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7.1 Introduction

The previous chapters in this book 
introduced and explained common 
biases in epidemiological studies, as 
well as methods for quantitative bias 
analysis that are suitable for use in 
systematic reviews and the hazard 
identification	process.

In contrast, this chapter is aimed 
at researchers who have access to 
individual-level data and wish to un- 
dertake quantitative bias analysis 
themselves or to facilitate the inclu- 
sion of their study results in system- 
atic	 reviews	 and	 hazard	 identifica-
tions. The goal here is to provide re- 
searchers with clear information on 
what they need to report to facilitate 
the bias assessment process, whether 
the bias assessment is carried out by 
the study team themselves or their 

study is being examined by system-
atic reviewers and hazard assessors.

As with the rest of this book, this 
chapter focuses on confounding, infor- 
mation bias (measurement error and 
misclassification	 of	 exposures	 and	
outcomes), and selection bias. For 
each type of bias, a brief description 
is	first	provided	of	how	the	bias	may	
arise in epidemiological studies; this 
is followed, in some cases, by exam-
ples to illustrate how quantitative bias 
analyses can be conducted when 
individual-level information is avail-
able to study authors. To avoid dupli-
cation, readers are referred to the 
relevant sections of Chapters 2–5 for 
more details about the methods and 
biases discussed in this chapter.

A special point has been made 
of	 tabulating	 the	specific	 information	
that must be reported to facilitate 

each type of bias assessment. The 
required parameters are described, 
as well as their use in the bias assess-
ment process. Some statistical pack-
ages that can be used to perform the 
quantitative bias analysis are also 
mentioned.

Importantly, this chapter does not 
discuss ways in which bias can be 
addressed by improvements to study 
design.	Specifically,	 those	situations	
are presented in which researchers 
do not have the option to alter the 
design of the study or to collect further 
data. There are several common sce- 
narios where this may occur. The 
first	 scenario	 is	 when	 a	 researcher	
is analysing data from an existing 
study, such as a large cohort study 
or case–control study. This is most 
likely to be the situation when a new 
hypothesis is investigated using 
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data from an existing study that has 
been under way for many years or 
for which data collection has been 
completed, or when the follow-up of 
an existing cohort is extended. The 
second scenario is in a research-
er’s own study, where the depth 
and accuracy of data on impor-
tant variables cannot be improved  
(e.g. if using existing medical records 
for assessing exposures, outcomes, 
or confounders) or where the study 
has been completed and the study 
design cannot be changed. A third 
scenario is in the analysis of data from 
large consortia in which individual 
studies are pooled or combined, and 
where the data from the individual 
studies	may	have	different	biases.

Moreover, this chapter does not 
take the approach of the many check-
lists and tools that have been devel-
oped to assess whether there is a 
risk of bias. In a review, Wang et al. 
(2019)	 identified	 62	 tools	 aimed	 at	
assessing the risk of bias in obser-
vational studies of exposures. Almost 
half of the tools that were reviewed 
enabled the calculation of a quality 
score, although Wang et al. (2019) 
questioned whether these scores 
were useful. Although these types 
of tool may be useful for authors or 
reviewers to provide an initial exami-
nation of a study to determine whether 
there is a risk of bias, none of them is 
able to provide a quantitative estimate 
of the direction or magnitude of the 
bias (Savitz et al., 2019).

Finally, another goal of this chap- 
ter is to encourage researchers to 
replace qualitative comments on the 
role of bias in their studies with quan-
titative estimates based on formal 
bias analysis. Too often, discussion 
sections of papers contain general 

statements in which authors describe 
the study’s limitations qualitatively. 
The authors may estimate the as- 
sumed direction and sometimes 
provide a qualitative description of 
the	effect	of	errors,	such	as	selection	
bias, confounding, or information 
bias, based primarily on their know- 
ledge	 of	 the	 field	 and	 of	 their	 own	
study. However, as discussed by 
Lash et al. (2021), human reasoning 
under uncertainty is well known to be 
fallible and to be biased by previous 
experience,	 by	 conflicts	 of	 interest,	
and also by the tendency to favour 
exposure	 effects	 over	 systematic	
errors as an explanation for observed 
associations. It is hoped that the 
information provided in this chapter 
will assist researchers to assess the 
direction and quantify the magni-
tude of systematic errors in their 
studies and to report the information 
required to facilitate the development 
of systematic reviews and hazard 
identifications.

When considering biases in ob- 
servational epidemiology studies, it 
may be useful to conceptualize a tar- 
get trial. While a detailed examination 
of target trials is beyond the scope 
of this book, some conceptual back-
ground is provided in Side Box 7.1.

Section 7.2 outlines the reporting 
considerations to facilitate graph-
ical analysis of the biases in a 
study. Sections 7.3, 7.4, and 7.5 
address considerations to facilitate  
quantitative bias analyses related to 
confounding,	exposure	misclassifica- 
tion or measurement error, and selec- 
tion bias. Each section includes sum- 
mary tables highlighting important 
reporting considerations and worked 
examples to illustrate how this infor-
mation can be used to support bias 
assessment.

7.2 Reporting considerations 
to aid graphical approaches to 
identify biases

A detailed description of how directed 
acyclic graphs (DAGs) can be used in 
the	 hazard	 identification	 process	 is	
provided in Chapter 2,	including	defi-
nitions, components, interpretation, 
and their application in identifying 
potential biases in epidemiological 
analyses. This section focuses on 
reporting principles that can be imple-
mented in constructing and presenting 
DAGs to facilitate bias assessment. 
These principles can be applied at 
the study design or analysis stages, 
or both (i.e. to explicitly describe 
assumptions being made with respect 
to the data-generation process) 
or	 in	 evaluating	 existing	 scientific	
evidence (i.e. by reconstructing the 
implied relations between exposures, 
outcomes, and covariates to evaluate 
potential sources of bias that were not 
addressed in the initial analysis).

Briefly,	 DAGs	 provide	 a	 formal	
mechanism for investigators to ex- 
plicitly outline assumptions made re- 
garding structural relations between 
exposures, outcomes, and covari-
ates, both measured and unmeasured 
(e.g. confounders, intermediates, and 
collider variables), relevant to a given 
question. Through this process, DAGs 
also play a crucial role in enabling the 
identification	of	potential	biases	(e.g.	
confounding or selection bias; see 
Chapter 2) that must be addressed in 
estimating the causal relation between 
an exposure and an outcome. With 
respect to reporting, Tennant et al. 
(2021) list eight recommendations 
to improve the transparency and 
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utility of DAGs in identifying potential 
biases; these recommendations can 
be summarized as follows.
(i) Clearly state the relations being 

focused on and the estimands of 
interest.
• Be clear about the exposures 

and outcomes of interest, in-
cluding the level at which ex-
posures are measured (e.g. 
environmental concentrations, 
personal exposures, biomarker 
concentrations).

(ii) A DAG should be presented for 
each focal relation and estimand 
of interest.
• Report a DAG for each causal 

relation under investigation. 
• Online resources are available 

to support the construction 
of DAGs (e.g. DAGitty, Textor 
et al., 2016), and an R package 
is also available.

(iii) All relevant variables should be 
included in DAGs, even where 
direct measurements are unavail-
able.
• Include all possible confound-

ing variables in the DAG, even 
those that were not measured. 
As described previously, DAGs 
can also be used to identify or 
describe possible sources of 
selection bias and measure-
ment error, if these are a con-
cern.

• It is useful to indicate in the 
DAG any variables that were 
not measured (e.g. using a dif-
ferent shape), to highlight po-
tential sources of residual con-
founding.

• In some situations, many pos-
sible confounders may exist; 
including them all in the DAG 
can lead to cluttered and con-

fusing diagrams. To avoid this, 
start by reporting only the most 
important confounders in the 
DAG (i.e. those that are ex-
pected to have an important 
impact on the hazard identi-
fication	 process).	 However,	 it	
is important to note that one’s 
intuition about which are the 
most important variables can 
be wrong, and exclusion of var-
iables	should	be	justified.

(iv) Variables should be visually ar-
ranged so that all constituent arcs 
flow	in	the	same	direction.
• DAGs are easier to interpret 

when the constituent variables 
are arranged in a manner that 
clearly	 reflects	 the	 passage	 of	
time (i.e. exposure before out-
come),	with	arcs	flowing	 in	 the	
same direction (i.e. from left to 
right or from top to bottom).

 Side Box 7.1. Target trials

Target trial approaches, which anchor causal assumptions to study design and analysis (Hernán, 2016; Hernán 
and Robins, 2020), can improve causal inference in observational studies and address common biases. Target 
trial emulation applies the principles of randomized controlled trials to observational data analysis. This is done by 
describing the protocol of an ideal randomized controlled trial that could be used to answer the research question 
of	 interest.	 The	 next	 step	 is	 to	 determine	whether	 the	 research	 question	 can	 be	 identified	 and	 the	 outcomes	
estimated using observational data. Of course, there are always challenges when drawing causal inferences from 
observational studies, because of the pervasiveness of biases; exchangeability (i.e. an absence of confounding) 
cannot be guaranteed with non-randomized data. Furthermore, the target trial construct can be challenging to 
adapt to most occupational and environmental exposures that are typically the subject of IARC Monographs 
evaluations and in which exposure is protracted and latency is very long (Steenland et al., 2020). Nonetheless, 
the target trial approach can be a useful framework when carefully considering how to clearly articulate the causal 
effect	to	be	estimated	and	biases	that	may	affect	the	analysis	(flagging	the	need	for	statistical	methods	to	address	
these biases). Causal inference is improved by being transparent about causal assumptions, acknowledging 
uncertainties	in	the	interpretation	of	causal	effects,	and	striving	to	obtain	the	least-biased	effect	estimate	within	
one’s means (Hernán, 2016; Moreno-Betancur, 2021). Readers are referred to Hernán and Robins (2020, 
Chapter 22) for a detailed description of how to emulate a target trial.

