ARC MONOGRAPHS

PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUOROOCTANESULFONIC ACID (PFOS)

THE A P P I

VOLUME 135

This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met in Lyon, France, 7–14 November 2023

LYON, FRANCE - 2025

IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS

International Agency for Research on Cancer

Reference	Occupational	Geographic	Sample	Job, task, or	Biological	Analytical	No. of	PFOA (ng/m	ıL)			PFOS (ng/m	L)			Comments
	group	al location	collection year	subgroup description	matrix	method	participant s	Mean (GM)	Range	Median (IQR)	LOD (LOQ indicated with *)	Mean/GM	Range	Median (IQR)	LOD (LOQ indicated with *)	
Guruge et al. (2005)	Agricultural	Sri Lanka	2003	NR	Serum	LC-MS/MS	30	6.38 (NR)	(0.32–23.5)	4.02 (NR, NR)	NR	5.03 (NR)	(0.35–18.2)	3.26 (NR, NR)	NR	
Guruge et al. (2005)	Agricultural	Sri Lanka	2003	NR	Seminal plasma	LC-MS/MS	30	0.323 (NR)	(LOD-1.71)	0.134 (NR, NR)	0.072	0.118 (NR)	(LOD-0.529)	0.103 (NR, NR)	0.01	
Zhou et al. (2014)	Fishery	China	2012	NR	Urine	LC-MS	39	0.134 (NR)	(NR–NR)	0.108 (NR, NR)	NR	8.01 (NR)	(NR–NR)	4.7 (NR, NR)	NR	Potential for large dietary contribution from employer provided fish. PFOS reported as the sum of linear and branched isomers. Linear-PFOS measured in higher concentrations.
Zhou et al. (2014)	Fishery	China	2012	NR	Serum	LC-MS	39	43.5 (NR)	(NR–NR)	41 (NR, NR)	NR	11 400 (NR)	(82.6–31 400)	10 400 (NR, NR)	NR	Potential for large dietary contribution from employer provided fish. PFOS reported as the sum of linear and branched isomers. Linear-PFOS measured in higher concentrations.
Lu et al. (2014)	Barbers	Tianjin, China	2012	NR	Blood	LC-ESI- MS/MS	49	2.84 (NR)	(0.71– 12.18)	NR (NR, NR)	NR	2.55 (NR)	(0.44–7.72)	NR (NR, NR)	NR	
Clarity et al. (2020)	First Responders	California, USA	2015	NR	Serum	LC-MS/MS	84	NR (1.13)	(NR-NR)	NR (NR, NR)	0.02	NR (4.33)	(NR–NR)	NR (NR, NR)	0.02	Female firefighters with at least 5 years experience
Dobraca et al. (2015)	First Responders	California, USA	2011	NR	Serum	LC-MS	101	NR (3.75)	(18.1–18.1)	3.86 (2.96, 4.89)	0.301	NR (12.5)	(NR-46.6)	12.7 (10.1, 16.8)	0.083	
Graber et al. (2021)	First Responders	New Jersey, USA	2019	NR	Serum	LC-MS/MS	116	NR (2.07)	(NR-NR)	NR (NR, NR)	0.1	NR (4.25)	(NR–NR)	NR (NR, NR)	0.1	Male volunteer population
Jin et al. (2011)	First Responders	USA	2006	NR	Serum	LC-MS/MS	36	87.47 (37.69)	(0.25– 7534.6)	31.5 (NR, NR)	0.5	29.18 (24.37)	(0.25–67.5)	27.85 (NR, NR)	0.5	Self-reported occupation of firefighter in C8 study cohort
Laitinen et al. (2014)	First Responders	Finland	2010	NR	Serum	LC-MS/MS	8	NR (NR)	(1.61–4.85)	2.94 (NR, NR)	NR	NR (NR)	(2.79–35.8)	11.1 (NR, NR)	NR	Exposure from aircraft response training with AFFF
Leary et al. (2020)	First Responders	USA	2019	Airport firefighters	Serum	LC-MS/MS	38	NR (NR)	(1.1-4.65)	2.17 (NR, NR)	NR	NR (NR)	(4.28–30.42)	10.69 (NR, NR)	NR	
Leary et al. (2020)	First Responders	USA	2019	Suburban firefighters	Serum	LC-MS/MS	9	NR (NR)	(1.02–3.07)	1.72 (NR, NR)	NR	NR (NR)	(1.57–9.34)	4.04 (NR, NR)	NR	
Rotander et al. (2015)	First Responders	Australia	2013	NR	Serum	LC-MS/MS	149	4.6 (NR)	(0.3–18)	4.2 (NR, NR)	0.05	74 (NR)	(3.4–391)	66 (NR, NR)	0.03	Firefighters stratified by use of AFFF products
Shaw et al. (2013)	First Responders	California, USA	2009	NR	Serum	LC-MS/MS	12	7 (NR)	(2–12)	6 (NR, NR)	0	12 (NR)	(3–59)	9 (NR, NR)	NR	
Tao et al. (2008)	First Responders	New York, USA	2001	Symptomatic group	Plasma	LC-MS	70	13.4 (NR)	(2.6–35.6)	12.3 (NR, NR)	0.5*	33.6 (NR)	(3.8–70.1)	31.4 (NR, NR)	0.5*	World Trade Center responders
Tao et al. (2008)	First Responders	New York, USA	2001	Asymptomatic group	Plasma	LC-MS	70	12.6 (NR)	(1.4–27.5)	11.7 (NR, NR)	0.5*	33.9 (NR)	(7.4–101)	29.2 (NR, NR)	0.5*	World Trade Center responders
Tao et al. (2008)	First Responders	New York, USA	2001	More dust exposed group	Plasma	LC-MS	34	6.15 (NR)	(1.57–15.3)	5.11 (NR, NR)	0.5*	27.2 (NR)	(7.95–69.4)	22.1 (NR, NR)	0.5*	World Trade Center responders
Tao et al. (2008)	First Responders	New York, USA	2001	Less dust exposed group	Plasma	LC-MS	34	5.07 (NR)	(2.19–10.6)	4.55 (NR, NR)	0.5*	22.9 (NR)	(12.6–60.7)	22.6 (NR, NR)	0.5*	World Trade Center responders

