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5.1 Introduction

Epidemiological studies are intended 
to obtain valid exposure effect esti-
mates for a target population (e.g. 
all women aged 20 years or older). 
In practice, specific epidemiological 
studies are, or at least should be, 
based on a clearly defined source 
population (e.g. all women in France 
aged 20 years or older), followed 
up over a clearly defined risk period 
(e.g. 2010–2020). However, it is 
rare for a study to include all of the 
source population over the entire 
risk period. In cohort studies, there 
could be incomplete recruitment at 
baseline, and some participants may 
be lost to follow-up. Case–control 
studies, by design, involve recruiting 
a sample of control participants from 
the source population, and there may 
also be incomplete recruitment of 

case or control participants; this may 
create selection bias if, as a result, 
the two groups are different from the 
full source population with respect to 
exposure status or level.

Selection bias is present when 
the effect estimate (e.g. the odds 
ratio [OR]) of the association between 
the exposure and the outcome in the 
study population is different from that 
in the source population, because of 
selective recruitment into the study or 
selective loss to follow-up. Thus, the 
defining characteristic of selection 
bias is that it occurs as a result of 
differences between the study popu-
lation and the source population from 
which it is selected. Selection bias 
can occur for a variety of reasons, 
either during initial recruitment from 
the source population (e.g. differential 
recruitment with respect to both the 
exposure and the outcome) or during 

follow-up (e.g. differential retention in 
the study). In a published paper, se- 
lection bias can be particularly dif- 
ficult to assess, for example by IARC 
Monographs Working Groups, be- 
cause few papers report the informa-
tion required to assess and quantify it.

Selection bias is distinct from 
issues of generalizability (or trans-
portability) (Richiardi et al., 2013). 
The terms representativeness, gener-
alizability, and transportability refer 
to comparisons between the target 
population and the source popula-
tion. In most studies, the concept 
of the target population is left unde-
fined, and there is no need to invoke 
some hypothetical target popula-
tion to validly design and analyse a 
study. Moreover, if an exposure has 
a non-null effect in a defined source 
population, or even in a specific 
study population, this is of concern in 
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itself, irrespective of issues of trans-
portability. Thus, in theory, issues of 
transportability are usually not central 
to IARC Monographs reviewers, 
because the focus is generally on 
whether there is a non-null effect in 
any population, rather than the size 
of the effect in a specific popula-
tion. In contrast, evidence synthesis 
often does involve an assessment of 
consistency of results across studies, 
at least in qualitative rather than 
quantitative terms, and any major 
inconsistencies will require further 
consideration and explanation.

Selection bias is often confused 
with issues of representativeness 
(Munafò et al., 2018) but these 
are very different concepts (see 
Chapter 2). In fact, many important 
causal associations (e.g. smoking 
and lung cancer) have been discov-
ered or confirmed in studies involving 
particular subgroups of the general 
population, such as the classic study 
of smoking and lung cancer in British 
doctors (Hill and Doll, 1956). Thus, a 
study should not be assumed to suffer 
from selection bias simply because it 
is not based on a random sample of 
the general population.

According to this definition of se- 
lection bias, if information is obtained 
for all of the source population over 
the entire risk period, then the study 
population is the same as the source 
population; therefore, selection bias 
does not occur. Defined in this way, 
selection bias closely aligns with 
collider bias (see Chapter 2; Hernán 
et al., 2004; Pearce and Richiardi, 
2014), arising because it is only 
possible to analyse data for those who 
have been included in the study, and 

therefore the analysis is conditioned 
on selection into the study. Selection 
bias is not only the result of collider 
stratification. It can also occur when 
selection is associated with effect 
modifiers. Without stratification by, or 
standardization over, those modifiers, 
the effect estimated in such a study 
may be very different from the effect 
that would have been estimated in the 
source population. This type of selec-
tion bias may be less relevant in the 
context of cancer hazard identifica-
tion. Example 5.1 examines selection 
bias in a case–control study.

A primary question posed to 
expert reviewers, such as IARC 
Monographs Working Groups, in the 
context of hazard identification is, 
“Can we reasonably rule out selec-
tion bias as an explanation for an 
observed exposure–cancer associa-
tion?” This can be particularly difficult 
to assess, because most published 
studies provide little or no discussion 
of the potential for selection bias, in 
contrast to the usually more exten-
sive discussions of the potential for 
confounding (Chapter 3) or misclas-
sification (Chapter 4).

One exception to the typical lack of 
available information is the literature 
on the Interphone study (Cardis et al., 
2010); this example is used frequently 
in this chapter, although it is recog-
nized that this level and detail of infor- 
mation is usually not available to IARC 

Monographs Working Groups or other 
expert reviewers.

This chapter starts by discussing 
selection bias in cohort studies and 
then considers the additional forms of 
selection bias that can occur in case– 
control studies. Methods are then pre- 
sented for assessing selection bias in 
a published paper.

5.2 Identifying selection bias 
in cohort studies

Many cohort studies of cancer rely on 
the willingness of people to participate, 
both at baseline and during follow- 
up. Furthermore, the researchers may 
choose different inclusion and restric-
tion strategies in specific analyses 
that may also affect the composition 
of the study population. When re- 
viewing such studies, it is important to 
consider whether such selection may 
have biased the results. The relation 
of selection bias to other types of bias 
is defined in Chapter 2.

In general, important selection 
bias will occur if the selection 
(through either recruitment or 
loss to follow-up) is associated 
with both exposure and disease 
status together (e.g. if exposed 
case participants are more likely 
or less likely than other groups 
to be recruited) (Richiardi et al., 
2013). Therefore, this chapter 
focuses on the situation in which 
selection is associated with both 
exposure and disease.

Key message

Although selection bias is often 
the most mathematically simple 
bias for which estimates of effect 
(see Chapter 7) can be bias-
adjusted, the information needed 
for such bias adjustments is 
rarely available or reported in 
published papers.

Key message
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5.2.1 Non-response at baseline

The first stage at which selection 
bias may occur in a cohort study is 
in the initial recruitment into a study. 
As discussed in the previous section, 
if the entire source population is 
recruited, which may be the situation 
in a register-based study that does not 
rely on consent to participate, then 
selection bias cannot occur (at least 
at baseline). However, even if there 
is incomplete recruitment or partici-
pation, the study population can still 
provide unbiased effect estimates (or, 
at least, estimates that are unbiased 
by selection issues). For example, a 
study with a 40% response rate at 

baseline may nevertheless be almost 
completely unbiased if non-response 
is not associated with either expo-
sure or disease. Selection at base-
line that is related to a particular 
exposure (e.g. socioeconomic status 
[SES]) should not bias future results, 
as long as participation is not also 
associated with future disease status 
(e.g. if affluent people are more 
likely to participate than non-affluent 
people, but their participation is not 
related to whether they will or will not 
develop the disease being studied). 
However, if exposure and outcome 
jointly determine selection (e.g. 
affluent people who will eventually 
develop the disease are more likely 

to participate in the study, or non-af-
fluent people who will stay healthy 
are more likely to participate than 
others), this will result in a selection 
bias arising because the analysis 
includes only those who participated 
in the study (i.e. the analysis condi-
tions on participation in the study) 
(see Chapter 2 and Section 5.1). 
There is also the possibility of selec-
tion bias if, instead of the outcome 
itself, it is an outcome risk factor that 
determines selection at initial recruit-
ment, because that risk factor could 
alter the causal effect estimate in the 
study population, acting in the same 
way as a confounder (see Chapter 2). 

Example 5.1. Selection bias in a case–control study

Fig. 5.1 illustrates the occurrence of selection bias in a case–control study of opium use and bladder cancer, an 
example discussed in more detail later in this chapter. Chapter 2 introduced the use of directed acyclic graphs 
(DAGs) to ascertain the possible presence of selection bias. In this DAG, participation in the study is affected 
by both opium use and bladder cancer. Opium users may be more hesitant than non-opium users to participate 
in a study. People with bladder cancer (potential case participants) may be more likely than control subjects to 
participate in the study (e.g. because of their interest in the subject) or less likely to participate because of their 
illness status. A box is drawn around “Participation in the study” to indicate that all analyses condition on this factor 
(i.e. analyses are limited to this group). In this example, an opium use–bladder cancer association could be found 
in a study, even if one did not truly exist. Alternatively, if this were not a case–control study but, rather, included the 
entire source population, then selection bias could not occur, because everyone would be enrolled in the study and 
nothing could affect participation. Thus, whether someone had used opium or had bladder cancer would not affect 
participation in the study, and there would be no arrow from “Opium use” or ” “Bladder cancer” to “Participation in 
the study”. (text continues on page 125)

Fig. 5.1. Illustrative example of possible selection bias in a case–control study of opium use and bladder cancer.

Bladder 
cancer

Opium use

Participation 
in the study

Fig. 5.1
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However, such bias will usually be 
small, as shown in Example 5.2.

Side Box 5.1 outlines the key infor-
mation that should be reported to 
facilitate assessment of bias due to 
non-response at baseline.

Traditionally, in cohort studies, the 
assumption has been that because 
potential participants are not aware of 
their risk of future disease at baseline, 
this will not influence their decision to 
participate, and selection at baseline 
has been considered a minor problem 
compared with loss to follow-up, 
which may be jointly determined by 
exposure and outcome. However, 
this has been questioned in the UK 
Biobank study, for which the initial 
response rate was only 5.5%, and 
in which it was shown that participa-
tion in the study was related to some 
particular exposures and outcomes 
(Fry et al., 2017; Munafò et al., 2018). 

However, this bias would apply only 
to the cross-sectional analyses of 
the baseline data, and will usually be 
small (see Example 5.2).

Moreover, Richiardi et al. (2013) 
have argued that this type of selec-
tion bias will not occur in a cohort 
study if people with prevalent disease 
at baseline (or who are diagnosed 
soon after baseline) are excluded, 
assuming that other factors that 
influence participation do not also 
affect disease (see Example 5.3). 
This is possible in cohorts for which 
electronic health record-linked data 
are available; this would enable the 
identification of cases of disease that 
occur after recruitment. Therefore, for 
IARC Monographs Working Groups it 
is important to consider the probable 
latency period (usually assumed to 
be about 5 years for cancer) during 

which disease may be present but not 
yet diagnosed.

5.2.2 Loss to follow-up

Selection bias may also occur when 
loss to follow-up differs between 
exposed and unexposed people, 
because this is related to the ability to 
observe disease outcomes.

Selection bias occurring from 
loss to follow-up is perhaps of 
more concern than selection 
bias from recruitment in cohort 
studies (and in case–control 
studies based on them), because 
exposure, predictors of the 
outcome, and the outcome 
itself may now jointly determine 
participation.

Key message

Example 5.2. Magnitude of selection bias

Pizzi et al. (2011) demonstrated that when both the exposure and another risk factor that is independent from 
the exposure double the probability of selection into the study and the other risk factor also doubles the risk of 
the outcome, this selection bias will result in an observed relative risk of only 1.02 for the exposure–outcome 
association when the true relative risk is 1.0. Moreover, this bias can be corrected if the analyses are adjusted 
for the risk factors that determine the selection. In this example, it is assumed that the exposure is not associated 
with the other risk factor in the source population; if they were associated, the bias would be larger. (text continues 
above)

Side Box 5.1. Information that should be reported to enable the assessment of bias due to non-response at baseline

The key parameters that should be reported to enable the post-publication assessment of selection bias are the 
probability of participation in the study stratified on exposure and disease status. Unfortunately, these are rarely, 
if ever, available. In particular, for studies involving consent from the participants, this information will rarely be 
available for those who do not consent, although some information may be available from the sampling frame 
(e.g. some population registers include information on age and sex). Authors should report not only the overall 
response rate but also the response rates in key subgroups of interest by baseline exposure status. In addition, 
descriptive tables of participants and non-participants (with sex, SES, age, ethnic group, and major risk factors if 
possible) should be provided. (text continues above)
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Selection bias from loss to follow- 
up can also occur in randomized trials, 
even when the exposure (which in a 
randomized trial would be the inter-
vention) has been randomized at 
baseline. In particular, if there is loss 
to follow-up and this is jointly asso-
ciated with both exposure status and 
outcome status, then selection bias 
can result, because all analyses will 
include only those participants for 
whom there are follow-up data. When 
both the exposure and the outcome 

affect participation in follow-up, the 
structure of the bias is analogous to 
the DAG illustrated in Fig. 5.2. In this 
DAG, a predictor (V) of the exposure 
(X) causes loss to follow-up (L), and a 
separate predictor (U) of the outcome 
(Y) also causes loss to follow-up. An 
analysis that is restricted to those 
who are not lost to follow-up (L = 0) 
will suffer from selection bias, as illus-
trated by the fact that the backdoor 
pathway X–V–U–Y is unblocked in 
the DAG (as explained in Chapter 2). 