In	terms	of	reporting,	authors	are	encouraged	to	describe	their	protocol	components.	This	involves	clearly	defining	
the	research	question	(the	causal	effect	of	 interest),	eligibility	criteria,	 intervention	(or	exposure)	characteristics	
and implementation, follow-up period, outcome of interest, and statistical analysis (specifying intention-to-treat or 
per-protocol	effects).	(text continues on page 177)
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(v) The omission of arrows and nodes 
should be carefully considered 
and	 justified	 with	 theory	 or	 evi-
dence.
• Omitting an arrow from one 

node to another implies no 
causal	 effect	 of	 one	 on	 the	 
other.

• This is a stronger assumption 
than including an arrow from 
one node to another (which can 
take any sign or magnitude, in-
cluding	a	very	small	effect).

(vi) The DAG-implied adjustment sets 
for the estimands of interest 
should be clearly stated.
• After the DAG is constructed, 

be clear about what it implies 
about the necessary adjust-
ment set, including variables 
that may be missing because 
they were not measured.

(vii) Risk estimates obtained from the 
DAG-implied adjustment sets 
should be reported.
• When the DAG-implied adjust-
ment	 set	 has	 been	 identified,	
use it in the analysis and report 
the results. If some variables 
are missing (i.e. because they 
were not measured), it should 
be stated that the analysis is 
not based on the DAG-implied 
adjustment set.

• Quantitative bias analysis can 
be used to estimate the poten-
tial impact of unmeasured con-
founders caused by missing 
variables (Lash et al., 2021), as 
described in Section 3.3.4.

•	For	hazard	identification,	it	can	
be helpful to report a minimally 
adjusted model to assess the 
extent of bias from the select-
ed set of confounders, as de-
scribed in Section 3.2.3. How-

ever, this should be interpreted 
with caution because other 
factors (e.g. measurement er-
ror	 for	 variables	 identified	 as	
confounders)	will	 influence	dif-
ferences between adjusted and 
minimally adjusted models.

(viii) Alternative adjustment sets  
should	 be	 justified	 and	 reported	
separately.
• If more than one adjustment set 

is used (including unadjusted 
models), these should be clearly 
justified,	and	the	results	should	
be reported separately from the 
DAG-implied adjustment set.

Hypothetical scenarios of DAG re- 
porting are provided in Examples 7.1 
and 7.2.

7.3 Confounding

A limitation of observational studies 
is that they are prone to the risk of 
residual or unmeasured confounding, 
which can lead to biased estimates of 
the	effect	of	the	exposure	of	 interest	
(VanderWeele, 2019). A detailed de- 
scription of confounding and how this 
affects	 causal	 estimates	 in	 epide-
miological studies is provided in 
Chapter 3. Researchers try to mini-
mize confounding by using methods 
related to study design (e.g. random-
ization, restriction, matching) or, after 
completion of data collection, by using 
multivariable	analysis	or	stratification.

Chapter 3 discusses how to eval- 
uate the adequacy of control for con- 
founding in observational studies 
of cancer risk. This section focuses 
on controlling for confounding in 
secondary data analyses, i.e. when 
analysing data from case–control 
or cohort studies that have already 

been designed and conducted, in- 
cluding analyses using pooled data 
from large international consortia 
of these studies. For this purpose, 
it is assumed that the research 
questions addressed in secondary 
data analyses are causal ones (as 
opposed to descriptive or predictive 
questions).

In observational studies, it is only 
possible to attempt to emulate ran- 
domized experiments. For an obser- 
vational study to emulate a random-
ized experiment, three assumptions 
must	 be	 satisfied	 (Shiba and Ka- 
wahara, 2021): conditional exchange-
ability (exposed and unexposed indi- 
viduals are exchangeable within 
strata of the combinations of covar-
iate values, i.e. there are no unmea-
sured confounders that are a common 
cause of both exposure and outcome); 
positivity (exposed and unexposed 
individuals are present within all 
combinations of covariate values); 
and	consistency	(the	exposure	is	suffi-
ciently	well	defined	and	has	no	vari-
ations that could alter the outcome). 
Identifying, measuring, and adjusting 
for confounders is crucial for the 
conditional exchangeability assump-
tion (although the assumptions are 
interrelated). Note that in observa-
tional studies, one can never be sure 
what the true conditional randomiza-
tion probability is (i.e. the likelihood of 
an outcome occurring, based on the 
occurrence of a previous outcome). 
The issue of residual and unmea-
sured confounding will always remain 
in observational studies (Hernán and 
Robins, 2020), but this section high-
lights methods to evaluate the direc-
tion and magnitude of uncontrolled 
confounding to help gauge how prob-
lematic it is likely to be.
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Example 7.1. Red meat consumption and cancer

Diallo et al. (2018) examined the relation between red meat intake and cancer risk. Red meat intake was estimated 
through	dietary	records,	and	several	different	cancer	outcomes	were	examined.	Covariates	identified	as	possible	
confounders in models for all cancers included age, sex, energy intake without alcohol, number of 24-hour dietary 
records, smoking status, education level, physical activity, height, body mass index, alcohol intake, family history 
of cancer, lipid intake, intake of fruits and vegetables, and intake of processed meat. This adjustment set implies 
the DAG in Fig. 7.1. 

Fig. 7.1. Directed acyclic graph for red meat consumption and cancer. BMI, body mass index.

Processed meat

Fruit and vegetable intake

Lipid intake

Family history of cancer

Alcohol intake

BMI

Height

Physical activity

Education level

Smoking status

Number of dietary records

Energy intake without alcohol

Age

Sex

Red meat Cancer

 

Clearly, many of the variables shown in Fig. 7.1 are likely to be important confounders (e.g. family history of 
cancer, smoking status). However, some of the variables included as confounders might be debatable (e.g. height), 
and an alternative adjustment set could be examined (e.g. by excluding height or other questionable confounding 
variables included in the analysis) to evaluate the impact of excluding those variables from the analysis. (text 
continues on page 179)
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Example 7.2. Water arsenic concentration and cancer

Consider a hypothetical study where the agent of interest is water concentration of arsenic and not personal 
exposure	to	arsenic.	This	example	is	interesting	because,	for	the	purposes	of	reporting,	it	is	important	to	differentiate	
between the levels at which exposure is measured (i.e. personal) and a more proxy level (e.g. environmental 
concentrations), because the set of potential confounders of the environmental concentration–outcome relation 
will	probably	differ	from	the	set	of	potential	confounders	of	the	personal	exposure–outcome	relation	(Weisskopf 
and Webster, 2017).	Specifically,	the	association	between	the	outcome	and	exposures	measured	at	the	personal	
level is more susceptible to confounding by individual-level factors (e.g. personal behaviours, such as diet or 
smoking),	which	can	be	difficult	to	measure	and	hard	to	control	for	in	an	analysis.	For	example,	individual-level	
smoking is probably an important confounder of the relation between personal exposure to arsenic and cancer 
(because smoking is a cause of personal exposure to arsenic and smoking causes cancer) but is probably not 
an important confounder of the relation between water arsenic concentration and cancer incidence (because 
individual-level smoking is not a cause of arsenic in drinking-water). Alternatively, regional-level socioeconomic 
status (by postal code, county, etc.) may be an important confounder of the environmental concentration–outcome 
relation if areas with lower socioeconomic status have a higher incidence of cancer and have higher levels of 
arsenic in the water (e.g. because of a higher proportion of well-water use in rural areas with lower socioeconomic 
status). In addition, in retrospective studies, personal-level exposure measurements (e.g. biomarkers) could also 
be subject to reverse causation if the disease under investigation alters biomarker levels (see Chapter 5 for the 
issue of reverse causation). Fig. 7.2 is a generic DAG that highlights the distinction between confounders at 
the personal level and more-proxy-level confounders (e.g. environmental concentrations); it is important to think 
carefully about the variables that are likely to be present in each group and which variables need to be included in 
the	analysis,	based	on	the	exposure	of	interest.	A	more	thorough	discussion	of	the	trade-offs	between	personal	
and proxy-level exposures is given by Weisskopf and Webster (2017). (text continues on page 179)

Fig. 7.2. Distinguishing between personal-level confounders and more-proxy-level confounders (here, water 
arsenic concentration).

Personal-level confounders

Water arsenic concentration Personal-level arsenic Cancer

Environment-level confounders

 

Chapter 7. Study reporting considerations to facilitate quantitative bias assessment with access to original data C
H

A
P

T
E

R
 7



182

7.3.1 Reporting considerations 
to facilitate methods to assess 
confounding

Table 7.1 lists the important elements 
that should be reported to facilitate 
use of the tools described in Chapter 3 
to assess bias from uncontrolled or 
residual confounding in the published 
literature. Researchers could provide 
this information in published studies 
to enable bias appraisal by them-
selves or reviewers of their work, as 
described here and in Chapter 3.

7.3.2 Methods of confounder 
selection

Confounders	 should	 be	 identified	
a priori, using a DAG, and docu-
mented in a statistical analysis plan. 
Contemporary epidemiological meth- 
ods suggest that confounder selec-
tion	 should	 be	 based	 on	 sufficient	
knowledge of the relevant causal 
structures, and that the temporal 

relations of variables should be 
considered (VanderWeele, 2019). 
The use of DAGs for this purpose is 
discussed extensively in Chapter 2 
and Section 7.2. The construction 
of DAGs can also help researchers 
consider which variable in a dataset 
best represents the confounder of 
interest.