Table S1.15 Occupational exposure to PFOA and PFOS measured in biological matrices

Not edited

Table S1.15 Occupational exposure to PFOA and PFOS measured in biological matrices

Reference	Occupational	Geographic al location	c Sample collection	le Job, task, or tion subgroup	Biological matrix	Analytical method	No. of participant	PFOA (ng/m	L)			PFOS (ng/ml		Comments		
	group	ui locution	year	description	mutrix	inculou	s	Mean (GM)	Range	Median (IQR)	LOD (LOQ indicated with *)	Mean/GM	Range	Median (IQR)	LOD (LOQ indicated with *)	
Tao et al. (2008)	First Responders	New York, USA	2001	More smoke exposed group	Plasma	LC-MS	144	10.21 (NR)	(0.67–61)	8.42 (NR, NR)	0.5*	28.6 (NR)	(5.5–73.4)	25.3 (NR, NR)	0.5*	World Trade Center responders
Tao et al. (2008)	First Responders	New York, USA	2001	Less smoke exposed group	Plasma	LC-MS	131	8.88 (NR)	(1.91–35.4)	8.16 (NR, NR)	0.5*	26.7 (NR)	(3.91–185)	24.8 (NR, NR)	0.5*	World Trade Center responders
Burgess et al. (2023)	First Responders	USA	2019	Department C males	Serum	LC-MS/MS	59	NR (2.04)	(0.6–7.5)	2.2 (NR, NR)	0.1	NR (6.62)	(1.7–22.6)	6.6 (NR, NR)	0.1	Linear PFOA and linear PFOS reported. Municipal firefighters from 4 fire departments in SW, SE, and NW USA (290 participants total).
Burgess et al. (2023)	First Responders	USA	2019	Department D males	Serum	LC-MS/MS	61	NR (1.82)	(0.3–3.8)	1.8 (NR, NR)	0.1	NR (3.69)	(1.6–16)	3.7 (NR, NR)	0.1	Linear PFOA and linear PFOS reported. Municipal firefighters from 4 fire departments in SW, SE, and NW USA (290 participants total).
Gasiorowski et al. (2022)	First Responders	Australia	2019	NR	Serum		285	NR (NR)	(NR-NR)	NR (NR, NR)	NR	4.9 (NR)	(0–120)	NR (NR, NR)	NR	Screening level reported. RCT evaluating blood or plasma donation on PFAS serum concentrations
Costa et al. (2009)	Fluorochemical production	Italy	2000	NR	Serum	LC-MS/MS	25	18 800 (11 700)	(1540– 86 300)	11 920 (5530, 32 000)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFOA production workers
Costa et al. (2009)	Fluorochemical production	Italy	2001	NR	Serum	LC-MS/MS	42	19 700 (10 200)	(730– 91 900)	11 070 (4350, 19 720)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFOA production workers
Costa et al. (2009)	Fluorochemical production	Italy	2002	NR	Serum	LC-MS/MS	46	19 300 (9300)	(340– 91 900)	10 150 (4570, 20 800)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFOA production workers
Costa et al. (2009)	Fluorochemical production	Italy	2003	NR	Serum	LC-MS/MS	41	13 700 (6900)	(380– 74 700)	6250 (4110, 14 200)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFOA production workers
Costa et al. (2009)	Fluorochemical production	Italy	2004	NR	Serum	LC-MS/MS	34	11 400 (6500)	(540– 46 300)	6820 (2840, 18 970)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFOA production workers
Costa et al. (2009)	Fluorochemical production	Italy	2006	NR	Serum	LC-MS/MS	49	10 800 (5800)	(540– 41 900)	5270 (2360, 16 310)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFOA production workers
Costa et al. (2009)	Fluorochemical production	Italy	2007	NR	Serum	LC-MS/MS	50	11 600 (5400)	(200– 47 000)	3890 (2190, 18 660)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFOA production workers
Fu et al. (2016)	Fluorochemical production	China	2012	All workers	Serum	LC-MS/MS	302	1052 (NR)	(2.5– 32 000)	427 (NR, NR)	0.063	5624 (NR)	(50.3– 118 000)	1725 (NR, NR)	0.018	
Fu et al. (2016)	Fluorochemical production	China	2012	Electrolytic department	Serum	LC-MS/MS	74	2337 (NR)	(55.9– 32 000)	1126 (NR, NR)	0.063	1909 (NR)	(234–8501)	1541 (NR, NR)	0.018	
Fu et al. (2016)	Fluorochemical production	China	2012	Sulfonation department	Serum	LC-MS/MS	101	929 (NR)	(4.9–4630)	603 (NR, NR)	0.063	14 002 (NR)	(416– 118 000)	5544 (NR, NR)	0.018	
Fu et al. (2016)	Fluorochemical production	China	2012	Research building	Serum	LC-MS/MS	27	404 (NR)	(4.7–2920)	142 (NR, NR)	0.063	1195 (NR)	(101–7450)	736 (NR, NR)	0.018	

2

Table S1.15 Occupational exposure to PFOA and PFOS measured in biological matrices