Without further analytical adjustments 
for loss to follow-up (such as analyt-
ical adjustment for V), the analysis of 
the effect of X on Y among L = 0 will 
be biased.

Such biases are usually diffi-
cult to assess in published studies, 
because the relevant information is 
often not available or not reported 
(Example 5.4 and Side Box 5.2). 
However, reviewers can draw a DAG, 
such as the DAG illustrated in Fig. 5.2, 
and determine whether the authors 

 Example 5.3. Assessing bias due to non-response at baseline in an occupational cohort study of flight  
   attendants

A study was conducted to evaluate the association of exposure to cosmic radiation and circadian disruptors with 
breast cancer risk in former flight attendants (Schubauer-Berigan et al., 2015). The response rate for inclusion in 
this study was 64.4%. Selection bias could have occurred if participation was related to employment characteristics 
as a flight attendant and also to the disease. The breast cancer incidence cohort of flight attendants was a subset 
of a cohort (the mortality cohort) of former flight attendants employed by Pan American World Airways (Pan Am) 
for at least 1 year, for which the main outcome considered was breast cancer mortality. The incidence cohort 
was assembled from the personnel records of Pan Am. Women (n = 9461) in the mortality cohort were invited to 
participate in the incidence cohort by completing a detailed telephone interview or mailed questionnaire (2002–
2005), which contained questions about their demographic information, work history, and non-occupational risk 
factors for breast cancer (e.g. reproductive history and use of alcohol, tobacco, and hormone replacement therapy 
[HRT]). The next of kin of deceased flight attendants were also contacted and were each invited to complete the 
questionnaire about the decedent. Duration of employment was closely correlated with estimated cumulative 
exposure to cosmic radiation.

After some minor exclusions, the incidence cohort included all the respondents to the telephone interview and 
mailed questionnaire (n = 6093 women, 64.4% of the 9461 eligible women in the mortality cohort); 2% of the cohort 
overall and 8% of those with breast cancer were deceased. The response rate for proxies of decedents (n = 134) 
was lower (41%) than among living cohort members (65%). For women who died after a breast cancer diagnosis, 
the response rate was similarly low (46%). The median duration of Pan Am employment based on workplace 
records among the respondents was 5.8 years and was slightly longer than for the mortality cohort (5.0 years), 
suggesting that long-term employees of Pan Am were more likely to respond to the questionnaire. Other major 
sociodemographic differences between participants and non-participants were very small (Pinkerton et al., 2016). 
Although there were some small differences in response rates between deceased and living cohort members, the 
overall potential selection with regard to breast cancer could be expected to be minimal, given the small number 
of decedents and the lack of major differences in major socioeconomic and exposure factors between participants 
and non-participants. The fact that the participants had worked slightly longer than the non-participants, and 
therefore had more shift work (which is a potential circadian disruptor and thus a possible risk factor for breast 
cancer), is unlikely to have resulted in large selection bias, unless breast cancer risk also affected participation in 
the study. (text continues on page 127)
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Fig. 5.2. DAG showing bias due to loss to follow-up in a cohort study: L, indicator for loss to follow-up; U, unmeasured 
covariate; V, measured covariate; X, exposure of interest; Y, outcome.

YX

L

V U

Fig. 5.2

 Example 5.4. Bias due to loss to follow-up in an occupational cohort study of flight attendants

Cancer follow-up is frequently based on existing cancer incidence or mortality records. However, national cancer 
incidence registries are available in only a small number of countries. When cancer incidence is not available 
through linkage to records, other follow-up methods are needed. An example is a study in the USA of breast 
cancer among Pan Am flight attendants (Schubauer-Berigan et al., 2015).

Breast cancer incidence in the flight attendant cohort was compared with that in the general population. The 
incidence cohort included 6093 women who responded to a questionnaire, of whom 134 were proxy respondents 
in the survey, mostly for deceased cohort members (see Example 5.3).

Information on incident breast cancers was first obtained through self-report of a cancer in the questionnaire. 
A medical record follow-back of each reported case of cancer was conducted by contacting the physician’s office, 
hospital, or other health-care organization in which the cancer diagnosis was made and obtaining supporting 
documentation of the diagnosis. Self-reported breast cancers that were refuted by a review of the medical records 
were not included, but reported cancers that were neither confirmed nor refuted were included. The incidence 
cohort was also linked to cancer registries in six states, based on the locations of the domiciles for the airline and 
on common states of residence for the cohort; 82% of the cases of breast cancer in the cohort were verified using 
medical record follow-back, cancer registry linkage, or both. Loss to follow-up could have occurred if a substantial 
proportion of the cohort lived in areas without a cancer registry. However, this did not seem to be the situation for 
this study. (text continues on page 128)

Side Box 5.2. Information that should be reported to enable the assessment of bias due to loss to follow-up

The ideal information that would be reported to enable investigators to determine the presence of bias due to loss 
to follow-up would be the distribution of exposure, outcome, and confounders, stratified by whether participants 
were lost to follow-up. Unfortunately, this information will not generally be available, and it will be impossible to 
know whether the outcome distribution differs by loss to follow-up, because such data are not collected from 
those who are lost to follow-up. Instead, investigators are limited to examining the distribution of exposures and 
confounders collected earlier in the study and evaluating whether there are differences in distributions between 
those who were and were not lost to follow-up. Any differences in loss to follow-up by the exposure or other key 
variables should be reported and treated as possible sources of selection bias. (text continues on page 128)
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adjusted for a sufficient set of vari- 
ables to reduce selection bias due 
to loss to follow-up. In the absence 
of such information, reviewers can 
conduct a sensitivity analysis for the 
probable extent and direction of selec-
tion bias (due to loss to follow-up) 
using the methods presented in 
Section 5.4.4.

5.2.3 Time-zero specification

In the previous section, it is assumed 
that the source population is followed 
up for the entire risk period, and that 
this risk period is properly defined. 
To explore this concept further, it is 
necessary to first define the concept of 
time zero. In a randomized controlled 
trial, this is the time at which a poten-
tial study participant meets all of 
the criteria for inclusion. The inclu-
sion criteria have been applied and 

treatment has been randomized; at 
this point, follow-up time (outcome 
recording) has begun (Hernán et al., 
2016). In a cohort study, one should 
attempt, as much as possible, to align 
these components, to define a time 
zero. Time-zero misalignment can 
sometimes create selection biases 
(Example 5.5).

5.2.4 Left truncation (prevalent 
exposures)

Left truncation can result when the 
effects of exposure occur fairly rapidly 
after first exposure but study partici-
pants are not studied from first expo-
sure. This situation is also known as 
prevalent exposures, i.e. when follow- 
up of participants begins after expo-
sure has begun, so cumulative (prev-
alent) exposure at enrolment is the 
starting point.

As shown in Example 5.6, haz- 
ardous effects have often been 
missed in cohort studies in which 
most study participants were only 
followed up from 10 or more years 
after first exposure. This type of bias 
can often lead to paradoxical results, 
as with HRT use: the people at highest 
risk die early, leaving the healthiest 
exposed people to be studied at 
later time points and suggesting an 
apparent beneficial effect of the expo-
sure when the study is limited to that 
group (Flanders and Klein, 2007). 
The direction and magnitude of the 
bias are highly context-specific. For 
example, in a cancer cohort study of 
an exposure with a long latency period 
(i.e. the time between exposure and 
disease induction), there may be little 
or no bias from left truncation (e.g. if 
the 5–10 years after first exposure 
are not included). In contrast, as 

Example 5.5. Identifying time zero in an occupational cohort study of flight attendants

In an occupational cohort study, if there is a requirement that eligible participants have worked in the industry for 
at least 1 month, then time zero will usually be a specified period (1 month) after the start of employment, and 
follow-up will start from that date. Bias will occur if follow-up time is counted from the start of employment, because 
person-time will then be counted for the eligibility period, but anyone who dies during that year will be excluded 
from the study. In the study of the Pan Am flight attendants described in Examples 5.3 and 5.4 (Schubauer-Berigan 
et al., 2015), participants were eligible for inclusion if they had been employed by the airline for at least 1 year. In 
the statistical analyses of the association between circadian disruption metrics and breast cancer, follow-up began 
no earlier than 1 year after the start of employment (other criteria for the start of follow-up were also applied). (text 
continues above)

 Example 5.6. Left truncation as a source of selection bias in studies of hormone replacement therapy

Hernán (2015) has identified left truncation as a source of selection bias in studies of the effects of HRT use in 
women, where cohort studies and randomized controlled trials initially yielded different findings, with the former 
showing protective effects and the latter showing increased risks from HRT use. Hernán (2015) showed that this 
was because the hazardous effects of exposure on cardiovascular disease occurred in the first 5–10 years after 
first exposure. (text continues above)
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shown in Example 5.6, for HRT use, 
left truncation would produce serious 
bias because the hazardous effects 
occurring 5–10 years after first expo-
sure would not be identified.

Cohort studies (and corresponding 
nested case–control studies) that 
involve left truncation (prevalent ex- 
posures) may suffer from selection 

bias (Danaei et al., 2012). However, 

Vandenbroucke and Pearce (2015a, 

b) have argued that although this 

form of selection bias can occur, the 

resulting effect is often trivial. This is 

particularly true for studies of out- 

comes, such as occupational cancer, 

where the induction time for the expo- 

sure to have an effect can be long 

(Example 5.7). Moreover, Vanden- 

broucke and Pearce (2015a, b) have 

shown that, provided the relevant in- 

formation is available for each period 

of time since first exposure, any such 

left truncation bias can be removed 

or minimized by stratifying on (and 

adjusting for) time since first ex- 

posure in the analysis (Side Box 5.3).

5.2.5 Insufficient follow-up

The corresponding problem of right 
truncation occurs when study par- 
ticipants are not followed up for a 
sufficiently long period after first 
exposure. For example, if a study 
involves a risk period of 10 years but 
is restricted to incident exposures 
(i.e. participants exposed for the first 
time during the risk period), then the 
maximum follow-up time after the 
first exposure for any study partici-
pant will be 10 years, which will be 
insufficient for most studies of cancer, 
particularly cancers with long latency, 
such as many solid tumours. This 
depends on the research question, 
but if, for example, the hypothesis is 
that the exposure can cause cancer 
10–25 years after first exposure and 

In cancer studies, left truncation 
is of concern mainly when the 
induction or latency period is 
likely to be short, for example 
for most childhood cancers and 
for some adult cancers, such as 
leukaemia, or when follow-up 
begins decades after the start of 
exposure.

Key message

Example 5.7. Left truncation in a population-based cohort study of breast cancer

In a cohort study of night shift work and breast cancer that was based on the Generations Study, middle-aged 
women were asked at baseline about their exposure to night shift work during the previous 10 years (Jones et al., 
2019). The study found no association between being a night shift worker within the previous 10 years and invasive 
breast cancer (hazard ratio [HR], 0.98; 95% confidence interval [CI], 0.85–1.14). Because of the left truncation 
in exposure assessment, long-duration night shift workers were included in the exposed group only if they had 
survived long enough to enter the 10-year recording period and if they were still working night shifts at that time. 
Furthermore, because night shift work is most common at young ages, the unexposed group could have included 
an unknown number of women who had worked night shifts at earlier periods in their lives. (text continues above)

Side Box 5.3. Information that should be reported to enable the assessment of bias due to left truncation

The key parameters that should be reported to enable the post-publication assessment of selection bias due to 
left truncation are the proportions of study participants who were affected by prevalent exposures at baseline and, 
ideally, for how long these participants had been exposed (minimum, median, and maximum) before follow-up 
started. Ideally, the reported findings should also be stratified by time since first exposure. For cancer, because of 
the relatively long induction or latency period, one would expect the exposure–disease association to vary over 
time since first exposure. In this situation, heterogeneity by time since first exposure is expected and may also 
account for differences between studies (e.g. if there were different distributions of time since first exposure in 
different studies). (text continues above)
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follow-up has been for only 10 years 
from first exposure, this represents a 
selection bias. Thus, Vandenbroucke 
and Pearce (2015a, b) argue for the 
inclusion of both incident and preva-
lent exposures, but with stratification 
on, and adjustment for, time since first 
exposure, if appropriate (Example 5.8 
and Side Box 5.4).