Data-driven covariate selection – 
for example, forward or backward 
stepwise selection, examining P in 
bivariate analysis with either expo-
sure or outcome, or examining a 
change	 in	 effect	 estimate	 after	 the	
addition or removal of a covariate – 
is not recommended (Greenland 
and Pearce, 2015). As a historical 
example, in a cohort study of the 
consumption of red and processed 
meats and colorectal cancer, English 
et al. (2004) stated, “Sex, country of 
birth, and energy intake (kJ/d) were 
included in all models. Other potential 
confounding variables were included 

in	 all	 the	 definitive	 analyses	 if	 they	
changed the hazard ratios of any 
of the meat consumption variables 
for either colon or rectal cancer by 
at least 5%.” These methods do not 
consider the underlying causal struc-
ture, and it is not possible to determine 
whether covariates are confounders, 
mediators, colliders, or ancestors or 
descendants of other variables when 
using these data-driven approaches. 
When adjusting for covariates that 
are not true confounders, there is a 
risk of generating biased estimates.

As noted in Chapter 1, the IARC 
Monographs review process assigns 
greater weight to studies that adjust 
appropriately for confounding factors. 
Studies	 with	 insufficient	 adjust-
ment are either given less weight or 
excluded from a review, depending on 
the number of studies available for a 
particular cancer site. Consideration 
of the method of confounder selection 
should also be part of this evaluation 

Table 7.1. Essential information that is needed to inform assessment of bias from counfounding

Method to assess 
confounding

Data needed More details

Negative control outcomes 
(NCOs)

Identification	of	NCO	that	is	related	to	the	confounder	but	not	to	the	exposurea 
Reported results of the exposure–NCO association (as well as the main result 
of the exposure–diseaseb association)

Sections 3.3.2(a), 
7.3.3(a)

Negative control exposures 
(NCEs)

Identification	of	NCE	that	is	related	to	the	confounder	but	is	not	a	cause	of	
disease 
Reported result for the NCE–disease association, adjusted for the exposure 
(or the NCE–disease association within a stratum of the exposure)

Sections 3.3.2(b), 
7.3.3(b)

Bias analysis (e.g. indirect 
confounder adjustment)

For bounding, report a value for the probable magnitude of the association 
of the confounder with the disease in the population under study and of the 
confounder with the exposure 
For quantitative bias assessment, also report the prevalence of the confounder 
among unexposed (p0) and exposed (p1) individuals and information on the 
association between the confounder (e.g. smoking) and the exposure

Sections 3.3.4, 
7.3.3(c)

Internal reference groups Data on all exposure groups, including unexposed groups Section 7.3.3(c)
External reference groups Data on exposure and disease in external population used as reference Section 7.3.3(c)
Duration of exposure Dates of start and end of the exposure Section 7.3.3(c)
g-methods Data to enable simulation of the natural course of the disease with no 

intervention
Section 7.3.3(d)

a Exposure of primary interest.
b Disease of primary interest.
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of evidence, given the potential for 
incorrect adjustment to introduce bias, 
as described in Section 3.2.3.

7.3.3 Addressing unmeasured 
and residual confounding

Commonly, bias in observational 
studies comes from confounders that 
are unmeasured or poorly measured 
(VanderWeele, 2019). Ideally, sensi-
tivity analyses can be conducted to 
explore biases, including unmeasured 
and residual confounding; this can 
help with the interpretation of results 
and in avoiding the misapplication 
of	 study	findings	 (Lash et al., 2014). 
There are several ways in which this 
can be done. Methods that do not 
require access to individual-level data 
include consideration of transporta- 
bility of causal relations between 
studies (see Section 5.1), triangula-
tion (see Section 3.3.3), and bounding 
and bias adjustment in sensitivity 
analyses (see Section 3.3.4).

When researchers have access 
to individual-level data, additional 
methods can be used to estimate the 
effects	 of	 unmeasured	 and	 residual	

confounding, including negative con- 
trol outcomes (NCOs), negative con- 
trol exposures (NCEs), and indirect 
control methods. These are described 
in more detail here.

(a) NCOs to address confounding

A detailed discussion of this method 
is presented in Section 3.3.2(a). The 
potential for confounding may be 
examined using an NCO (Lipsitch 
et al., 2010). This approach involves 
examining the association between 
the exposure of interest (the potential 
hazard) and another outcome that 
has the following characteristics: (i) it 
is caused by the hypothesized con- 
founding factors, and (ii) it is not caused 
by the exposure (Example 7.3). If the 
association between the exposure of 
interest and the (implausible) NCO 
is of similar magnitude to the asso-
ciation between the exposure and 
the primary (plausible) outcome, this 
implies that the apparent associa-
tion between the exposure and the 
primary outcome results from perva-
sive confounding. Researchers using 
NCOs must explicitly report how the 

selected NCOs meet these two 
conditions.

(b) NCEs to address confounding

An NCE approach is conceptually 
similar to the NCO method (see 
Section 3.3.2(b)), but here an alterna-
tive (implausible) exposure–outcome 
analysis is conducted. This method 
involves examining the association 
of	 a	 site-specific	 cancer	outcome	of	
interest with another exposure variable 
that has the following characteristics: 
(i) it is associated with the hypothe-
sized confounding factors, and (ii) it is 
not	a	cause	of	the	site-specific	cancer	
outcome (Example 7.4). Researchers 
using an NCE must state how it meets 
these two conditions.

(c) Indirect methods to control  
for confounding

In some cohort and case–control 
studies, data on potentially important 
confounding factors may be missing. 
This applies particularly to retrospec- 
tive studies of occupational expo- 
sures, where there was no unexposed 
group (Axelson and Steenland, 1988). 

Example 7.3. Use of a negative control outcome in a study of hypertension and cancer

In a Mendelian randomization study, Chan et al. (2021) examined genetically predicted blood pressure and the 
risk	of	 total	and	site-specific	cancers.	Single	nucleotide	polymorphisms	 (SNPs)	 that	map	 to	genes	associated	
with	systolic	and	diastolic	blood	pressure	were	 identified	 in	a	genome-wide	association	study	conducted	using	
data obtained from the UK Biobank. These SNPs were used together to examine their collective relation with 17 
site-specific	cancers	using	data	 from	a	meta-analysis	of	 the	UK	Biobank	and	 the	Kaiser	Permanente	Genetic	
Epidemiology Research on Adult Health and Aging. Findings were validated using data from three international 
consortia (the Breast Cancer Association Consortium, the Prostate Cancer Association Group to Investigate Cancer 
Associated Alterations in the Genome Consortium, and the International Lung Cancer Consortium). Asthma was 
used as an NCO, because blood pressure is unrelated to asthma but they share similar confounders (e.g. tobacco 
smoke exposure, obesity, physical inactivity). Systolic and diastolic blood pressure were not associated with risk of 
total	or	most	site-specific	cancers,	and	consistent	findings	were	obtained	from	the	validation	samples.	There	was	
a nominal risk increase for melanoma and kidney cancer. There was no association between blood pressure and 
asthma, as expected, providing additional support for a lack of confounding. (text continues above)
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In such studies, disease rates are 
typically estimated for particular 
industries or jobs and results are 
compared with rates for the general 
population (usually nationally). How- 
ever,	it	is	difficult	to	determine	whether	
differences	 in	cancer	risk	are	due	to	
the occupational exposure or due 
to	 differences	 in	 (unmeasured)	 life-
style-related behaviours of the cohort 
participants.

One way to address this is to recruit 
internal reference groups, such as 
those working in the same plant but 
only	 in	 the	office	or	 those	with	short	
employment duration. If internal 
analyses are not possible, indirect 
methods can be used to evaluate 
the direction and magnitude of this 
unmeasured confounding. Steenland 
et al. (1984) outlined four simple 
methods that can be applied using 
readily available records. These are 
outlined in Example 7.5 for a study 
involving smelter workers and lung 
cancer.

A simple spreadsheet and code to 
help apply indirect control methods 
is available at https://sites.google.
com/site/biasanalysis/Home (Fox et 
al., 2021).

(d) Application of g-methods 
to address time-varying 
confounding

Another issue that is often not ade- 
quately addressed is time-varying 
confounding. Although for many co- 

hort studies data may be collected 
at multiple time points, researchers 
often use baseline measures of 
exposures and confounders to ad- 
dress causal questions pertaining to 
cancer risk. However, if the exposure 
changes over time, bias from inad-
equate adjustment for time-varying 
confounding may be problematic 
(Example 7.6).

7.4 Information bias due 
to exposure and outcome 
misclassification

This	section	first	describes	reporting	
considerations for study authors to 
report the data required to facilitate 
approaches to assess the direc-
tion and quantify the magnitude of 
measurement	 error	 and	 misclassifi-
cation of exposure and outcome using 
only published data, as discussed in 
Chapter 4.

The second part of this section 
outlines the information that study 
authors can report to assist reviewers 
in determining the likelihood and 
magnitude of bias due to measure-
ment error and exposure and outcome 
misclassification,	 and	 which	 biases	
should be prioritized in quantitative 
bias assessment.

The third part of this section brief- 
ly describes a selection of approaches 
that can be used to quantify informa-
tion bias where access to individu-
al-level study data is available, along 

with further resources about these 
approaches and examples of where 
they have been applied in studies of 
red meat consumption and mobile 
phone use.

7.4.1 Reporting considerations 
to facilitate information bias 
assessment

Chapter 4 describes a range of ap- 
proaches that can be used with 
summary-level data to quantify bias 
caused	by	non-differential	and	differ-
ential error in the measurement of 
exposures and outcomes. Table 7.2 
outlines the data that are needed 
to perform the bias assessment 
methods described in Chapter 4.

Note that almost all of the re- 
quired information comes from vali-
dation studies. Such studies are 
important in providing the bias param-
eters that can be used to quantify bias 
with summary-level or individual-level 
data.

In addition to the reporting con- 
siderations outlined here, the authors 
of validation studies should also 
report their sampling, recruitment, 
and data collection methods, so that 
readers can assess the validity of 
the resulting bias parameters. The 
study authors should also report the 
characteristics of participants in any 
validation study, so that readers can 
assess the transportability of the bias 
parameters to other populations.