Reference	Occupational	Geographic	Sample	Job, task, or H subgroup r	Biological	Analytical	No. of	PFOA (ng/m	L)			PFOS (ng/mL)				Comments
	group	al location	collection year	subgroup description	matrix	method	participant s	Mean (GM)	Range	Median (IQR)	LOD (LOQ indicated with *)	Mean/GM	Range	Median (IQR)	LOD (LOQ indicated with *)	
Fu et al. (2016)	Fluorochemical production	China	2012	Fabric finishing agent department	Serum	LC-MS/MS	8	606 (NR)	(51–2600)	114 (NR, NR)	0.063	514 (NR)	(103–1890)	267 (NR, NR)	0.018	
Fu et al. (2016)	Fluorochemical production	China	2012	Management office	Serum	LC-MS/MS	92	362 (NR)	(2.5–4380)	101 (NR, NR)	0.063	1144 (NR)	(50.3–7910)	616 (NR, NR)	0.018	
Fu et al. (2016)	Fluorochemical production	China	2012	All workers	Urine	LC-MS/MS	274	4.3 (NR)	(LOD-53.6)	1.9 (NR, NR)	0.025	4.4 (NR)	(LOD-81.5)	1.2 (NR, NR)	0.007	
Fu et al. (2016)	Fluorochemical production	China	2012	Electrolytic department	Urine	LC-MS/MS	67	6.7 (NR)	(LOD-38.4)	3.5 (NR, NR)	0.025	1.8 (NR)	(LOD-26.9)	0.93 (NR, NR)	0.007	
Fu et al. (2016)	Fluorochemical production	China	2012	Sulfonation department	Urine	LC-MS/MS	98	4.8 (NR)	(LOD-53.6)	2.7 (NR, NR)	0.025	8.8 (NR)	(LOD-81.5)	3 (NR, NR)	0.007	
Fu et al. (2016)	Fluorochemical production	China	2012	Research building	Urine	LC-MS/MS	25	1.8 (NR)	(LOD-15.3)	0.92 (NR, NR)	0.025	1.4 (NR)	(LOD-6.5)	1.1 (NR, NR)	0.007	
Fu et al. (2016)	Fluorochemical production	China	2012	Fabric finishing agent department	Urine	LC-MS/MS	8	5.1 (NR)	(1.2–22.2)	1.5 (NR, NR)	0.025	0.39 (NR)	(LOD-1.7)	LOD (NR, NR)	0.007	
Fu et al. (2016)	Fluorochemical production	China	2012	Management office	Urine	LC-MS/MS	76	1.5 (NR)	(LOD-9.7)	0.86 (NR, NR)	0.025	1.6 (NR)	(LOD-12.1)	0.49 (NR, NR)	0.007	
Gao et al. (2015)	Fluorochemical production	China	2012	NR	Serum	LC-MS/MS	36	1090 (371)	(2.66– 14 774)	537 (NR, NR)	0.03-0.5*	4032 (1386)	(47.3–62 898)	1478 (NR, NR)	0.08-0.25*	Multiple samples collected per participant. Concentrations presented are sum of isomers
Gao et al. (2015)	Fluorochemical production	China	2012	NR	Urine	LC-MS/MS	36	3.43 (1.82)	(LOQ-24.3)	0.46 (NR, NR)	0.01-0.08*	1.94 (0.85)	(LOQ-39.9)	1.81 (NR, NR)	0.03-0.1*	Multiple samples collected per participant. Concentrations presented are sum of isomers
Olsen et al. (2007)	Fluorochemical production	USA	1995	NR	Serum	LC-MS	26	691 (NR)	(72–5100)	408 (NR, NR)	NR	799 (NR)	(145–3490)	626 (NR, NR)	NR	
Olsen et al. (2000)	Fluorochemical production	USA	1993	NR	Serum	LC-MS/MS	111	5000 (NR)	(0-80 000)	1100 (NR, NR)	NR	NR (NR)	(NR–NR)	NR (NR, NR)	NR	Male workers involved in APFO production
Olsen et al. (2000)	Fluorochemical production	USA	1995	NR	Serum	LC-MS/MS	80	6800 (NR)	(0–114 100)	1200 (NR, NR)	NR	NR (NR)	(NR–NR)	NR (NR, NR)	NR	Male workers involved in APFO production
Olsen et al. (2000)	Fluorochemical production	USA	1997	NR	Serum	LC-MS/MS	74	6400 (NR)	(50-81 350)	1300 (NR, NR)	NR	NR (NR)	(NR–NR)	NR (NR, NR)	NR	Male workers involved in APFO production
Olsen et al. (2003)	Fluorochemical production	Belgium	2000	NR	Serum	LC-MS/MS	255	840 (330)	(10–7040)	NR (NR, NR)	NR	800 (440)	(40–6240)	NR (NR, NR)	NR	81% male
Olsen et al. (2003)	Fluorochemical production	Alabama, USA	2000	NR	Serum	LC-MS/MS	263	1780 (1130)	(40–12 700)	NR (NR, NR)	NR	1320 (910)	(60–10 060)	NR (NR, NR)	NR	82% male
Olsen et al. (2003)	Fluorochemical production	Alabama, USA	1998	NR	Serum	LC-MS/MS	126	NR (899)	(21–6160)	NR (NR, NR)	NR	(941)	(91–10 600)	NR (NR, NR)	NR	Chemical plant workers
Olsen et al. (2003)	Fluorochemical production	Alabama, USA	1998	NR	Serum	LC-MS/MS	60	NR (49)	(6–298)	NR (NR, NR)	NR	(136)	(15–946)	NR (NR, NR)	NR	Film plant workers (no fluorochemicals produced)
Olsen et al. (1999)	Fluorochemical production	Belgium	1995	Antwerp facility	Serum	LC-MS	88	NR (NR)	(NR-NR)	NR (NR, NR)	NR	1930 (NR)	(NR–NR)	NR (NR, NR)	NR	Male employees

3

Table S1.15 Occupational exposure to PFOA and PFOS measured in biological matrices