5.3 Identifying selection bias 
in case–control studies

The case–control design is a particu-
larly efficient approach for studying 
rare diseases that can be difficult to 
study prospectively because a large 
cohort size, a long follow-up period, 
or both would be required to accrue 
enough case participants and attain 
adequate statistical power. Popula- 
tion-based case–control studies can 
also be advantageous (Side Box 5.5), 
because they enable the study of 
exposures across the whole range of 

occupations and industries, whereas 
industry-based cohort studies tend to 
be focused on a restricted group of 
agents within a specific setting.

As noted earlier, if a cohort study is 
based on a particular population over 
a certain period, selection bias can 
occur from selection into the study, 
loss to follow-up, left truncation, or 
right truncation. All of these biases 
can occur in a corresponding case–
control study based on the same 
source population followed up over 
the same period. For example, if the 
source population for a cohort study is 
restricted to incident exposures (e.g. 
the newly employed inception cohort 
in a particular factory or industry) and 
the follow-up period is too short, bias 
due to right truncation can occur. A 
case–control study based on this 
source population and risk period will 
be affected by exactly the same bias.

Additional selection issues can 
arise in case–control studies, 

particularly because control partic-
ipants are selected from the source 
population and bias may occur as a 
result of this selection process. Bias 
may also occur if not all of the case 
participants in the source popula-
tion and risk period are selected for 
recruitment into the study. The focus 
here is on the inappropriate selection 
of case or control participants, and on 
non-participation of case and control 
subjects. It should be reiterated that 
it is important to distinguish selec-
tion bias from generalizability, as 
discussed in Section 5.1.

When evaluating the literature with 
regard to the potential for bias due 
to the selection of case or control 
participants, the ultimate focus will 
often be not only on whether there is 
bias but also on the potential direc-
tion and magnitude of the bias. This 
chapter first discusses the mecha-
nisms of potential bias, with some 
examples, before turning to the 

Example 5.8. Right truncation in the cohort of atomic bomb survivors in Japan

A classic example to examine the effects of latency and right truncation draws on the studies conducted among 
survivors of the atomic bombs in Hiroshima and Nagasaki, Japan. Because the radiation occurred at a known 
time point, this provides a useful example. In an analysis with follow-up from 1950 through 2000, Richardson et 
al. (2009) showed that there was no evidence of an association between radiation and lymphoma mortality during 
periods up to 35 years after irradiation. It was only during follow-up periods of 36–45 years and 46–55 years 
after irradiation that positive associations were observed, pointing to the need for long follow-up to avoid right 
truncation. (text continues above)

Side Box 5.4. Information that should be reported to enable the assessment of bias due to right truncation

The key parameters that should be reported to enable the post-publication assessment of selection bias due 
to right truncation are the minimum, median, and maximum lengths of follow-up for the study participants from 
baseline, as well as the corresponding times since first exposure. As with left truncation (see Side Box 5.3), to 
enable the assessment of possible bias due to right truncation, the findings should also be stratified by time 
since first exposure. Once again, heterogeneity by time since first exposure is to be expected for many cancer 
outcomes. (text continues above)
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question of direction and magnitude 
of bias in Section 5.4.4. The initial 
focus is on relatively simple selection 
mechanisms that enable the reader 
to intuit the implied direction of the 
bias. Section 5.4.4 gives more formal 
tools to determine the direction and 
magnitude of bias. Elsewhere in this 
book, biases are discussed in terms 
of being towards or away from the 
null. However, selection bias results 
in biases that are either upwards or 
downwards, and in this chapter the 
result of selection bias is referred 
to in those terms. For instance, an 
upward bias (which may result if 
exposed cases are more likely than 
unexposed cases to be enrolled in the 
study) could result in a true odds ratio 
of 1.5 being estimated as an odds 

ratio of 2.0, which is both upwards 
and away from the null. However, the 
same mechanism could bias a true 
odds ratio of 0.5 to an estimated odds 
ratio of 0.8, which is both upwards 
and towards the null.

5.3.1 Selection of case 
participants

(a) Source of case ascertainment

Ascertainment of all eligible case 
participants within a source popula-
tion can be achieved in several ways, 
such as using central registry infor-
mation that is continually updated to 
include incident cases, or conducting 
comprehensive active ascertainment 
of case participants across medical 
facilities (pathology departments, 

hospital registries, etc.). Referral by 
medical sources (treating physicians, 
clinics, etc.) alone may result in incom-
plete ascertainment of case partici-
pants. To avoid incomplete selection 
of case participants, information from 
several sources can be used for 
cross-validation (Example 5.9).

Depending on the approach being 
used, cases of more-aggressive or 
less-aggressive cancers may be 
missed (Example 5.10). Population-
based ascertainment of benign 
tumours, which are not necessarily 
included in central tumour registries, 
can pose a particular challenge. 
Ascertainment across a very large 
number of treating institutions may 
be necessary but is logistically diffi-
cult (Example 5.11).

Example 5.9. Cross-validation to improve ascertainment of case participants

To improve the accuracy of case ascertainment of brain tumours in the Interphone study, most study centres used 
one or more secondary information sources, including medical archives, hospital discharge and billing files, and 
hospital or regional cancer registries (Cardis et al., 2007). (text continues above)

Side Box 5.5. The population-based case–control study Interphone

Within the four main themes considered in this book to illustrate the concepts of interest (red meat consumption, 
opium consumption, radiofrequency electromagnetic field (RF-EMF) radiation, and night shift work), examples 
are often drawn from the Interphone study of RF-EMF radiation exposures (Cardis et al., 2010). This carefully 
conducted multicentre study included several ancillary and detailed analyses to rule out potential biases. While 
the study is cited here for illustrative purposes, this should not be considered as a judgement on the quality of the 
study but, rather, reflects the extensive attention given to methodological issues in the study. Therefore, the study 
represents a model of careful consideration and discussion of such issues. Most published studies do not report 
this level of information relevant to selection bias. In this situation, one is usually left with other tools for assessing 
selection bias, for example through the use of negative control exposures or negative control outcomes (see 
Section 5.4.2) or hypothetical sensitivity analyses (see Section 5.4.4). (text continues on page 132)
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(b) Type of diagnosis 
confirmation

Studies of cancer usually rely on 
cases of cancer that have been veri-
fied histologically. Rapid access to 
pathological findings is especially 
important for cancers with a poor 
prognosis, and this can preclude the 
use of central registries. Alternative 
approaches, which can vary in sensi-
tivity, are sometimes used, depending 
on the disease and the study setting 
(Example 5.12).

(c) Exclusion of case participants 
based on previous history of 
cancer

In some studies of cancer, patients 
with previous histories of other can- 
cers are excluded as case partici-
pants; this can result in the incomplete 

inclusion of eligible case participants 
in the source population and risk 
period (Example 5.13).

(d) Disease detection issues

Some cancers (e.g. prostate, breast, 
colon) may be more likely to go unde-
tected in countries where detection 
is associated with higher SES. The 
ascertained cases may thus under-
represent subpopulations with lower 
SES, who in turn may have greater or 
lesser exposure. An example of this 
could be lower breast cancer detec-
tion among women with lower SES, 
who may be more often exposed to 
night shift work. With this selection 
mechanism, exposed cases would 
be less likely to enrol than unexposed 
cases; the observed effect estimate 
(e.g. the odds ratio) would be biased 

downwards, and any observed posi-
tive effect estimate would be smaller 
than the true effect estimate due to 
this selection bias.

(e) Inclusion of prevalent cases 
of cancer

Cancer case–control studies are 
usually based on newly diagnosed 
incident cases (Vandenbroucke and 
Pearce, 2012). In general, preva-
lent cases of cancer (i.e. those that 
were diagnosed at some previous 
time point) should not be included. 
However, for some rare tumours 
with a very prolonged onset, such as 
chronic lymphocytic leukaemia, it may 
be difficult to conduct a sufficiently 
large study without also including 
prevalent cases. It is sometimes not 
reported clearly whether a study was 

Example 5.10. Potential bias resulting from differential selection of case participants

In a case–control study of opium consumption and urinary bladder cancer, conducted in the Islamic Republic of 
Iran (Shakhssalim et al., 2010), an IARC Monographs Working Group noted that there appeared to be a selection 
of case participants with less-aggressive bladder cancer (Table 2.2 in IARC, 2021). Such differential selection 
of less-severe cases of cancer could introduce bias if, for example, case participants were ascertained from a 
screening programme in which opium users were less likely to participate. This could occur because of differences 
in access to health services or in willingness to access them. In such a situation, exposed case participants would 
be underrepresented in the case–control study, compared with unexposed case participants, and this would bias 
the observed effect towards the null. (text continues on page 133)

Example 5.11. Potential bias from incomplete case ascertainment of benign tumours

In the Interphone study, many participating centres did not have access to centralized registries of benign parotid 
gland tumours, and complete case ascertainment would have been problematic (Cardis et al., 2007). As a result, 
only malignant parotid gland tumours were included in the study. This would not necessarily introduce a selection 
bias, but it would mean that the findings applied only to malignant tumours and may not be generalizable to benign 
tumours. (text continues below)
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restricted to incident cases of cancer 
or also included prevalent cases 
(Example 5.14).

Selection of case participants in 
case–control studies can be accom-
plished by selecting either all eligible 
cases or a representative sample 
of those cases. The most common 
approach is for an investigator to try to 
enrol all eligible cases (in the source 
population, over the risk period) in a 
case–control study. However, it is also 
possible to conduct a case–control 
study by selecting a fraction of the 
eligible cases. In this study design, 
investigators should sample cases 
using the same sampling frame used 
for controls, namely that selection 
of case participants should be inde-
pendent of their exposure status. This 
point is examined in greater detail in 
Section 5.3.2.

5.3.2 Selection of control 
participants

(a) Population control participants

Ideally, in case–control studies, case 
and control participants should repre-
sent the same underlying source 
population over the same risk period. 
Appropriate selection and recruitment 
of control participants in a study can 
be a significant challenge logistically 
and may pose a threat to study validity. 
Population-based control participants 
are usually preferred, and several 
approaches can be taken to attempt a 
full population coverage; for example, 
electoral lists, telephone directories, 
or lists of general practitioners, where 
available, could be consulted (any 
restrictions in availability would apply 
to the source population and should 
therefore also be applied to the case 

participants). Exhaustive recruitment 
of eligible population control partici-
pants is difficult, and response rates 
in case–control studies of cancer 
have been shown to decrease over 
the years. For instance, the median 
response rate among population 
control participants in this type of 
study conducted in 1971–1980 was 
75.6%, compared with 53.0% in 
2001–2010 (Xu et al., 2018). Although 
a lower response rate does not neces-
sarily produce selection bias, there 
is a higher potential for such bias 
to occur. The most important point 
to emphasize in selection of control 
participants is that for an unbiased 
estimate, control participants should 
represent the exposure distribution 
in the source population. A sufficient 
approach to solving this problem is to 
sample control participants from the 

Example 5.13. Potential bias from excluding people with previous cancer from the study

In the Interphone study, patients in Denmark who had been found to have had any previous cancer (excluding non-
melanocytic skin cancer) were excluded from the study (Cardis et al., 2007). If mobile phone use was associated 
with other cancers, this exclusion could lead to fewer exposed cases being eligible for the study. If this were 
the only source of bias, it would bias the observed effect estimate downwards. More probably, such a source of 
bias would affect the selection of control participants to a lesser extent. Interested reviewers can use the simple 
methods outlined in Section 5.4.4 to determine the direction of bias. (text continues on page 134)

Example 5.12. Potential selection bias arising from different sources of case ascertainment

In most participating countries in the Interphone study, diagnoses were either histologically confirmed or 
based on unequivocal diagnostic imaging (Cardis et al., 2007). However, in a few countries, only histologically 
confirmed tumours were included. This could introduce selection bias if a particular exposure were associated 
with diagnostic imaging. For example, if diagnostic imaging were available only through private hospitals, the case 
group (identified through histology) might underrepresent cases of cancer in more-affluent patients compared with 
less-affluent ones, and would also underrepresent exposures associated with affluence, although biasing the odds 
ratio downwards for these exposures. (text continues on page 134)
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source population without regard to 
their exposure status.

