 0.79�

Equation (E4.10):
𝜫𝜫𝜫𝜫0 = �0.93 0.32

0.07 0.68�
 

(E4.10)

With	the	unadjusted	regression	model	and	the	misclassification	matrix,	an	error-adjusted	odds	ratio	of	6.8	
is	obtained,	using	the	R	package	simex	(Lederer et al., 2019).	(text continues on page 110)

 Example 4.26. Non-differential	outcome	misclassification	in	studies	of	low-dose	ionizing	radiation

Linet et al.	(2020)	reviewed	the	potential	for	misclassification	of	leukaemia	and	all-cancer	diagnosis	in	26	studies	
of	low-dose	radiation	exposure.	False-negatives	(underdiagnoses)	were	likely	in	only	2	of	the	17	cancer	incidence	
studies	and	2	of	 the	9	mortality	studies.	False-positives	 (overdiagnoses)	were	 likely	 in	only	one	of	 the	cancer	
incidence	studies.	Issues	with	the	accuracy	of	the	diagnoses	were	found	in	only	two	studies.	(text continues on 
page 110)

 Example 4.27. Non-differential	outcome	misclassification	from	underdiagnosis	of	prostate	cancer

Bell et al.	(2015)	found	the	prevalence	of	incidental	prostate	cancer	at	autopsy	to	range	from	5%	(95%	CI,	3–8%)	
at	age	<	30	years	to	59%	(95%	CI,	48–71%)	at	age	>	79	years.	This	may	mean	that	undiagnosed	prostate	cancers	
are	often	classified	as	non-cases;	this	possibility	is	often	overlooked	in	both	cohort	and	case–control	studies.	(text 
continues on page 112)
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4.5 Summary

Errors in the measurement of both 
exposures and outcomes are potential 
sources of information bias in epide-
miological studies. The errors for 
exposure measurement may be due 
to	either	misclassification	(for	a	cate- 
gorical	 classification)	 or	 mismea-
surement	(for	a	continuous	measure).	
Unless exposure is measured pro- 
spectively, epidemiological studies of 
exposures associated with cancer risk 
are particularly prone to this source 
of bias, because many cancers have 

a	long	latency	(time	since	first	expo-
sure)	 period	 (e.g.	 >	 20	 years),	 and	
therefore the relevant exposures may 
have occurred many years earlier. 
Misclassification	or	mismeasurement	
of cancer outcomes is less common 
but may occur when mortality data 
rather than incidence data are used, 
when	case	ascertainment	is	low	(e.g.	
because of poor access to diagnostic 
health care), when a diagnostic test 
is used that has poor sensitivity 
and	 specificity	 (e.g.	 for	 prostate	
cancer), or because of changes in 
diagnostic	categories	over	 time	(e.g.	

for mesothelioma or lymphatic and 
haematopoietic neoplasms).

Table 4.10 summarizes the ex- 
pected direction of the bias for  
different	types	of	error.	If	the	errors	in	
exposure measurement are random 
and	 non-differential	 with	 respect	 to	
disease status, the resulting infor-
mation bias would be expected to 
be towards the null in studies with a 
binary	(yes	or	no)	exposure.	However,	
the bias can be in either direction if 
the analysis includes more than two 
categories	 of	 exposure	 (e.g.	 high,	
medium, or low); in this situation, 

 Example 4.28. Non-differential	outcome	misclassification	of	tumour	subtypes

Night shift work was seen to be more strongly associated with high-grade prostate cancer than with low-grade 
tumours	 (Papantoniou et al., 2015); however, there is evidence that, among proven cases of prostate cancer, 
detection	of	high-grade	cancer	has	a	sensitivity	of	72%	and	a	specificity	of	92%	upon	initial	diagnosis.	If	these	
errors	are	non-differential	with	respect	to	the	exposure,	then	the	expectation	is	that	the	association	will	be	biased	
towards	the	null.	(text continues on page 112)