Reference	Occupational group	Geographic al location	Sample	Job, task, or I subgroup I description	Biological	Analytical	No. of	PFOA (ng/m	L)			PFOS (ng/ml	L)		Comments	
	group		year	description	matrix	incurou	s	Mean (GM)	Range	Median (IQR)	LOD (LOQ indicated with *)	Mean/GM	Range	Median (IQR)	LOD (LOQ indicated with *)	
Olsen et al. (1999)	Fluorochemical production	Belgium	1997	Antwerp facility	Serum	LC-MS	65	NR (NR)	(NR-NR)	NR (NR, NR)	NR	1480 (NR)	(NR-NR)	NR (NR, NR)	NR	Male employees
Olsen et al. (1999)	Fluorochemical production	Alabama, USA	1997	Decatur facility	Serum	LC-MS	90	NR (NR)	(NR-NR)	NR (NR, NR)	NR	2440 (NR)	(NR-NR)	NR (NR, NR)	NR	Male employees
Olsen et al. (1999)	Fluorochemical production	Alabama, USA	1997	Decatur facility	Serum	LC-MS	84	NR (NR)	(NR-NR)	NR (NR, NR)	NR	1960 (NR)	(NR-NR)	NR (NR, NR)	NR	Male employees
Sakr et al. (2007)	Fluorochemical production	USA	2004	Currently working in APFO areas	Serum	LC-MS/MS	259	494 (NR)	(17.4–9550)	NR (NR, NR)	0.5*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	
Sakr et al. (2007)	Fluorochemical production	USA	2004	Research/techni cal	Serum	LC-MS/MS	160	176 (NR)	(8.1–2070)	NR (NR, NR)	0.5*	NR (NR)	(NR–NR)	NR (NR, NR)	NR	
Sakr et al. (2007)	Fluorochemical production	USA	2004	Previously worked in APFO areas	Serum	LC-MS/MS	264	195 (NR)	(8.6–2590)	NR (NR, NR)	0.5*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	
Sakr et al. (2007)	Fluorochemical production	USA	2004	Never worked in APFO areas	Serum	LC-MS/MS	342	114 (NR)	(4.6–963)	NR (NR, NR)	0.5*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	
Steenland et al. (2009)	Fluorochemical production	Ohio Valley, USA	2006	Current employee	Serum	LC-MS	1171	NR (NR)	(NR-NR)	147.8 (NR, NR)	0.5	NR (NR)	(NR-NR)	NR (NR, NR)	NR	
Steenland et al. (2009)	Fluorochemical production	Ohio Valley, USA	2006	Previous employee	Serum	LC-MS	1447	NR (NR)	(NR-NR)	74.9 (NR, NR)	0.5	NR (NR)	(NR-NR)	NR (NR, NR)	NR	
Wang et al. (2012)	Fluorochemical production	China	2011	NR	Serum	LC-MS/MS	55	2157.74 (1272.31)	(84.98– 7737.13)	1635.96 (NR, NR)	0.01*	42.63 (33.33)	(5.23–165.69)	33.46 (NR, NR)	0.01*	PFC chemical plant workers
Lu et al. (2019)	Fluorochemical production	China	2017	NR	Plasma	LC-MS/MS	40	570.3 (136.6)	(2–7214)	164.6 (NR, NR)	0	3183 (753)	(9.6–43 299)	909.3 (NR, NR)	0	
Batzella et al. (2022)	Fluorochemical production	Veneto, Italy	2020	Fluorochemical production facility	Serum	LC-MS/MS	232	624.74 (87.4)	(0.35– 13 033)	80.8 (14.88, 469.55)	0.1	15.62 (8.91)	(0.35–343)	8.55 (4.95, 15.93)	0.1	Former employees at a fluorochemical production facility
Winquist et al. (2013)	Fluorochemical production	West Virginia, USA	2011	C8 Health Project	Serum		1881	324.6 (NR)	(NR-NR)	112.7 (55.9, NR)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	Worker cohort from C8 Health Project
Woskie et al. (2012)	Fluorochemical production	USA	1972– 2004	All	Serum	Multiple – see comments	1308	2050 (NR)	(7–59 400)	580 (NR, NR)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFC chemical plant workers. Methods 1972–1981: whole blood, Wickbold torch; 1981– 2003: whole blood, GC-ECD; 2003–2004: serum, LC-MS/MS. All results adjusted to serum equivalent.
Woskie et al. (2012)	Fluorochemical production	USA	1972– 2004	Fine powder and granular PTFE	Serum	Multiple – see comments	170	5470 (NR)	(90–59 400)	2880 (NR, NR)	NR	NR (NR)	(NR-NR)	NR (NR, NR)	NR	PFC chemical plant workers. Methods 1972–1981: whole blood, Wickbold torch; 1981– 2003: whole blood, GC-ECD; 2003–2004: serum, LC-MS/MS. All results adjusted to serum equivalent.

4

PFOA (ng/mL) PFOS (ng/mL) Reference Occupational Geographic Sample Job, task, or Biological Analytical No. of al location collection subgroup matrix method participant group description year Mean (GM) Range LOD (LOQ Mean/GM Median Range Media S (IQR) indicated with *) USA 1690 (NR, Woskie et Fluorochemical 1972-FEP/PFA Serum Multiple -96 2530 (NR) (130-NR NR (NR) (NR-NR) NR (N al. (2012) 2004 NR) production see 14 040) comments Woskie et Fluorochemical USA 1972-Non-PFOA job Serum Multiple -480 840 (NR) (8-14 580) 440 (NR, NR NR (NR) (NR-NR) NR (N al. (2012) production 2004 in PTFE and co-NR) see polymer comments production Fluorochemical USA 1972-NR Woskie et 200 890 (NR) (60-6810) 500 (NR, NR (NR) (NR-NR) NR (N Maintenance Serum Multiple – al. (2012) production 2004 NR) see comments Woskie et Fluorochemical USA 1972-Non-PTFE/co-Serum Multiple -463 240 (NR) (7 - 4140)160 (NR, NR NR (NR) (NR-NR) NR (N al. (2012) 2004 NR) production polymer see production with comments no PFOA use 2002 (0.6 - 42.7)0.5* Tanner et al. Multiple New York, NR LC-MS/MS 154 NR (8.1) 8.1 (5.6, NR (34.3) (4.6–217) 32.7 (2 Serum (2018)USA 11.8) Office California, 2015 NR LC-MS/MS 79 (NR-NR) NR (NR, 0.02 NR (4.03) (NR-NR) NR (N Clarity et al. Serum NR (1.19) (2020)USA NR) Office 2009 LC-MS 31 NR (NR, 0.1 Fraser et al. California, NR Serum NR (3.7) (1.1 - 8.9)NR (11) (2.8-67)NR (N (2012) USA NR) Wu et al. 0.02 358 China 2017 NR LC-MS/MS 73 0.662 (NR) (0.2072-0.6661 (NR, 0.324 (0.00073-0.0122 Retail Urine 0.9067) 0.1507) (2019)NR) (NR) NR) Skiwax 2008 NR LC-MS 13 NR (NR) (20 - 174)50 (NR, 0.05* NR (NR) (11-91) 27 (NI Freberg et Norway Serum al. (2010) technicians NR) Nilsson et Skiwax 2008 NR Whole ES-MS/MS 8 140 (NR) (4.8–535) 112 (NR, 0.13 NR (NR) (0.3 - 27)12.2 (1 Sweden al. (2010) NR) technicians blood Nilsson et Skiwax Sweden 2007-NR Whole ESI-MS/MS 11 130 (NR) (1.9-630) 110 (NR, 0.13 11 (NR) (0.28 - 27)11 (NI al. (2013) NR) technicians 2011 blood

