ARC MONOGRAPHS

PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUOROOCTANESULFONIC ACID (PFOS)

THE A P R I

VOLUME 135

This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met in Lyon, France, 7–14 November 2023

LYON, FRANCE - 2025

IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS

International Agency for Research on Cancer

Sample type	Location and	No. of	PFOA concentration (pg/g)		Analytical method	Comments	Reference
	concentrate	sampres	Mean (range)	Median (IQR)			
Vegetables	26 developing countries ^a , 2018–19	10	7.58 (< LOQ to 27.2)	3.24	HPLC-MS/MS (LOQ, 6.2 pg/g)	DF, 50% Concentrations below the LOQ were set at zero	Fiedler et al. (2022)
Vegetables and vegetable products	Europe, 2000–2016 ^d	489	6	NR	NR	DF, 14% Includes fungi; concentrations below the LOQ were set at zero	Schrenk et al. (2020)
Vegetables	China, 2003–2019 ^b	NR	150	NR	NR	DF, NR	Fan et al. (2021)
Fruits and vegetables	USA, 2021	42	< MDL	< MDL	LC-HRMS (MDL, 20 pg/g)	DF, 0%	US FDA (2022)
Fruit and fruit products	Europe, 2000–2016 ^b	144	9	NR	NR	DF, 37% Concentrations below the LOQ were set at zero	Schrenk et al. (2020)
Fruit and fruit products	China, 2003–2019 ^b	NR	20	NR	NR	DF, NR	Fan et al. (2021)
Grains and grain-based products	Europe, 2000–2016 ^b	86	0.05	NR	NR	DF, 1% Concentrations below the LOQ were set at zero	Schrenk et al. (2020)
Grains and grain-based products	China, 2003–2019 ^b	NR	140	NR	NR	DF, NR	Fan et al. (2021)
Grains and grain-based products	USA, 2021	17	< MDL	< MDL	LC-HRMS (MDL, 41 pg/g)	DF, 0%	US FDA (2022)

Table S1.13 Occurrence of PFOA in food

Online only

Table S1.13 Occurrence of PFOA in food

Sample type	Location and collection date	No. of samples	PFOA concentration (pg/g)		Analytical method	Comments	Reference
			Mean (range)	Median (IQR)	- (LOD)		
Fish and other seafood	26 developing countries ^a , 2018–2019	76	12.4 (< LOQ to 160)	8.87 (NR)	HPLC-MS/MS (LOQ, 6.2 pg/g)	DF, 88% Concentrations below the LOQ were set at zero	Fiedler et al. (2022)
Fish and other seafood (fish meat)	Europe, 2000–2016 ^b	2273	117 (NR)	NR	NR	DF, 5% concentrations below the LOQ were set at zero	Schrenk et al. (2020)
Fish and other seafood (fish offal)	Europe, 2000–2016 ^b	208	< LOQ	NR	NR	DF, 0%	Schrenk et al. (2020)
Fish and other seafood (fish and shrimp)	China, 2003–2019 ^b	NA	970	NR	NR	DF, NA	Fan et al. (2021)
Fish and other seafood products	USA, 2021	5	< MDL	NR	LC-HRMS (MDL, 90 pg/g)	DF, 0%	US FDA (2022)
Fish and other seafood	Washington (DC), USA 2021–2022	81	NR (< LOQ to 20 133)	NR	LC-MS/MS (MDL, 68–90 pg/g)	DF, 38%	Young et al. (2022)
Meat and meat products (beef)	26 developing countries ^a , 2018–2019	9	6.44 (< LOQ to 14.8)	7.19 (NR)	HPLC-MS/MS (LOQ, 6.2 pg/g)	DF, 78%, Concentrations below the LOQ were set at zero	Fiedler et al. (2022)
Meat and meat products (sheep)	26 developing countries ^a , 2018–2019	2	15.6 (14.2–17.1)	15.6 (NR)	HPLC-MS/MS (LOQ, 6.2 pg/g)	DF, 100%, Concentrations below the LOQ were set at zero	Fiedler et al. (2022)

No. of Sample type Location and **PFOA concentration (pg/g)** Analytical method Comments Reference collection date (LOD) samples Mean (range) Median (IQR) 14 4.61 (< LOQ to HPLC-MS/MS DF, 21% Fiedler et al. Meat and meat 26 developing < LOQ products countries^a, 48.5) (LOQ, 6.2 pg/g)(2022)(chicken) 2018-2019 DF, 4% Meat and meat Europe, 459 28 (NR) NR NR Schrenk et al. products 2000-2016^b Concentrations below the LOQ were (2020)(livestock meat) set at zero Meat and meat 185 2.3 NR NR DF. 2% Schrenk et al. Europe, products 2000-2016^b Concentrations below the LOQ were (2020)(poultry) set at zero Meat and meat 572 380 (NR) NR NR DF. 9% Schrenk et al. Europe, 2000-2016^b products Concentrations below the LOQ were (2020)(game mammals) set at zero China, 2003–2019^b NR Meat and meat NR 700 (NR) NR DF, NR Fan et al. (2021) products 8 < MDLNR LC-HRMS DF, 0% Meat and meat USA, 2021 US FDA (2022) products (MDL, 24 pg/g) 13 8.09 (< LOQ to < LOQ HPLC-MS/MS DF. 46% Fiedler et al. Milk and dairy 26 developing products (butter) countries^a, 54.1) (LOQ, 6.2 pg/g)Concentrations below the LOQ were (2022)2018-2019 set at zero 7 0.99 (< LOQ to < LOQ HPLC-MS/MS Fiedler et al. Milk and dairy 26 developing DF, 14% products (milk) countries^a, 6.92) (LOQ, 6.2 pg/g) Concentrations below the LOO were (2022)2018-2019 set at zero

