ARC MONOGRAPHS

PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUOROOCTANESULFONIC ACID (PFOS)

THE A P R I

VOLUME 135

This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met in Lyon, France, 7–14 November 2023

LYON, FRANCE - 2025

IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS

International Agency for Research on Cancer

1

Reference	Information available in the paper	Working Group calculation ^a	Information reported in the Monograph ^a
Han et al. (2003)	Dissociation constant between PFOA and HSAs: 0.38 mM (micro-desalting columns)	No (used as reported - rounded)	Highest value for PFOA-HSA (4 × 10 ⁻⁴ M)
Messina et al. (2005)	Hill binding constants for two HSA-PFOA binding sites:	Reverse	
	$1.44\times10^5~\text{M}^{-1}$	$6.9 imes 10^{-6} \mathrm{M}$	Included in the range
	$3.17 \times 10^4 \ M^{-1}$	$3.2 \times 10^{-5} \text{ M}$	Included in the range
Chen and Guo (2009)	Binding constant to human HSA (by fluorescent quenching)	Reverse	
	PFOA, $2.7 \times 10^5 \text{ M}^{-1}$	$3.7 \times 10^{-6} \text{ M}$	Lowest values for PFOA-HSA
	PFOS, $2.2 \times 10^4 \text{M}^{-1}$	$4.5 \times 10^{-5} \text{ M}$	PFOS-HSA
Li et al. (2009)	Absorption constant for PFOS with HSA	Reverse	
	$5.01\times10^3~\text{M}^{-1}$	$2.0 imes 10^{-4} \mathrm{M}$	Highest value for PFOS-HSA
Wu et al. (2009)	Absorption constant <i>K</i> _a (dialysis, Temkin isothermal model)	Reverse	Included in the range
	$3.12 \times 10^4 \; M^{-1}$	$3.2 \times 10^{-5} \text{ M}$	
Luo et al. (2012)	Crystal structure of PFOS with HSA		Direct evidence of PFOS interacting with HSA
	No binding experiments		
Zhang et al. (2013a)	K_d for displacement from hL-FABP (fluorescence displacement assay)	No (used as reported)	
	PFOA, 50.4 μM		Included (high value)
	PFOS, <mark>18.5 μΜ</mark>		Included
Sheng et al. (2016)	$K_{\rm d}$ for PFOA-hL-FABP for wt	No (used as reported)	Lower value for PFOA-LFABP 2.4×10^{-6}
	$2.36\times 10^{-6}\ M$		
Maso et al. (2021)	Crystal structure of PFOA with HSA		Direct evidence of PFOA interacting with HSA

Table S4.1 Calculations to derive dissociation constants, by the Working Group

Not edited

2

Reference	Information available in the paper	Working Group calculation ^a	Information reported in the Monograph
Bischel et al. (2010)	Association constant of BSA with PFOA equals	Reverse	BSA not HSA
	$1.4 \times 10^6 \text{ M}^{-1}$ (dialysis)	$7.1 imes 10^{-7} \ \mathrm{M}$	
	$1.3 \times 10^5 \text{ M}^{-1}$ (nanoESI-MS)	$7.7 imes10^{-6}~{ m M}$	
	References		
	(PFOA-HSA):		
	2.4×10^4 M^{-1} (Sabín et al., 2006)	$4.2 imes 10^{-5} \mathrm{M}$	
	$2.6 \times 10^3 \text{ M}^{-1}$ (Han et al., 2003)	$3.8\times 10^{-4}~M$	Only new value (in range)
	$3.12 \times 10^4 \text{ M}^{-1}$ (Wu et al., 2009)	$3.2 imes 10^{-5} \mathrm{M}$	
	$1.44 \times 10^5 \text{ M}^{-1}$ (Messina et al., 2005)	$6.9 imes10^{-6}~{ m M}$	
	$3.17\times10^4M^{-1}$ (Messina et al., 2005)	$3.1 \times 10^{-5} \text{ M}$	Study not included because a review and considered redundant
Fedorenko et al. (2021)	BSA study (non-human protein)		Study not included

Table S4.1 Calculations to derive dissociation constants, by the Working Group

BSA, bovine serum albumin; hL-FABP, human liver-type fatty acid-binding protein; L-FABP, liver-type fatty acid-binding protein; HSA, human serum albumin; nanoESI-MS, nanoelectrospray ionization-mass spectrometry; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; wt, wildtype.

^a This table reports on toxicokinetic constants reported in the individual references cited in Section 4.1, and whether the value was recalculated by the Working Group to obtain a dissociation constant.

For association, binding, or absorption constants, the recalculation procedure uses a reverse value $(... = 1/K_a)$.

 $K_{\rm d} = 3.7 \times 10^{-6}$ to 4×10^{-4} M for PFOA and $4.5 - 20 \times 10^{-5}$ M for PFOS, and L-FABP, with $K_{\rm d} = 2.4 - 50.4 \times 10^{-6}$ M for PFOA and 18.5×10^{-6} M for PFOS.

Values are colour-coded:

 $K_{\rm d} = \frac{3.7}{400} \,\mu\text{M}$ for PFOA and $\frac{45}{200} \,\mu\text{M}$ for PFOS, and L-FABP, with $K_{\rm d} = \frac{2.4}{50.4} \,\mu\text{M}$ for PFOA and $\frac{18.5}{18.5} \,\mu\text{M}$ for PFOS.

Not edited