Table S1.15 Occupational exposure to PFOA and PFOS measured in biological matrices

Not edited

		Comments
an (IQR)	LOD (LOQ indicated with *)	
NR, NR)	NR	PFC chemical plant workers. Methods 1972–1981: whole blood, Wickbold torch; 1981– 2003: whole blood, GC-ECD; 2003–2004: serum, LC-MS/MS. All results adjusted to serum equivalent.
NR, NR)	NR	PFC chemical plant workers. Methods 1972–1981: whole blood, Wickbold torch; 1981– 2003: whole blood, GC-ECD; 2003–2004: serum, LC-MS/MS. All results adjusted to serum equivalent.
NR, NR)	NR	PFC chemical plant workers. Methods 1972–1981: whole blood, Wickbold torch; 1981– 2003: whole blood, GC-ECD; 2003–2004: serum, LC-MS/MS. All results adjusted to serum equivalent.
NR, NR)	NR	PFC chemical plant workers. Methods 1972–1981: whole blood, Wickbold torch; 1981– 2003: whole blood, GC-ECD; 2003–2004: serum, LC-MS/MS. All results adjusted to serum equivalent.
22.7, 49.1)	0.5*	Hudson River Cohort. Occupations assigned by likelihood of exposure into none (55.8% of cohort), low (18.2%), moderate (26%), and high (0%).
NR, NR)	0.02	Female population
NR, NR)	0.2	
25 (NR,	0.1114	Retail clothing workers
R, NR)	0.05*	
NR, NR)	0.042	Blood collected at multiple timepoints before and after ski seasons
R, NR)	0.042	Blood collected at multiple timepoints before and after ski seasons

Reference	Occupational	Geographic	Sample	Job, task, or	Biological	Analytical	No. of	PFOA (ng/m	nL)			PFOS (ng/mL)				Comments
	group	al location	collection year	subgroup description	matrix	method	participant s	Mean (GM)	Range	Median (IQR)	LOD (LOQ indicated with *)	Mean/GM	Range	Median (IQR)	LOD (LOQ indicated with *)	
Zhang et al. (2011)	Leather factory	China	2009	NR	Serum	LC-MS	50	6.93 (NR)	(0.17– 117.77)	3.49 (NR, NR)	NR	6.19 (NR)	(0.05–63.06)	4.88 (NR, NR)	NR	Population from Wenzhou metropolis area, also called "Footwear Capital" of China. Samples also collected from infertile men and umbilical cords.
Lu et al. (2014)	Textile mill	Shandong province, China	2012	NR	Blood	LC-ESI- MS/MS	20	5.46 (NR)	(2.35– 10.92)	NR (NR, NR)	NR	5.73 (NR)	(1.34–14.75)	(NR, NR)	NR	
Shi et al. (2016)	Metal plating	Shandong province, China	0	NR	Urine	LC	19	NR (NR)	(NR-NR)	NR (NR, NR)	NR	3.25 (NR)	(0.0004–34.4)	1.56 (NR, NR)	NR	Process workers involved with chrome plating vats where fluorinated surfactants are used as mist suppressants.
Shi et al. (2016)	Metal plating	Shandong province, China	0	NR	Serum	LC-MS	19	NR (NR)	(NR-NR)	NR (NR, NR)	NR	NR (NR)	(2.4–1323)	40 (NR, NR)	NR	Process workers involved with chrome plating vats where fluorinated surfactants are used as mist suppressants.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Spinetta Marengo, Italy	2004– 2021	Chemical plant- All	Serum	LC-MS	252	NR (NR)	(NR– 19 920)	81 (NR, NR)	5-1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s-2013 (PFOA), 1996- present (ADV), and 2012-present (cC ₆ O ₄). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Spinetta Marengo, Italy	2004– 2021	Chemical plant- Plastomers 1	Serum	LC-MS	17	NR (NR)	(NR-4790)	71 (NR, NR)	5–1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s-2013 (PFOA), 1996- present (ADV), and 2012-present (cC ₆ O ₄). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Spinetta Marengo, Italy	2004– 2021	Chemical plant- Plastomers 2	Serum	LC-MS	64	NR (NR)	(NR– 19 920)	557 (NR, NR)	5-1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s-2013 (PFOA), 1996- present (ADV), and 2012-present (cC ₆ O ₄). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Spinetta Marengo, Italy	2004– 2021	Chemical plant- Elastomers	Serum	LC-MS	44	NR (NR)	(NR-8100)	21 (NR, NR)	5–1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s-2013 (PFOA), 1996- present (ADV), and 2012-present (cC ₆ O ₄). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Spinetta Marengo, Italy	2004– 2021	Chemical plant- Fluids	Serum	LC-MS	34	NR (NR)	(NR-1530)	9 (NR, NR)	5–1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s-2013 (PFOA), 1996- present (ADV), and 2012-present