Example 7.4. Use of a negative control exposure in a study of maternal alcohol consumption and hypertensive disorders 
of pregnancy

For the Avon Longitudinal Study of Parents and Children cohort, Martin et al. (2022) estimated the association 
of maternal alcohol consumption during pregnancy with hypertensive disorders of pregnancy. They used the 
mother’s partner’s alcohol consumption as an NCE and found that the alcohol intakes of both the mother and the 
mother’s partner were associated with decreased odds of hypertensive disorders of pregnancy; this suggests 
that	 the	findings	were	due	to	shared	environmental	exposures	rather	 than	a	 true	causal	effect	of	alcohol.	 (text 
continues on page 183)

https://sites.google.com/site/biasanalysis/Home
https://sites.google.com/site/biasanalysis/Home
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Table 7.2. Reporting considerations to facilitate bias assessment methods outlined in Section 4.3

Bias source Bias parameters to report

Misclassification	for	a	binary	
exposure

Sensitivity	and	specificity	of	the	exposure	measurement	method,	along	with	other	potential	bias	
parameters, such as positive and negative predictive values – by case or control status where 
applicable

Measurement error in 
continuous and categorized 
exposures

For studies that have used regression calibration, the attenuation factor and the validity 
coefficient	(the	correlation	coefficient	between	the	observed	exposure	and	the	true	exposure) 
To facilitate the method of Rosner et al. (1990) (outlined in Section 4.3.5), when the exposure 
and confounders in the calibration equation and the exposure–outcome association are all 
linear,	authors	should	report	the	coefficients	of	each	variable	in	the	calibration	equation	and	
each	coefficient	in	the	regression	of	outcome	on	the	observed	exposure	and	confounders.

All measurement error To facilitate simple bias assessment methods (e.g. reallocation of counts of case and control 
participants), which are based on unadjusted results, authors should report both unadjusted and 
adjusted risk estimates.

Example 7.5. Indirect methods to evaluate confounding in a cohort of lead smelter workers

First, if a cohort of lead smelter workers was found to have a higher risk of lung cancer than expected, one could 
examine whether the cohort also had an excess risk of other smoking-related diseases. If risk was elevated for 
the	majority	of	smoking-related	diseases	(including	diseases	that	are	not	thought	to	be	affected	by	lead	smelting),	
it is likely that the cohort smoked more than the general population did, and thus unmeasured confounding would 
explain the elevated risk of lung cancer. If the risk was not elevated for the majority of smoking-related diseases, 
smoking would be unlikely to be a strong confounder in the investigated exposure–outcome relation.

Second, rather than comparing the rate observed in the occupational cohort with that in the national population, 
another	comparison	group	with	a	similar	socioeconomic	profile	could	be	chosen.	For	example,	one	might	expect	
that individuals working in lead smelters would have a similar socioeconomic position to workers in recycling 
plants. If the rates of lung cancer were similar between occupational cohorts of workers in smelters and recycling 
plants, this would suggest that smoking, rather than exposure to lead smelting, was increasing the risk of disease. 
However, this method is not appropriate if lead smelting causes the same cancers as smoking does, or if working 
in a recycling plant involved exposures to lung carcinogens. This alternative comparison of risk in a similar 
socioeconomic population is conceptually similar to using an NCE (Section 7.3.3(b)).

Third,	 adjustment	 can	 be	made	 under	 different	 assumptions	 about	 the	 smoking	 behaviour	 of	 occupational	
cohort	participants.	Estimated	rates	of	smoking	in	different	occupational	and	sociodemographic	groups	are	readily	
available.	If	there	were	a	difference	in	smoking	rates	between	lead	smelter	workers	and	the	general	population,	one	
could adjust the risk estimate in a study of lung cancer accordingly. An illustration of such an indirect adjustment 
is given in Example 3.15.

Finally, another indirect method that can be used is to examine risk by years of exposure or by exposure 
levels. If working in a lead smelter increased the risk of developing lung cancer, one would expect to observe 
a	dose–response	effect	by	years	of	employment	or	exposure	level.	Ideally,	this	analysis	should	be	stratified	by	
age, so that workers within the same age categories are compared according to their duration of employment. 
One could assume that new workers would have been smoking for the same duration as long-term employees 
within	the	same	age	category.	Thus,	if	no	dose–response	effect	was	noted,	one	might	conclude	that	unmeasured	
confounding	from	smoking	was	present	and	that	this	explained	the	observed	effect.	One	caution	with	this	approach	
is that analyses based on measures of employment duration are particularly susceptible to healthy worker survivor 
bias (see Section 3.2.4(a) and Example 3.6). (text continues on page 184)
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 Example 7.6. Bias from inadequate adjustment for time-varying confounding

In Fig. 7.3, red meat consumption is the time-varying exposure (X1, X2), body composition is the time-varying 
confounder (C1, C2), and colon cancer risk is the outcome Y. It is assumed that body composition (C2)	affects	how	
much red meat someone eats (X2), but it can be seen that this confounder (C2)	is	also	affected	by	prior	exposure	
to red meat (X1; exposure–confounder feedback). If body composition (C2) is conditioned on, an intermediate 
variable on the causal pathway will have been adjusted for; this can produce biased estimates (Daniel et al., 2013). 
In contrast, if body composition (C2) is not adjusted for, there is uncontrolled confounding. Conventional regression 
cannot adjust for time-varying confounding appropriately. Alternative statistical approaches, known as generalized 
methods (g-methods), are required to handle the issue of exposure–confounder feedback adequately (Robins and 
Hernán, 2009; Naimi et al., 2017). This is discussed further in Section 3.2.4(a). 

Fig. 7.3. Directed acyclic graph demonstrating time-varying exposure in the presence of time-varying confounding. 
X1, exposure at time 1; X2, exposure at time 2; C1, confounder at time 1; C2, confounder at time 2; Y, outcome.
 

Y

When	 confounders	 vary	 over	 time	 and	 are	 affected	 by	 prior	 exposure,	 they	 can	 also	 be	 mediators	 (see	
Example 2.1b). When researchers have access to individual-level data, there are opportunities to return to existing 
cohort studies and apply these methods to better answer causal questions, as in Example 7.7. (text continues on 
page 184)

Example 7.7. Use of g-methods to control for time-varying confounding in a study of titanium dioxide exposure

Bertke et al. (2021) reanalysed data from a cohort of 5163 boatbuilders exposed to styrene in Washington State in 
the USA who were employed between 1959 and 1978. Using g-estimation of a structural nested model to account 
for healthy worker survivor bias, they estimated that 1 year of exposure to styrene at a concentration of > 30 ppm 
accelerates	time	to	lung	cancer	death	by	2.3	years	(95%	confidence	interval	[CI],	1.53–2.94).

This analysis enabled estimation of the necessary components of the healthy worker survivor bias and provided 
evidence	 that	 this	effect	was	potentially	quite	 large,	probably	masking	 the	 true	exposure–response	 relation	 in	
previous studies.

There	 are	 several	 reporting	 considerations	 for	 g-methods	 related	 to	 model	 specification.	 For	 example,	
researchers should compare the simulated risk of outcome under the natural course; a natural-course intervention 
is one that attempts to emulate the existing data by modelling the exposure in addition to confounders and 
outcomes. The results from the natural-course model can be compared with the observed risk as an informal 
validation	of	correct	model	specification.	For	detailed	information,	refer	to	Hernán and Robins (2020).

CAUSALab at the Harvard T.H. Chan School of Public Health maintains a repository of macros and code 
relevant	to	different	g-methods	(Harvard T.H. Chan School of Public Health, 2024). (text continues above)
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7.4.2 Reporting considerations 
to facilitate evaluation of bias 
in individual studies

Table 7.3 summarizes reporting con- 
siderations that study authors can 
include in their manuscripts to assist 
reviewers and other readers in deter-
mining the likelihood and magnitude 
of bias from measurement error and 
misclassification	 of	 exposure	 and	
outcome, and which biases should 
be prioritized in quantitative bias 
assessment. Some of this infor-
mation may also help to facilitate 
approaches (described in Chapter 4) 
that can be used to assess the direc-
tion and quantify the magnitude of 
measurement error and exposure 

and	outcome	misclassification	using	
only published data. Further informa-
tion about each of these biases can 
be found in Chapter 4.

Where the study authors believe 
that a particular form of bias is 
unlikely	to	have	affected	the	observed	
results, the authors should provide an 
explanation for this assumption (e.g. 
Example 7.8).

7.4.3 Methods that can be used 
with individual-level data

Whereas the approaches outlined in 
Chapter 4 can be taken using summa-
ry-level data by the researchers them-
selves, by the study team analysing 
existing data, or by reviewers and 

hazard assessors, other approaches 
require access to individual-level data. 
Additional information beyond the 
primary study data may be required 
to	 quantify	 the	 effect	 of	 measure-
ment error on estimated exposure–
disease associations. Such data 
may come from internal validation 
studies conducted on a subset of the 
participants for whom (apparently) 
true exposure data are collected, 
or from external validation studies. 
Next,	 methods	 are	 briefly	 outlined	
that require individual-level data and 
that have previously been applied in 
studies	used	for	hazard	identification.	
Then, examples of studies that have 
used	 such	 approaches	 are	 briefly	
described.