Study participants have repeatedly 
been shown to have a higher educa-
tion level or higher SES than non-par-
ticipants (e.g. Fry et al., 2017). Large 
differences in SES between case 
and control participants could reflect 
selection bias if exposure is asso-
ciated with SES. This may apply 
particularly to the selection of control 
participants, for which there are often 
larger problems of non-response than 
in the selection of case participants 
(Example 5.15).

(b) Hospital control participants

In some instances, it is logistically 
difficult or impossible to enumerate 
the source population and therefore 

impossible to recruit control partici-
pants at random from the same source 
population as the case participants. 
A common alternative strategy is to 
recruit as the control group patients 
(in the same source population and 
risk period) who have other diseases 
but attend the same health services 
as the case participants. In recruiting 
such control participants, it is impor-
tant to draw on other diseases unre-
lated to the exposure of interest (so 
that selection of control participants 
does not depend on the exposure), 
because otherwise there is a risk of 
introducing selection bias. Although 
it is not possible to remove such 
selection bias through analysis, the 
direction of the bias can be predicted 
based on knowledge of the exposure 

and relation to the disease in the 
control group.

If the exposure of interest is a 
risk factor for the control dis- 
ease or the prevalence of the 
exposure is lower in the source 
population than among the 
control participants (for some 
other reason), then the odds ratio 
estimate is biased downwards. 
Conversely, if the exposure of 
interest is a preventive factor 
for the control disease or the 
prevalence of the exposure is 
higher in the source population 
than among the control par- 
ticipants (for some other reason), 
then the odds ratio estimate is 
biased upwards.

Key message

Example 5.14. Potential bias arising from inclusion of prevalent cases

When reviewing a case–control study of opium consumption and urinary bladder cancer conducted in the Islamic 
Republic of Iran (Shakhssalim et al., 2010), the IARC Monographs Working Group noted that it was unclear 
whether newly registered cases of cancer might include prevalent cases (IARC, 2021). If prevalent cases were 
included, this would mean that the overall case group would be weighted towards patients with less-aggressive 
tumours, because those previously diagnosed with more-aggressive tumours were more likely to have died. If 
opium consumption caused less-aggressive tumours and these were overrepresented in the study because of the 
inclusion of prevalent cases, this in turn would produce an increase in the estimated odds ratio compared with that 
which would have been obtained if the case group had been restricted to patients with only incident tumours. (text 
continues on page 135)

 Example 5.15. Indirect evaluation of potential selection bias from differential participation rates in a case– 
  control study

In a case–control study of night shift work and prostate cancer, the sociodemographic characteristics of participants 
and non-participants, stratified by case–control status, were compared using census-based SES indicators for 
participants’ residential addresses (Barul et al., 2019). The small differences in SES observed between participants 
and non-participants provided reassurance that there was not major selection bias based on exposure. If such 
information were not available, one could still attempt to estimate the probable magnitude and direction of any 
such bias using the quantitative methods outlined in Section 5.4.4. (text continues above)
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Control diseases should be se- 
lected with caution after the research 
question and the exposure of inter- 
est have been clearly defined. Fur- 
thermore, several diseases can be 
chosen to dilute potential bias intro-
duced by using one particular disease 
for the control participants, as well as 
to provide a sufficient sample size 
to enable sensitivity analyses with 
various disease control series.

(c) Berkson bias

Berkson bias is a special type of se- 
lection bias that may arise when case 
participants are selected from hos- 

pitalized patients and the exposure 
of interest affects the probability of 
hospitalization if some case partic-
ipants are more likely to be hospi-
talized if they also have another 
disease (Snoep et al., 2014). Under 
this scenario, Berkson bias may 
occur both in studies with population 
control participants and in studies 
with hospital control participants. 
Fortunately, in cancer studies based 
on incident cases of cancer, the 
impact of Berkson bias is likely to be 
reduced, because most (if not all) case 
participants selected in the hospital 
will have been hospitalized because 

of the case disease (Pearce and 
Richiardi, 2014). Thus, among those 
case participants, the exposure is not 
an independent cause of hospitaliza-
tion; in other words, it is unlikely that 
a case participant was incidentally 
discovered among people admitted 
to the hospital for a different reason. 
The same logic applies to selection 
of control participants when control 
participants are recruited from within 
a hospital; the control disease should 
be the cause of hospitalization, rather 
than being merely present in patients 
hospitalized for other reasons (see 
Examples 5.16 and 5.17).

Example 5.16. Evaluating potential Berkson bias in a case–control study

Mohebbi et al. (2021) conducted a case–control study of opium use and head and neck squamous cell carcinoma 
in 10 provinces in the Islamic Republic of Iran. Included case participants had an incident head and neck cancer 
and were actively identified through review of admission and treatment information of patients admitted at the 
cancer care centres of the provinces involved in the study. Control participants were “hospital visitors who were 
relatives or friends of hospitalized patients in either nononcology wards or who visited the hospital for any reason 
other than receiving treatment concurrently” (Mohebbi et al., 2021). Berkson bias is unlikely in this study, because 
all case participants had an incident disease and control participants were not hospitalized. Although Berkson 
bias may not be a concern in this study, it should be noted that the recruitment of friends as control participants 
could cause substantial bias, for other reasons. If opium use does, in fact, cause head and neck cancer, we would 
expect a higher prevalence of opium use among case participants than among the general population. However, 
friends of hospitalized patients who are opium users may also be more likely to use opium and, as a result, the 
control series could overestimate the prevalence of opium use in the general population, biasing the observed 
effect estimate downwards. (text continues above)

Example 5.17. Evaluating potential selection bias from recruitment of hospital-based control participants

The Working Group for IARC Monographs Volume 126, on opium consumption (IARC, 2021), evaluated several 
hospital-based case–control studies, all conducted in the Islamic Republic of Iran. For some of these studies, the 
Working Group raised concerns about the possibility of selection bias arising as a result of the choice of the control 
diseases. To avoid this source of selection bias, the disease (or diseases) used to identify hospital-based control 
participants should be unrelated to the exposure of interest (opium consumption in this example), while it can be 
affected by other risk factors for the case disease that are unrelated to the exposure of interest. (text continues on 
page 138)
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The direction of Berkson bias can 
be predicted, theoretically, if the direc-
tion of the association between the 
exposure and the control disease is 
known or, empirically, if there is infor-
mation on the prevalence of the expo-
sure in the source population (e.g. the 
catchment area of the hospital). If the 
exposure of interest is a risk factor for 
the control disease or the prevalence 
of the exposure is lower in the source 
population than among the control 
participants (who have the control 
disease), then the odds ratio estimate 
is biased downwards; if the exposure 
of interest is a preventive factor for the 
control disease or the prevalence of 
the exposure is higher in the source 
population than among the control 
participants, then the odds ratio esti-
mate is biased upwards.

Another source of non-population 
control participants includes visitors 
to hospitals (see Example 5.16). In 
some instances, this is less likely to

result in selection bias because the 
visitor control participants are per- 
haps more likely than hospitalized 
control participants to be represen- 
tative of the general (source) popula-
tion (Example 5.18); however, great 
caution should be exercised because 
hospital visitors could share sim- 
ilar exposure patterns to the case 
patients being visited.

(d) Using more than one control 
group

The inclusion of more than one 
control group allows for a triangula-
tion approach in which the extent and 
direction of bias is likely to vary across 
the control groups, and the findings 
obtained for the different groups can 
be compared (see Chapter 6). This 
approach is often used in hospi-
tal-based case–control studies in 
which people with different diseases 
are recruited to form different control 
groups (Example 5.19). This topic is 
discussed further in Section 5.4.4.

5.3.3 Participation of case and 
control participants

There is a potential for selection bias 
when both the disease and the expo-
sure status affect participation in the 
study. This is common in case–control 
studies, because potential partici-
pants typically know their disease 
and exposure status. In addition, 
case and control participants may 
be approached in different settings 
(e.g. hospitalized case participants 
and population control participants), 
and case participants with a poor 
prognosis might be excluded if they 
die before recruitment is possible. 
Furthermore, a person’s interest in 
the study topic may depend on the 
outcome status (in general, case 
participants are expected to be more 
motivated to participate than control 
participants) as well as on the expo-
sure (some people may believe, 
for example, that their participation 
in a study is not essential if they 
have had no or low exposure); see 
Example 5.20a.

Example 5.18. Recruiting hospital visitors as control participants

In a case–control study of opium use and oesophageal cancer in the Islamic Republic of Iran, hospital visitors 
were recruited as control participants (Shakeri et al., 2012). In this study, as noted in Examples 5.22 and 4.14, this 
control group had an exposure prevalence similar to that observed in the general population of the region, whereas 
hospital-based control participants in a related study had a higher prevalence of opium use compared with the 
general population. (text continues above)

 Example 5.19. Triangulation across control groups in a study of titanium dioxide exposure

In a study of occupational exposure to titanium dioxide and lung cancer, an analytical control group was recruited 
that combined a random selection of an equal number of control participants from the general population and from 
patients with other cancers, to balance the advantages and disadvantages of recruiting population and hospital-
based control participants (Boffetta et al., 2001). (text continues above)
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For example, if the outcome was 
not related to SES in the source popu-
lation but there was differential partic-
ipation (between case and control 
participants) by SES in the study 
population, then SES would be asso-
ciated with the outcome in the study 
population; one can then control for 
this selection bias, by controlling for 

SES, just as one would control for 
confounding (Example 5.20b).

At the time of recruitment, and 
depending on the method of recruit-
ment, it is sometimes possible to ask 
people, typically control subjects, who 
decline to participate a few quick ques- 
tions about their exposure status in 
general terms and use this informa-
tion to identify or model potential bias 
based on exposure (Example 5.20c).

To mitigate the impact of non-re-
sponse due to death or severe illness, 
case–control studies may incorpo-
rate proxy interviews with the next of 
kin of the index participants. Although 
this approach reduces the potential 
for selection bias and increases the 
study power, it may introduce bias 
through non-differential or differential 
misclassification (see Section 4.2.3). 
For this reason, studies involving 
proxy interviews often include a 
sensitivity analysis restricted to index 
interviews (Example 5.20d).

5.4 Tools for assessing and 
adjusting for selection bias

When a published paper is consid-
ered, selection bias can be particu-
larly difficult to assess, because most 
published studies provide little or no 
discussion of the potential for selection 
bias, in contrast to the usually more 
extensive discussions of the potential 
for confounding or misclassification. 
Furthermore, even if the authors of 
a paper discuss selection bias, the 
information needed to determine the 
extent of selection bias (participation 
rates of cases or controls, with data 
for exposure or disease status) is 
generally unavailable. Therefore, one 
can be left with the impression that 
selection bias is possible in the study 
being considered (e.g. because of a 
low response rate) but have little infor-
mation to assess whether such bias is 
likely or its probable magnitude and 
direction.

Often, participation does not 
depend directly on the exposure 
but is related to factors, such 
as age, sex, or SES (e.g. if 
young, working-class men are 
less likely to participate), that 
are frequently related to ex- 
posure (e.g. occupational ex- 
posure to pesticides) (Xu et al., 
2018). If those determinants of 
participation were identified and 
adjusted for, this selection bias 
could be controlled as if it were 
a confounder (from a DAG per- 
spective, this is equivalent to 
blocking a backdoor pathway that 
was opened due to conditioning 
on a collider). 