Table S1.15 Occupational exposure to PFOA and PFOS measured in biological matrices

Not edited

Reference	Occupational	Geographic	Sample	Job, task, or	Biological	Analytical	No. of	PFOA (ng/m	L)			PFOS (ng/m	L)			Comments
	group	al location	collection year	subgroup description	matrix	method	participant s	Mean (GM)	Range	Median (IQR)	LOD (LOQ indicated with *)	Mean/GM	Range	Median (IQR)	LOD (LOQ indicated with *)	
																(cC_6O_4) . Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Spinetta Marengo, Italy	2004– 2021	Chemical plant- Perfluoro Vinyl Ether (PFVE)	Serum	LC-MS	19	NR (NR)	(NR-130)	8 (NR, NR)	5–1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s-2013 (PFOA), 1996- present (ADV), and 2012-present (cC6O4). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Spinetta Marengo, Italy	2004– 2021	Chemical plant- Maintenance	Serum	LC-MS	68	NR (NR)	(NR-4670)	65 (NR, NR)	5–1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s-2013 (PFOA), 1996- present (ADV), and 2012-present (cC ₆ O ₄). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Spinetta Marengo, Italy	2004– 2021	Chemical plant- Mixed (non- exposed)	Serum	LC-MS	26	NR (NR)	(NR-8830)	35 (NR, NR)	5–1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s-2013 (PFOA), 1996- present (ADV), and 2012-present (cC ₆ O ₄). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Bollate, Italy	2008– 2021	Research centre- All	Serum	LC-MS	58	NR (NR)	(NR-2460)	< 5 (NR, NR)	5–1*	NR (NR)	(NR–NR)	NR (NR, NR)	NR	Most research centre data collected 2018–2012. ADV (a polymerization reaction) and cC_6O_4 also measured in serum. Exposure occurred from 1960s- 2013 (PFOA), 1996-present (ADV), and 2012-present (cC_6O_4). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Bollate, Italy	2008– 2021	Research centre- Pilot	Serum	LC-MS	22	NR (NR)	(NR-2460)	< 5 (NR, NR)	5–1*	NR (NR)	(NR–NR)	NR (NR, NR)	NR	Most research centre data collected 2018–2012. ADV (a polymerization reaction) and cC_6O_4 also measured in serum. Exposure occurred from 1960s- 2013 (PFOA), 1996-present (ADV), and 2012-present (cC_6O_4). Decreasing trends observed over study period.
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Bollate, Italy	2008– 2021	Research centre- Laboratories	Serum	LC-MS	10	NR (NR)	(NR-19)	< 5 (NR, NR)	5–1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	Most research centre data collected 2018–2012. ADV (a polymerization reaction) and cC_6O_4 also measured in serum. Exposure occurred from 1960s- 2013 (PFOA), 1996-present (ADV), and 2012-present (cC_6O_4). Decreasing trends observed over study period.

Table S1.15 Occupational exposure to PFOA and PFOS measured in biological matrices

Not edited

Table S1.15 Occupational exposure to	PFOA and PFOS measured in	biological matrices
1 1		0

Reference	Occupational	Geographic	Sample collection	Job, task, or subgroup description	Biological matrix	Analytical method	No. of participant s	f PFOA (ng/mL) cipant					L)		Comments	
	group	anocation	year		matrix			Mean (GM)	Range	Median (IQR)	LOD (LOQ indicated with *)	Mean/GM	Range	Median (IQR)	LOD (LOQ indicated with *)	
Fustinoni and Consonni (2023)	Perfluoroalkyl polymer production	Bollate, Italy	2008– 2021	Research centre- Mix (non- exposed)	Serum	LC-MS	46	NR (NR)	(NR-150)	< 5 (NR, NR)	5-1*	NR (NR)	(NR-NR)	NR (NR, NR)	NR	Most research centre data collected 2018–2012. ADV (a polymerization reaction) and cC ₆ O ₄ also measured in serum. Exposure occurred from 1960s- 2013 (PFOA), 1996-present (ADV), and 2012-present (cC ₆ O ₄). Decreasing trends observed over study period.
Göen et al. (2023)	Welders	Europe	2018– 2019	NR	Plasma	TQMS	43	NR (NR)	(0.34–5.36)	1.29 (NR, 4.72	0.02*	NR (NR)	(1.01–1513)	4.97 (NR, NR)	0.03*	HBM4EU chromate study
Göen et al. (2023)	Chrome plating workers	Europe	2018– 2019	NR	Plasma	TQMS	52	NR (NR)	(< 0.1–3.38)	1.45 (NR, 3.07)	0.02*	NR (NR)	(0.89–789)	4.83 (NR, NR)	0.03*	HBM4EU chromate study

ADV, a polymerization reaction mass of perfluoropolyether carboxylic acids containing multiple isomers (CAS No. 330809-92-2); AFFF, aqueous film-forming foam; APFO, ammonium perfluoroctanoate; C8, a synonym for PFOA; cC₆O₄, acetic acid, 2,2-difluoro-2-[[2,2,4,5- tetrafluoro-5-(trifluoromethoxy)-1,3-dioxolan-4-yl] oxy]-, ammonium salt (1:1) CAS No. 1190931-27-1; ECD, electron capture detector; ESI, electrospray ionization; FEP, fluorinated ethylene propylene; GC, gas chromatography; GM, geometric mean; HBM4EU, Human Biomonitoring for Europe; IQR, interquartile range; LC, liquid chromatography; LOD, limit of quantification; MS, mass spectrometry; MS/MS, tandem mass spectrometry; NA, not applicable; NR, not reported; NW, northwest; PFA, perfluoroalkoxy; PFAS, per- and polyfluoroalkyl substances; PFC, perfluoroactaneic acid; PFOS, perfluoroactaneic ac west; TQMS, triple quadrupole mass spectrometry; USA, United States of America.