 Example 4.29. Differential	outcome	misclassification	among	firefighters

An	increased	risk	of	prostate	cancer	could	be	observed	in	studies	of	firefighters,	because	they	are	likely	to	undergo	
more	medical	 screening	 than	 the	general	population	used	as	 the	 referent	 (DeBono et al., 2023). This was an 
important consideration in the IARC Monographs Working Group’s determination that there was limited evidence 
for	a	causal	association	between	occupational	exposure	as	a	firefighter	and	prostate	cancer	(IARC,	2023).	(text 
continues on page 112)

 Example 4.30. Sensitivity	analysis	for	outcome	misclassification

In a study of night shift work and prostate cancer, analyses were conducted excluding control participants who 
had not recently been screened for this cancer and who therefore had a greater likelihood of having undetected 
prostate	cancer.	The	findings	from	this	study	were	not	altered,	suggesting	that	the	lack	of	an	association	between	
night shift work and prostate cancer in this study was not due to the inclusion of unrecognized cases of prostate 
cancer	in	the	control	group	(Barul et al., 2019).	(text continues below)
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misclassification	of	exposure	is	most	
likely to result in overestimation of risk 
in an intermediate exposure category 
but underestimation in the highest 
exposure category, and there can 
even be a change in the direction of 
the slope across exposure categories 
under	 certain	 conditions	 (Dosemeci 
et al., 1990; Weinberg et al., 1994). 
Thus, categorization of a non-dif-
ferentially	 misclassified	 continuous	

exposure	variable	can	result	in	differ-
ential	misclassification	 (Flegal et al., 
1986). The bias can also be in either 
direction	 if	 the	errors	are	differential	
with respect to disease.

For continuous measures, the 
effect	of	measurement	error	depends	
on the error structure, which could 
involve combinations of systematic 
error and random error following 
classical, linear, or Berkson error 

structures. These error structures 
could be additive, multiplicative, or 
mixed. Classical errors occur when 
there is an erroneous measurement 
method that gives the correct value 
on average but yields a somewhat 
different	value	each	time	it	is	applied,	
sometimes larger than and some-
times smaller than the true expo-
sure. The bias arising from using an 
exposure measure that has classical 

Table 4.10. Summary	 of	 expected	 direction	 of	 bias	 in	 the	 effect	 estimate	 due	 to	 exposure	 misclassification	 and	
measurement error, and methods that may be used for correction or for assessing the potential magnitude of the 
biases using sensitivity analyses

Exposure 
metric

Error type Expected 
direction 
of biasa

Methods for 
adjustment

Data needed for 
adjustment

Comments

Binary  
(yes	or	no)

Non-differential Towards 
the null

Simple analysis Simple	2	×	2	table	of	
results; 
se and sp from a 
validation study

Assumptions can be made about 
se and sp if a validation study is not 
available.

Differential Either 
direction

Multidimensional 
analysis

Simple	2	×	2	table	of	
results; 
range of plausible se 
and sp

The range of se and sp can be 
a plausible range chosen by the 
investigator.

Probabilistic 
analysis

Simple	2	×	2	table	of	
results; 
se and sp from a 
validation study; 
distribution of se 
and sp

Assumptions can be made about the 
bias parameters if data on se and sp 
are not available.

Multilevel Non-differential	
or	differential

Either 
direction

MC-SIMEX Raw	data; 
misclassification	
matrices from a 
validation study

Continuous Non-differential
   Classical Towards 

the null
Regression	
calibration

Data from a 
validation study

   Linear Either 
direction

Regression	
calibration

Data from a 
validation study

   Berkson Unbiased 
for linear 
models

No adjustment 
required

Non-linear models are generally close 
to unbiased if the outcome is rare. 
Berkson error is unbiased only if it is 
independent of other covariates.