Table 7.3. Reporting	considerations	for	measurement	error	and	exposure	and	outcome	misclassification

Type of bias to be 
assessed

Reporting considerations More details

Measurement error in 
binary exposures

Sensitivity	and	specificity	of	measures	used	to	classify	participants	as	exposed,	
along with relevant references

Section 4.2.1(b)

Measurement error in 
continuous exposures

Validity of exposure measurement, along with relevant references Section 4.2.1(a)

Recall bias Timing of measurement of exposure, in both case and control participants 
Exposure prevalence in general population

Section 4.2.3(a)

Interview or assessor error 
or bias

Interview quality by case or control status 
Whether methods used to assess or assign exposure status were blind to 
outcome status 
Whether case and control participants were assessed by the same interviewers 
or assessors 
Distribution of exposure across interviewers or assessors

Section 4.2.2

Proxy respondent bias Percentage of proxy respondents in sample and in case and control participants 
Distribution of exposure in proxy and personal respondents

Section 4.2.3(b)

Reporting bias based on 
belief about a health hazard

Participants’	beliefs	about	whether	an	exposure	affects	cancer	risk,	by	case	or	
control status where applicable

Section 4.2.3

Outcome	misclassification Source	of	all	outcome	data	and	sensitivity	and	specificity	of	the	classification 
Whether methods used to assess or assign outcome status were blind to 
exposure status 
Where	subtypes	of	specific	cancers	are	analysed	(e.g.	specific	types	of	non-
Hodgkin lymphoma, or premenopausal and postmenopausal breast cancer), the 
basis	on	which	subtypes	were	classified	(e.g.	specific	International	Classification	
of	Diseases	[ICD]	version)

Section 4.4
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(a) Classical non-differential 
exposure measurement error

Regression calibration is one of the 
more common approaches used to 
quantify and correct for classical 
measurement error with individual- 
level data. Regression calibration is 
described in detail in Section 4.3.6, 
along with situations where regres-
sion calibration approaches can 
be used to quantify measurement 
error	using	published	data.	To	briefly	
recap, regression calibration involves 
using error-prone exposure vari-
ables (e.g. simple food frequency 
questionnaires to measure red meat 

consumption) and other participant 
characteristics that are available for 
the whole study population to predict 
the exposure obtained from a more 
accurate measurement (e.g. 24-hour 
diet recall) in a smaller sample. The 
calibration equation can then be 
applied to the whole study population 
and the resulting variable used as the 
exposure in the main analysis, with 
standard errors adjusted for the cali-
bration. The resulting risk estimates 
can be compared with risk estimates 
from the original analysis (which used 
uncalibrated exposure variables) to 
assess the direction and magnitude 
of bias present (Example 7.9).

Further details about the imple-
mentation of regression calibration 
can be found in Fox et al. (2021, 
Chapter 10). Statistical software to 
conduct regression calibration is 
available in SAS (%blinplus macro) 
(Yale School of Public Health, 2024), 
Stata (merror package) (Stata, 2003), 
and R (merror package) (Bilonick, 
2023).

As noted previously, other meth- 
ods are available to quantify and 
correct for exposure measurement 
error, in addition to regression calibra-
tion. Some of these methods – simula-
tion	extrapolation	for	misclassification	
(MC-SIMEX), the Bayesian model 

 Example 7.8. Explaining	assumptions	about	differential	sources	of	error

In a study on mobile phone use and the risk of brain tumours, Castaño-Vinyals et al. (2022) reported, “No formal 
analysis	was	conducted	to	take	into	account	a	possible	differential	recall	bias,	since	the	results	of	the	operators’	
validation	study	provided	no	evidence	for	differential	recall	between	[case	and	control	participants].”	(text continues 
on page 187)

 Example 7.9. Regression calibration to quantify bias due to measurement error

As noted in Example 4.22, regression calibration was used in the European Prospective Investigation into Cancer 
and Nutrition (EPIC), which was a cohort study. This example gives more detail on how this was done. Norat 
et al. (2005), in their investigation of consumption of red and processed meat and risk of colorectal cancer, 
quantified	the	impact	of	classical	measurement	error	using	individual-level	data	obtained	from	EPIC.	In	the	EPIC	
study, all participants completed a self-administered dietary questionnaire, and an additional 24-hour diet recall 
measurement was taken from a random sample of 8% of the EPIC participants. Among the subsample, the 24-hour 
diet recall values for consumption of red and processed meat were regressed on the corresponding values obtained 
using the main dietary questionnaire, with a range of dietary and non-dietary factors included as covariates. Sex-
specific	and	study-centre-specific	calibration	models	were	then	applied	to	the	whole	cohort	to	predict	values	for	
the consumption of red and processed meat for each participant in the EPIC sample. These predicted values were 
then used in analyses to estimate the association between consumption of red and processed meat and colorectal 
cancer	 risk,	with	 standard	 errors	 adjusted	 for	 the	 calibration;	 a	 stronger	 effect	was	 observed	 after	 calibration	
(hazard	ratio	[HR],	1.55	for	each	100	g	increase;	95%	CI,	1.19–2.02)	than	in	the	original	analysis	(HR,	1.25;	95%	
CI, 1.09–1.41). (text continues above)
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for quantifying bias, and multiple 
imputation	–	are	described	briefly	 in 
Section 4.3.7; other methods are 
described in Keogh and White (2014).

(b) Differential measurement 
error

Section 4.3.5 outlines situations 
where probabilistic bias analysis 
can be used to quantify measure-
ment error using published data. 
Probabilistic bias analysis can also 
be	 used	 to	 quantify	 differential	 (or	
non-differential)	 measurement	 error	
with individual-level data. The aim 
of probabilistic bias analysis is to 
provide bias-adjusted estimates over 
a plausible distribution of bias param-
eters, as opposed to a single value 
in simple bias analysis. The plausible 
distribution of bias parameters can be 
obtained from internal or external vali-
dation studies (Example 7.10).

Probabilistic bias analysis with indi-
vidual-level data is covered in Chap- 
ter 9 of Fox et al. (2021). A range of 
software to conduct probabilistic bias 
analysis can be found at Columbia 
Mailman School of Public Health 
(2024).

Another approach that can be 
taken to evaluate the potential impact 
of	 differential	 measurement	 error,	
specifically	 recall	 bias	 in	 case–
control studies, is the recruitment of 
different	control	groups	in	the	analysis	
stage. This approach is described in 
Example 4.13.	 Briefly,	 this	 approach	
involves the recruitment of a control 
group for whom recall is likely to be 
similar to that of the case partici-
pants but who have a disease that 
is not thought to be associated with 
the exposure of interest (e.g. partic-
ipants	 with	 a	 different	 cancer	 type).	
To undertake this analysis after data 
collection is complete would require 
the availability of information on expo-
sure status for the new control group, 
as in Example 7.11.

Other methods that can be used 
with individual-level data to assess 
and	 quantify	 differential	 information	
bias include NCEs (see Section 7.3.3) 
and stratifying analyses by exposure 
causation belief, interviewer, or proxy 
respondent status. These methods 
are discussed further in Section 4.2.3.

7.5 Selection bias

Selection bias is a systematic error 
that might present a threat to a study’s 
internal validity. Therefore, it is im- 
portant that researchers carefully 
consider the potential for selection 
bias when analysing study data and 
identify and report the information 
necessary to assess the potential 
for such a bias, as well as its direc-
tion and magnitude. This could be 
included as part of the study results 
or as supplementary material.

Selection bias arises either by 
design or through analytical choice. 
As described in Chapter 5, cohort 
studies are prone to two main origins 
of	 selection	 bias.	 First,	 differential	
selection	forces	can	drive	a	differen-
tial baseline participation or result in 
a	differential	loss	to	follow-up,	so	that	
results	do	not	reflect	the	patterns	in	the	
source population. The second main 
origin of selection bias arises from left 
or right truncation during the analysis. 
These types of bias can also occur in 
case–control studies. In addition, bias 
can occur in case–control studies in 
the selection of control participants. 
For example, if the researchers 

 Example 7.10. Probabilistic bias analysis to quantify recall bias

Momoli et al. (2017) used case–control data from the Canadian part of the Interphone study to investigate mobile 
phone use and the risk of head and neck tumours. The main concern was recall bias regarding the use of mobile 
phones. Probability distributions for recall errors were derived from Interphone validation data, in which recalled 
mobile phone use was compared with operator records, separately for case and control participants (Vrijheid 
et al., 2006). A Monte Carlo procedure was then used to correct for recall bias, with the aim of recreating, as it 
were, the study population that would have been observed if recall bias were absent. A further sensitivity analysis 
was conducted to address possible bias with respect to the timing of interviews, because of concerns about 
this	 differing	 between	 case	 and	 control	 participants.	 The	 results	 of	 the	 probabilistic	 bias	 modelling	 were	 not	
meaningfully	different	from	the	results	of	the	non-bias-adjusted	analyses.	(text continues above)
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select people with another disease 
as the control source population 
and if that disease is related to the 
exposure, then the control partici-
pants will not be representative of the 
source population for the case partic-
ipants. This section outlines how re- 
searchers can examine selection 
biases in their own studies and facil-
itate the analysis of selection bias by 
reviewers who will not have access to 
the individual-level data.

7.5.1 Reporting considerations 
to facilitate assessment of 
selection bias by expert 
reviewers using methods 
outlined in Chapter 5

Table 7.4 summarizes the study 
information that should be reported 
to enable assessment of selection 
bias at a later stage, as described in 
Chapter 5.

7.5.2 Differential baseline 
participation

A simple bias analysis to address the 
effect	of	differential	baseline	participa-
tion (in both cohort and case–control 
studies) should be informed by internal 
data, reported as a contingency table 
of participation proportions for each 

of the combinations of exposure and 
disease. The prevalence or distribu-
tion of exposure and disease should 
also be estimated and reported for 
the non-participants (both case and 
control participants). Ideally, this esti-
mate should be based on an internal 
validation study of a group of the 
non-participants. If such an internal 
validation study is not possible, it may 
be possible to provide estimates of the 
prevalence of exposure and disease 
in non-participants based on expert 
judgement or external data. If indi-
vidual-level data are available, those 
external estimates can be applied to 
the study data (e.g. perhaps adjusting 
for age, sex, and other key subgroups 
of interest), as in Examples 7.12 and 
7.13.