References

- Batzella E, Girardi P, Russo F, Pitter G, Da Re F, Fletcher T, et al. (2022). Perfluoroalkyl substance mixtures and cardio-metabolic outcomes in highly exposed male workers in the Veneto Region: A mixture-based approach. Environ Res. 212 Pt A:113225. https://doi.org/10.1016/j.envres.2022.113225 PMID:35390304
- Burgess JL, Fisher JM, Nematollahi A, Jung AM, Calkins MM, Graber JM, et al. (2023). Serum per- and polyfluoroalkyl substance concentrations in four municipal US fire departments. Am J Ind Med. 66(5):411–23. https://doi.org/10.1002/ajim.23413 PMID:35864570
- Clarity C, Trowbridge J, Gerona R, Ona K, McMaster M, Bessonneau V, et al. (2020). Associations between polyfluoroalkyl substance and organophosphate flame retardant exposures and telomere length in a cohort of women firefighters and office workers in San Francisco. medRxiv. 2020.11.05.20226183. https://doi.org/10.1101/2020.11.05.20226183 PMID:33173912
- Costa G, Sartori S, Consonni D (2009). Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med. 51(3):364–72. https://doi.org/10.1097/JOM.0b013e3181965d80 PMID:19225424

Dobraca D, Israel L, McNeel S, Voss R, Wang M, Gajek R, et al. (2015). Biomonitoring in California firefighters: metals and perfluorinated chemicals. J Occup Environ Med. 57(1):88–97. https://doi.org/10.1097/JOM.00000000000307 PMID:25563545

Fraser AJ, Webster TF, Watkins DJ, Nelson JW, Stapleton HM, Calafat AM, et al. (2012). Polyfluorinated compounds in serum linked to indoor air in office environments. Environ Sci Technol. 46(2):1209–15. https://doi.org/10.1021/es2038257 PMID:22148395

Freberg BI, Haug LS, Olsen R, Daae HL, Hersson M, Thomsen C, et al. (2010). Occupational exposure to airborne perfluorinated compounds during professional ski waxing. Environ Sci Technol. 44(19):7723–8. https://doi.org/10.1021/es102033k PMID:20831156

Fu J, Gao Y, Cui L, Wang T, Liang Y, Qu G, et al. (2016). Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China. Sci Rep. 6(1):38039. https://doi.org/10.1038/srep38039 PMID:27905562

- Fustinoni S, Consonni D (2023). Historical trend of exposure to perfluoroalkyl surfactants PFOA, ADV, and cC6O4 and its management in two perfluoroalkyl polymers plants, Italy. Ann Work Expo Health. 67(4):518–35. https://doi.org/10.1093/annweh/wxac095 PMID:36715212
- Gao Y, Fu J, Cao H, Wang Y, Zhang A, Liang Y, et al. (2015). Differential accumulation and elimination behavior of perfluoroalkyl acid isomers in occupational workers in a manufactory in China. Environ Sci Technol. 49(11):6953–62. https://doi.org/10.1021/acs.est.5b00778 PMID:25927957
- Gasiorowski R, Forbes MK, Silver G, Krastev Y, Handorf B, Lewis B, et al. (2022). Effect of plasma and blood donations on levels of perfluoroalkyl substances in firefighters in Australia: a randomized clinical trial. JAMA Netw Open. 5(4):e226257. https://doi.org/10.1001/jamanetworkopen.2022.6257 PMID:35394514
- Göen T, Abballe A, Bousoumah R, Godderis L, Iavicoli I, Ingelido AM, et al.; HBM4EU Chromates Study Team (2023). HBM4EU chromates study PFAS exposure in electroplaters and bystanders. Chemosphere. 2023:140613. https://doi.org/10.1016/j.chemosphere.2023.140613 PMID:37944767
- Graber JM, Black TM, Shah NN, Caban-Martinez AJ, Lu SE, Brancard T, et al. (2021). Prevalence and predictors of per- and polyfluoroalkyl substances (PFAS) serum levels among members of a suburban US volunteer Fire Department. Int J Environ Res Public Health. 18(7):3730. https://doi.org/10.3390/ijerph18073730 PMID:33918459

- Guruge KS, Taniyasu S, Yamashita N, Wijeratna S, Mohotti KM, Seneviratne HR, et al. (2005). Perfluorinated organic compounds in human blood serum and seminal plasma: a study of urban and rural tea worker populations in Sri Lanka. J Environ Monit. 7(4):371–7. https://doi.org/10.1039/b412532k PMID:15798805
- Jin C, Sun Y, Islam A, Qian Y, Ducatman A (2011). Perfluoroalkyl acids including perfluorooctane sulfonate in firefighters. J Occup Environ Med. 53(3):324–8. https://doi.org/10.1097/JOM.0b013e31820d1314 PMID:21346631

Laitinen JA, Koponen J, Koikkalainen J, Kiviranta H (2014). Firefighters' exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams. Toxicol Lett. 231(2):227–32. https://doi.org/10.1016/j.toxlet.2014.09.007 PMID:25447453