Differential Either 
direction

Multiple 
imputation

Data from an internal 
validation study for 
case and non-case 
participants

MC-SIMEX,	simulation	extrapolation	for	misclassification;	se,	sensitivity;	sp,	specificity.
a	The	expected	direction	of	the	bias	is	what	is	generally	expected	to	be	observed	over	a	large	number	of	trials	or	studies.	An	individual	study	finding	
may or may not be biased in the direction expected, because of random variation.
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errors is expected to attenuate the 
slope of the exposure–response 
relation. A linear model describes 
an erroneous measurement method 
that, on average, does not give the 
correct	value	of	 the	exposure	(i.e.	 is	
biased).	The	effect	of	using	an	expo-
sure measure with errors that are 
linear could be in either direction, 
depending on whether the expected 
value of the exposure is less than 
or greater than the true exposure. 
Finally, the Berkson error model is 
similar to a classical error model in 
having a mean of zero but, unlike in 
the classical error model, the error 
is not independent of the true value. 
Berkson errors are common in occu-
pational studies where a group mean 
is used to describe the exposures 
of workers engaged in a particular 
job. Using exposure measurements 
that have a Berkson error struc-
ture does not generally bias the 
effect	 measures	 but	 does	 increase	
standard errors. It is noteworthy that 
a particular study may be subject to 
a combination of these three error 
types; in this situation, the direction 
of	the	bias	may	be	difficult	to	predict.

Differential	misclassification	of	ex- 
posure is a common concern in 
studies that rely on questionnaire 
data to assess exposure. This is a 
problem particularly in case–control 
studies, in which interviews are 
conducted after the case status is 
known. It is less often a concern in 
cohort studies, in which exposure 

information is generally assessed 
before	the	disease	occurrence.	Recall	
bias and interviewer bias can intro-
duce	 differential	 misclassification	 of	
exposure. Blinding of the interviewers 
to the case status makes interview 
bias unlikely but will usually have little 
effect	 on	 recall	 bias.	 Interviews	 of	
proxies	(e.g.	next	of	kin)	are	often	used	
in case–control studies where the 
case participants are deceased; this 
may	 result	 in	 differential	 information	
bias	 (e.g.	 if	 the	proxies	of	deceased	
case participants have poorer 
knowledge of the case participants’ 
exposures than the living control 
participants	have	of	theirs).	The	effect	
of	 differential	 misclassification	 may	
be	in	either	direction.	Recall	and	inter-
viewer biases are usually away from 
the null because case participants 
are more likely than healthy control 
participants to recall their exposures, 
and interviewers may be more likely 
to question case participants more 
deeply than control participants for 
their exposure histories. Proxy inter-
viewees would generally be expected 
to be less likely than control partici-
pants to recall exposure, resulting in 
a bias towards the null.

There have been substantial devel-
opments in methods for assessing the 
magnitude of errors and adjusting for 
these biases. These methods, which 
are summarized in Table 4.10, may 
also be adapted for assessing and 
adjusting for errors in outcome clas-
sification.	 Some	 of	 these	 methods	

require the use of data from valida-
tion studies, in which the measure-
ment method used in the study is 
compared with a gold standard. 
Frequently, results from validation 
studies may not be available to an 
IARC Monographs Working Group 
or other expert reviewers. However, 
a description of these methods is 
included, in the anticipation that more 
investigators will perform valida-
tion studies in the future. Sensitivity 
analyses can be conducted in most 
instances to estimate the magnitude 
of the error where assumptions are 
made about the sensitivity and spec-
ificity	 of	 the	measurement	methods.	
These methods can apply to situa-
tions where the errors are non-dif-
ferential	or	differential	with	respect	to	
exposure and can also be extended 
to include a range of plausible values 
of	 sensitivity	 and	 specificity.	 These	
simple methods can provide reviewers 
with some perspective on how large 
or small a true association might 
be. Biases for continuous measures 
of exposure can be corrected using 
regression calibration, using data from 
a validation study. Methods that re- 
quire access to the raw study data 
(e.g.	 multiple	 imputation),	 which	 will 
not generally be available to an ex- 
pert review group, are also discussed 
in Chapter 7.
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