Internal validation substudies 
should be recognized as an important 
strength of study design. However, 
such substudies are not always 
possible. If the estimates of the expo-
sure prevalence among non-partic-
ipating case and control individuals 
cannot be informed by the internal 
data, external data or expert judge-
ment can help in assigning values of 
selection proportions and conducting 
simple bias analysis. In this situation, 
it is important to report the sources 

and external data as well as the 
hypothesis or educated guesses 
used to quantify the exposure prev-
alence among correspondents, to 
enable calculation of the selection 
probability in each key subgroup. This 
strategy was successfully applied in 
the Interphone study (Vrijheid et al., 
2009), where several combinations of 
selection probabilities were assigned 
under several hypothetical scenarios 
of mobile phone use among non-par-
ticipants (Example 7.14).

A freely available spreadsheet 
(https://sites.google.com/site/bias 
analysis/Home; Fox et al., 2021) 
is useful for easily calculating the 
bias-adjusted odds ratios using such 
bias parameters as exposure distri-
butions and selection proportions, 
informed by internal data, by simu-
lation, or by educated guesses. The 
spreadsheet used in Example 7.14, 
along with other available tools, 
is presented in detail in Lash 
et al. (2021), and the spreadsheet 
is provided in Annex 2 (online only; 
available from: https://publications.
iarc.who.int/634#supmat). It may be 
possible to extend this analysis by 
documenting exposure prevalence by 
each stratum of age and sex.

 Example 7.11. Case–case analyses to quantify recall bias

Cardis et al. (2011) used a subset of data from the Interphone study to examine the associations between exposure 
to	radiofrequency	electromagnetic	field	(RF-EMF)	radiation	from	mobile	phone	use	and	the	risk	of	brain	tumours.	
In that study, case–case analyses were conducted in which mobile phone use was compared between case 
participants with tumours of the brain in areas highly exposed to RF-EMF radiation and case participants with 
tumours in other parts of the brain with lower exposure. The case–case analysis showed increased odds ratios for 
tumours	in	the	most	exposed	part	of	the	brain	in	individuals	with	≥	10	years	of	mobile	phone	use	(OR,	2.80;	95%	
CI, 1.13–6.94 for glioma), compared with other areas among long-term users, but no increased odds ratios for 
individuals who had started using a mobile phone more recently. (text continues on page 189)

https://sites.google.com/site/biasanalysis/Home
https://sites.google.com/site/biasanalysis/Home
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
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7.5.3 Differential loss to  
follow-up

Differential	 loss	 to	 follow-up	 can	 be	
a second source of selection bias, 
because	it	arises	from	differences	in	
continued study participation that are 
related to both the exposure and the 
health outcome. When the informa-
tion on participants lost to follow-up 
is missing at random, the bias can be 
addressed using methods of multiple 
imputation. Otherwise, the infor-
mation available about participants 
before their loss to follow-up can 
inform the bias analysis. To conduct 
a simple analysis of such a bias, one 
might apply either the outcome model-
ling method or inverse probability 
of attrition weighting. Both methods 
require knowledge of the number of 
participants lost to follow-up by expo-
sure status to impute the information 
lost to follow-up from data available 
to researchers. Such data should, at 
a minimum, specify for each expo-
sure stratum the total number of 

participants, the number of partic-
ipants with an outcome of interest 
per exposure status, and the person-
years (Example 7.15).

7.5.4 More-sophisticated 
methods to adjust for bias 
due to loss to follow-up in the 
original study

More-complex methods exist to adjust 
for selection bias and are frequently 
implemented by researchers. For 
example, in the DAG in Fig. 5.2, the 
unblocked backdoor path (X–V–U–Y) 
from the exposure X to the outcome Y 
could be blocked by adjusting for the 
observed covariate V in a standard 
regression model; this would elim-
inate selection bias due to loss to 
follow-up.

Another option is to use inverse 
probability of attrition weights (IPAWs), 
which have been increasingly used to 
adjust for bias due to loss to follow-up 
(Hernán et al., 2004; Weuve et al., 
2012).	The	 IPAW	 is	specified	as	 the	
inverse of the probability of remaining 

in the study, conditional on predic-
tors of attrition. In Fig. 5.2, simple 
IPAWs could be generated as 1/
Pr(L = 0 | V = v), although in practice 
these weights will be conditioned on 
more predictors of loss and stabilized 
to reduce variance. The IPAWs are 
then used in a regression model of Y on 
X	to	produce	an	effect	that	is	adjusted	
for loss to follow-up, without needing 
to include V in the model. A particular 
benefit	of	IPAW	methods	is	that	they	
can be used in situations where 
standard covariate control would 
fail. For example, conditioning the 
analysis on those not lost to follow-up 
(L = 0) induces a correlation between 
the exposure X and the unmeasured 
confounder U, which would bias the 
effect	of	X on Y. Attempting to adjust 
for V in a regression model would 
not remove the bias, because V is a 
collider along the path from X to U. 
By avoiding conditioning on V, IPAWs 
enable the removal of bias due to loss 
to follow-up in this situation (Hernán 
et al., 2004; Weuve et al., 2012).

Table 7.4. Essential information that should be reported to inform assessment of selection bias

Origin of selection 
bias

What should be reported More details

Differential	baseline	
participation

Definitions	and	distributions	of	participants	and	non-participants	among	case	
and control groups 
Prevalence of exposure and disease for non-participants 
Probability of selection among each subgroup

Section 5.2.1

Loss to follow-up Rates of loss to follow-up in key subgroups of interest by baseline exposure 
status

Section 5.2.2

Left truncation 
(prevalent exposures)

Time zero 
Proportions of study participants who were subject to prevalent exposures 
at baseline, and, ideally, how long these participants had been exposed for 
(minimum, median, maximum) before follow-up commenced

Sections 5.2.3, 5.2.4

Right truncation 
(insufficient	follow-up)

Minimum, median, and maximum lengths of follow-up for study participants, 
from	baseline,	as	well	as	corresponding	times	since	first	exposure

Section 5.2.5

Bias due to selection 
of control participants

Eligible control diseases and their distribution in the study sample 
Exposures of interest on which the choice of the control diseases was based 
Distribution of exposure prevalence in target population and other potential 
source populations

Section 5.3.3
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 Example 7.12. Interphone study on mobile phone use and the risk of brain tumours

As discussed in Example 5.20, the multinational case–control Interphone study provides a good example of how 
to carefully examine the potential impact of selection bias. The aim of the study was to investigate whether RF-
EMF radiation emitted by mobile phones increases the risk of brain tumours (Cardis et al., 2007). Eligible case 
participants were all residents of the study region, aged 30–59 years, who had been diagnosed during the study 
period	with	 a	 first	 primary	 glioma,	meningioma,	 or	 acoustic	 neuroma,	 confirmed	 either	 histologically	 or	 using	
unequivocal diagnostic imaging. Control participants were selected randomly from the same source population as 
case participants and matched to them by age, sex, and region.

The	authors	provided	a	comprehensive	description	of	the	study	population	with	precise	definitions	of	the	study	
regions and the sizes of the source populations of case and control participants for each of 16 study regions in 
13 participating countries (Table 1 of Cardis et al., 2007). Moreover, being aware that selection bias is a concern 
when inclusion is conditioned on consent to participate, the authors asked those who declined to participate to 
complete a short non-response questionnaire (NRQ), to estimate the prevalence of mobile phone use among non-
participants (Vrijheid et al., 2009). The question about regular use of mobile phones on the NRQ was phrased as, 
“Have	you	ever	used	a	mobile	phone	regularly?	Yes	or	no?”	Regular	use	was	defined	as	use	at	least	once	a	week	
for a period of 6 months or longer.

The	 authors	 provided	 detailed	 tables	 with	 definitions	 and	 distributions	 of	 participants	 and	 non-participants	
among case and control groups in the Interphone study (Table 2 of Vrijheid et al., 2009), along with the percentage 
distribution of regular mobile phone users among interviewed subjects (i.e. participants) and NRQ respondents 
(Table 3 of Vrijheid et al., 2009).	Moreover,	a	flowchart	of	enrolment	in	the	Interphone	study	given	in	an	appendix	
(reproduced in Fig. 7.4), which reported participation frequencies for the case and control groups, facilitated 
calculation of the fraction of individuals in each category (i.e. interviewed participants, refusal with NRQ, refusal 
without NRQ, and other non-participants, as untraceable, ill, deceased, or other reason). This is important when 
estimating the probability of selection among those who do and do not use mobile phones (Table 3 of Vrijheid 
et al., 2009). 

Fig. 7.4. Flow of subject enrolment into Interphone study. NRQ, non-response questionnaire. Source: Reprinted 
from Vrijheid et al. (2009), Copyright 2009, with permission from Elsevier.
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Example 7.12. Interphone study on mobile phone use and the risk of brain tumours (continued)

Based on the reported distributions from Fig. 7.4 and the information that regular mobile phone use was reported 
by 69% of interviewed control participants, 56% of NRQ control participants, 66% of interviewed case participants, 
and 50% of NRQ case participants, one can produce a contingency table showing the participation and mobile 
phone use among case and control participants (Table 7.5).

Table 7.5. Participation and mobile phone use in the Interphone studya

 Participants Non-participants with NRQ Non-participants without NRQ

Regular use No use Regular use No use Cannot categorize

Case participants 2616 1348 105 105 2250
Control participants 3758 1688 951 748 4992

NRQ, non-response questionnaire.
a All types of brain tumour (i.e. glioma, meningioma, or acoustic neuroma) are combined. Numbers of non-participants with NRQ include both 
refusers and other non-participants.
Source: Observed aggregated data from Vrijheid et al. (2009).