- Leary DB, Takazawa M, Kannan K, Khalil N (2020). Perfluoroalkyl substances and metabolic syndrome in firefighters: a pilot study. J Occup Environ Med. 62(1):52–7. https://doi.org/10.1097/JOM.00000000001756 PMID:31658221
- Lu C, Shi Y-L, Zhou Z, Liu N-N, Meng Z-F, Ca Y-Q (2014). Perfluorinated compounds in blood of textile workers and barbers. Chin Chem Lett. 25(8):1145–8. https://doi.org/10.1016/j.cclet.2014.03.023
- Lu Y, Gao K, Li X, Tang Z, Xiang L, Zhao H, et al. (2019). Mass spectrometry-based metabolomics reveals occupational exposure to per- and polyfluoroalkyl substances relates to oxidative stress, fatty acid β-oxidation disorder, and kidney injury in a manufactory in China. Environ Sci Technol. 53(16):9800-9. https://doi.org/10.1021/acs.est.9b01608 PMID:31246438
- Nilsson H, Kärrman A, Rotander A, van Bavel B, Lindström G, Westberg H (2013). Biotransformation of fluorotelomer compound to perfluorocarboxylates in humans. Environ Int. 51:8–12. https://doi.org/10.1016/j.envint.2012.09.001 PMID:23138016
- Nilsson H, Kärrman A, Westberg H, Rotander A, van Bavel B, Lindström G (2010). A time trend study of significantly elevated perfluorocarboxylate levels in humans after using fluorinated ski wax. Environ Sci Technol. 44(6):2150–5. https://doi.org/10.1021/es9034733 PMID:20158198
- Olsen GW, Burris JM, Burlew MM, Mandel JH (2000). Plasma cholecystokinin and hepatic enzymes, cholesterol and lipoproteins in ammonium perfluorooctanoate production workers. Drug Chem Toxicol. 23(4):603-20. https://doi.org/10.1081/DCT-100101973 PMID:11071397
- Olsen GW, Burlew MM, Burlew MM, Mandel JH (2003). Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonate (PFOS). https://doi.org/10.1097/01.jom.0000052958.59271.10 PMID:12661183
- Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. (2007). Half-life of serum elimination of perfluorooctanesulfonate, perfluorooctanesulfonate, and perfluorooctanesulfonate in retired fluorochemical production workers. Environ Health Perspect. 115(9):1298-305. https://doi.org/10.1289/ehp.10009 PMID:17805419
- Olsen GW, Burris JM, Mandel JH, Zobel LR (1999). Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. J Occup Environ Med. 41(9):799–806. https://doi.org/10.1097/00043764-199909000-00012 PMID:10491796
- Rotander A, Toms LML, Aylward L, Kay M, Mueller JF (2015). Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). Environ Int. 82:28–34. https://doi.org/10.1016/j.envint.2015.05.005 PMID:26001497
- Sakr CJ, Kreckmann KH, Green JW, Gillies PJ, Reynolds JL, Leonard RC (2007). Cross-sectional study of lipids and liver enzymes related to a serum biomarker of exposure (ammonium perfluorooctanoate or APFO) as part of a general health survey in a cohort of occupationally exposed workers. J Occup Environ Med. 49(10):1086-96. https://doi.org/10.1097/JOM.0b013e318156eca3 PMID:18000414
- Shaw SD, Berger ML, Harris JH, Yun SH, Wu Q, Liao C, et al. (2013). Persistent organic pollutants including polychlorinated and polybrominated dibenzo-p-dioxins and dibenzo-p-d https://doi.org/10.1016/j.chemosphere.2012.12.070 PMID:23395527
- Shi Y, Vestergren R, Xu L, Zhou Z, Li C, Liang Y, et al. (2016). Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (CI-PFESAs). Environ Sci Technol. 50(5):2396–404. https://doi.org/10.1021/acs.est.5b05849 PMID:26866980
- Steenland K, Jin C, MacNeil J, Lally C, Ducatman A, Vieira V, et al. (2009). Predictors of PFOA levels in a community surrounding a chemical plant. Environ Health Perspect. 117(7):1083–8. https://doi.org/10.1289/ehp.0800294 PMID:19654917
- Tanner EM, Bloom MS, Wu Q, Kannan K, Yucel RM, Shrestha S, et al. (2018). Occupational exposure to perfluorooctanesulfonic acid (PFOS) and perfluorooctanesulfonic acid (PFOS) aci a retrospective cohort study. Int Arch Occup Environ Health. 91(2):145-54. https://doi.org/10.1007/s00420-017-1267-2 PMID:29027000
- Tao L, Kannan K, Aldous KM, Mauer MP, Eadon GA (2008). Biomonitoring of perfluorochemicals in plasma of New York State personnel responding to the World Trade Center disaster. Environ Sci Technol. 42(9):3472–8. https://doi.org/10.1021/es8000079 PMID:18522136
- Wang J, Zhang Y, Zhang W, Jin Y, Dai J (2012). Association of perfluorooctanoic acid with HDL cholesterol and circulating miR-26b and miR-199-3p in workers of a fluorochemical plant and nearby residents. Environ Sci Technol. 46(17):9274-81. https://doi.org/10.1021/es300906q PMID:22862179
- Winquist A, Lally C, Shin HM, Steenland K (2013). Design, methods, and population for a study of PFOA health effects among highly exposed mid-Ohio valley community residents and workers. Environ Health Perspect. 121(8):893–9. https://doi.org/10.1289/ehp.1206450 PMID:23735518
- Woskie SR, Gore R, Steenland K (2012). Retrospective exposure assessment of perfluorooctanoic acid serum concentrations at a fluoropolymer manufacturing plant. Ann Occup Hyg. 56(9):1025–37. https://doi.org/10.1093/annhyg/mes023 PMID:22539556
- Wu N, Cai D, Guo M, Li M, Li X (2019). Per- and polyfluorinated compounds in saleswomen's urine linked to indoor dust in clothing shops. Sci Total Environ. 667:594–600. https://doi.org/10.1016/j.scitotenv.2019.02.287 PMID:30833258
- Zhang W, Lin Z, Hu M, Wang X, Lian Q, Lin K, et al. (2011). Perfluorinated chemicals in blood of residents in Wenzhou, China. Ecotoxicol Environ Saf. 74(6):1787–93. https://doi.org/10.1016/j.ecoenv.2011.04.027 PMID:21570120

Zhou Z, Shi Y, Vestergren R, Wang T, Liang Y, Cai Y (2014). Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun lake, china. Environ Sci Technol. 48(7):3864–74. https://doi.org/10.1021/es4057467 PMID:24588690