Key message

Example 5.20a. Potential bias from non-participation in a population-based case–control study

In the Interphone study, a multicentre case–control study of mobile phone use and risk of specific cancer types, 
the overall participation was 53% for population control subjects, 64% for case subjects with glioma, 78% for case 
subjects with meningioma, and 82% for case subjects with acoustic neuroma (Cardis et al., 2007; Vrijheid et al., 
2009). Of the eligible control subjects identified, 30% refused to participate and 13% could not be traced; the 
refusal proportion was 11% for all three case participant subtypes, but patients with glioma were more commonly 
deceased or too ill to participate (15%) than patients with meningioma (2%), patients with acoustic neuroma (0%), 
or control participants (0%). Because both the proportions of participation and the reasons for non-participation 
differed between case and control subjects, it is likely that the study was affected by selection bias; however, for this 
bias to occur, mobile phone use should be associated with participation in case participants, control participants, 
or both. For example, if people with brain tumours who used mobile phones more often were concerned about the 
consequences of their phone use and enrolled in the study more often than people with brain tumours who used 
mobile phones less often, then an upward bias (away from the null if the true OR > 1 and towards the null if the 
true OR < 1) in the estimated odds ratio would result. (text continues above)
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Example 5.20b. Demographic variables as surrogates for examining selection bias

In the Interphone study, the proportions of participation by sex and age group were reported separately for case 
and control participants (Cardis et al., 2007). In general, these two variables were unrelated to participation, 
except for a much lower participation among older women with glioma and a slightly higher participation in women 
than in men among control participants. The study estimates were adjusted for age and sex, which were matching 
variables. The fact that demographic variables were not related to participation may argue against the presence of 
selection bias, but this is only indirect evidence, because the exposure, namely the use of mobile phones, might 
still be a determinant of participation. (text continues on page 139)

Example 5.20c. Use of short questionnaires among non-respondents in a case–control study

Some centres in the Interphone study asked people who declined to participate (30% of the eligible control 
participants and 11% of the potential case participants) to complete a short non-response questionnaire (NRQ) 
(Vrijheid et al., 2009). At the 12 centres that asked eligible control subjects to complete an NRQ, 57% (n = 1678) of 
control group refusers and 2% (n = 26) of other non-participants who were eligible for the control group completed 
the NRQ. At the nine centres that used the NRQ for potential case participants, 215 potential case participants 
completed the NRQ, representing 41% of case group refusers and 4% of other non-participants who were eligible 
for the case group. In both case and control subjects, regular mobile phone use was more common among study 
participants than among non-participants who completed the NRQ. The differences were large (69% vs 56% 
among control participants and 66% vs 50% among case participants). The data collected using the NRQ also 
indicated an association between refusal and lower education level. This variable had already been selected as a 
potential confounder for inclusion in all multivariable analyses (Cardis et al., 2007). (text continues on page 139)

Example 5.20d. Examining the potential for bias from use of proxy interviews

In the Interphone study, proxy interviews were used for 13% of the case participants (mainly those with gliomas) 
and 1% of the control participants (Cardis et al., 2007). The exclusion of these participants would have reduced the 
response proportion among case participants to 59%, not very different from the response proportion observed 
among control participants. Results of the sensitivity analyses excluding proxy interviews were consistent with the 
results of the main analyses (INTERPHONE Study Group, 2010). (text continues on page 139)
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In this section, tools are discussed 
that can be used to assess selec-
tion bias in published papers when 
the relevant information is available. 
Three general types of assessment 
are considered: (i) substantive knowl- 
edge and the use of DAGs; (ii) assess-
ment of selection bias within a 
single study; and (iii) assessment of 
selection bias through comparisons 
across studies. Quantitative sensi-
tivity analysis for selection bias is 
addressed in Section 5.4.4.

5.4.1 Tool S-1: substantive 
knowledge and DAGs

Assessing the potential for selec-
tion bias requires expert knowledge, 
usually from previously published 
studies, and mechanistic knowledge. 
Ideally, this can be summarized in a 
DAG (see Chapter 2). For example, in 

a cohort study, if loss to follow-up is 
systematically associated with both 
exposure history and disease status 
(e.g. as in the healthy worker survivor 
effect; Checkoway et al., 2004), then 
there is the potential for selection 
bias, which can be represented in 
a DAG, in which conditioning on 
selection (inclusion in the follow-up) 
produces an open pathway from 
exposure to outcome, i.e. collider 
stratification bias. The DAG will not 
identify whether such a bias is likely 
to occur (this depends specifically 
on the recruitment and retention 
processes of the particular study) or 
its probable magnitude and direction 
(although this can be estimated using 
signed DAGs; see Section 2.6), but it 
does provide a framework for consid-
ering whether such a bias is possible 
and evaluating any strategies that the 

authors may have adopted to mini-
mize, control for, or assess it.

Similarly, in a case–control study, 
if the response rate is particularly 
low among control participants, it is 
possible that selection bias may have 
occurred if recruitment was related 
to exposure status (Example 5.21). 
Again, this bias arises through condi-
tioning on inclusion in the study (it is 
usually only possible to analyse the 
data for those who were recruited) 
and introduces an open pathway from 
exposure to outcome, i.e. collider  bias.

Assessing whether the recruit-
ment of hospital control participants 
has generated a bias, and, if so, its 
probable magnitude and direction, 
requires substantive knowledge from 
previously published studies, or mech-
anistic information (Example 5.22).

Example 5.21. Potential selection bias from differential participation in a case–control study

In the Interphone study, almost all exposed groups were found to have lower risks of brain tumours than the 
unexposed groups. It has been hypothesized (Cardis et al., 2007) that potential control participants who did not own 
a mobile phone were less likely to participate. If this were the situation, mobile phone use would be overestimated 
in the control participants, thus producing a downward bias in the estimated odds ratio. (text continues above)

Example 5.22. Potential bias from recruitment of hospital-based control groups

As noted in Example 5.18, Shakeri et al. (2012) conducted a case–control study of opium use and oesophageal 
cancer in the Islamic Republic of Iran, which involved the recruitment of inpatients in hospitals as control 
participants. The prevalence of opium use was found to be significantly higher in the hospital control participants 
than would have been expected on the basis of general population data. One potential explanation for this is that 
opium use may cause other health problems that result in hospitalization or may be associated with other lifestyle 
factors that increase the risk of these other health problems. In this situation, the prevalence of opium use in the 
hospital control participants would be higher than that in the source (general) population, thus producing selection 
bias. (text continues on page 142)
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5.4.2 Tools S-2 to S-6: 
assessment of selection bias 
within a study

(a) Tool S-2: negative control 
exposures

A negative control exposure approach 
(see also Chapters 2, 3, and 4) in- 
volves assessing the association 
with another exposure that is believed  
to not be plausibly associated with 
the outcome under study but is likely 
to be subject to a similar selection 
bias (Example 5.23).

(b) Tool S-3: negative control 
outcomes

A similar approach can be taken with 
regard to negative control outcomes 
(Example 5.24). This approach is usu- 
ally most applicable to cohort studies, 
because case–control studies are 
usually based on a single outcome.

(c) Tool S-4: ad hoc reanalysis of 
published data

In some circumstances, if the nec- 
essary information is available, it 
is possible to reanalyse published 
results in a manner that potentially 
reduces selection bias. For instance, 
if it is thought that there has been 
selective recruitment with regard 
to exposure status – for example, if 
unexposed people are less (or more) 
likely than exposed people to enrol 
as control participants – it may still be 
possible to conduct a dose–response 
analysis that is restricted to exposed 
participants (Example 5.25). This 
relies on the assumption that even if 
unexposed people were less (or more) 
likely than exposed people to partic-
ipate, the level of exposure among 
those who are exposed does not 
affect the probability of recruitment. 
This approach has often been used 
in occupational epidemiology when 

risk is compared between people 
with various levels of exposure rather 
than between exposed and unex-
posed people; unexposed people 
are regarded as an entirely different 
group (Saracci and Samet, 2010). For 
example, more valid estimates may 
be obtained by comparing manual 
workers across different levels of 
exposure, rather than by comparing 
the exposed workers with the general 
population.

(d) Tool S-5: comparisons with 
external data

A further approach for assessing 
selection bias involves making com- 
parisons with external data on the 
exposure prevalence in the source 
population (Examples 5.26 and 5.27). 
This can involve information either 
on the exposure itself (e.g. pesticide 
exposure in the general population) or 
on a surrogate of exposure (e.g. being 
a farmer).

 Example 5.23. Using negative control exposures to examine potential selection bias in a case–control study

In a case–control study of night shift work and breast cancer, any selection pressures (e.g. control participants 
being less likely to participate if they have never worked night shift) are likely to apply to other non-standard work 
shifts (e.g. afternoon shift), rather than only to night shift work. If it is well established that afternoon shift work 
is not associated with breast cancer, then afternoon shift work could serve as a negative control exposure. If a 
strong association were found between afternoon shift work and breast cancer in the case–control study, this 
would provide evidence of selection bias, as well as its probable magnitude and direction. (text continues above)

Example 5.24. Using negative control outcomes to examine potential selection bias in a case–control study

If it is well established that the main exposure is not associated with a particular outcome (outcome B) that is 
different from the main outcome under study (outcome A), then this information can be used to assess selection 
bias (e.g. due to selective recruitment or loss to follow-up). In particular, if the effect estimate (e.g. odds ratio) is 
elevated to a similar extent in both the main study outcome and the negative control outcome, this may indicate 
that the increase in risk for the main study outcome is due to bias. (text continues above)
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Example 5.27. Using external data on exposure prevalence to examine potential selection bias in a case– 
 control study of opium exposure

As described in Examples 4.14, 5.18, and 5.22, Shakeri et al. (2012) compared the results of two different 
case–control studies of opium use and oesophageal cancer conducted in the same region by a single research 
group. In one study, hospital-based control participants were recruited, whereas the other study involved control 
participants drawn from the neighbourhood. The prevalence of opium use was also estimated from a cohort 
that was enrolled in the same geographical area and therefore probably represented the source population for 
the study. The standardized opium consumption prevalence was 0.17 in the cohort, 0.16 in the neighbourhood 
control participants, and 0.23 in the hospital-based control participants, suggesting that the neighbourhood control 
participants were more representative of the study base population for this exposure. (text continues on page 142)

Example 5.25. Using dose–response analysis to examine potential selection bias in a case–control study

In the Interphone study, almost all exposed groups were found to have lower risks of brain tumours than the 
unexposed groups. For example, the odds ratio for the lowest exposure group (< 5 hours of cumulative call time) 
was 0.8, compared with the unexposed group (INTERPHONE Study Group, 2010). It has been hypothesized 
(Saracci and Pearce, 2008) that potential control participants who did not own a mobile phone were less likely to 
participate. If this were the situation, mobile phone use would be overestimated in the control participants, thus 
producing a downward bias (towards the null if the true OR > 1 and away from the null if the true OR < 1) in the 
estimated odds ratio. One way to investigate this situation is to conduct analyses excluding both case participants 
and control participants who were not mobile phone users (Cardis et al., 2007). In this study, the odds ratios for 
meningioma were only slightly changed, whereas those for gliomas became mostly close to (and above) 1 (Saracci 
and Samet, 2010); the odds ratio for the top decile of cumulative call time increased from 1.40 to 1.82. Saracci and 
Samet (2010) comment that the direction of these corrections again indicates a contribution of non-participation 
(selection) bias to the observed low odds ratios. (text continues on page 142)

Example 5.26. Using external data on exposure prevalence to examine potential selection bias in a case–control study 
of pesticide exposure

In a study of pesticide exposure and soft tissue sarcoma (Smith et al., 1984), control participants who had cancers 
other than soft tissue sarcoma were recruited, to minimize information bias (because the control participants 
also had cancer and would have gone through a similar thought process to that of the case participants in terms 
of the potential causes of their cancer). However, if some of the cancer types in these control participants were 
also caused by pesticide exposure, selection bias would have occurred due to overrepresentation of pesticide 
exposure among control participants, thus leading to bias downwards in the estimated odds ratios. Information on 
pesticide exposure in the general population was not available, but such exposures occur mainly in farming, and 
information was available on the proportions of workers in various farming groups in the general population. Thus, 
it was possible to compare the proportions of control participants who were farmers with the expected proportion 
based on the general population; this comparison showed that it was unlikely that this form of selection bias was 
occurring (Pearce et al., 1983). (text continues on page 142)
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(e) Tool S-6: using several 
control groups

It is unusual for studies to involve 
more than one comparison or control 
group, but when this is done the 
information obtained can be used to 
assess the potential for selection bias. 
This applies particularly when the 
various control groups are expected 
to produce biases in opposite direc-
tions, as in Example 5.28.

5.4.3 Tool S-7: assessment 
of selection bias through 
comparisons across studies

Selection bias can also be assessed 
by making comparisons across 
studies (Example 5.29). This applies 
particularly when similar studies have 
been conducted in the same popula-
tion (e.g. cohort studies involving the 
same industry or the same group 
of workers, or case–control studies 
conducted in the same populations). 