Table S1.13 Occurrence of PFOA in food

Sample type	Location and	No. of	PFOA concentration (pg/g)		Analytical method	Comments	Reference
		sampies	Mean (range)	Median (IQR)	(LOD)		
Milk and dairy products (milk)	Europe, 2000–2016 ^b	236	<loq< td=""><td>NR</td><td>NR</td><td>DF, 0%, Concentrations below the LOQ were set at zero</td><td>Schrenk et al. (2020)</td></loq<>	NR	NR	DF, 0%, Concentrations below the LOQ were set at zero	Schrenk et al. (2020)
Milk and dairy products (cheese)	Europe, 2000–2016 ^b	115	7.1	< LOQ	NR	DF, 0%, Concentrations below the LOQ were set at zero	Schrenk et al. (2020)
Milk and dairy products	China, 2003–2019 ^b	NR	13 pg/mL	NR	NR	DF, NR	Fan et al. (2021)
Milk	USA, 2021	10	< MDL	< MDL	LC-HRMS (MDL, 42 pg/g)	DF 0%	US FDA (2022)
Eggs and egg products	26 developing countries ^a , 2018–2019	36	8.34 (< LOQ to 28.1)	6.94 (NR)	HPLC-MS/MS (LOQ, 6.2 pg/g)	DF, 72% Concentrations below the LOQ were set at zero	Fiedler et al. (2022)
Eggs and egg products	Europe, 2000–2016 ^b	177	106	NR	NR	DF, 8% Concentrations below the LOQ were set at zero	Schrenk et al. (2020)
Eggs and egg products	China, 2003–2019 ^b	NR	150	NR	NR	DF, NR	Fan et al. (2021)
Eggs and egg products	USA, 2021	177	< MDL	NR	LC-HRMS (MDL, 90 pg/g)	DF, 0%	US FDA (2022)

Table S1.13 Occurrence of PFOA in food

Table S1.13 Occurrence of PFOA in food

Sample type	Location and collection date	No. of samples	PFOA concentration (pg/g)		Analytical method – (LOD)	Comments	Reference
		1	Mean (range)	Median (IQR)	(202)		

DC, District of Columbia; DF, detection frequency; HPLC-MS/MS, high-performance liquid chromatography-tandem mass spectrometry; HRMS, high-resolution mass spectrometry; IQR, interquartile range; LC, liquid chromatography; LOD, limit of detection; LOQ, limit of quantification; MDL, method detection limit; NA, not applicable; NR, not reported; PFOA, perfluorooctanoic acid; USA, United States of America.

^a Twenty-six developing countries in Africa (n = 10), Asia (n = 4), Group of Latin America and the Caribbean countries (GRULAC; n = 8), and the Pacific Islands (PAC; n = 4).

^b Reported data from several studies.

1

References

Fan X, Wang Z, Li Y, Wang H, Fan W, Dong Z (2021). Estimating the dietary exposure and risk of persistent organic pollutants in China: a national analysis. Environ Pollut. 288:117764. https://doi.org/10.1016/j.envpol.2021.117764 PMID:34280741

Fiedler H, Sadia M, Baabish A, Sobhanei S (2022). Perfluoroalkane substances in national samples from global monitoring plan projects (2017–2019). Chemosphere. 307(Pt 3):136038.
 https://doi.org/10.1016/j.chemosphere.2022.136038 PMID:35977568

Schrenk D, Bignami M, Bodin L, Chipman JK, Del Mazo J, Grasl-Kraupp B, et al. (2020). Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J.
 18(9):e06223. https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2020.6223 PMID:32994824

8 US FDA (2022). Analytical results of testing food for PFAS from environmental contamination. Silver Spring (MD), USA: United States Food and Drug Administration. Available
 9 from: https://www.fda.gov/food/process-contaminants-food/analytical-results-testing-food-pfas-environmental-contamination, accessed October 2024.

10 Young W, Wiggins S, Limm W, Fisher CM, DeJager L, Genualdi S (2022). Analysis of per- and poly(fluoroalkyl) substances (PFASs) in highly consumed seafood products from US

11 markets. J Agric Food Chem. 70(42):13545–53. https://doi.org/10.1021/acs.jafc.2c04673 PMID:36251396