From the data in Table 7.5, one can see that the odds of participation depend on disease status; the odds ratio 
is calculated as

Equation (E7.1) 

 

OR = �
2616 + 1348

105 + 105
� �

3758 + 1688
951 + 748

�� = 5.88 (E7.1)
 

meaning that the chance of participation in the case group is 5.88 times that in the control group. Participation also 
depends on exposure status, although to a lesser extent, with

OR = (3758/951)/(1688/748) = 1.75      (E7.2)

It is noteworthy that this exposure status odds ratio is examined in control participants only.
The unadjusted odds ratio associating regular mobile phone use with brain tumour occurrence among study 

participants is

ORparticipants = (2616/3758)/(1348/1688) = 0.87     (E7.3)

This odds ratio is quite similar to the matched odds ratios observed for the original national and combined studies 
(Lahkola et al., 2007, 2008; Schoemaker et al., 2005).

Among non-participants who completed the NRQ, the unadjusted odds ratio is

ORnon-participants = (105/951)/(105/748) = 0.79      (E7.4)

which is in the same direction as, but smaller than, the unadjusted odds ratio observed among participants. 
Consequently, the potential impact of selection bias seems to be rather limited in this example.

To verify this, one might further estimate the bias-adjusted odds ratio, by assuming that non-participants who 
did not complete the NRQ had the same exposure prevalence, conditional on case or control status, as those 
who completed the NRQ. To accomplish this solution, the numbers of non-participants who did not complete the 
NRQ in Table 7.5 were weighted using the exposure prevalence of the non-participants who completed the NRQ 
(Table 7.6). 
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Example 7.13. Mobile phone use and the risk of uveal melanoma

In this study – in which exposure prevalence was also assessed and reported using the NRQ, but only among non-
participant control individuals – it was possible to identify a substantial bias due to selective participant selection 
(Lash et al., 2021). Regular mobile phone use was more prevalent among participating control individuals (45% in 
men and 25% in women) than among non-participating control individuals (37% in men and 16% in women) (Stang 
et al., 2009, Supplementary Table 3). The unadjusted odds ratio for association of regular mobile phone use with 
uveal melanoma was 0.71 among all participants and 1.26 among non-participants who completed the NRQ (Lash 
et al., 2021).	The	bias-adjusted	odds	ratio	was	estimated	to	be	1.62,	suggesting	that	differential	selection	could	
have	had	a	substantial	impact	on	the	effect	estimate	in	this	study	by	biasing	it	downwards.	(text continues on page 
190)

Example 7.12. Interphone study on mobile phone use and the risk of brain tumours (continued)

Table 7.6. Participation and mobile phone use in the Interphone study with data from NRQ respondents projected 
to participants without NRQa

Disease or exposure Participants Non-participants with 
NRQ

Non-participants without NRQ

 Regular use No use Regular use No use Projected  
regular use

No use

Case participants 2616 1348 105 105 1125 1125
Control participants 3758 1688 951 748 2796 2196

NRQ, non-response questionnaire.
a All types of brain tumour (i.e. glioma, meningioma, or acoustic neuroma) are combined. Numbers of non-participants with NRQ include both 
refusers and other non-participants.
Source: Observed aggregated data from Vrijheid et al. (2009).

Data from Table 7.6 enable relatively easy estimation of the bias-adjusted odds ratio (OR, 0.92) and its 
comparison with the unadjusted odds ratio among full participants (OR, 0.87). Such a comparison would enable 
reviewers	to	conclude	that	the	differential	selection	had	not	had	a	substantial	effect	on	the	estimated	association	
between regular mobile phone use and brain tumour occurrence in this example. In fact, the odds ratio is slightly 
closer	to	the	null;	when	confidence	intervals	are	calculated,	there	could	be	weaker	evidence	for	an	association	if	
all eligible individuals have been taken into account. (text continues on page 190)
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 Example 7.14. Selection probabilities in the Interphone study

In this study, the authors reported several combinations of selection probabilities, which were assigned under 
several hypothetical scenarios of mobile phone use among non-participants (Table 7.7).

Table 7.7. Hypothetical scenarios of regular mobile phone use among non-participants in the Interphone study, 
as a function of observed use patterns in interviewed participants and NRQ respondents: glioma study

Scenario Observed  
phone use (%)

Assumed phone use (basis 
for assumption) (%)

Assumed 
phone use 
in target 

population 
(%)

Selection 
probability

Inter- 
viewed

Refusal 
with NRQ

Refusal 
without NRQ

Other non-
participants

P1 P2 P3 P4 P1–4 S1 S0

Control 
participants

Fraction of 
subjects in each 
category W1–W4

0.53 0.17a 0.13 0.17 1.00

R Reference 69 69 (P1) 69 (P1) 69 (P1) 69 0.53 0.53

A NRQ applies to 
refusers with  
NRQ, unbiased 
use in other  
non-participants

69 56 66	[mw(P1–2)] 66	[mw(P1–2)] 66 0.55 0.48

B NRQ applies to all 
refusers, unbiased 
use in other  
non-participants

69 56 56 (P2) 64	[mw(P1–3)] 64 0.57 0.46

C NRQ applies to 
refusers with  
NRQ, 33% less 
use in other  
non-participants

69 56 46 (0.67 × P1) 46 (0.67 × P1) 60 0.61 0.41

D NRQ applies to 
refusers with  
NRQ, 20% more 
use in other  
non-participants

69 56 83 (1.2 × P1) 83 (1.2 × P1) 71 0.52 0.57

E NRQ applies to all 
non-participants

69 56 56 (P2) 56 (P2) 63 0.58 0.44

Cases of 
glioma

Fraction of 
subjects in each 
category W1–W4

0.64 0.05a 0.06 0.24 1.00

r Reference 65 65 (P1) 65 (P1) 65 (P1) 65 0.64 0.64

a NRQ applies to 
refusers with  
NRQ, unbiased 
use in other  
non-participants

65 53 64	[mw(P1–2)] 64	[mw(P1–2)] 64 0.65 0.63
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 Example 7.14. Selection probabilities in the Interphone study (continued)

Table 7.7. Hypothetical scenarios of regular mobile phone use among non-participants in the Interphone study, as 
a function of observed use patterns in interviewed participants and NRQ respondents: glioma study (continued)

Scenario Observed  
phone use (%)

Assumed phone use (basis 
for assumption) (%)

Assumed 
phone use 
in target 

population 
(%)

Selection 
probability

Inter- 
viewed

Refusal 
with NRQ

Refusal 
without NRQ

Other non-
participants

P1 P2 P3 P4 P1–4 S1 S0

b NRQ applies to all 
refusers, unbiased 
use in other  
non-participants

65 53 53 (P2) 63	[mw(P1–3)] 63 0.66 0.61

c NRQ applies to 
refusers with 
NRQ, 33% less 
use in other  
non-participants

65 53 43 (0.67 × P1) 43 (0.67 × P1) 58 0.59 0.44

d NRQ applies to 
refusers with 
NRQ, 20% more 
use in other  
non-participants

65 53 78 (1.2 × P1) 78 (1.2 × P1) 69 0.50 0.60

e NRQ applies to all 
non-participants

65 53 53 (P2) 53 (P2) 61 0.69 0.58

NRQ, non-response questionnaire; mw, weighted mean; P1, prevalence of mobile phone use among interviewed subjects; P2, prevalence of 
mobile phone use among refusers who completed the NRQ (P2 = 0.82 × P1: NRQ results for all case and control participants combined. The  
P2/P1	ratio	was	assumed	to	be	the	same	for	control	and	case	participants	and	for	different	study	centres	and	sex	and	age	categories	because	
the	NRQ	results	did	not	indicate	substantial	or	consistent	differences	between	these	groups.	Data	analysed	from	study	centres	with	NRQ	data	
were applied to all centres.); P3, prevalence of mobile phone use among refusers who did not complete the NRQ; P4, prevalence of mobile phone 
use among subjects who did not participate for a reason other than refusal (dead, too ill, physician refusal, untraceable, other); S1, probability 
of selection (i.e. participation in full interview) among mobile phone users, (W1 × P1)/P1–4; S0, probability of selection (i.e. participation in full 
interview)	among	non-mobile	phone	users,	[W1	×	(1	−	P1)]/(1	−	P1–4); W1–W4, fraction of total number of subjects ascertained in each response 
category for all study centres combined.
a W2 is based on the fraction of NRQs completed for refusers in study centres that used the NRQ (57% in control participants, 41% in case 
participants).
Source: Reproduced from Vrijheid et al. (2009).

For instance, scenario C, for which it was assumed that other non-participants had a 33% lower prevalence of 
mobile phone use than interviewed subjects, was informed by external data, based on a comparison in Finland of 
the percentage of interviewed subjects and non-participants who had listed mobile phone numbers (Lahkola et al., 
2005). Scenario D, for which it was assumed that other non-participants had a 20% higher prevalence of mobile 
phone use than interviewed subjects, was an educated guess (Vrijheid et al., 2009).

The reported data and selection probability make it easy to estimate a bias factor for each scenario using the 
formula proposed by Greenland and Criqui (1981). (text continues on page 190)
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 Example 7.15. Loss to follow-up and the association between shift work and breast cancer

The Nurses’ Health Study was initially established in 1976. In the Nurses’ Health Study II (NHS2, 1989–2013), 
114 559 nurses completed the original questionnaire on shift work (Wegrzyn et al., 2017) to provide updated values 
on shift work. In the highest category of years of night shift work, drawing on the updated shift work history, those 
who	had	been	followed	up	for	≤	10	years	had	a	multivariable-adjusted	hazard	ratio	of	2.13	(95%	CI,	1.19–3.81)	and	
those with > 10 years of follow-up had a hazard ratio of 1.19 (95% CI, 0.78–1.81). Given that dropping out of the 
study is associated with outcome, a quantitative bias analysis of these data would be useful.

For this analysis, it is necessary to know the total number of participants who dropped out, the exposure status 
of those who dropped out, and the person-years of follow-up. The number of participants who had dropped out and 
their exposure status was not given; however, only about half of the total person-years (1 213 546/2 190 678 = 55%) 
were accumulated in those who were followed up for > 10 years, as shown in Table 7.8, which is excerpted from 
Table 3 of Wegrzyn et al. (2017). This implies that a considerable proportion of the original participants dropped 
out. 