However, comparisons can also be 
made between studies conducted in 
different populations where it is rea- 
sonable to assume that the strength 
of the main exposure–outcome 
association is likely to be similar. For 
example, one might compare the 
findings from studies in which control 
participants were recruited from the 
general population with those from 
studies in which control participants 
with diseases other than the disease 

Example 5.28. Using triangulation of findings from different control groups to examine biases in a case–control study 
of pesticide exposure

In a study conducted in New Zealand to investigate a possible association between phenoxy herbicides and 
non-Hodgkin lymphoma (Pearce et al., 1986), control participants were recruited from the general population and 
also from among people who had other cancers. The assumption is that if there were any recall bias, this would 
be more likely in the general population control participants (who may not recall all of their exposures), and the 
comparison with this control group would produce artificially high odds ratios (i.e. bias upwards). Conversely, the 
recruitment of control participants who had other cancers would be expected to minimize recall bias, but there 
might be selection bias and hence a bias downwards in the estimated odds ratio (see previously) if some of the 
cancer types in these control participants were also caused by phenoxy herbicides. A key issue is that these 
biases would operate in different directions, allowing the possibility of triangulation of the findings with the two 
control groups. In fact, the study produced similar results for each control group, indicating that both recall bias and 
selection bias were unlikely to be important problems in this study. (text continues above)

Example 5.29. Comparisons across studies to examine potential biases in case–control studies

As described in Examples 4.14, 5.18, 5.22, and 5.27, Shakeri et al. (2012) compared the results of two different 
case–control studies of opium use and oesophageal cancer conducted in the same region by a single research 
group. Case definition and enrolment of case participants were the same in the two studies. However, the selection 
of control participants differed: in one study, hospital-based control participants were recruited, whereas the other 
study involved control participants drawn from the neighbourhood. The prevalence of opium use was found to 
be significantly different between the hospital and neighbourhood control participants, but the prevalence of 
tobacco use did not differ between these groups. Consequently, the inference drawn for the association between 
oesophageal cancer and tobacco use did not differ between the studies, but that for opium use did (IARC, 2021). 
In the study with neighbourhood control participants, opium use was associated with a significantly increased risk 
of oesophageal cancer (adjusted OR, 1.8; 95% CI, 1.2–2.7), while in the study with hospital control participants, 
this was not so (OR, 1.1; 95% CI, 0.6–1.9). This indicates that selection bias is likely to have occurred, and to have 
been substantial, in the study with hospital control participants, although the possibility that neighbourhood control 
participants may be prone to other selection factors cannot be ruled out. (text continues above)
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under investigation were enrolled. 
Such comparisons across studies 
(triangulation) are discussed further 
in Chapter 6.

5.4.4 Tool S-8: selection bias 
adjustment

In this section, an approach to con- 
ducting sensitivity analyses for selec- 
tion bias is demonstrated, with a 
detailed worked example using meth- 
ods described in more detail in 
Fox et al. (2021), beginning with 
Example 5.30a.

Selection bias is, mathematically, 
the easiest bias to adjust for. Table 5.1 
illustrates a common way in which 
selection bias occurs in case–control 
studies. If A = 100 people are eligible 
for recruitment to the exposed case 
group in the population but only 
s11 = 70% of them participate in the 

study, we would have a = 70 partic-
ipants. The bias parameter s11 is the 
selection probability for exposed case 
participants. There are three other 
selection probabilities – for the unex-
posed case participants, exposed 
control participants, and unexposed 
control participants – that determine 
which data are observed in a study. 
These types of parameters, which 
dictate the extent of the bias in the 
data, are referred to as bias parame-
ters (Side Box 5.6).

If these four selection probabilities 
are known, it is easy to divide the 
observed cell counts by the selection 
probabilities to recover the 2 × 2 table 
that would have been observed in the 
absence of selection bias (assuming 
that the correct selection probabili-
ties are specified): A = a/s11, B = b/s10, 
C = c/s01, and D = d/s00. Unfortunately, 
these bias parameters are generally 

unknown, because they require infor-
mation on the exposure prevalence 
among case and control partici-
pants in the general population – 
information that, if it were available, 
would generally obviate the need to 
conduct a bias adjustment in the first 
place. In some situations, selection 
probabilities may be available from 
ancillary studies, but these situations 
are limited. When precise information 
on selection probabilities is lacking, 
it is common to choose a range of 
plausible values for each of the four 
parameter values and conduct a bias 
analysis over the combination of 
values. This is referred to as a multi-
dimensional bias analysis (introduced 
in Section 4.3.2).

Often, study publications give an 
overall response or participation rate 
for case and control participants, and 
this can be used to reduce the number 

Example 5.30a. Identifying potential selection bias in a nested case–control study of breast cancer

The Working Group for IARC Monographs Volume 124, on night shift work and cancer (IARC, 2020), noted a 
potential for selection bias in the findings of O’Leary et al. (2006), who had conducted a case–control study of 
shift work and breast cancer as part of the larger Long Island Breast Cancer Study Project. Case participants 
were residents of Long Island, New York, who had received diagnoses of incident occurrences of breast cancer 
between 1 August 1996 and 31 July 1997. Control participants were age-matched to case participants. Control 
participants younger than 65 years were recruited through random-digit dialling, and those aged 65 years or older 
were selected from Medicare enrolment lists. Both case and control participants were restricted to people who 
had lived at the same residence for 15 years or longer. O’Leary et al. (2006) reported that any overnight shift work 
was inversely associated with breast cancer (OR, 0.55; 95% CI, 0.32–0.94). These results are implausible, based 
on other reported findings, and it is therefore useful to consider whether the observed protective effect could in 
part be due to selection bias. The original Long Island Breast Cancer Study Project, within which this study was 
nested, reported response rates of 82.1% for case participants and 62.8% for control participants (Gammon et al., 
2002). O’Leary et al. (2006) reported participation rates for their substudy of 87% for case participants and 83% for 
control participants. The overall participation rates in the shift work study were unavailable, because the original 
Long Island Breast Cancer Study Project did not limit enrolment to people who had lived at the same residence 
for at least 15 years, whereas the substudy on shift work did. Nonetheless, overall rates can be approximated by 
multiplying the two sets of response rates, yielding an overall response rate of 71.4% for case participants and 
52.0% for control participants. Thus, there is certainly a potential for selection bias. (text continues above)
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of bias parameters that need to be 
specified in a sensitivity analysis. For 
instance, if the overall response rate 
among case participants is scase and a 
value for the participation rate among 
exposed case participants, s11, is 
specified, then the participation rate 
among unexposed case participants, 
s10, can be calculated as

Chapter 5 equations

Equation 5.1:

𝑠𝑠𝑠𝑠10 =
𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠case

− 𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11

Equation 5.2:

𝑠𝑠𝑠𝑠00 =
𝑑𝑑𝑑𝑑

𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠control

− 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

Equation (E5.1):

𝑠𝑠𝑠𝑠10 =
313

26 + 313
0.714 − 26

0.7
= 0.715

Equstion (E5.2):

𝑠𝑠𝑠𝑠00 =
321

50 + 321
0.520 − 50

0.5

= 0.523

Equation (E5.3):

ORadj =

𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11

× 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠00

𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠10

× 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

=
26
0.7 × 321

0.523
313

0.715 × 50
0.5

= 0.52

 (5.1)

A similar equation exists for the 
control participants, if the overall 
response rate among control partic-
ipants, scontrol, is known:
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Equation 5.1:
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𝑠𝑠𝑠𝑠11
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𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠control

− 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

Equation (E5.1):

𝑠𝑠𝑠𝑠10 =
313

26 + 313
0.714 − 26

0.7
= 0.715

Equstion (E5.2):

𝑠𝑠𝑠𝑠00 =
321

50 + 321
0.520 − 50

0.5

= 0.523

Equation (E5.3):

ORadj =

𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11

× 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠00

𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠10

× 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

=
26
0.7 × 321

0.523
313

0.715 × 50
0.5

= 0.52

(5.2)

 
These two equations can be used 
to implement a sensitivity analysis 
for selection bias that only requires 

plausible values to be specified for 
two remaining unknown parame-
ters: the selection probability among 
exposed case participants (s11) and 
the selection probability among ex- 
posed control participants (s01), as in 
Example 5.30b.

These methods enable the re- 
searcher to judge how much the point 
estimate can change after adjusting 
for selection bias, assuming that 
the bias parameters are correctly 
specified, but they do not incorpo-
rate uncertainty due to random error. 
Fortunately, relatively simple proce-
dures can be used to produce interval 
estimates around the bias-adjusted 
effect estimates; indeed, the typical 
variance estimates (e.g. using the 
delta method) for the log odds ratio 
that would be calculated from the 
biased data can be used directly 
(Example 5.30c).

Quantitative bias analysis methods 
to adjust effect estimates for selection 
bias are easily implemented, but the 
user should be cautious, for several 
reasons. The first is that the methods 
rely on accurate specification of the 
bias parameters. Incorrect guesses 
of the selection probabilities will 
result in incorrect bias adjustments. 
Furthermore, although it may be 
tempting to assume that if the spec-
ified selection probability is close 
to the truth then the bias-adjusted 
result will be close to unbiased, this 
turns out not to be true in general. 
Having a bias parameter that is close 
to the true selection probability may 
still result in a badly biased adjusted 
effect estimate. The best solution to 
this problem is to conduct a multidi-
mensional bias analysis (such as that 
in Table 5.2) and determine the sensi-
tivity of the adjusted effect estimate to 
changes in the bias parameters.

Side Box 5.6. Information that should be reported to enable the assessment of selection bias using sensitivity analysis

The key parameters that should be reported to enable the post-publication assessment of selection bias using 
sensitivity analysis are the bias parameters shown in Table 5.1, i.e. the selection probabilities for exposed case 
participants, unexposed case participants, exposed control participants, and unexposed control participants. 
In some studies, it may be possible to report this information, or proxies for it, if it is available for the source 
population, and the distribution of these factors (case or control status; exposed or unexposed status) in the study 
population and the source population can be compared. However, this is rarely the situation; typically, the best 
that can be done is to hypothesize the probable values (or a range of values) for the four bias parameters shown in 
Table 5.1 and then conduct the sensitivity analyses covered in this section. (text continues on page 145)

Table 5.1. True and observed cell counts in a case–control study with selection biasa

True cell counts Observed cell counts

 Exposed Unexposed Exposed Unexposed

Case participants A B a = A × s11 b = B × s10

Control participants C D c = C × s01 d = D × s00

a Uppercase letters, unobserved true cell counts; lowercase letters, observed cell counts; sce, selection probability by case status (c = 0, 1) and 
exposure (e = 0, 1).
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  Example 5.30b. Quantitative bias analysis to examine potential selection bias in a nested case–control study  
   of breast cancer

The estimated response rate among case participants (scase = 0.714) and among control participants (scontrol = 0.520) 
can be used to implement a quantitative bias analysis for selection bias in the shift work study of O’Leary et al. 
(2006). To begin the quantitative bias analysis, the crude 2 × 2 data are abstracted from the paper (a = 26, b = 313, 
c = 50, and d = 321). As reported in O’Leary et al. (2006), control participants who reported a history of overnight 
shift work were younger, had a lower household income, and were less likely to have had a mammogram than 
control participants who had never engaged in overnight shift work. It is assumed that both eligible case participants 
and potential control participants who had engaged in overnight shift work were less likely to participate in the 
study than women who had not engaged in overnight shift work. That is, it is assumed that s11 ≤ s10 and s01 ≤ s00. 
Furthermore, it is assumed that women with incident breast cancer are at least as likely to participate in the study as 
those without breast cancer: s11 ≥ s01 and s10 ≥ s00. To conduct a sensitivity analysis, we choose a range of values of 
the bias parameters s11 and s01 compatible with these assumptions. For example, the selection probability among 
exposed case participants is specified as slightly lower than the overall response rate among case participants, 
s11 = 0.7. Similarly, the response rate among exposed control participants is specified as slightly lower than the 
overall response rate among control participants, s01 = 0.5. With these values, the selection probability among 
unexposed case participants can be calculated as
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Equation 5.1:

𝑠𝑠𝑠𝑠10 =
𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏
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− 𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11
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𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑑𝑑
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− 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

Equation (E5.1):