Table 7.8. Multivariable-adjusted associations between updated duration of rotating night shift work and invasive 
breast	cancer,	stratified	by	follow-up	period,	in	the	Nurses’	Health	Study	II,	1989–2013

Exposure measure: cumulative 
years if rotating (updated)  
shift work

No. of case 
participants

No. of 
person-years

Age-adjusted Multivariable-adjusteda

HR 95% CI HR 95% CI P for 
trend

≤ 10 years of follow-up
None 341 321 600 1.00 Referent 1.00 Referent
1–9 621 602 095 0.98 0.86–1.12 0.97 0.85–1.11
10–19 60 50 481 0.92 0.70–1.21 0.94 0.71–1.23
≥	20 12 2 956 1.99 1.11–3.56 2.13 1.19–3.81
All subjects (NHS2 cumulative rotating 
night shift work, updated), yearsb

1034 977 132 0.75

> 10 years of follow-up
None 609 346 804 1.00 Referent 1.00 Referent
1–9 1381 767 303 1.06 0.96–1.16 1.07 0.97–1.18
10–19 141 88 801 0.90 0.74–1.07 0.95 0.79–1.14
≥	20 23 10 637 1.10 0.72–1.66 1.19 0.78–1.81
All subjects (NHS2 cumulative rotating 
night shift work, updated), yearsb

2154 1 213 546

CI,	confidence	interval;	HR,	hazard	ratio;	NHS2,	Nurses’	Health	Study	II.
a Multivariable-adjusted models were adjusted for the following covariates: age, height, body mass index, body mass index at age 18 years, 
adolescent	body	size,	age	at	menarche,	age	at	 first	 birth	and	parity	 combined,	breastfeeding,	 type	of	menopause	and	age	at	menopause	
combined, menopausal hormone therapy use, duration of use of menopausal hormonal therapy with estrogen alone, duration of use of estrogen 
and	 progesterone	 menopausal	 hormone	 therapy,	 first-degree	 family	 history	 of	 breast	 cancer,	 history	 of	 benign	 breast	 diseases,	 alcohol	
consumption, physical activity level, and current mammography. All categorical covariates were included in models with missing indicators.
b Analyses using updated data on duration of shift work excluded participants during the cycles in which they were missing information on shift 
work exposure, resulting in fewer case participants and person-years than in analyses using history of shift work reported at baseline in 1989. 
Values do not sum to the total because of rounding.
Source: Excerpted from Wegrzyn et al. (2017).
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7.5.5 Bias due to selection  
of control participants in  
case–control studies

In a case–control study, bias can arise 
if the control and case participants are 
chosen	 from	 different	 source	 popu-
lations. This section outlines how 
researchers can assess the direction 
and magnitude of bias in the selection 
of control participants, when hospital-
ized patients are recruited as control 
participants. A full explanation of the 
rationale and methods can be found 
in Section 5.3.2 and is summarized 
here. The example given is that of the 
recruitment of hospital control partici-
pants, but it is important to understand 

that the same hypothetical selection 
biases may occur for other sources of 
control participants.

The ideal case–control study 
recruits control participants from the 
same source population as the case 
participants. The source population is 
not	always	easy	to	define	or	to	access,	
so in some situations, researchers 
recruit hospital patients as control 
participants. In these situations, two 
selection phases have occurred: 
(i) the selection of control participants 
from the source population into the 
hospital, and (ii) their selection from 
the hospital into the study group.

The selection into the hospital could 
be	affected	by	a	wide	range	of	factors.	

Socioeconomic	status	may	affect	who	
enters the hospital, particularly for 
less-severe conditions, treatments 
that are optional (e.g. some plastic 
surgery), or treatments that can be 
performed either as day procedures 
or with hospital admission. The area 
served	 by	 the	 hospital	 may	 differ	
according to the disease; for example, 
if a hospital specializes in treating a 
particular cancer, the source popula-
tion for people with that cancer may 
come from a wider geographical 
area than for people hospitalized 
for non-cancer reasons. In addition, 
hospital patients are more likely 
to have exposures that lead to the 
disease they are hospitalized for, as 

 Example 7.15. Loss to follow-up and the association between shift work and breast cancer (continued)

Therefore, it is possible to calculate a crudely adjusted result for each stratum. This is done by reweighting the 
person-time to account for a presumed continuation of the risk in those lost to follow-up.

Table 7.9	shows	the	calculations	for	those	with	≥	10	years	of	shift	work.	It	is	assumed	that	the	total	number	of	
person-years and of cancers in those lost to follow-up are twice the number seen (i.e. the risk stayed the same in 
the years after the 10 years of follow-up). Then the imputed total number of subjects who had been followed up for 
> 10 years consists of the sum of the number with complete follow-up plus twice the number lost to follow-up. The 
resulting crude hazard ratio is 2.18, which is higher than that calculated for the group with complete follow-up (HR, 
1.23). This suggests that loss to follow-up has downwardly biased the hazard ratio that would have been observed 
if there were no loss to follow-up. (text continues on page 191)

Table 7.9. Imputation of hazard ratios to account for loss to follow-up in the Nurses’ Health Study II

Complete follow-up 
> 10 years of  

follow-up

Lost to follow-up 
≤ 10 years of  

follow-up

Imputed total 
2 × lost to follow-up +  

complete follow-up

Shift work None ≥	20 None ≥	20 None ≥	20
Breast cancers 609 23 341 12 1291 47
People (assume half of original 
cohort dropped out)

21 764.5 81 21 764.5 81 43 529 162

Person-years 346 804 10 637 321 600 2956 990 004 16 549
Crude rate per 100 000  
person-years

1756 2162 106 406 130.4 284

Crude	rate	difference 40.6 299.9 153.6
Crude rate ratio 1.23 3.83 2.18
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well as leading to the case disease. 
In this type of study, it is important to 
report the proportion of participants 
with the exposure (by age, sex, or 
other relevant variables), so that a 
comparison can be made with other 
data. Example 7.16 examines poten-
tial bias arising from the recruitment 
of hospital control participants.

More-sophisticated adjustments 
can be made by adjusting for the 
prevalence of the exposure within 
subgroups of the population. For ex- 
ample, if researchers were interested 

in	differences	between	men	and	wom- 
en and a previous survey had pub- 
lished rates of opium exposure by 
age	 and	 sex	 subgroups,	 a	 stratified	
analysis could be performed.

The same approach can be used 
for	 other	 situations	 when	 different	
selection factors are operational in 
the selection of the control and case 
participants, for example if friends 
are recruited as control participants 
or	 there	 are	 different	 (and	 biased)	
participation fractions in the case and 
control participants.

7.6 Conclusions

This chapter is aimed at researchers 
who have access to individual-level 
data and wish to undertake a quan-
titative bias assessment. It follows 
the order of the previous chapters 
in this volume, covering, in turn, 
the use of graphical tools to assess 
bias and methods to quantitatively 
assess confounding, information bias 
(measurement	 error	 and	misclassifi-
cation), and selection bias. For each 
of these sections, methods mentioned 
in	the	previous	chapters	are	identified	
that could be used to undertake a  

Example 7.16. Case–control study of opium exposure and oesophageal cancer

In a study by Shakeri et al. (2012), also described in Examples 4.14, 5.18, 5.22, 5.27, and 5.29, control participants 
were selected from the same hospital as the case participants and were individually matched on age and sex. 
Control participants were selected from those inpatients with diseases thought to be unrelated to tobacco use, 
alcohol consumption, or diet, because these factors were thought to be related to oesophageal cancer. The 
question to be addressed is whether opium exposure is more likely in the hospital-based control participants than 
in the neighbourhood from which the case participants arose. If so, it is necessary to determine the magnitude and 
direction of the resultant bias in the study.

As an initial simple analysis, the prevalence of opium smoking in the neighbourhood can be used to calculate 
the expected distribution of opium exposure in the control participants (Table 7.10). The spreadsheet used in this 
example is provided in Annex 2 (online only; available from: https://publications.iarc.who.int/634#supmat). The 
number of unexposed and exposed control participants can be weighted by the prevalence of opium smoking in 
the neighbourhood. This adjustment results in an odds ratio of 2.41, compared with the original unadjusted odds 
ratio of 1.36. This suggests that the recruitment of hospital control participants markedly biased the association 
towards the null. (text continues above)

Table 7.10. Bias adjustment of odds ratios calculated for hospital-based control participants by applying neigh- 
bourhood exposure prevalence

Hospitalized case 
participants

Hospitalized control 
participants

Odds ratio

Opium smokers 45 73 1.36
Non-opium smokers 85 187
Hospital prevalence of opium smoking (%) 35 28
Neighbourhood prevalence of opium smoking (%) 18
Opium smokers (expected) 45 (no change) 46.8 2.41
Non-opium smokers (expected) 85 (no change) 213.2
Source: Lash et al. (2009, p. 51).
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quantitative bias analysis by re- 
searchers who have access to indi-
vidual data. In addition, types of data 
that should be reported to facilitate 
bias assessment in future system-
atic	reviews	and	hazard	identification	
documents are recommended. Final- 
ly, statistical packages, spreadsheets, 
and code that are available to help 
researchers undertake quantitative 
bias assessments are suggested.

It is hoped that this chapter will 
assist researchers in undertaking 

quantitative bias assessments in their 
own studies. It is also anticipated 
that epidemiologists will increasingly 
return to existing large cohort studies 
to apply newer conceptual and statis-
tical methods to address causal 
questions pertaining to cancer risk 
and survival. The inclusion of quanti-
tative bias assessment should be an 
integral component of every epide-
miological study. It is hoped that the 
information provided in this chapter 
will assist researchers in determining 

the magnitude and direction of bias in 
all their studies, and that the reporting 
of the factors needed to undertake 
such analyses will facilitate stronger 
systematic reviews and hazard iden- 
tifications.
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