𝑠𝑠𝑠𝑠10 =
313

26 + 313
0.714 − 26

0.7
= 0.715

Equstion (E5.2):

𝑠𝑠𝑠𝑠00 =
321

50 + 321
0.520 − 50

0.5

= 0.523

Equation (E5.3):

ORadj =

𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11

× 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠00

𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠10

× 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

=
26
0.7 × 321

0.523
313

0.715 × 50
0.5

= 0.52
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Similarly, the selection probability among unexposed control participants can be calculated as

Chapter 5 equations

Equation 5.1:

𝑠𝑠𝑠𝑠10 =
𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠case

− 𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11

Equation 5.2:

𝑠𝑠𝑠𝑠00 =
𝑑𝑑𝑑𝑑

𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠control

− 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

Equation (E5.1):

𝑠𝑠𝑠𝑠10 =
313

26 + 313
0.714 − 26

0.7
= 0.715

Equstion (E5.2):

𝑠𝑠𝑠𝑠00 =
321

50 + 321
0.520 − 50

0.5

= 0.523

Equation (E5.3):

ORadj =

𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11

× 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠00

𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠10

× 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

=
26
0.7 × 321

0.523
313

0.715 × 50
0.5

= 0.52

(E5.2)

With the four selection probabilities specified, a selection-bias-adjusted odds ratio can be calculated:

Chapter 5 equations

Equation 5.1:

𝑠𝑠𝑠𝑠10 =
𝑏𝑏𝑏𝑏

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠case

− 𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11

Equation 5.2:

𝑠𝑠𝑠𝑠00 =
𝑑𝑑𝑑𝑑

𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠control

− 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

Equation (E5.1):

𝑠𝑠𝑠𝑠10 =
313

26 + 313
0.714 − 26

0.7
= 0.715

Equstion (E5.2):

𝑠𝑠𝑠𝑠00 =
321

50 + 321
0.520 − 50

0.5

= 0.523

Equation (E5.3):

ORadj =

𝑎𝑎𝑎𝑎
𝑠𝑠𝑠𝑠11

× 𝑑𝑑𝑑𝑑
𝑠𝑠𝑠𝑠00

𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠10

× 𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠01

=
26
0.7 × 321

0.523
313

0.715 × 50
0.5

= 0.52 (E5.3)

For this set of bias parameter values, one would expect that in the absence of selection bias, approximately 
the same protective effect of overnight shift work would have been observed (ORadj = 0.52 vs ORcrude = 0.53). Note 
that the second odds ratio is calculated directly from the cells of the observed 2 × 2 table and does not adjust 
for any confounders. This result is the first row of Table 5.2. This calculation is repeated for s11 = {0.7, 0.6, 0.5, 
0.4} and s01 = {0.5, 0.4, 0.3}. The spreadsheet used in this example is provided in Annex 2 (online only; available 
from: https://publications.iarc.who.int/634#supmat). No combination of these selection probabilities leads to a 
bias-adjusted odds ratio that supports a harmful effect of overnight shift work. Most bias parameter combinations 
lead to more protective bias-adjusted effects; only bias parameters that may be viewed as less plausible, such as 
those with higher participation rates among exposed control participants than among exposed case participants, 
lead to adjusted effects near the null. These results suggest that for these bias parameter values, selection bias is 
not likely to be responsible for the observed protective effect of shift work. 

https://publications.iarc.who.int/634#supmat
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  Example 5.30b. Quantitative bias analysis to examine potential selection bias in a nested case–control study  
   of breast cancer (continued)

Table 5.2. Sensitivity analysis for overnight shift work and incident breast cancer from a case–control studya

Bias parameters Bias-adjusted ORb 95% 
confidence 

intervals11 s10
b s01 s00

b

0.7 0.715 0.5 0.523 0.52 (0.32–0.86)
0.7 0.715 0.4 0.545 0.40 (0.24–0.66)
0.7 0.715 0.3 0.587 0.28 (0.17–0.46)
0.6 0.725 0.5 0.523 0.62 (0.37–1.01)
0.6 0.725 0.4 0.545 0.47 (0.29–0.78)
0.6 0.725 0.3 0.587 0.33 (0.20–0.54)
0.5 0.740 0.5 0.523 0.75 (0.46–1.24)
0.5 0.740 0.4 0.545 0.58 (0.35–0.95)
0.5 0.740 0.3 0.587 0.40 (0.25–0.66)
0.4 0.764 0.5 0.523 0.97 (0.59–1.60)
0.4 0.764 0.4 0.545 0.75 (0.45–1.23)
0.4 0.764 0.3 0.587 0.52 (0.32–0.86)

OR, odds ratio.
a Using an overall response rate among case participants of scase = 0.714 and an overall response rate among control participants of 
scontrol = 0.520 and the observed cell counts (a = 26, b = 313, c = 50, and d = 321).
b s10 and s00 and the adjusted odds ratio are calculated using the formulae given in this section, conditional on the observed cell counts and 
overall response rates.
Source: O’Leary et al. (2006).

(text continues on page 146)

 Example 5.30c. Confidence interval estimation when quantifying selection bias for a nested case–control  
  study of breast cancer

In the study by O’Leary et al. (2006), the variance estimated from the crude data isEquation (E5.4):

Var(log OR) =
1
𝑎𝑎𝑎𝑎

+
1
𝑏𝑏𝑏𝑏

+
1
𝑐𝑐𝑐𝑐

+
1
𝑑𝑑𝑑𝑑

=
1

26
+

1
313

+
1

50
+

1
321

= 0.065

Equation (E5.5):

ln 0.52 ± 1.96 × √0.065 = (0.32, 0.86)

 

 

(E5.4)

This variance can be used in conjunction with the bias-adjusted effect estimates derived in Example 5.30b. For 
example, in the first row of Table 5.2, the bias-adjusted odds ratio is 0.52, and the 95% confidence interval can be 
calculated as

Updated equation E5.5

Equation (E5.5):

ln(0.52) ± 1.96 × √0.065 = (0.32, 0.86)

 

 
(E5.5)

Similar calculations can be included for each row of Table 5.2 to generate bias-adjusted interval estimates. (text 
continues on page 146)
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A second cause for concern is 
that the methods presented here 
admit no uncertainty about the bias 
parameters; they assume complete 
confidence in the parameter value. It 
is possible to specify a distribution for 
each bias parameter, with that distri-
bution representing the investiga-
tor’s uncertainty regarding the value 
of the bias parameter, and then to 
conduct a probabilistic bias analysis 
(Example 5.30d).

In a probabilistic bias analysis, un- 
certainty is incorporated into the bias 
parameter by repeatedly sampling se- 
lection probabilities from each of the

four bias parameter distributions. 
Each set of sampled bias parameters 
is used to bias-adjust the observed 
table, as before. Finally, to incorpo-
rate the conventional random error, 
the variance should be based on the 
non-bias-adjusted cell counts, as 
calculated previously. This approach 
is iterated a large number of times, 
and the resulting estimates are 
summarized by an overall bias-ad-
justed estimate (the median of the 
bias-adjusted results) and an uncer-
tainty interval (the 2.5th and 97.5th 
percentiles of the bias-adjusted re- 
sults). This approach can easily be 
implemented in Excel, R, Stata, or 

SAS. To find the bias analysis esti- 
mate given in Example 5.30e, Excel 
spreadsheets were used, with 1000 
iterations (https://sites.google.com/site/ 
biasanalysis/Home; Fox et al., 
2021); the spreadsheet is provided 
in Annex 2 (online only; available 
from: https://publications.iarc.who.
int/634#supmat).

5.5 Other miscellaneous 
biases

In this final section, several biases are 
considered that do not necessarily 
fit neatly into the categorization of 
biases comprising selection bias, 
information bias, and confounding.

  Example 5.30d. Probabilistic bias analysis to examine potential selection bias in a nested case–control study  
   of breast cancer

In the study by O’Leary et al. (2006), one might believe that the selection probability among the exposed case 
participants is between 0.6 and 0.8, with 0.7 the most likely selection probability; one could then parameterize this 
belief as a triangular distribution with a minimum of 0.6, a maximum of 0.8, and a mode of 0.7. This distribution 
should capture a well-informed belief about the distribution of plausible selection probabilities among the exposed 
case participants. Similarly, a distribution for each of the three other selection probabilities could be parameterized. 
For the purposes of this example, the selection probabilities from the first row of Table 5.2 are used. It is assumed 
that the mode of each distribution is the selection probability given in the table (s11 = 0.7, s10 = 0.715, s01 = 0.5, and 
s00 = 0.523). For simplicity, it is assumed that the minimum of each of the distributions is 0.1 below the mode and 
the maximum is 0.1 above the mode (e.g. the distribution for s01 is centred at 0.5 and has a minimum of 0.4 and a 
maximum of 0.6). (text continues above)

  Example 5.30e. Applying probabilistic bias analysis results to estimated odds ratios in a nested case–control  
   study of breast cancer

For the study by O’Leary et al. (2006), the probabilistic bias analysis returns an odds ratio of 0.52 (95% credibility 
interval, 0.29–0.91). The point estimate is identical to the point estimate obtained from the simple bias analysis; 
this will generally be the situation whenever the bias parameter distribution is symmetrical around the mode. The 
interval estimate for the probabilistic bias analysis is larger than that for the simple quantitative bias analysis; this 
will generally be the situation, because the intervals for the former analysis incorporate additional uncertainty 
around the bias parameters. (text continues above)

https://sites.google.com/site/biasanalysis/Home
https://sites.google.com/site/biasanalysis/Home
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
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5.5.1 Healthy worker biases

There are two types of healthy worker 
bias. The first type is healthy worker 
hire bias, which occurs when relatively 
healthy individuals in an occupational 
population are compared with the 
general population; it may lead to 
downward bias in relative mortality 
measures (e.g. for all causes or for 
all cancers) (Checkoway et al., 1989, 
2004). The second type is healthy 
worker survivor bias, which occurs 
because workers who are healthy 
are more likely to stay employed for 
longer, thus experiencing the greatest 
amount of exposure (Pearce et al., 
1986). Because of these two selection 
processes, an occupational popula-
tion is usually inherently non-compa-
rable with the general population with 
which it is typically compared in occu-
pational cohort studies. This occurs 
even if participants continue to be 
followed up after they leave employ-
ment, because they are likely to have 
lower lifetime cumulative exposure 
than those who remain in employ-
ment. Although healthy worker bias 
is most commonly discussed in terms 
of occupational cohort studies, the 
same issues of bias apply to other 
study designs (such as nested case–
control and cross-sectional studies) 
that are based on the experience of a 
cohort over time.

Some authors regard healthy work- 
er bias as an example of selection 
bias, because of the selection of an 
inappropriate comparison population 
(i.e. comparing the general popula-
tion with a healthy employed popula-
tion) or conditioning on employment 
in the industry. Others regard it as 
an example of confounding, because 
employed people and those who 
remain in employment are gen- 

erally healthier than the rest of the 
source or general population with 
which they are being compared 
(Checkoway et al., 2004; Keil et al., 
2015). In the context of this book, 
healthy worker bias can be regarded 
as confounding, because it arises 
from inherent differences between 
employed and non-employed sub- 
groups in the source population. 
Therefore, it is also addressed in 
Chapter 3.

5.5.2 Immortal time bias

Immortal time bias arises if the defini-
tion of one of the two exposure groups 
that are compared within a study is 
specified incorrectly, such that there 
is a period during which members 
of that exposure group accumulate 
person-time but will not be included 
in the study if they experience the 
outcome (Hanley and Foster, 2014). 
A good example of this was presented 
as far back as the 1840s by William 
Farr: generals and bishops live long- 
er than curates and soldiers, but only 
because one has to reach a certain 
age to hold such a position (Farr 
and Humphreys, 1885). This can be 
regarded as a type of selection bias 
(related to time-zero specification, 
described in Section 5.2.3), because 
some study participants are only in- 
cluded in the analysis if they sur- 
vive up to a certain time point, but if 
they do, their person-time up to that 
point is incorrectly included in the data 
analysis. Although this issue may 
seem obvious, this error seems to 
reappear in epidemiology, and im- 
mortal time bias has led to seriously 
flawed results (Example 5.31).

5.5.3 Reverse causation and 
protopathic bias

Reverse causation occurs when the 
exposure changes after the disease 
of interest occurs or is caused by the 
diagnosis of the disease. This can be 
viewed as a type of differential infor-
mation bias, because exposure has 
been measured at the wrong time 
(i.e. too close to the occurrence of 
disease) and is therefore misclassi-
fied. The easiest way to avoid reverse 
causation is to use a prospective 
cohort study design, in which a condi-
tion of enrolment in a study is not 
having cancer, perhaps after an initial 
period to allow for the appearance of 
cancers that were latent but not yet 
diagnosed, and then to assess expo-
sure. In case–control studies, reverse 
causation may occur when there is 
not careful assessment of the timing 
of exposure and confirmation that the 
disease occurs after the occurrence 
of exposure. One method of evalu-
ating the effect of reverse causation 
is to exclude individuals who only 
recently experienced the exposure of 
interest (Example 5.32).

Protopathic bias is related to re- 
verse causation and is often included 
in the definition of reverse causation. 
However, it differs in that the occur-
rence of disease does not directly 
affect exposure status. Rather, proto-
pathic bias occurs indirectly when a 
symptom of the undiagnosed disease 
causes a change in the exposure of 
interest in the case participants. Pro- 
topathic bias can occur in both cohort  
and case–control studies (Example  
5.33).

In cohort studies of cancer types 
for which survival is poor, the exclu-
sion of patients who were diagnosed 
within the early period of follow-up can 
provide evidence about the extent of 
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Example 5.31. Immortal time bias in a registry study related to solar radiation exposure

Immortal time bias was observed in a registry study of skin cancer in Denmark (Brøndum-Jacobsen et al., 2013; 
Lange and Keiding, 2014). The researchers aimed to investigate any beneficial effects of sun exposure on longevity, 
but because they did not have access to information on sun exposure, they chose people with a diagnosis of skin 
cancer as a proxy for high sun exposure. The comparison group was all people in Denmark without a diagnosis of 
skin cancer, and follow-up started at age 40 years. Whereas people in the comparison group were at risk of dying 
from this age onward, it was impossible for people in the skin cancer group to die before the age of diagnosis, 
which was, on average, 68 years. The immortal time bias led to people with skin cancer having half the mortality 
risk of people without skin cancer (relative risk, 0.52), and the study received great attention in the media in 
Denmark, with front pages stating that sunbathers live longer. In such a study, the correct analysis would be to 
allow people to change exposure status as they proceed through the study period (this is equivalent to using a 
time-dependent variable in a Cox model; Pearce et al., 1988). Thus, in this situation, the people with skin cancer 
should have been considered as part of the unexposed group until they received a diagnosis, and the results of 
the analysis would have been very different. (text continues on page 150)

Example 5.32. Examining reverse causation in a case–control study of oesophageal cancer

In a case–control study of oesophageal cancer and opium use, there was concern that reverse causation may 
partially explain the odds ratio of 2.00 (95% CI, 1.39–2.88), if people who developed cancer had a subsequent 
increased likelihood of taking up opium use. Therefore, Nasrollahzadeh et al. (2008) restricted the analysis to 
users who had reported use earlier than 1 year before cancer diagnosis; this gave an odds ratio of 1.92 (95% CI, 
1.30–2.84), indicating that reverse causation is unlikely to explain the association. (text continues on page 150)

Example 5.33. Examining protopathic bias in case–control studies of opium use and cancer

Opium consumption is an excellent example of an exposure that may be affected by protopathic bias in studies of 
cancer. In this case, the symptoms of undiagnosed cancer may motivate the patient to self-medicate with opium, 
making it appear that opium use increases the risk of disease. In studies of opium use and lung cancer, one of the 
causes of protopathic bias is related to the antitussive properties of opium. Because one of the early symptoms 
of lung cancer is coughing, the use of opium to ameliorate these symptoms may introduce protopathic bias. In 
this situation, because tobacco smoking is related to both coughing and lung cancer, controlling for smoking will 
minimize the risk of protopathic bias. (text continues on page 150)
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protopathic bias (Example 5.34). The 
impact of protopathic bias is more 
difficult to assess for cancer types for 
which survival times are longer.

5.5.4 Inappropriate control for 
a collider (other than selection 
into the study) in the analysis

Bias can also arise from inappro-
priate control for a collider (other than 
selection into the study) (Pearce and 
Lawlor, 2016), even if 100% of the 
source population has been recruited 
into the study (and therefore there 
cannot be selection bias). Briefly, 
controlling for any collider can open 
a backdoor pathway involving that 
collider, and the resulting bias can 
only be controlled by controlling for at 
least one other variable on the same 
backdoor pathway (Example 5.35).

5.5.5 Biases in biomarker 
exposure measures

Biomarkers are now extensively 
used in cancer epidemiology. Within 
the concept of the exposome, their 

application has widened to incorpo-
rate new high-throughput techniques 
to evaluate exposure or intermediate 
pathways and preclinical disease 
markers (e.g. Wild, 2005). In the con- 
text of this book, we consider 
mostly biomarkers of exposure, i.e. 
measurements in body fluids or other 
tissues that correlate with an envi-
ronmental exposure or an exposure 
mixture. Biases arising from the use 
of biomarkers can most commonly 
be regarded as information bias, but 
these issues are considered here 
because they also relate to reverse 
causation. In contrast, the appro-
priate use of biomarkers can help to 
avoid or minimize information bias.

Biomarkers can be used as direct 
measures of exposure in study par- 
ticipants and are frequently used in 
a subpopulation to develop expo-
sure models that are then applied 
to the whole study population by 
modelling using proxies of exposure 
(Example 5.36).

Like for any other exposure mea- 
sured through questionnaires or other 

methods, errors in biomarker mea- 
surements can result from both non- 
differential and differential misclassifi-
cation (Fig. 5.4).

(a) Non-differential errors in 
biomarker measurements

In a case–control study of breast can- 
cer (Mukherjee Das et al., 2022), 
using urinary concentrations of short-
lived chemicals (e.g. phthalates) 
would introduce non-differential mis- 
classification because of extreme  
time-related misclassification. The time 
window of interest for a chronic 
disease, such as breast cancer, could 
be 10–20 years before clinical disease 
diagnosis, while the biomarker would 
measure exposure only during the 
previous few weeks. It is unlikely that 
breast cancer status would affect the 
performance of the biomarker test or 
alter levels of phthalates; thus, this 
is a non-differential misclassification 
mechanism. Chapter 4 describes 
tools to assess the direction and 
magnitude of non-differential biases 
in continuous exposures.

Example 5.35. Inappropriate adjustment for a collider

Richiardi et al. (2008) provide an example of inappropriate adjustment for SES in occupational cancer studies. 
They consider the scenario where SES is not a cause of the cancer under study but is associated with other 
occupational factors (apart from the main exposure) that are causes of the cancer under study. In this situation, 
adjustment for SES can open a backdoor pathway involving the other occupational factors, and thus bias the effect 
estimate for the main occupational exposure under study. (text continues above)

 Example 5.34. Evaluating the potential impact of protopathic bias in a study of pancreatic cancer

In a cohort study of prognostic factors for pancreatic cancer, for which survival is poor, Sheikh et al. (2020) 
evaluated the potential impact of protopathic bias by excluding any participant who had started using opium in the 
2 years before receiving a diagnosis. They found minimal impact on the results when the few participants who had 
started using opium recently before diagnosis were excluded. (text continues above)
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Example 5.36. Modelling using biomarker-based proxies of exposure in a study of herbicide exposure

In the IARC cohort of phenoxy herbicide (Agent Orange) workers who were exposed to dioxins that are contaminants 
of the herbicides (Saracci et al., 1991; Kogevinas et al., 1997), several studies were conducted among industrial 
workers and professional sprayers to measure the most toxic dioxin compound, 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD), in blood samples. In most workers, measurements were made several years after the end of 
employment (IARC, 1997). Measurement after the end of employment can be problematic for most chemical 
exposures, because of the short half-life of most compounds; the chemicals are eliminated from the body during 
a relatively short time (hours, days, or a few months). Dioxins, like other persistent organic compounds and some 
metals and radionuclides, have a long half-life, frequently longer than 5 years. In the dioxin cohorts, levels of 
TCDD since first exposure could be reconstructed by modelling, using information from individual job records 
and individual measurements of blood levels of TCDD (Fig. 5.3). The studies in subsamples indicated a strong 
correlation of TCDD levels with duration of employment in jobs or industries with potential exposure to TCDD; it 
was also observed that TCDD levels increased only after substantial exposure to the herbicides, approximately 
after at least 1 year of exposure. Exposure models were then developed for all the cohort participants, based 
essentially on information on duration of exposure. (text continues on page 152)

Fig. 5.3. Serum levels of TCDD, adjusted for lipids, in 253 workers in the USA, as a function of years of exposure
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(b) Differential errors in 
biomarker measurements

If the biomarker levels were affected 
by the disease, this could also intro-
duce differential misclassification in 
a case–control study, because levels 
among case participants would de- 
pend on disease status. This has been 
described in relation to measure-
ments of chemicals in cancer types 
with poor prognosis, for example 
where disease could have affected 
weight and consequent mobilization 
of fat tissue, where several persistent 
compounds are stored in the body. 
Similarly, the possibility of differential 

misclassification has been raised in 
relation to tumours affecting immune 
status, for example measurements 
of infectious agents through anti-
bodies, the production of which could 
be affected by the disease (Aguilar 
et al., 2017), as in Example 5.37. 
Section 4.2.3 describes tools for as- 
sessing the direction and magnitude 
of bias from differential exposure.

5.6 Summary

In summary, selection bias can occur 
because of differences between the 
study population and the source pop- 

ulation. Selection bias can arise 
through various mechanisms, such 
as incomplete recruitment from the 
source population or loss to follow-up. 
This selection bias is distinct from 
issues of representativeness or gen- 
eralizability or transportability, which 
relate to comparisons between the 
target population and the source 
population.

In general, selection bias occurs 
as a result of incomplete recruitment, 
if selection depends differentially on 
exposure and disease status (e.g. if 
exposed case participants are more 
or less likely than other groups to 
be recruited) and if this incomplete 

Example 5.37. Differential errors resulting from use of biomarkers in studies of Burkitt lymphoma

Infection with Epstein–Barr virus is a primary cause of endemic Burkitt lymphoma, a common neoplasm in children 
in Africa. An ecological association has been reported between endemic Burkitt lymphoma and the prevalence of 
malaria due to infection with Plasmodium falciparum (IARC, 2013). In a case–control study of Burkitt lymphoma in 
children in Malawi, blood levels of antibodies to both Epstein–Barr virus and P. falciparum were evaluated, and it 
was found that there was a strong association with Epstein–Barr virus, a moderate association with P. falciparum, 
and an additive interaction of both infections. However, the observed associations with the two infections could 
be due to differential misclassification, because antibody levels could be different for children with and without 
Burkitt lymphoma, particularly if reverse causation was involved, i.e. if having Burkitt lymphoma increased the risk 
of being infected with malaria. (text continues above)

Fig. 5.4. If X (exposure) is associated with B (biomarker) and there is measurement error of B, this would induce non-
differential misclassification. If the disease (Y) affects the levels of B, this would induce differential misclassification.

X Y

B

Fig. 5.5
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recruitment is not adjusted for in the 
analysis. In cohort studies, impor-
tant mechanisms for selection bias 
include non-response at baseline, 
loss to follow-up, left truncation, right 
truncation, and immortal time bias. 
In case–control studies, all of these 
biases are possible; in addition, bias 
could occur through inappropriate 
selection of control participants (e.g. 
a control group that does not provide 
a valid estimate of the exposure 
history in the source population).

Qualitative tools for assessing the 
existence, direction, and magnitude 
of selection bias include the use of 
negative control exposures, negative 
control outcomes, ad hoc reanalyses 

of published data, comparisons with 
external data, and the use of several 
control groups. All of these can be 
regarded as types of triangulation. 
Quantitative methods also exist for 
sensitivity analyses that involve 
adjusting for hypothesized selection 
bias. Although these calculations are 
relatively easy to implement, it is often 
the situation that there will not be 
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parameters for a range of possible 
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observed exposure–cancer associa-
tion?” This can be particularly difficult 
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of the potential for selection bias, in 
contrast to the usually more exten-
sive discussions of the potential for 
confounding (Chapter 3) or misclas-
sification (Chapter 4). Therefore, it is 
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